Research publications

27.10.2023

Leichtigkeit durch Hohlkörper-Platten: Entwicklung leichter Carbonbetonfertigteile auf Basis textiler 3D-Netzgitterträger

Knittings Composites Textile machinery Sustainability Technical Textiles

Abstract

In branchenübergreifender Kooperation wurde am Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM) und dem Institut für Massivbau (IMB) der TU Dresden leichte Carbonbetonfertigteile für materialeffiziente Decken- und Wandelemente auf Basis einer neuartigen 3D-Netzgitterträgerstruktur entwickelt.

Im Bauwesen sind Fertigteile eine etablierte Lösung für die Unterstützung eines schnellen Bauforschritts von Decken- und Wandelementen. Jedoch stoßen konventionelle Elemente aus Stahlbeton aufgrund ihres massiven Aufbaus und der Korrosionsanfälligkeit des Bewehrungsstahls immer öfter an ihre Einsatzgrenzen. Daher sollen perspektivisch auch im Filigranfertigteilbau textile Bewehrungen für Gitterträger eingesetzt werden, die zusätzliche Hohlräume, bspw. zur Führung von Medien, etc. ermöglichen.

Report

Carbon statt Stahl

Tragendes Element der neuen Fertigteilgeneration sind textile Gitterträger, deren Netzstruktur auf überlagernden, diagonal versetzenden Carbonrovings basiert. Der lastgerechte und korrosionsresistente textile Netzgitterträger ermöglicht eine deutliche Reduzierung der Betondeckung und der damit verbundenen CO2-Emmission und eröffnet innovative Design- und Funktionalisierungsmöglichkeiten durch die Integration von großvolumigen Hohlräumen. (Abbildung 1)

Carbonfaserbasierter 3D-Netzgitterträger

Das ITM der TU Dresden hat die textile Fertigungstechnologie auf Grundlage mehrerer Kettfadenversatzsysteme in Kombination mit einem nachgelagerten Umformprozess für die Herstellung der 3D-Netzgittertäger entwickelt. Hierbei erfolgt die Fertigung der netzartigen 2D-Textilstruktur auf Basis der weiterentwickelten Kettfadenversatztechnologie der Multiaxial-Kettenwirktechnik. Die Umformung und Strukturfixierung erfolgt auf Basis zweier entwickelter technologischer Ansätze als Nass- und Warmumformung durch die modulare Erweiterung konventioneller Beschichtungsanlagen. (Abbildung 2)

Leichtbau-Hohlkörperdecke aus Carbonbeton

Das im Bereich Carbonbeton renommierte IMB der TU Dresden führte eine numerisch gestützte baustatische Auslegung sowie die bautechnische Erprobung der Verstärkungsstruktur mit einer anschließenden simulationsgestützen Topologieoptimierung der 3D-Netzgitterträger aus. Hierzu wurden modifizierte Biegezugversuche nach RILEM RC5 sowie Auszugversuche an umgelenkt einbetonierten Garnen zur Ermittlung der Zug- und Verbundeigenschaften durchgeführt. Die Ergebnisse hierzu sind in Abbildung 3 auszugsweise dargestellt.

Weiterführend wurden neue Designmöglichkeiten, bspw. die Integration von Hohlräumen, Dämmungen und Leitungsschächten in Deckenelementen entwickelt und erprobt. Ergebnis ist eine innovative Produktfamilie für die Anwendung in Sandwichstrukturen, Doppelwänden und im allgemeinen „Filigran“-Fertigteilbau. Hierbei können komplexe geometrische Formen durch neuartige Schalungsmethoden umgesetzt werden.

Um das Potenzial eines leichten, mit 3D-Netzgitterträger bewehrten Hohlkörperplattensystems aufzuzeigen wurde eine umfassende vergleichende Analyse von Plattensystemen mit identischem Querschnitt durchgeführt (siehe Abbildung 5, pdf-Version). Die drei untersuchten Plattensysteme für Decken waren die stahlbewehrte Vollplatte (SVP), die stahlbewehrte Hohlplatte (SHP) und die mit Netzgitterträgern bewehrte Hohlplatte (NHP).

Die vergleichende analytische Untersuchung zeigt, dass aufgrund der höheren Leistungsfähigkeit der mit Netzgitterträgern bewehrten Hohlplatte signifikante Material- und Masseeinsparungen hinsichtlich Beton und Bewehrung in Form von großvolumigen Hohlräumen (36 %) möglich ist. Ein Vergleich der drei unterschiedlichen Plattenarten verdeutlicht eindrucksvoll am Beispiel einer 7,2 m x 1,0 m x 0,155 m großen Deckenplatte (L x B x H), dass bei gleichbleibender Belastung mit einer Nutzlast von 1,5 kN/m² die mit Netzgitterträgern bewehrte Hohlplatte (NHP) 36 % leichter als die stahlbewehrte Vollplatte (SVP) und 27,6 % leichter als die stahlbewehrte Hohlplatte (SHP) ausgeführt werden kann. Dies liegt darin begründet, dass aufgrund der korrosionsresistenten Netzgitterträger-Bewehrung die Betondeckung deutlich reduziert und somit der Hohlraumanteil im Vergleich zur stahlbewehrten Hohlplatte von 11 % auf 36 % gesteigert werden kann. Daraus resultiert eine signifikante Betoneinsparung der mit Netzgitterträgern bewehrten Hohlplatte von 28 % im Vergleich zu Hohlplatten mit korrosionsanfälliger Stahlbewehrung.

Die enorme Material- und Masseeinsparung von Beton und Bewehrung durch Integration von Hohlräumen (ca. 36 %) und Verwendung leichter Carbonbewehrungen der mit Netzgitterträgern bewehrten Hohlplatte im Vergleich zu konventionellen Plattensystemen für Deckenanwendungen bei gleichbleibender Leistungsfähigkeit zeigt das hohe wirtschaftliche und ökologische Potential der textilbewehrten Filigran-Fertigteile für die Bauindustrie auf.

Als Ergebnis des Forschungsprojektes wurde die Carbonbetontechnologie auf das enorm große Marktsegment der Filigranfertigteile übertragen und neue Lösungen für das ressourcenschonende Bauen der Zukunft bereitgestellt.

Das IGF-Vorhaben 21556 BR der Forschungsvereinigung Forschungskuratorium Textil e. V. wurde über die AiF im Rahmen des Programms zur Förderung der Industriellen Gemeinschaftsforschung (IGF) vom Bundesministerium für Wirtschaft und Klimaschutz aufgrund eines Beschlusses des Deutschen Bundestages gefördert.

Authors: Penzel, P.; Ur Rehman, N.; Hahn, L.; Michler, H.; Cherif, C.; Curbach, M.

Technische Universität Dresden, Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM) und Institut für Massivbau (IMB)

Dipl.-Ing. Paul Penzel, M. Sc. Nazaib Ur Rehman, Wiss. Mitarbeiter

+49 351 463-422 45 // +49 351 463-404 73

http://tu-dresden.de/mw/itm // https://tu-dresden.de/bu/bauingenieurwesen/imb

More entries from TU Dresden, Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik ITM

20.06.2023

Development of heavy tows from recycled carbon fibers for low-cost and high performance thermoset composites (rCF heavy tows)

Raw materials Fibres Yarns Composites Textile machinery Recycling Sustainability Circular economy Technical Textiles

Abstract

Within the framework of the IGF research project (21612 BR), the entire process chain for the industrial production of novel twist-free rCF heavy tows was developed at ITM. In particular, a novel technology for the production of rCF heavy tows based on recycled carbon (rCF ≥ 90 vol.%) and hot melt adhesive fibers (< 10 vol.%) was designed, constructed and successfully implemented. This includes fiber preparation, the carding process for card sliver formation, the stretching process for drawn sliver formation, and the final fabrication of the rCF heavy tows from rCF and hot melt adhesive fibers in a newly developed test set-up. The suitability of the developed technology is demonstrated by the implementation of rCF heavy tows with different rCF types, fiber lengths and fiber volume contents and a demonstrator. The developed rCF heavy tows with finenesses between 3000-7000 tex and their further processability into textile semi-finished products were successfully demonstrated. The developed rCF Heavy Tows and composites based on them exhibit a maximum composite tensile strength and a maximum Young’s modulus of 1158±72 MPa and 80±5.7 GPa, respectively. The rCF Heavy Tows are thus applicable for low-cost thermoset composites with high performance and complex geometry. Thus, the developed rCF Heavy Tows offer a very high innovation and market potential in the fields of materials and materials, lightweight construction, environmental and sustainability research, and resource efficiency. This opens up the opportunity for SMEs in the textile industry to develop new products and technologies for the fiber composite market and to establish themselves as suppliers for the automotive, mechanical engineering and aerospace, medical and sports equipment industries.

Report

Introduction, problem definition and aim of the project

Carbon fiber-reinforced plastics (CFRP) are increasingly used in lightweight applications due to their high stiffness and strength as well as low density, especially in aerospace, transportation, wind energy, sports equipment or construction. Global demand of CFRP is predicted to increase to 197,000 t/a by 2024, almost tripling compared to 2011. This shows an urgent need for solutions to recycle the high quality carbon fiber (rCF) in terms of the circular economy. This is necessary not only due to strict legal regulations, but also for ecological and economic reasons. In recent years, numerous research institutes and companies developed solutions for the reuse of rCF in the fields of nonwovens, injection molding or as hybrid yarns. However, the majority of these works involve the use of rCF in combination with thermoplastic fibers for thermoplastic composites. In the field of rCF-based thermoset CFRP, mainly rCF nonwovens made of 100% rCF have been so far developed. Since the fibers in the nonwovens mostly have a limited length and a low orientation and process-related additional high fiber damage occurs, with these materials only maximum 30% of the composite characteristic values of CFRP components made of carbon filament yarns can be so far achieved.

Currently, the matrix systems used in the field of high mechanical loaded CFRPs are predominantly thermoset. Such components exhibit high dimensional stability, high stiffness and strength as well as are suitable for the implementation of complex component geometries due to low-viscosity matrix systems. However, primary carbon filament yarns are particularly used for these components due to the insufficient properties of rCF. In addition to low sustainability, the utilization of these filament yarns result in at least 200 % higher cost. The production of primary carbon filament yarn requires a high-energy demand of about 230 MJ/kg with a CO2 emission equivalent to 20 kg CO2/kg CF. Here, a significant improvement of the CO2 balance is required to make a substantial contribution to the envisaged climate protection goals of the Federal Republic of Germany and the EU. For this reason, the focus of the project work is the development of novel, sustainable rCF heavy tows made of recycled carbon fibers (rCF) and associated manufacturing technologies for the implementation of cost-effective thermoset composites with high mechanical performance.

Acknowledgments

The IGF project 21612 BR of the Research Association Forschungskuratorium Textil e.V. was funded by the Federal Ministry of Economics and Climate Protection (BMWK) via the AiF within the framework of the program for the promotion of joint industrial research and development (IGF) on the basis of a resolution of the German Bundestag. We would like to thank the above-mentioned institutions for providing the financial resources.

Authors: Mahmud Hossain, Anwar Abdkader und Chokri Cherif

Technische Universität Dresden
Fakultät Maschinenwesen
Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM)
01062 Dresden

https://tu-dresden.de/mw/itm

More entries from TU Dresden, Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik ITM

20.06.2023

Entwicklung von Heavy Tows aus recycelten Carbonfasern für kostengünstige duroplastische Composites mit hohem Leistungsvermögen (rCF-Heavy Tows)

Raw materials Fibres Yarns Composites Textile machinery Recycling Sustainability Circular economy Technical Textiles

Abstract

Im Rahmen des IGF-Forschungsvorhabens (21612 BR) wurde am ITM die gesamte Prozesskette zur industriellen Herstellung neuartiger drehungsfreier rCF-Heavy Tows entwickelt. Insbesondere wurde eine neuartige Technologie zur Herstellung von rCF-Heavy Tows auf Basis recycelter Carbon- (rCF, ≥ 90 Vol.-%) und Schmelzklebefasern (< 10 Vol.-%) konzipiert, konstruiert und erfolgreich umgesetzt. Diese umfasst die Faseraufbereitung, den Krempelprozess zur Krempelbandbildung, den Streckprozess zur Streckenbandbildung sowie die abschließende Fertigung der rCF-Heavy Tows aus rCF und Schmelzklebefasern in einem neuen entwickelten Versuchsstand. Der Nachweis der Eignung der entwickelten Technologie erfolgt mit der Umsetzung von rCF-Heavy Tows mit unterschiedlichen rCF Typen, Faserlängen und Faservolumengehalten und eines Demonstrators. Die entwickelten rCF-Heavy Tows mit Feinheiten zwischen 3000-7000 tex und deren Weiterverarbeitbarkeit zu textilen Halbzeugen wurden erfolgreich nachgewiesen. Die entwickelten rCF-Heavy Tows und darauf basierende Verbunde weisen eine maximale Verbundzugfestigkeit bzw ein maximales Zug-Modul von 1158±72 MPa bzw. 80±5,7 GPa auf. Die rCF Heavy Tows sind somit für kostengünstige duroplastische Composites mit hohem Leistungsvermögen und komplexer Geometrie einsetzbar. Damit bieten die entwickelten rCF-Heavy Tows ein sehr hohes Innovations- und Marktpotential in den Bereichen Werkstoffe und Materialien, Leichtbau, Umwelt- und Nachhaltigkeitsforschung sowie Ressourceneffizienz. Damit eröffnet sich die Gelegenheit für KMU der Textilindustrie neue Produkte und Technologien für den Faserverbundwerkstoffmarkt und sich als Lieferant für die Automobil-, Maschinenbau- sowie Luftfahrt-, Medizin- und Sportgeräteindustrie zu etablieren.

Report

Einleitung, Problemstellung und Zielsetzung

Carbonfaserverstärkte Verbundwerkstoffe (CFK) werden aufgrund ihrer hohen Steifigkeit und Festigkeit sowie der geringen Dichte zunehmend in Leichtbauanwendungen eingesetzt, insbesondere in den Bereichen Luft- und Raumfahrt, Transport, Windenergie, Sport oder Bau. Der globale CFK Bedarf wird sich Prognosen zufolge bis 2024 auf 197.000 t/a erhöhen und damit im Vergleich zu 2011 fast verdreifachen. Das zeigt den dringenden Bedarf an Lösungen zur Wiederverwertung der hochwertigen CF (rCF) im Sinne der Circular Economy. Das ist nicht nur aufgrund strenger rechtlicher Bestimmungen, sondern auch aus ökologischen sowie ökonomischen Gründen eine Notwendigkeit. Zahlreiche Forschungsinstitute und Unternehmen entwickelten in den letzten Jahren Lösungen zur Wiederverwendung von rCF in den Bereichen Vliesstoffe, Spritzgießen oder als Hybridgarne. Diese Arbeiten umfassen allerdings mehrheitlich den Einsatz von rCF in Kombination mit thermoplastischen Fasern für thermoplastische Composites. Für den Bereich rCF basierter duroplastischer CFK wurden bisher vorwiegend rCF-Vliesstoffe aus 100% rCF entwickelt. Da die Fasern in den Vliesstoffen prinzipbedingt nur eine begrenzte Länge und eine geringe Orientierung aufweisen und zusätzlich prozessbedingt hohen Faserschädigung auftreten, sind damit bisher nur max. 30% der Verbundkennwerte von CFK-Bauteilen aus Carbonfilamentgarnen erreichbar.

Aktuell sind die im Bereich hochbelastbarer CFK verwendeten Matrixsysteme überwiegend duroplastisch. Derartige Bauteile weisen eine hohe Formstabilität und hohe Steifigkeiten sowie Festigkeiten auf und eignen sich aufgrund niedrigviskoser Matrixsysteme zur Umsetzung komplexer Bauteilgeometrien. Jedoch werden aufgrund der bisher für diese Bauteile nur ungenügend in rCF abbildbaren, notwendigen Eigenschaften vorrangig Primärcarbonfilamentgarne eingesetzt. Neben einer geringen Nachhaltigkeit verursacht das auch um mind. 200 % höhere Kosten. Die Herstellung primäres Carbonfilamentgarnes erfordert einen hohen Energiebedarf von ca. 230 MJ/kg mit einem CO2-Emissionsäquivalent von 20 kg CO2/kg CF. Hier ist eine deutliche Verbesserung der CO2-Bilanz notwendig, um einen wesentlichen Beitrag zu den anvisierten Klimaschutzzielen der BRD bzw. der EU leisten zu können. Aus diesem Grund ist der Fokus der Projektarbeit die Entwicklung neuartiger, nachhaltiger rCF-Heavy Tows aus recycelten Carbonfasern (rCF) und dazugehöriger Fertigungstechnologien zur Umsetzung kostengünstiger duroplastischer Composites mit hohem Leistungsvermögen.

Danksagung

Das IGF-Vorhaben 21612 BR der Forschungsvereinigung Forschungskuratorium Textil e.V. wurde über die AiF im Rahmen des Programms zur Förderung der industriellen Gemeinschaftsforschung und -entwicklung (IGF) vom Bundesministerium für Wirtschaft und Klimaschutz (BMWK) aufgrund eines Beschlusses des Deutschen Bundestages gefördert. Wir danken den genannten Institutionen für die Bereitstellung der finanziellen Mittel.

Authors: Mahmud Hossain, Anwar Abdkader und Chokri Cherif

Technische Universität Dresden
Fakultät Maschinenwesen
Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM)
01062 Dresden

https://tu-dresden.de/mw/itm

More entries from TU Dresden, Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik ITM

29.03.2023

Thermogeneratorpaneele basierend auf multifunktionalen Abstandsgewirken

Knittings Composites Textile machinery Sensor Technology Sustainability Technical Textiles

Abstract

Thermoelektrische Generatoren (TEG) bieten das Potenzial Abwärme verschleiß- und wartungsfrei in elektrischen Strom umzuwandeln und damit zur Einsparung von CO2-Emissionen beizutragen. Die Funktionsweise der TEG beruht auf dem materialinhärenten Seebeck-Effekt. Im Rahmen des IGF- Projektes 21144 BR wurden Thermogeneratorpaneele basierend auf abstandsgewirkten glasfaserverstärkten Paneelen entwickelt. Im Wirkprozess wurde die Integration von Glasfasern und thermoelektrischen Drähte umgesetzt. Dadurch wurden Leichtbaupaneele mit guten strukturmechanischen Eigenschaften (Druck-, Biegefestigkeit) und zusätzlicher Thermogenerator- und Wärmeisolationsfunktion realisiert. Diese sogenannten Multithermogeneratorpaneele (MTP) können mit ihrer autarken elektrischen Leistung für den Betrieb von Sensoren oder Kleingeräten genutzt werden.

Report

Einleitung

Der globale Energiebedarf steigt mit den laufenden industriellen Fortschritten und dem Bevölkerungswachstum stetig an. Die Energieversorgung nachhaltig zu gestalten, ist mit der aktuellen Dringlichkeit des Klimaschutzes, zwingend notwendig, um die Wirtschaft und auch die Zukunft nachfolgender Generationen zu sichern. Im Zuge der rasanten Entwicklung des Internet of Things (IoT) und der Digitalisierung besteht außerdem große Nachfrage nach autarken mobilen Stromquellen, mit denen selbstständig und zuverlässig elektronische Sensoren und Kommunikationsgeräte betrieben werden können. Die meisten technischen Prozesse nutzen nur 25 % bis 40 % der eingesetzten Energie zur Umwandlung in mechanische Energie. Der Rest wird in thermische Energie umgewandelt, die in der Regel verloren geht. Ein vielversprechender Ansatz zur Nutzung dieser thermischen Energie ist der Einsatz von thermoelektrischen Generatoren (TEG).

Die Stromerzeugung mittels TEG wird durch den Seebeck-Effekt beschrieben. Dabei entsteht zwischen der warmen (Th) und der kalten Kontaktstelle (Tk) der thermoelektrischen Funktionsmaterialpaare A und B, auch Thermoelemente (TE) genannt, eine elektrische Spannung (U). Die erreichbare Leistungsausbeute eines TEG ist neben der Umgebungstemperaturdifferenz (ΔT) von den materialspezifischen Parametern der eingesetzten TE abhängig. Diese Parameter werden durch die Gütezahl (ZT) beschrieben und umfassen die Seebeck-Koeffizienten (α in µV/K), die elektrische (σ, möglichst hoch) und die thermische Leitfähigkeit (λ, möglichst gering). Für eine hohe Leistungsausbeute sind Materialien mit einer hohen Differenz im Seebeck-Koeffizienten notwendig. Außerdem ist die Leistungsausbeute eines TEG-Moduls maßgeblich von der Anzahl in Reihe geschalteter TE in einem Modul abhängig. Werkstoffe für einen hohen thermoelektrischen Nutzeffekt basieren auf seltenen Rohstoffen, wie Bismut, Antimon und Tellur, die eine gute elektrische Leitfähigkeit, kombiniert mit einer geringen Wärmeleitfähigkeit aufweisen. Das Vorkommen und die Lebensdauer der Halbleiterelemente ist jedoch begrenzt und das Recycling aufwändig. Sie sind außerdem kostenintensiv und teilweise toxisch.

Daher werden von der Wirtschaft und der Forschung Entwicklungen neuer Materialien oder die Steigerung der Leistung der TEG sowie kostengünstigere Herstellverfahren vorangetrieben. Allerdings bestehen diese entwickelten Verfahren zumeist aus aufwändigen kombinierten Gieß- und Sinterprozessen sowie einer kostenintensiven notwendigen Nachbearbeitung. Zur Schaffung eines effizienten Herstellverfahrens für TEG mit einer produktiven Integrationsmöglichkeit einer hohen Anzahl an TE bietet die Abstandswirktechnik großes Potenzial. Mit dem Einsatz von Funktionsmaterialien und Hochleistungsgarnen in den Abstandsgewirken, wie Glasfasergarne, und einer späteren Infiltrierung und Konsolidierung mit Harzsystemen lassen sich großflächige Faserverbundstrukturen (z. B. Leichtbaupaneele) mit geschlossenen Deckschichten generieren, die neben der TEG-Funktion sehr gute strukturmechanische Eigenschaften aufweisen und auch als tragende Strukturen im Fahrzeug- oder Anlagenbau mit Wärmeisolation einsetzbar sind [1] .

Im Rahmen des Forschungsprojektes IGF 21144 BR wurden Leichtbaupaneele als tragende Bauteile mit multifunktionalen Eigenschaften, Multifunktionsthermogeneratorpaneele (MTP), realisiert, die durch die Umwandlung industrieller Abwärme in elektrischen Strom mit gleichzeitigem Kühleffekt zur Effizienzsteigerung von Batterien oder Elektromotoren in der Elektromobilität und von Hybridsystemen beitragen.


Entwicklung der Multithermogeneratorpaneele (MTP)

Der Grundaufbau der MTP besteht aus einem glasfaserverstärkten Abstandsgewirke, welches schlussendlich verharzt das Substrat des TEG darstellt. Die Thermoelemente (TE) werden in Form von Funktionsdrähten aus Eisen und Konstantan als Polfadensystem in der RR-Raschelwirkmaschine in den Abstand integriert, wie in Abbildung 2 veranschaulicht. Weiterhin gewährleisten Polfäden aus Monofilamenten, sowie Glasfasern (EC9-68x2) die Stabilität gegenüber mechanischer Beanspruchung. In den Deckflächen stellen je zwei Maschenfadensysteme aus PES (100/40 dtex) die Fixierung der Schuss- und Stehfäden sowie der TE sicher. Die Kontaktierung und Verschaltung der TE erfolgt durch die übereinanderliegende Anordnung und Verbindung der Funktionsdrähte in den Maschen der Gewirkebindung.

Zur Entwicklung und Auslegung der thermoelektrischen Struktur der MTP wurde ein elektrisches Modell entwickelt, in welchem die Anzahl und Geometrie der TE, ihre elektrische Kontaktierung, sowie die Art der Verschaltung der TE (Reihen-, Parallel- oder Mischschaltung) variabel ist. Für das Modell wurden gekoppelte multiphysikalische Ersatzschaltungsmodelle unter Ausnutzung der mathematischen Analogien der elektrischen/thermischen/mechanischen Domäne angewendet, in LT-Spice implementiert und im Hinblick auf die zuvor beschriebenen Parameter untersucht (Abbildung 1). Mittels des Modells kann die Schaltung der TE an den Lastwiderstand des Anwendungsfalls angepasst werden, sodass die maximale Leistung des TEG erreicht wird. Das vorhandene Modell wurde weiterhin durch das thermische Verhalten hinsichtlich Wärmeleitung und Wärmekapazität der Struktur erweitert.

Um die angestrebte thermoelektrische Struktur in eine Gewirkebindung für die RR-Rascheltechnologie zu überführen, wurden mehrere Bindungsvarianten für die Funktionsdrähte im Abstand des Paneels erarbeitet, umgesetzt und analysiert [2]. Weiterhin wurden unterschiedliche elektrische Verschaltungen der Funktionsdrähte entwickelt. Dabei ermöglicht eine kombinierte Reihen- und Parallelschaltung die maximale Einbindung von TE pro Fläche von bis zu 150.000 TE/m² und eine bessere Ausfallsicherheit im Vergleich zur Reihenschaltung. Der Innenwiderstand und die elektrische Leistung kann direkt über die Abmaße des Paneels angepasst werden. Die Struktur des Abstandsgewirkes mit dieser Verschaltung ist im Modell in Abbildung 2 dargestellt.

Zur Herstellung des thermoelektrischen Abstandsgewirkes als Halbzeug für die MTP wurde eine RR-Raschelwirkmaschine MiniTronic 808 von RIUS Comatex S.A. eingesetzt. Mit dem Ziel die Funktions- und Hochleistungsmaterialien schädigungsarm zu verarbeiten, wurde eine Nadelbestückung mit der Feinheit E12 verwendet. Für die Maschineneinstellung und die technologisch-konstruktive Weiterentwicklung der Abstandswirktechnik wurde zunächst der Bauraum der RR-Raschelmaschine und der Einzug der Drähte in den vorhandenen Garnlauf analysiert. Der Fadenlängenausgleich für die Maschenbildung, die Fadenwippe, ist kommerziell als Fadenwippe mit Stahlfedern umgesetzt. Dadurch wird die für die Fadensysteme benötigte Fadenzugkraft erreicht. Bei ebendieser Fadenzugkraft entstehen für die Funktionsdrähte aus Eisen- und Konstantan jedoch irreversible Knicke an den Umkehrpunkten der Lochnadeln. Diese Knicke verhindern das Gleiten der Drähte durch die Lochnadeln, sodass ein Drahtbruch entsteht. Die Drähte benötigen eine sehr niedrige Fadenzugkraft sowie einen Längenausgleich mit niedriger Federkonstante, da materialbedingt nur eine geringe elastische Dehnung (0,1 %) vorhanden ist.

Weiterhin waren technologische Modifikationen zur Verarbeitung von Glasfasergarnen als Schuss-, Steh- und Polfaden auf der RR-Raschelwirkmaschine erforderlich. Die Glasfaserrovings (350 tex) wurden bei der Verarbeitung als Polfadensystem aufgrund der Querkräftanfälligkeit bereits vor der Maschenbildung durch die kleinen Umlenkradien in der Lochnadel abgeschert. Daher wurden verzwirnte Glasfaserrovings als Verstärkungsfaser eingesetzt. Zur Verarbeitung dieser Glasfaserzwirne wurde ein Fadenliefersystem mit einer passiven Fadenzufuhr und einer konstanten Fadenzugkraft von 20 cN entwickelt und umgesetzt. Mittels angetriebener Spulenaufnahme für Glasfasern und Tänzerwalze zur Zugkraftregelung lässt sich dieses Prinzip automatisieren und auf ein System für hohe Produktionsgeschwindigkeiten übertragen.

In einem mehrstufigen Handlaminierverfahren wurden die hergestellten MTP-Halbzeuge mit hochtemperaturbeständigem Harz infiltriert und als MTP Demonstrator verarbeitet (Abbildung 3).


Elektrische Leistung der MTP

Zur Auswertung der thermoelektrischen Leistung der MTP wurde ein gekoppelter elektrisch-thermischer Versuchsstand entwickelt, der durch jeweils ein Peltier-Element an der Ober- und Unterseite eine aktive Erwärmung bzw. Kühlung realisiert. Damit sind Temperaturdifferenzen von bis zu 80 K erreichbar. Zwischen den Peltierelementen und der Probe sind Platten aus Aluminium eingeschraubt. Diese erfüllen zwei Funktionen. Erstens homogenisieren sie die Wärmeverteilung. Zweitens sind in den Platten jeweils Pt100-Temperaturfühler (Präzisionsklasse A) eingebracht. Die Temperaturfühler wurden dabei in Bohrungen platziert und mit Wärmeleitpaste verklebt, sodass eine gute Wärmeleitung zwischen Peltierelement, Probe und Temperatursensoren gewährleistet ist und die Temperaturabweichung zwischen Sensor und TEG-Oberfläche minimal ist. Die Widerstände der Pt100-Fühler wurden mit einem Keithley DAQ 6500 Präzisionsmultimeter aufgenommen. Die Ansteuerung des Multimeters erfolgte durch Matlab-Simulink. Anhand der gemessenen Temperaturen wurde die Spannungsquelle über SCPI-Befehle und einen PID-Regler geregelt, um eine präzise und stabile Kontrolle der Temperaturdifferenz zu erreichen. Gleichzeitig ermöglichte das Präzisionsmultimeter die Messung der vom TEG erzeugten Spannung, des durch den Lastwiderstand fließenden Stroms sowie des Innenwiderstands des TEGs. In Abbildung 4 sind der Prüfstand mit dem das Temperaturprofil während eines Versuchs mit 60 K Temperaturdifferenz und die aufgenommene Strom-Spannungs-Kennlinie abgebildet.

Mittels Präzisionsmultimeter wurden außerdem die Kontaktpunkte der Funktionsgarne in der gewirkten TEG-Struktur auf ihre Übergangswiderstände hin überprüft sowie der Gesamtwiderstand der TEG-Module ermittelt. Die Kontaktwiderstände zwischen den Funktionsdrähten lagen konstant unter 0,1 Ω. Entgegen der Erwartungen war dies auch nach der Faserverbundbildung der Fall, sodass der Innenwiderstand des finalen Demonstrators 0,9 Ω beträgt. Auch der thermoelektrische Effekt des MTP wurde durch das Harz nicht nachteilig beeinträchtigt. Dies wurde durch Vergleichsmessungen der MTP am Leibniz Institut für photonische Technologien (ipht) und bei der itp GmbH ebenfalls bestätigt.

Die Projektergebnisse zur Herstellung und zu den Eigenschaften von abstandsgewirkten MTP aus Eisen und Konstantan bilden eine Basis für die zielgerichtete Weiterentwicklung einer effizienten Fertigung von vertriebsreifen TEG. Die Ausnutzung der Produktivität der RR-Raschelwirkmaschine trägt dazu bei, die sonst kostenintensiven alternativen Energiekonzepte für Bevölkerung und Wirtschaft zugänglich und profitabel zu gestalten, sodass zum Erhalt der Umwelt beigetragen wird.


Danksagung

Das IGF-Vorhaben 21144 BR der Forschungsvereinigung Forschungskuratorium Textil e.V. wurde über die AiF im Rahmen des Programms zur Förderung der Industriellen Gemeinschaftsforschung (IGF) vom Bundesministerium für Wirtschaft und Klimaschutz aufgrund eines Beschlusses des Deutschen Bundestages gefördert. Das Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik der TU Dresden (ITM) dankt den genannten Institutionen für die Bereitstellung der finanziellen Mittel.

Der Abschlussbericht und weiterführende Informationen sind am Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik der TU Dresden vorhanden [3].

Die vollständige Veröffentlichung steht zum Download zur Verfügung.

Authors: Anke Golla, Johannes Mersch, Gerald Hoffmann, Chokri Cherif

Technische Universität Dresden
Fakultät Maschinenwesen
Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM)
01062 Dresden

https://tu-dresden.de/mw/itm

More entries from TU Dresden, Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik ITM

17.03.2023

Bionische 3D-Schale-Rippen-Strukturen mit komplex angeordneten Versteifungselementen

Knittings Composites Textile machinery Technical Textiles

Abstract

Im abgeschlossenen IGF-Projekt 20793 BR erfolgte am ITM die simulationsgestützte Entwicklung, Umsetzung und Erprobung eines innovativen Verfahrens zur integralen Herstellung endlosfaserverstärkter 3D-Schale-Rippen-Textilstrukturen mit komplex angeordneten Versteifungselementen. Inspiriert von der Amazonas-Riesenseerose, deren gigantische Blätter extrem tragfähig sind, weisen diese bionischen Preformen komplex angeordnete, sich kreuzende Versteifungselemente in 0°-, 90°- sowie in ± 45°-Ausrichtung und insbesondere eine durch alle Preformteile durchgehende Faserverstärkung auf. Das ermöglicht perspektivisch einen Durchbruch topologie‑ und strukturoptimierter, endlosfaserverstärkter 3D-Schale-Rippen-Verbundbauteile in Serienanwendungen.

Report

Einleitung und Problemstellung

Faserverstärkte Kunststoffverbunde (FKV) weisen ein sehr hohes Potenzial zur maßgeblichen Reduktion bewegter Bauteilmassen und somit zur Steigerung der Energieeffizienz auf. Für einen Durchbruch von FKV in Serienanwendungen fehlen allerdings flexible Verfahren, die eine schnelle Umsetzung kostengünstiger, endkontur- und kraftflussgerechter 3D-Preformen bei hoher Materialeffizienz und Vermeidung von Nachbearbeitungsschritten erlauben.

Zur Erhöhung der Biege-, Beul- und Torsionssteifigkeit hochbelasteter schalenförmiger FKV-Bauteile kommen heute in vielfältigen Anwendungsfeldern Versteifungselemente wie Rippen, Spanten oder Stringer zum Einsatz. Die Bauteile werden jedoch bisher meist in Differenzialbauweise auf Preform- bzw. Bauteilebene durch nachträgliches Fügen von Schalen- und Versteifungsstruktur hergestellt. Dadurch ist die Fertigung derartiger FKV-Bauteile aktuell sehr kostenintensiv. Zusätzlich fehlt dabei prozessbedingt eine durchgehende Faserverstärkung zwischen Schale und Rippe. Das Leichtbaupotenzial von Hochleistungsfasern wird so nur teilweise ausgenutzt. Additive Verfahren, wie das 3D-Drucken [1] oder das Spritzgießen [2], erlauben zwar die integrale Fertigung von 3D-Schale-Rippen-Strukturen mit komplexer Versteifungsstruktur, verfahrensbedingt ist jedoch die Möglichkeit der Einbringung einer Endlosfaserverstärkung in der Rippenstruktur stark begrenzt.

Im Rahmen des IGF-Projektes 18806 BR wurden am ITM grundlegende Basislösungen zur integralen Fertigung von 3D-Schale-Rippen-Mehrlagengestricken mit durchgängiger Endlosfaserverstärkung zwischen Schale und Rippenstruktur erfolgreich entwickelt und umgesetzt [3]. Allerdings konzentrierten sich die Arbeiten auf die Schaffung der technologischen Grundlagen für eine flexible Herstellung endkonturgerechter 3D-Schale-Rippen-Preformen mit ausschließlich in 90° angeordneten Rippen.

Natürliche Vorbilder zeigen jedoch, dass für eine optimale Aufnahme der auf das Bauteil wirkenden Belastungen eine komplexere Orientierung der Rippen notwendig ist. Dieses Prinzip findet sich z. B. in der komplex verrippten Struktur der Erdnussschale sowie in den gigantischen und extrem tragfähigen Blättern der Amazonas-Riesenseerose (vgl. Abbildung 1) wieder, die längliche, diagonale bzw. sich kreuzende Rippen sowie ein sehr geringes Eigengewicht aufweisen.

Für eine wirtschaftliche Nutzung dieses bionischen Prinzips in FKV-Anwendungen fehlen jedoch aktuell flexible und serientaugliche Fertigungsverfahren, die eine kosteneffiziente Umsetzung topologieoptimierter Schale-Rippen-Preformen mit derartig komplex angeordneten Versteifungselementen in Integralbauweise ermöglichen [4]. Die besondere Herausforderung für derartige Verfahren ergibt sich aus der notwendigen hohen Flexibilität zur Einstellung der je nach Anwendungs- und Lastfall extrem variierenden geometrischen sowie strukturmechanischen Anforderungen und damit der Strukturparameter, wie Rippendicke, -höhe und -ausrichtung.

Zielsetzung

Das Ziel des IGF-Forschungsprojektes 20793 BR war die simulationsgestützte Entwicklung, Umsetzung und Erprobung eines innovativen Verfahrens auf Basis der hochflexiblen Mehrlagenflachstricktechnik zur vollautomatisierten, integralen Fertigung endlosfaserverstärkter 3D-Schale-Rippen-Strukturen mit komplex angeordneten Versteifungselementen sowie kontinuierlicher, durchgängiger Faserverstärkung zwischen Schale und Rippenstruktur.

Ergebnisse

Simulationsgestützte Preform‑ und Technologieentwicklung

Die besondere Herausforderung im Projekt war die Entwicklung geeigneter Bindungstechniken und neuartiger Maschinenelemente zur integralen und verzugsfreien Fertigung lastgerecht ausgelegter 3D-Preformen mit komplex angeordneten Versteifungselementen in 0°-, 90°- und ± 45°-Ausrichtung sowie von Simulationstools für eine optimale, CAD-gestützte Auslegung daraus herstellbarer FKV-Bauteile. Nach Festlegung der Anforderungen an relevante Schale-Rippen-FKV-Bauteile und die Präzisierung typischer Lastfälle (hauptsächlich Biege-, Druck- und Torsionsbelastungen) erfolgte zunächst eine FEM-basierte Struktursimulation (Finite Elemente Methode) mit einem makroskopischen Modell. Dabei wurden die Parameter Rippendicke, -höhe sowie Wandstärke der Schale systematisch variiert, mit dem Ziel, die Zusammenhänge und die Wechselwirkungen zwischen den geometrischen Parametern und die resultierenden mechanischen Verbundeigenschaften zu ermitteln und somit die bestmöglichen Kennwerte für die Auslegung von 3D-Schale-Rippen-Textilhalbzeugen mit komplex angeordneten Versteifungselementen festlegen zu können.

Die Ergebnisse zeigen, dass die Rippenhöhe eine nur geringe Auswirkung auf die resultierende Biegefestigkeit der daraus hergestellten Verbunde aufweist. Die Rippendicke und die Wandstärke der Schale weisen hingegen einen sehr hohen Einfluss auf. Als Hauptfaktor für ein frühzeitiges Bauteilversagen wurde sowohl bei dem entwickelten FEM-Modell als auch bei der durchgeführten mechanischen Charakterisierung von 3D-Verbundproben ein durch interlaminare Scherspannung ausgelöster Bruch, sog. Delamination, zwischen unterschiedlichen Verstärkungslagen identifiziert (vgl. Abbildung 2). Zur besseren Vorhersage der mechanischen Eigenschaften von FKV wurde daher ein mesoskopisches FEM-Modell entwickelt und eingesetzt [5], das in der Lage ist, 3D-Schale-Rippen-Strukturen mit einem komplexen Lagenaufbau sehr detailliert abzubilden. Anhand dieses Modelles konnte festgestellt werden, dass die Orientierung der Verstärkungsfäden im Bereich der Rippe eine untergeordnete Rolle spielt. Ausschlaggebend für die Gewährleistung guter strukturmechanischen Verbundeigenschaften ist die Sicherstellung einer durchgängigen Faserverstärkung zwischen unmittelbar benachbarten Strukturbereichen, insbesondere an den Verbindungsstellen zwischen Rippen mit unterschiedlicher Orientierung (z. B. 0°/90°), sowie der Fixierung mehrerer Verstärkungslagen mit einem einzigen Maschenfaden. Somit weist eine 2D-Verbundprobe aus vier integral gefertigten, miteinander verbundenen Verstärkungslagen mit 17,8 GPa ein um 12 % höheres Biegemodul im Vergleich zu einer aus vier Einzellagen zusammengesetzten Verbundprobe auf, die 15,9 GPa erreicht.

Integral gefertigte 3D-Schale-Rippen-Strukturen

Basierend auf der durchgeführten Struktursimulation wurden der dabei ermittelte ideale Verlauf der Verstärkungsfäden iterativ mit den stricktechnisch realisierbaren Verstärkungsfadenanordnungen unter Berücksichtigung der technologischen Umsetzbarkeit verglichen und anschließend aussichtsreiche Bindungsvarianten mit lastgerecht angeordneten Verstärkungsfäden abgeleitet und festgelegt. Darauf aufbauend wurden insbesondere für die direkte Ausbildung diagonal angeordneter Rippen notwendige technologische Anpassungen an der vorhandenen Maschinentechnik abgeleitet, konstruktiv entwickelt und umgesetzt. Nach Implementierung einer neuartigen, modular in konventionelle Flachstrickmaschinen nachrüstbaren Vorrichtung für das Aufspreizen der Kettfadenschar wurden 3D-Schale-Rippen-Strukturen mit in 0°, 90° und ± 45° angeordneten Rippen auf einer modifizierten Flachstrickmaschine ARIES.3D technology der Firma Steiger (Steiger Participations SA, Vionnaz/Schweiz) stricktechnisch umgesetzt (vgl. Abbildung 3).

Mit der Umsetzung der Strukturen wurde gezeigt, dass die entwickelten Bindungsvarianten als Programmiermodule bereitgestellt werden können und mit geringem Programmieraufwand in kommerzielle Softwarelösungen zur Erstellung der Maschinensteuerprogramme übertragbar sind. Diese Module können miteinander kombiniert werden und ermöglichen somit eine beträchtliche Struktur- bzw. Produktvielfalt. Im Ergebnis des abgeschlossenen Forschungsprojektes steht fortan ein robustes und erprobtes Verfahren zur integralen Fertigung endlosfaserverstärkter 3D-Schale-Rippen-Strukturen mit komplex angeordneten Versteifungselementen auf Flachstrickmaschinen zur Verfügung.

Bauteilherstellung und Charakterisierung

Aus den integral gefertigten Preformen wurden FKV-Bauteile im SCRIMP-Verfahren (Seaman Composite Resin Infusion Molding Process) hergestellt. Dafür wurde ein Formwerkzeug mit modular einsetzbaren Metallkernen entwickelt, das die flexible Herstellung von 3D-Schale-Rippen-Bauteilen mit unterschiedlichen Rippenausrichtungen ermöglicht (vgl. Abbildung 4). Zu Vergleichszwecken erfolgte auch die Realisierung eines in Differenzialbauweise gefertigten FKV-Bauteils. Dabei wurden Schalen und Rippenstruktur separat hergestellt und anschließen miteinander gefügt. Die Untersuchungen haben gezeigt, dass für die Bauteilherstellung in Integralbauweise im Vergleich zur Differenzialbauweise deutlich weniger Arbeitsschritte erforderlich sind.

Zur Validierung der entwickelten FEM-Modelle erfolgte schließlich eine umfangreiche Charakterisierung der mechanischen Eigenschaften von 2D-Verbundproben mittels Zug-, Druck-, CAI- (Compression-After-Impact), 4‑Punkt-Biege-, ILSS‑ (Interlaminare Scherfestigkeit) sowie Charpy-Schlagversuchen. Ergänzend dazu wurden in Anlehnung an DIN EN ISO 14125 auch 3-Punkt-Biegeversuche an 3D-FKV-Bauteilen durchgeführt (vgl. Abbildung 5), um die Biegefestigkeit der neuartigen 3D-Schale-Rippen-Bauteile mit komplex angeordneten Rippen zu ermitteln.

Insgesamt ist festzuhalten, dass die neuartigen 3D-Schale-Rippen-Preformen mit komplex angeordneten Versteifungselementen für die flexible Herstellung hochbeanspruchbarer FKV-Bauteile mit komplexer Versteifungsstruktur und vor allem mit einer durchgängigen Faserverstärkung zwischen Schale und Rippen sehr gut geeignet sind. Die dabei erreichbare Endlosfaserverstärkung in den Rippen stellt eine deutliche Verbesserung im Vergleich zum Stand der Technik dar. Insbesondere ermöglicht der Einsatz der neuartigen 3D-Textilhalbzeuge eine deutliche Vereinfachung des Preforming-Prozesses. Im Vergleich dazu erfordert eine Premformherstellung in Differenzialbauweise eine hohe Anzahl an 2D-Textilstrukturen, welche in aufwendigen Prozessschritten zugeschnitten, vorgeformt, gestapelt, kompaktiert und fixiert werden müssen. Bei Anwendung der Projektergebnisse ist dazu nur noch eine Positionierung der integral gefertigten 3D-Preform im Werkzeug erforderlich. Außerdem weisen die realisierten 3D-Preformen aufgrund der Fixierung einer hohen Anzahl an Verstärkungsfadenlagen durch nur einen einzigen Maschenfaden eine hervorragende Stabilität auf, was perspektivisch eine vollautomatisierte Preformherstellung mittels Robotertechnik ermöglicht. Somit sind die Voraussetzungen für eine wirtschaftliche, automatisierbare Fertigung endlosfaserverstärkter 3D-Schale-Rippen-FKV-Bauteile mit komplex angeordneten Versteifungselementen in reproduzierbare Qualität geschaffen.

Zusammenfassung und Ausblick

Im Rahmen des IGF-Projektes 20793 BR wurde ein innovatives Fertigungsverfahren auf Basis der Mehrlagenflachstricktechnik zur integralen Herstellung lastgerecht ausgelegter 3D-Schale-Rippen-Strukturen mit komplex angeordneten Versteifungselementen entwickelt, umgesetzt und erfolgreich erprobt. Wesentliche Vorteile der Integralbauweise gegenüber der Differenzialbauweise sind ein deutlich schnellerer Preformaufbau sowie eine deutlich höhere mechanische Belastbarkeit daraus herstellbarer FKV-Bauteile durch die durchgehende Faserverstärkung zwischen benachbarten Strukturbereichen, z. B. zwischen Schale und Rippe. Derartige Bauteile sind dadurch wesentlich materialeffizienter auslegbar. Künftig ermöglicht das entwickelte Verfahren einen Durchbruch topologie‑ und strukturoptimierter endlosfaserverstärkter 3D-Schale-Rippen-FKV-Bauteile in Serienanwendungen.

Potenzielle industrielle Anwendungen sind u. a. für hochbelastbare rippenverstärkte Schalen im Schienenfahrzeug‑, Automobil- und Apparatebau (z. B. Türen oder Maschinenabdeckungen), Rumpfstrukturen im Schiffbau oder lasttragende Strukturen der Luft- und Raumfahrt (z. B. Flugzeugrumpf oder Isogrid-Strukturen).

Weiteres Forschungspotenzial besteht u. a. in der Weiterentwicklung der Technologie zur integralen Fertigung endlosfaserverstärkter 3D-Schale-Rippen-Strukturen mit diagonal angeordneten Versteifungselementen abweichend von der ± 45°-Anordnung bzw. mit gekrümmten Rippen [6].

Danksagung

Das IGF-Vorhaben 20793 BR der Forschungsvereinigung Forschungskuratorium Textil e. V. wurde über die AiF im Rahmen des Programms zur Förderung der industriellen Gemeinschaftsforschung (IGF) vom Bundesministerium für Wirtschaft und Klimaschutz aufgrund eines Beschlusses des Deutschen Bundestages gefördert.

Die Autoren danken den genannten Institutionen für die Bereitstellung der finanziellen Mittel sowie den involvierten Unternehmen im projektbegleitenden Ausschuss für die fachliche Unterstützung und die Bereitstellung von Versuchsmaterial. Der Forschungsbericht und weiterführende Informationen sind am Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik der TU Dresden erhältlich.

Authors: Quentin Bollengier, David Rabe, Minh Quang Pham, Eric Häntzsche, Chokri Cherif

Technische Universität Dresden
Fakultät Maschinenwesen
Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM)
01062 Dresden

https://tu-dresden.de/mw/itm

More entries from TU Dresden, Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik ITM

06.03.2023

Gewebte Papier-Textil-Strukturen für einen nachhaltigen Leichtbau

Fabrics Composites Textile machinery Sustainability Technical Textiles

Abstract

Mit dem technologischen Nachweis des neuartigen HyPerWeave-Ansatzes steht somit in der Zukunft eine nachhaltige Material- und Leichtbaulösung für eine Vielzahl an Branchen bereit, deren Eigenschaften (Stabilität, Brandschutz) auf den jeweiligen Anwendungsfall maßgeschneidert angepasst werden kann. Darüber ermöglicht die Kopplung von Papier- und Textiltechnik geschlossene Stoffkreisläufe, in denen das betreffende Bauteil gegen Ende der Produktlebenszeit und abhängig von seiner Zusammensetzung getrennt und zu neuen Leichtbaustrukturen recycelt werden kann.

Report

Mit dem konsequenten Einsatz von Leichtbau-Technologien können in vielen industriellen Bereichen sowie in der Mobilitäts- und Baubranche erhebliche Mengen an CO2-Emissionen eingespart werden. Jedoch erfordert die Herstellung entsprechender faserverstärkter Leichtbaustrukturen einen hohen Energie- und Ressourcenaufwand, wodurch eine tatsächliche CO2-Ersparnis erst sehr spät und am Ende der Nutzungsdauer erreicht wird. Zum Beispiel basieren Carbon- oder Aramidfaser in der Regel auf petrochemischen Ausgangsmaterialien und erfordern bei der Herstellung einen immensen Energieeinsatz. Im Gegensatz dazu bieten naturbasierte Verstärkungsfasern ein großes Potenzial zur Senkung von CO2-Emissionen und zur stofflichen Bindung von CO2 bei der Herstellung von Leichtbaustrukturen. Dennoch sind diese Technologien noch nicht weit verbreitet, da die Eigenschaften der Ausgangsmaterialien großen Schwankungen unterliegen und die Kompatibilität mit gebräuchlichen Matrixsystemen nicht immer gegeben ist.

Das branchenübergreifende Projekt "HyPerWeave" erforscht Wege zur Umsetzung eines CO2-armen und damit nachhaltigen Leichtbaus. Wissenschaftler:innen der Papiertechnischen Stiftung Heidenau (PTS) und des Instituts für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM) der TU Dresden entwickeln im Rahmen der Industriellen Gemeinschaftsforschung gewebte Verstärkungsstrukturen auf Basis von Papier (siehe Abbildung 1) für neuartige, hochstabile Leichtbaupaneele, wie sie in vielen Bereichen der Mobilität, der Gebäudeausrüstung oder dem Anlagenbau benötigt werden. Neben den Anforderungen an eine hohe spezifische Tragfähigkeit solcher Paneele, sind es daher insbesondere die Brandschutzeigenschaften bis DIN 4102 B1, die in der Materialentwicklung von HyPerWeave adressiert werden.

Die papier- und textiltechnologischen Arbeiten der Forschungseinrichtungen sind eng miteinander verzahnt. So konnten in der ersten Projektphase neue Papiere entwickelt werden, die ein vielversprechendes Eigenschaftsprofil hinsichtlich Mechanik, Brandschutz und textiltechnologischer Verarbeitbarkeit aufweisen und nun im Rahmen der zweiten Projektphase schrittweise auf praxisähnliche Versuchsanlagen der PTS hergestellt werden. Für die weitere Verarbeitung der Papiere zu integral verstärkten Leichtbaustrukturen wird am ITM eine neues Webverfahren entwickelt und konstruktiv-technologisch umgesetzt. Dies betrifft insbesondere die Materialführung, bei der das Papier in anforderungsgerechte Streifen geschnitten und in Form von Kettfäden bindungstechnisch in eine Abstandsgewebestruktur eingebracht werden. Die textilbasierte Kopplung zwischen der so aus dem Papier ausgeprägten Kernlage und den gleichzeitig gewebten Decklagen (siehe Abbildung) verspricht dabei gegenüber dem Stand der Technik eine deutlich verbessertes Delaminationsverhalten, gesteigerte Schubstabilität und Schadenstoleranz gegenüber geklebten Waben-Sandwichstrukturen. Die gewebten Papierhalbzeuge können anschließend mit Fixiermitteln und Matrixmaterialien auf Basis nachwachsender Rohstoffe zu hochwertigen Paneelen weiterverarbeitet werden.

Danksagung

Das IGF-Vorhaben 21856 BR (Entwicklung von integral gewebten Papier-Textil-Sandwichstrukturen für Leichtbaupaneele (Hybrid High Performance Paper Weaves – HyPerWeave) wird über die AiF im Rahmen des Programms zur Förderung der Industriellen Gemeinschaftsforschung (IGF) vom Bundesministerium für Wirtschaft und Klimaschutz aufgrund eines Beschlusses des Deutschen Bundestages gefördert.

Authors: Vorhof, Michael (1); Wüstner, Cornell (2); Sennewald, Cornelia (1); Cherif, Chokri (1) (1) Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM) (2) Papiertechnische Stiftung Heidenau

Technische Universität Dresden
Fakultät Maschinenwesen
Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM)
01062 Dresden
cornelia.sennewald@tu-dresden.de

Papiertechnische Stiftung Heidenau
Pirnaer Straße 37
01809 Heidenau
cornell.wüstner@ptspaper.de

https://tu-dresden.de/mw/itm | https://www.ptspaper.de

More entries from TU Dresden, Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik ITM

24.11.2022

Oberflächenprofilierte Carbongitter für Carbonbetonanwendungen

Knittings Composites Textile machinery Sustainability Technical Textiles

Abstract

Am ITM der TU Dresden wurden Verfahren entwickelt, die es ermöglichen, auf einer Multiaxial-Kettenwirkmaschine mit integrierter Tränkungs- und Aushärtemodul kontinuierlich oberflächenprofilierte Gitter in reproduzierbarer hoher Qualität für Carbonbetonanwendungen herzustellen. Im Lösungsansatz 1, der Profilierung durch Prägen der Verstärkungsfäden, kann der Schubfluss um mehr als 400 % gegenüber einem Glattgarn gesteigert werden. Die Skalierung und Steigerung der Produktivität dieser Technologie auf Industrieniveau wird Gegenstand zukünftiger Forschungsarbeiten sein. Im Lösungsansatz 2 wurde ein Wirkfaden grober Feinheit (> 150 tex) als profilgebende Komponente (Profilwirkfaden) verwendet und zur maschenbasierten Fixierung der Verstärkungsfäden genutzt. Weitere Forschungsperspektiven zur Steigerung der Verbundhaftung ergeben sich für diese Profilierungsvariante insbesondere in einer Erhöhung der Stoff- und Formschlussverbindung zwischen Profilwirk- und Verstärkungsfaden.

Eine Erhöhung des Schubflusses bzgl. des Verbundes zwischen der durch Prägen profilierten Textilbewehrung und dem Beton führt direkt zu einer Verringerung der Auszugslängen unter Last und damit zur Reduzierung der Überlappungslängen um bis zu 75 % bei der Verarbeitung von profilierten Carbonbetonbewehrungen. Damit wird eine Grundlage für eine kosten- und ressourceneffiziente Herstellung von Carbonbetonbauteilen geschaffen, da hierbei eine Vielzahl, von überlappenden Textilbewehrungsbereichen auftreten. Dieser Aspekt verbessert die Wirtschaftlichkeit von Carbonbetonanwendungen und trägt dazu bei, diese innovative und ressourcenschonende Art des Bauens weiter zu etablieren.

Report

Abstract

Die volle Substanzfestigkeit des Hochleistungsmaterials Carbon kann im Betonverbund immer noch nicht ausgenutzt werden kann. Das liegt in der geringen Festigkeit der stoffschlüssigen Verbindung zwischen Carbonfaden und Betonmatrix begründet. Hier setzte das erfolgreich abgeschlossene Forschungsprojekt IGF 21153 BR des ITM an. Der Fokus lag auf der Entwicklung und Umsetzung von Verfahren zur Integration von Formschlusselementen im Herstellungsprozess von textilen Bewehrungen zur Steigerung der Verbundfestigkeit zwischen Bewehrung und Beton. Es wurde nachgewiesen, dass der dadurch erreichte zusätzliche Formschluss auf Basis einer Oberflächenprofilierung, ähnlich dem gerippten Bewehrungsstahl, den Schubfluss vervierfacht, die erforderliche Überlappungslänge folglich viertelt und damit den Materialeinsatz erheblich reduziert. Zwei Vorzugsvarianten wurden herausgearbeitet, für deren erfolgreiche Umsetzung die Entwicklung von Inline-Temperatur- und Feuchtigkeitsmesssystem erforderlich war.

Ausgangssituation und Problemstellung

Beton ist weltweit der wichtigste und am häufigsten eingesetzte Baustoff und wird in nahezu allen Anwendungsbereichen in Kombination mit einer Bewehrung zur Aufnahme der Zugkräfte eingesetzt [1]. Durch die Kombination von Beton mit einem Bewehrungsmaterial wie Stahl, können Bauwerke errichtet werden, die höchsten Beanspruchungen standhalten können. Da Stahl jedoch ein korrosionsanfälliges Material ist, muss eine signifikante Deckschicht stark basischen Betons aufgewendet werden, um einen Verlust der Tragleistung durch Korrosion der Bewehrung zu verlangsamen [2]. Zur Abtragung der im Bauwerk wirkenden Drucklasten ist die Dicke der Deckschicht nicht erforderlich. Daher erfolgte in den letzten beiden Dekaden die Entwicklung und sukzessive Praxiseinführung von Textilbewehrungen, die aus hochleistungsfähigen Multifilamentgarnen aus Carbon oder alkaliresistentem Glas bestehen, die mit textilen Verfahren zu mehraxialen Gitterstrukturen verarbeitet und, um den inneren und äußeren Verbund sicherzustellen, getränkt werden [3–5]. Derartige Textilbewehrungen können bei einer Betonersparnis von bis zu 70 % (durch dünnwandige Bauweise) die gleichen Kräfte übertragen wie konventionelle Stahlbewehrungen. Textilbewehrungen sind korrosionsunempfindlich und ermöglichen eine sehr effiziente, betonsparende und dauerhafte Armierung von Betonbauwerken bzw. ‑bauteilen in den vielfältigsten Anwendungsgebieten [6, 7].

....

Technische Entwicklung und Umsetzung

Zur Lösung der beschriebenen Problemstellung wurden Verfahren zur prozessintegrierten Profilierung der Textilbewehrung entwickelt. Hierfür wurden zwei Lösungskonzepte entwickelt, erprobt und evaluiert, die durch unterschiedliche Prinzipien (Prägen und Profilwirkfaden) gezielt Profilierungen ausbilden und die zudem in die textile Fertigung integrierbar sind.

Zur Steigerung der Warenqualität und um den Trocknungs- und Aushärteprozess gezielt hinsichtlich der erreichbaren Zugfestigkeit mit geringer Streuung steuern zu können, wurde eine Inline-Temperaturüberwachung auf Basis taktiler, mitlaufender Temperatursensoren entwickelt. Die Überwachung der Gelegefeuchtigkeit erfolgte mit der NIR-Sensorik (Near Infrared). Die Streuung der Zugfestigkeit der Textilbewehrung in der Warenausgangskontrolle konnte aufgrund der Prozessüberwachung halbiert werden. Es konnte zudem gezeigt werden, dass bestimmte Parameter des Multiaxial-Kettenwirkprozesses einen moderaten Einfluss auf die Eigenschaften der Bewehrung und deren Verbund zum Beton haben, z. B. die Stichlänge und die Bindungsart.

...

Materialcharakterisierung und Ergebnisse

Im Anschluss an die konstruktive Entwicklung und Umsetzung der Lösungskonzepte zur prozessintegrierten Herstellung eines profilierten Multiaxialgitters erfolgte sowohl die Fertigung von textilen Musterstrukturen als auch von Betonverbundprüfkörpern. Zur Charakterisierung der Musterstrukturen wurde das Auszugverhalten der profilierten Multiaxialgitter untersucht. Die für die Fertigung der Bewehrungsstrukturen gewählten Material- und Prozessparameter sind in Tabelle 1 zusammengefasst. Während der Musterfertigung wurde zudem die Oberflächentemperatur mittels eines eigens dafür entwickelten mitlaufenden kontaktbasierten Temperaturmesssystems sowie die Feuchtigkeit der Musterstrukturen mittels Nah-Infrarotsensorik überwacht und die Temperatur in der Trocknungs- und Aushärtestrecke entsprechend angepasst.

...

Danksagung

Das IGF-Vorhaben 21153 BR der Forschungsvereinigung Forschungskuratorium Textil e. V. wurde über die AiF im Rahmen des Programms zur Förderung der Industriellen Gemeinschaftsforschung (IGF) vom Bundesministerium für Wirtschaft und Klimaschutz aufgrund eines Beschlusses des Deutschen Bundestages gefördert. Der Schlussbericht und weiterführende Informationen sind am Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik der TU Dresden erhältlich.

Die vollständige Veröffentlichung steht zum Download zur Verfügung.

Authors: Zierold, Konrad; Hahn, Lars; Cherif, Chokri

Technische Universität Dresden
Fakultät Maschinenwesen
Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM)
01062 Dresden

More entries from TU Dresden, Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik ITM

18.10.2022

In-situ structural monitoring of fibre-reinforced plastic composites under compressive loading

Yarns Composites Sensor Technology Sustainability Technical Textiles Tests

Abstract

Continuous structural monitoring of FRP components, especially in complex, changing load scenarios, represents an efficient solution approach to detect potentially occurring fatigue or damage at an early stage. Especially in FRP components, textile-based sensors are an economical solution for continuous in-situ structure monitoring, due to their high structural compatibility and direct textile integration during textile production.       

The textile-based sensor concept developed in this research project was electromechanically characterised at the yarn and composite scale and was further processed in multiaxial warp-knitting to manufacture functionalised fabrics. The sensor functionality in CFRP specimen was tested in tensile, pressure and bending tests. Finally, a CFRP profile demonstrator was used to test and prove the practical feasibility and functionality. These "smart composites" not only enable continuous in-situ structural monitoring of FRP components under tensile, bending and, especially, compressive stress, but can also be used to detect cracking and delamination processes. This allows both the understanding of the material behaviour to be improved and taken into account for future designs, as well as necessary measures to be initiated to ensure the functionality of the overall system.

Report

Introduction

Fibre-reinforced composite structures are currently used in the fields of mechanical engineering, aircraft construction and automotive engineering, among others, due to their excellent mechanical properties combined with a high lightweight construction potential [1]. In the construction sector, high-performance textiles are increasingly being used as a substitute for steel reinforcement in textile reinforced concrete [2], due to their mechanical and chemical properties and the resulting resource-saving, filigree, lightweight construction potential. The long-term stable functionality and safety of fibre-reinforced composite structures is urgently required due to their frequent use in safety-critical components and structures. A promising practice-oriented approach is the continuous structural monitoring in order to quantify the (residual) load-bearing capacity and to initiate any necessary measures to ensure functional capability. A particularly economical and structurally compatible solution are textile-based sensors that are integrated during the manufacture of the textile reinforcement and used to detect complex load scenarios as well as cracking and delamination processes at the composite scale. [3 – 6]

Due to their operating principle, textile-based strain sensors are mainly used for monitoring composite structures subjected to tensile stress. In order to be able to derive reliable statements about structural changes and critical overload conditions even in complex overlapping stress scenarios (e.g. tensile and compressive stresses), textile-based pressure sensitive sensor systems for continuous in-situ structural monitoring for FRP were developed in IGF project 21169 BR.

Objective and solution

The aim of the IGF research project was the development, characterisation and testing of textile-based pressure sensitive sensor systems and their textile-technical integration in multi-axial warp knitting for the production of sensor-functionalised textile reinforcements for use in FRP. The requirements for the textile sensors were derived simulation-based by analysing a functional demonstrator. The textile sensors were specifically designed to detect structural deformations induced by tensile, bending and especially compressive stresses. Therefore, the approach of increasing the pressure sensitivity of textile sensors by pre-tension was investigated. The sensor behaviour was extensively analysed in electromechanical investigations at fibre and composite scale and tested on the functional demonstrator.

Acknowledgement

The IGF project 21169 BR of the Research Association Forschungskuratorium Textil e.V., Reinhardtstr. 12-14, 10117 Berlin was funded by the Federal Ministry of Economics and Climate Protection via the AiF within the framework of the programme for the promotion of joint industrial research and development (IGF) on the basis of a resolution of the German Bundestag.

The authors would like to thank the above-mentioned institutions for providing the financial resources. The research report and further information are available from the Institute of Textile Machinery and High Performance Textile Materials Technology at TU Dresden.

Authors: Le Xuan, Hung; Seidel, André; Hahn, Lars; Nocke, Andreas; Cherif, Chokri

Technische Universität Dresden
Fakultät Maschinenwesen
Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM)
01062 Dresden

More entries from TU Dresden, Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik ITM

18.10.2022

In-situ-Strukturüberwachung von Faserkunststoffverbunden unter Druckbeanspruchung

Yarns Composites Sensor Technology Sustainability Technical Textiles Tests

Abstract

Die kontinuierliche Strukturüberwachung von FKV-Bauteilen vor allem in komplexen, wechselnden Belastungsszenarien stellt einen effizienten Lösungsansatz dar, um frühzeitig potenziell auftretende Ermüdungserscheinungen oder Schäden zu detektieren. Gerade in FKV-Bauteilen sind textilbasierte Sensoren eine wirtschaftliche Lösung zur kontinuierlichen In-situ-Strukturüberwachung, aufgrund ihrer direkten textiltechnischen Integration während der Flächenbildung und hohen Strukturkompatibilität.    

Das in diesem Forschungsprojekt entwickelte textilbasierte Sensorkonzept wurde auf der Garn- und Verbundebene elektromechanisch charakterisiert und wurde im Multiaxialkettenwirken zu funktionalisierten Gelegen und fortführend in etablierten Verbundbildungstechnologien zu CFK-Proben weiterverarbeitet sowie umfangreich in Zug-, Druck- und Biegeversuchen charakterisiert. Anhand eines CFK-Profil Demonstrators wurde die praktische Umsetzbarkeit und Funktionsfähigkeit erprobt und bewiesen. Diese „Smart-Composites“ ermöglichen nicht nur eine kontinuierliche In-situ-Strukturüberwachung von FKV-Bauteilen unter Zug-, Biege- und vor allem Druckbeanspruchung, sondern können auch für die Detektion von Riss- und Delaminationsvorgängen eingesetzt werden. Dadurch können sowohl das Verständnis des Materialverhaltens verbessert und für zukünftige Auslegungen berücksichtigt als auch erforderliche Maßnahmen zur Gewährleistung der Funktionsfähigkeit des Gesamtsystems eingeleitet werden.

Report

Einleitung

Faserverstärkte Verbundstrukturen (Composites) werden gegenwärtig u. a. in den Bereichen des Maschinen-, Flugzeug- und Automobilbaus aufgrund der ausgezeichneten mechanischen Eigenschaften bei gleichzeitig höchstem Leichtbaupotenzial eingesetzt [1]. Auch im Bausektor finden Hochleistungstextilien, substituierend zur Stahlbewehrung, zunehmend Anwendung im Carbonbeton [2], aufgrund ihrer mechanischen sowie chemischen Eigenschaften und der daraus resultierenden ressourcenschonenden, filigranen Leichtbauweise. Die langzeitstabile Funktionsfähigkeit und Sicherheit von faserverstärkten Verbundstrukturen ist durch den häufigen Einsatz in sicherheitskritischen Komponenten und Strukturen dringend erforderlich. Ein vielversprechender praxisorientierter Lösungsansatz stellt hierbei die kontinuierliche Strukturüberwachung dar, um die (Rest-)Tragfähigkeit zu quantifizieren und um ggf. erforderliche Maßnahmen zur Gewährleistung der Funktionsfähigkeit einzuleiten.  
Eine besonders wirtschaftliche und strukturkompatible Lösung sind textilbasierte Sensoren, die während der Herstellung der textilen Verstärkungshalbzeuge integriert und zur Erfassung komplexer Lastfälle sowie Riss- und Delaminationsvorgänge auf Verbundebene eingesetzt werden. [3 – 6]

Textilbasierte Dehnungssensoren werden prinzipbedingt vorwiegend zur Überwachung in zugbeanspruchten Verbundstrukturen eingesetzt. Um zuverlässige Aussagen über strukturelle Veränderungen und kritische Überlastzustände auch in komplex überlagerten Beanspruchungsszenarien (bspw. Zug- und Druckbeanspruchungen) ableiten zu können, wurden im IGF-Projekt 21169 BR textilbasierte druckmessfähige Sensorsysteme zur kontinuierlichen In-situ-Strukturüberwachung für FKV entwickelt.

Zielsetzung und Lösungsweg

Das Ziel des IGF-Forschungsprojekts war die Entwicklung, Charakterisierung und Erprobung textilbasierter druckmessfähiger Sensorsysteme und deren textiltechnische Integration im Multiaxialkettenwirken zur Herstellung sensorisch-funktionalisierter textiler Verstärkungshalbzeuge für den Einsatz in FKV. Das Anforderungsprofil an die textilen Sensoren wurde anhand eines Funktionsdemonstrators simulationsgestützt abgeleitet und gezielt darauf ausgelegt strukturelle Deformationen durch einwirkende Zug-, Biege- und vor allem Druckbeanspruchungen zu erfassen. Hierfür wurde der Ansatz verfolgt, die Drucksensitivität von textilen Sensoren durch die gezielte Einstellung und Aufrechterhaltung einer Vorspannung bzw. -dehnung zu erhöhen. Das Sensorverhalten wurde umfangreich in elektromechanischen Untersuchungen auf Faser- und Verbundebene analysiert und am Funktionsdemonstrator erprobt.

Danksagung

Das IGF-Vorhaben 21169 BR der Forschungsvereinigung Forschungskuratorium Textil e.V., Reinhardtstr. 12-14, 10117 Berlin wurde über die AiF im Rahmen des Programms zur Förderung der industriellen Gemeinschaftsforschung und -entwicklung (IGF) vom Bundesministerium für Wirtschaft und Klimaschutz aufgrund eines Beschlusses des Deutschen Bundestages gefördert.

Authors: Le Xuan, Hung; Seidel, André; Hahn, Lars; Nocke, Andreas; Cherif, Chokri

Technische Universität Dresden
Fakultät Maschinenwesen
Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM)
01062 Dresden

More entries from TU Dresden, Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik ITM

30.09.2022

DigiPEP: Components designed according to the load path

Composites Technical Textiles

Abstract

Developing components made of fibre-reinforced plastics, is often performed with the focus on the lightweight construction aspect. For this purpose, the occurring load cases are determined on the basis of the boundary conditions and forces. Afterwards, the component is designed accordingly. If this intention is taken even further, the method is usually assigned to the field of Tailored Textiles. Tailored Textiles are, as the term suggests, textiles that are manufactured to suit the application. This also includes the Tailored Fibre Placement (TFP) process. In this process, rovings can be laid down and stitched in a variable axial direction. With this type of placement, embroidery patterns can be created according to the load cases that occur in the moulded component. The process is thus extremely low in waste and can be used for local reinforcement in the form of inserts or as an entire component with an enormous lightweight construction approach. In combination with low acquisition and process costs, the process offers great potential, especially for SMEs.

Report

During the product engineering process (PEP) of fibre composite components made from TFP preforms, a large number of iterations is necessary to ensure the desired properties in the finished component. Especially the interaction of the different process steps from roving deposition, draping to infusion and the occurring interactions complicate the component design. In order to link the required design processes and thus reduce the number of iterations as much as possible, the Model Based Systems Engineering (MBSE) approach is used in the DigiPEP project (see Fig. 1). This approach makes it possible to integrate the different models and assign tasks to individual responsible persons. The overall aim is to create a model with a user interface that requires only the most important boundary conditions and decisions from the responsible person. Models for structural analysis, stick path design, topology optimisation, draping and failure analysis of the finished component are to be integrated into the model. Furthermore, a cost estimation as well as a form of life cycle analysis shall be enabled. The generated model will be validated by the design of a demonstrator component. This demonstrator component can be located in the field of future transport and production.

The two-year project is funded by the Federal Ministry of Economics and Climate Protection (BMWK) as part of the Lightweight Construction Technology Transfer Programme under funding number 03LB3063A. The following partners are involved in the project: EDAG Group, Digel Sticktech GmbH & Co. KG, ModuleWorks GmbH, Ph-MECHANIK GmbH & Co. KG, adesso SE.

Authors: Rebecca Emmerich, Till Quadflieg

ITA Institut für Textiltechnik an der RWTH Aachen University, Otto-Blumenthal-Strasse 1, 52074 Aachen, Germany

Sporttech Mobiltech

More entries from ITA Institut für Textiltechnik der RWTH Aachen University

30.09.2022

CF/AR/thermoplastic hybrid yarns for requirement-based thermoplastic composites with outstanding, scalable stiffness, strength, crash and impact property combinations

Fibres Yarns Composites Textile machinery

Abstract

Within the framework of the IGF research project (21004 BR/1), material concepts based on two yarn formation technologies were realized at the ITM and CF/AR/PA6 and rCF/rAR/PA6 hybrid yarns for thermoplastic composites meeting requirements with outstanding, scalable stiffness, strength, crash and impact property combinations were produced. The influence of carding, draw frame and roving frame (MK1) and air texturing unit (MK2) parameters and fiber volume fractions on the mechanical properties were analyzed to develop requirements-based and defined engineered yarns and composites based on them. The investigated yarn formation technologies complement or partly compete with each other, but thereby also represent a broad technology spectrum. This generates a broad effect for the application of the results for product development in numerous German and often on few technologies specialized SMEs of textile technology.

Report

Introduction, problem definition and aim

Fiber-reinforced plastic composites are designed according to required stiffness and strength or impact and crash properties. Complex, overlapping load scenarios are only taken into account to a very limited extent. There are first practical approaches for realizing composite components, e.g. the B-pillar of an automobile [1]. In which composites (e.g., carbon fiber prepregs) are combined with metallic components (e.g. steel sheets) in order to achieve the necessary damage tolerance along with high weight-specific stiffness and strength. In such concepts, hybridization takes place at the macro (structural level) or meso (yarn level) level and requires extremely complex and cost-intensive manufacturing processes [2-4]. Furthermore, these components also have highly pronounced interlaminar interfaces, where complex stresses generate high shear stresses. As a result, premature structural failures occurs due to delamination [5-8]. In order to overcome these disadvantages and for use in future developments, a concept is developed and implemented in the project presented here. The approach provides the design of the combination of various fiber components by hybridization at the micro-level (within a yarn/fiber level), thus maximizing their property potentials. The use of recycled high-performance fibers also results in significant advantages over conventional composites in terms of sustainability, resource efficiency and cost-effectiveness.

The project aims to create a new three-component class of materials hybridized at the micro level for thermoplastic lightweight applications. By combining the reinforcing fibers such as carbon and aramid, it is possible to combine high stiffness and strength with high crash and impact properties by varying the reinforcing fiber proportions and fiber makeup in a way appropriate to the load case. Fig. 1a schematically shows the properties of state-of-the-art CF/AR hybrid composites (Fig. 1a bottom, highlighted by an ellipse) according to state of the art, from engineered yarns to be developed (top, area within the dashed lines) and the theoretical material potentials (top, colored lines), each depending on the fiber volume fractions. The systematic investigation of the influence of the material-specific fiber volume fractions for a scalable composites design was carried out in five stages (CF/AR or rCF/rAR: 50/0 %; 40/10 %; 25/25 %; 10/40 %; 0/50 %).

The development work focused on three main areas. The first focus was the further development of the process technology so that the composites based on engineered yarns exhibit high strength and stiffness due to low fiber damage, high uniformity and high fiber orientation. The second focus was the first-time implementation of the homogeneous blending of three fiber materials at the micro-level. The third focus was designing the engineered yarns so that outstanding, scalable stiffness, strength, crash and impact property combinations can be set explicitly for a wide range of requirements (Fig. 1a).

For the concrete realization of the desired goal, CF/AR/PA6 or rCF/rAR/PA6 hybrid yarns were developed using two material concepts (Fig. 1b) based on two yarn formation technologies (Fig. 1a) for the production of thermoplastic composites with outstanding, scalable stiffness, strength, crash and impact property combinations. The interrelationships between process parameters and material-yarn composite properties were analysed. A sound knowledge for the material-dependent design of the engineered yarns could be achieved. Furthermore, the best possible material and process parameters for specific applications was derived and a process guide was prepared for the control of the manufacturing processes for the SMEs. A detailed description of the development work can be taken from the final report.

Acknowledgement

The IGF project 21004 BR/1 of the Forschungsvereinigung Forschungskuratorium Textil e. V. is funded through the AiF within the program for supporting the „Industriellen Gemeinschaftsforschung (IGF)“ from funds of the Federal Ministry for Economic Affairs and Climate Action on the basis of a decision by the German Bundestag.

Authors: Matthias Overberg, Anwar Abdkader, Chokri Cherif

Technische Universität Dresden
Fakultät Maschinenwesen
Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM)
01062 Dresden

More entries from TU Dresden, Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik ITM

30.09.2022

CF/AR/Thermoplast Hybridgarne für anforderungsgerechte thermoplastische Composites mit herausragenden, skalierbaren Steifigkeits-, Festigkeits-, Crash- und Impacteigenschaftskombinationen

Fibres Yarns Composites Textile machinery

Abstract

Im Rahmen des IGF-Forschungsvorhabens (21004 BR/1) wurden am ITM Materialkonzepte auf Basis von zwei, in der Industrie etablierten Garnbildungstechnologien realisiert und damit CF/AR/PA 6- bzw. rCF/rAR/PA 6-Hybridgarne für anforderungsgerechte thermoplastische Composites mit herausragenden, skalierbaren Steifigkeits-, Festigkeits-, Crash- und Impacteigenschaftskombinationen hergestellt. Dabei wurden die Einflüsse der Parameter der Krempel-, Strecken- und Flyerspinnanlage (MK1) sowie der Lufttexturieranlage (MK2) und der Faservolumenanteile auf die mechanischen Eigenschaften analysiert, um anforderungsgerechte und definierte Engineered Garne und darauf basierende Composites zu entwickeln. Die untersuchten Garnbildungstechnologien ergänzen sich bzw. konkurrieren teilweise untereinander, bilden dadurch aber auch ein breites Technologiespektrum ab, das eine große Breitenwirkung für die Anwendung der Ergebnisse zur Produktentwicklung in zahlreichen deutschen und oft auf wenige Technologien spezialisierten KMU der Textiltechnik erzeugt.

Report

Einleitung, Problemstellung und Zielsetzung

Aktuelle faserverstärkte Kunststoffverbunde (Composites) werden entweder nach Steifigkeits- und Festigkeits- oder Impact- bzw. Crasheigenschaften ausgelegt. Komplexe, sich überlagernde Lastszenarien werden dabei nur sehr beschränkt berücksichtigt. Zwar gibt es erste realisierte Verbundbauteile, bspw. die B-Säule eines Automobils [1], bei denen Composites (bspw. Carbonfaserprepregs) zur Realisierung hoher gewichtsspezifischer Steifigkeiten und Festigkeiten mit metallischen Komponenten (bspw. Stahlbleche) zur Erreichung der notwendigen Schadenstoleranz kombiniert werden. Bei derartigen Konzepten erfolgt die Hybridisierung auf Makro- (Strukturebene) oder Mesoebene (Garnebene) und erfordert extrem aufwendige und kostenintensive Fertigungsprozesse [2–4]. Konzeptbedingt weisen diese Bauteilen zudem stark ausgeprägte interlaminare Grenzflächen auf, an denen durch komplexe Beanspruchungen hohe Scherspannungen entstehen, die dann zu frühzeitigen Delaminationen mit entsprechenden Strukturversagen führen [5–8]. Im Rahmen des hier vorgestellten Projekts wurden ein Konzept zur Überwindung der Nachteile und für den Einsatz bei zukünftigen Entwicklungen erarbeitet und umgesetzt. Der Ansatz besteht dabei darin, die Kombination der verschiedenen Komponenten durch Hybridisierung auf Mikroebene (innerhalb eines Garnes/Faserebene) zu gestalten und damit deren Eigenschaftspotentiale maximal auszuschöpfen. Durch den Einsatz recycelter Hochleistungsfasern ergeben sich zudem deutliche Vorteile hinsichtlich Nachhaltigkeit, Ressourceneffizienz und Wirtschaftlichkeit gegenüber konventionellen Composites.

Ziel des Projekts ist die Kreierung einer neuen auf Mikroebene hybridisierten dreikomponentigen Werkstoffklasse für thermoplastische Leichtbauanwendungen. Durch die gezielte Kombination der Verstärkungsfasern Carbon und Aramid sind über Variation der Verstärkungsfaseranteile und Faseraufmachung lastfallgerecht hohe Steifigkeiten und Festigkeiten mit hohen Crash- bzw. Impacteigenschaften kombinierbar. Abb. 1a zeigt schematisch die Eigenschaften von CF/AR Hybridcomposites nach dem Stand der Technik (Abb. 1a unten durch Ellipse hervorgehoben), aus zu entwickelnden Engineered Garnen (oben, Bereich innerhalb der gestrichelten Linien) und die theoretischen Materialpotentiale (oben, farbige Linien) jeweils in Abhängigkeit der Faservolumenanteile. Die systematische Untersuchung des Einflusses der materialspezifischen Faservolumenanteile für eine skalierbare Auslegung der Composites, erfolgte beispielhaft in fünf Stufen (CF/AR bzw. rCF/rAR: 50/0 %; 40/10 %; 25/25 %; 10/40 %; 0/50 %).

Die Entwicklungsarbeiten konzentrierten sich auf drei wesentliche Schwerpunkte. Der erste Schwerpunkt war die Weiterentwicklung der Prozesstechnik, sodass die auf Engineered Garnen basierenden Composites aufgrund geringer Faserschädigungen, einer hohe Gleichmäßigkeit und hohen Faserorientierung hohe Festigkeiten und Steifigkeiten aufweisen. Der zweite Schwerpunkt war die erstmalige Umsetzung der homogenen Durchmischung von drei Fasermaterialien auf Mikroebene, sodass gleichzeitig Steifigkeiten, Festigkeiten und ebenfalls Impact- und Crasheigenschaften signifikant erhöht werden können. Der dritte Schwerpunkt lag in der Auslegung der Engineered Garne, um so herausragende, skalierbare Steifigkeits-, Festigkeits-, Crash- und Impacteigenschaftskombinationen für verschiedenste Anforderungen gezielt einstellen zu können (Abb. 1a).

Die konkrete Umsetzung des angestrebten Ziels, Realisierung von CF/AR/PA6 bzw. rCF/rAR/PA6 Hybridgarnen zur Herstellung anforderungsgerechter thermoplastischer Composites mit herausragenden, skalierbaren Steifigkeits-, Festigkeits-, Crash- und Impacteigenschaftskombinationen, erfolgte unter Verwendung von zwei Materialkonzepten (Abb. 1b) auf Basis von zwei, in der Industrie etablierten Garnbildungstechnologien (Abb. 1a). Dabei wurden die komplexen Zusammenhänge zwischen Prozessparametern und Material-Garn-Verbundeigenschaften analysiert und für die KMU fundiertes Wissen für die Entwicklung, materialabhängige Auslegung der Engineered-Garne, die Ableitung der bestmöglichen Material- und Prozessparameter für konkrete Anwendungen sowie für die Steuerung der Fertigungsprozesse erarbeitet und in Form eines Verfahrensleitfadens aufbereitet. Die detaillierte Beschreibung der Entwicklungsarbeiten kann aus dem Abschlussbericht entnommen werden.

Danksagung

Das IGF-Vorhaben 21004 BR/1 der Forschungsvereinigung Forschungskuratorium Textil e.V. wurde über die AiF im Rahmen des Programms zur Förderung der industriellen Gemeinschaftsforschung (IGF) vom Bundesministerium für Wirtschaft und Klimaschutz aufgrund eines Beschlusses des Deutschen Bundestages gefördert. Wir danken den genannten Institutionen für die Bereitstellung der finanziellen Mittel.

 

 

 

Authors: Matthias Overberg, Anwar Abdkader, Chokri Cherif

Technische Universität Dresden
Fakultät Maschinenwesen
Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM)
01062 Dresden

https://tu-dresden.de/mw/itm

More entries from TU Dresden, Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik ITM

29.09.2022

Nachhaltige Faserverbundlösungen: Projektvorhaben NFK Federbein

Fibres Composites Sustainability

Abstract

Der Fokus des Forschungsvorhabens liegt auf der Simulation, dem Design, der Auslegung und Herstellung eines Federbeins für ein Ultraleichtflugzeug aus Naturfasern. Das Projekt soll die Machbarkeit eines Strukturell ausgelegten Bauteils mit ausgeprägten Lastfällen aus Naturfasern unter Beweis stellen und die Nachhaltigkeit des Konzepts überprüfen.

Report

Der Markt für nachhaltige Faserverbundlösungen ist besonders interessant für kleine und mittelständische Firmen, weil die Sensibilität für das ökologische Bewusstsein und der Wunsch nach nachhaltigen und zugleich hochwertigen Lösungen in Europa und insbesondere in Deutschland im internationalen Vergleich stark ausgeprägt ist. Gleichzeitig sind Naturfaserkunststoffe derzeit noch ein Nischenmarkt und der sich von Produkten abhebt, die ausschließlich über den günstigsten Preis verkauft werden. Folglich unterliegt dieser Markt weniger der Konkurrenz- und dem Preiswettbewerb aus Niedriglohnländern, beziehungsweise Großunternehmen, die über entsprechend große Stückzahlen, Skaleneffekte realisieren.

Ziel des Projekts ist die Nutzbarmachung von naturfaserverstärktem Kunst-stoff (NFK) mit gesteigerten Dämpfungseigenschaften für Strukturbauteile am Beispiel eines Federbeins für ein Ultraleichtflugzeug. Hierdurch soll eine ökologische Alternative zu konventionellem Leichtbaumaterial, wie Aluminium und Verbundwerkstoffen auf Basis von Glas- und Carbonfasern, bereitgestellt werden. Um dieses Ziel zu erreichen, gliedert sich das Projekt in die Teilschritte: Computergestützte Auslegung des Strukturbauteils mittels FEA-Methoden, lastfalloptimierte Fertigung des Bauteils und Validierung im Feldtest. Dies erfolgt exemplarisch anhand eines Federbeins für ein Leichtbauflugzeug der Firma Viethen.

Der im Projekt gewählter Ansatz hat ein Ziel, eine kosten- und zeiteffiziente Methode für die Entwicklung von hochbeanspruchten Leichtbauteilen aus Faserverbundwerkstoffen mit Verstärkung aus nachwachsenden Rohstoffen zu zeigen. Der Ansatz soll die Anreize für weitere Wirtschaftszweige geben, nachwachsende Rohstoffe durch abschätzbare Eigenschaften und Kostenstruktur in deren Produkten öfters zu verwenden. Darüber hinaus kann diese Projektmethode für bereits vorhandene Werkstoffkombinationen mit Verstärkung aus Glas- sowie Kohlenstofffasern angewendet werden und zu Effizienzsteigerung und Ressourcenschonung beitragen.

Projektpartner
CompDesE, Firma Viethen

Das Forschungsvorhaben NFK-Federbein (UW-01-054B) wurde am Institut für Textiltechnik der RWTH Aachen University (ITA), der Firma Viethen und der Firma CompDesE GmbH durchgeführt. Es wurde von der Landesregierung Nordrhein-Westfalen im Sonderprogramm Umweltwirtschaft im Rahmen der Corona-Hilfe gefördert.

Authors: Santino Wist

ITA Institut für Textiltechnik an der RWTH Aachen University, Otto-Blumenthal-Strasse 1, 52074 Aachen, Deutschland

Naturfasern Strukturbauteil LCA

More entries from ITA Institut für Textiltechnik der RWTH Aachen University

29.09.2022

Projekt CoopLaserJoining

Composites Textile machinery Recycling

Abstract

Der Fokus des Forschungsvorhabens liegt auf der Verbesserung der Multimaterialverbindungen von recyceltem Carbon mit Aluminium und der Entwicklung eines intelligenten Strahlschalters zur Betreibung von parallelgeschalteten Laserprozessen mit einer Laserquelle.

Report

Mit der Weiterentwicklung der Elektromobilität wird der Bedarf der Automobilindustrie an Leichtbaukomponenten immer deutlicher. Die Leichtbauteile werden benötigt, um das Gewicht des Fahrzeugs zu reduzieren und damit die Reichweite zu erhöhen. Gleichzeitig steigt mit der jährlichen Wachstumsrate von 11% bei carbonfaserverstärkten (CFK) Verbundwerkstoffen die Sorge um die Entsorgung bzw. Wiederverwendung von Carbonfasermaterialien speziell aus der Automobilindustrie. Denn nach EU-Regelung müssen 85 Prozent des im Automobil verbauten Materials wiederverwendet werden und 95 Prozent recyclingfähig sein. Im Multimaterialbau stehen die Fügestellen im Fokus. Fügestellen sind kritische Bereiche für die mechanischen Eigenschaften des Konstrukts, behindern aber gleichermaßen die Materialtrennung am Lebensende und erschweren damit das Recycling.

Ziel des Vorhabens von CoopLaserJoining ist die Entwicklung modernster Laserbearbeitungs- und Fügetechnologien für rezyklierbare Carbonfaserverbundwerkstoffe für den Einsatz in Automobilkarosserieteilen. Zur Erhöhung der Produktivität der Laserbearbeitungsprozesse wird ein intelligenter Strahlschalter entwickelt, welcher die vorhandene Laserleistung auf zwei oder mehr Bearbeitungsköpfe aufteilt. So kann die Zykluszeit für die Lasermaterialbearbeitung in beiden Fügeprozessen mindestens halbiert werden und erhöht so Effizienz und Wettbewerbsfähigkeit der Laserprozesse.
Hierbei konzentriert sich das Projektkonsortium auf die Einbringung von Krafteinleitungselementen mittels Ultrakurzpuls (UKP)-Laserbohren in Preforms zur Erhöhung der Haftfestigkeit und Verkürzung der Prozesskette. Außerdem erlauben lösbare Verbindungen eine Verbesserte Trennbarkeit der Materialien und schaffen somit die Voraussetzung zum einfachen Recycling der Materialien.

Das Vorhaben wird am Beispiel der Automobilindustrie für die kostenorientierte Massenproduktion durchgeführt. Ein Aluminium-Leichtbaurahmen wird mit verschiedenen CFK-Komponenten verstärkt. Die Dauerfestigkeit und Belastbarkeit der Bauteile wird im Wesentlichen durch die Fertigungstechnologie sowie die Technik des Verbindens der CFK-Bauteile mit dem Aluminium-rahmen bestimmt. Die Festigkeit der resultierenden Verbindungen wird durch Belastung bis zum Versagen bewertet. So ist es möglich, für unter-schiedliche Funktionsteile eine optimierte Fertigungs- und Fügetechnik zu identifizieren und den Fügeprozess an die spezifischen Anforderungen anzupassen.

Projektbeteiligte
Fraunhofer Institut für Lasertechnik, Amphos GmbH, Seoul National University of Science and Technology, Sungwoo Hitech CO., LTD.

Das Forschungsvorhaben CoopLaserJoining (01DR21026B) wird am Institut für Textiltechnik der RWTH Aachen University (ITA), dem Fraunhofer Institut für Lasertechnik (ILT) und der Firma Amphos GmbH durchgeführt. Es wird vom Bundesministerium für Bildung und Forschung im Rahmen der Fördermaßnahme IB-Asien gefördert.

Authors: Santino Wist

ITA Institut für Textiltechnik an der RWTH Aachen University, Otto-Blumenthal-Strasse 1, 52074 Aachen, Deutschland

More entries from ITA Institut für Textiltechnik der RWTH Aachen University

29.09.2022

DigiPEP: Lastpfadgerecht-ausgelegte Bauteile

Composites Technical Textiles

Abstract

Bei Entwicklungen von Bauteilen aus faserverstärkten Kunststoffen steht häufig der Leichtbauaspekt im Vordergrund. Dazu werden die auftretenden Lastfälle anhand der Randbedingungen und Kräfte bestimmt und anschließend das Bauteil entsprechend ausgelegt. Wird dieser Ansatz noch weiter ausgereizt, so wird die Methode meist den Tailored Textiles zugeordnet. Tailored Textiles sind, wie es der Begriff bereits vermuten lässt, Textilien, die auf den Anwendungsfall abgestimmt hergestellt werden. Dazu gehört ebenfalls das Tailored Fibre Placement (TFP) Verfahren. Dabei können Rovings variabel-axial abgelegt und festgestickt werden. Durch diese Art der Ablage können Stickmuster gemäß den auftretenden Lastfällen im geformten Bauteil erstellt werden. Das Verfahren ist somit extrem verschnittarm und kann zur lokalen Verstärkung in Form von Inserts eingesetzt werden oder als gesamtes Bauteil mit einem enormen Leichtbauansatz verwendet werden. In Kombination mit geringen Anschaffungs- und Prozesskosten bietet das Verfahren besonders für KMU ein großes Potential.

Report

Während des Produktentstehungsprozesses (PEP) von Faserverbundbauteilen aus TFP-Preforms ist eine Vielzahl von Iterationen notwendig um die gewünschten Eigenschaften im fertigen Bauteil zu gewährleisten. Vor allem das Zusammenspiel der verschiedenen Prozessschritte von der Roving-Ablage, der Drapierung bis hin zur Infusion und die auftretenden Wechselwirkungen erschweren die Bauteilauslegung. Um die benötigten Auslegungsprozesse zu verknüpfen und so die Anzahl der Iterationen möglichst zu reduzieren wird im Rahmen des DigiPEP-Projektes der Model Based Systems Engineering (MBSE) Ansatz verwendet (siehe Abb. 1). Dieser Ansatz ermöglicht eine Integration der verschiedenen Modelle und eine Zuordnung der Aufgaben zu einzelnen Verantwortlichen. Insgesamt soll somit ein Modell mit einem User Interface entstehen, das nur die wichtigsten Randbedingungen und Entscheidungen von dem jeweiligen Verantwortlichen erfordert. In das Modell sollen Modelle zur Strukturanalyse, Stickpfadauslegung, Topologie-Optimierung, Drapierung und Versagensanalyse des fertigen Bauteils integriert werden. Darüber hinaus soll eine Kosteneinschätzung sowie eine Form der Lebenszyklusanalyse ermöglicht werden. Um die verschiedenen Modelle zu erzeugen und eine Datenbasis aufzubauen, wird u.a. das Ablageverhalten verschiedener Materialien untersucht sowie mechanische Prüfungen an Probenkörper durchgeführt. Dabei werden die Produktionsparameter variiert, um deren Einfluss auf die mechanischen Eigenschaften zu untersuchen. Diese Variation wird ebenfalls zur Untersuchung des Drapierverhaltens verwendet. Zur Repräsentation des Drapierverhaltens im Modell soll eine Datenbasis aus qualitativen Versuchen erzeugt und mittels Künstlicher Intelligenz in das MBSE-Modell integriert werden.

Das erzeugte Modell wird anhand der Auslegung eines Demonstrator-Bauteils validiert. Dieses Demonstrator-Bauteil stammt aus dem Bereich des zukünftigen Transportes und der Produktion der Zukunft. Das erzeugte MBSE-Modell soll durch das erstellte Userinterface einfach bedienbar sein. Als Einsatzgebiet zielt das Projekt besonders auf KMU ab, um für diese den Einsatz der TFP-Technologie zu vereinfachen und die Auslegung neuer Bauteile zu beschleunigen. Darüber hinaus wird angestrebt durch die Software eine grobe Kosten- sowie Nachhaltigkeitsabschätzung zu ermöglichen. Damit kann der Anwender vor der genaueren Planung bereits erste Aussagen gegenüber dem Kunden treffen.

Das auf zwei Jahre ausgelegte Projekt wird vom Bundesministerium für Wirtschaft und Klimaschutz (BMWK) im Rahmen des Technologietransferprogramms Leichtbau unter der Fördernummer 03LB3063A gefördert. An der Bearbeitung sind die folgenden Partner beteiligt: EDAG Group, Digel Sticktech GmbH & Co. KG, ModuleWorks GmbH, Ph-MECHANIK GmbH & Co. KG, adesso SE.

Authors: Rebecca Emmerich, Till Quadflieg

ITA Institut für Textiltechnik an der RWTH Aachen University, Otto-Blumenthal-Strasse 1, 52074 Aachen, Deutschland

Sporttech Mobiltech

More entries from ITA Institut für Textiltechnik der RWTH Aachen University

29.09.2022

TapeCheckSim: Aktive Fehlervermeidung durch kontinuierliche, zerstörungsfreie Qualitätsanalyse von UD-Tapes für Tape-Legeprozesse

Fibres Composites Textile machinery

Abstract

(Faserverbundwerkstoffe): Das Projekt adressiert die Fehleranfälligkeit von Tape-Legeprozessen. Produktionsstillstand und Produktausschuss werden aktiv vermieden. Dies fördert die Attraktivität automatisierter und verschnittarmer Herstellungsprozesse von FVK.

Report

Defizite aktueller Qualitätssicherungssysteme für Tape-Legeprozesse
In den letzten Jahren wurden Online-Qualitätssicherungssysteme für Automated Tape Laying (ATL) bzw. Automated Fiber Placement (AFP) Prozesse im Rahmen akademischer und industrieller Forschungsprojekten entwickelt, um die Produktivität dieser Prozesse zu steigern. Diese Systeme erfassen während der automatischen Faserablage entstandene Fehler, wie beispielsweise Gassen, Überlappungen und Falten. Allerdings können Fehler erst erkannt werden, wenn diese bereits abgelegt wurden. Eine aktive Fehlervermeidung ist mit diesen Ansätzen nicht möglich.

Auf Basis der Online-Daten dieser Qualitätsüberwachungsystemen wurden „In-situ“-Simulationsansätze entwickelt, die die "as-built"-Eigenschaften eines abgelegten Bauteils simulieren. Damit wird eine Entscheidung ermöglicht, ob ein entstandener Fehler im abgelegten Laminat verbleiben kann oder entfernt werden sollte. Da die Daten während des Ablegeprozesses erfasst werden, stehen jedoch nur sehr kurze Simulationszeiten zur Verfügung, wodruch eine genaue Vorhersage der Bauteileigenschaften erschwert wird. Ein weitere Nachteil dieser Systeme ist, dass sie zwar Defekte im Laminat bzw. Preform, aber nur in sehr begrenztem Umfang Defekte im Eingangsmaterial (z. B. Abweichung des Faservolumenanteils, geometrische Toleranzen) erkennen können. Dies ist insbesondere für thermoplastische Prepreg-Tapes entscheidend. Diese weisen deutlich häufiger Materialfehler auf als etablierte und ausgereifte Epoxid-basierte Prepreg-Tapes. Im Gegensatz zu Epoxid-Prepreg-Tapes werden materialbedingte Defekte (z. B. Porosität) zudem bei der laser-basierten In-situ-Konsolidierung von thermoplastischen Tapes durch den Entfall einer nachgeschalteten Autoklavkonsolidierung nicht mehr kompensiert. Daher ist die Materialqualität von thermoplastischen Prepreg-Tapes von entscheidender Bedeutung, um eine hohe Prozesstabilität und Laminatqualität zu erreichen.

Aktive Fehlervermeidung durch kontinuierliche, zerstörungsfreie Qualitätsanalyse von UD-Tapes
Ziel des TapeCheckSim-Projektes ist es, das Auftreten von materialbedingten Fehlern bei der automatisierten Faserablage von thermoplastischen Prepreg- und Trockenfaser-Tapes zu vermeiden. Dies wird durch eine vorgelagerte Qualitätsanalyse des Materials realisiert. Zu diesem Zweck entwickeln die SURAGUS GmbH (Dresden, Deutschland) und die Textechno H. Stein GmbH & Co. KG (Mönchengladbach) geeignete Sensorsysteme, die durch eine kontinuierlichen, zerstörungsfreien Prüfung eine 100 % Inspektion des Tape-Materials ermöglichen. Materialfehler werden dabei auf der Tape-Spule erkannt und lokalisiert. Diese Informationen bilden den „digitalen Zwilling“ einer jeden Tape-Spule. Die Zusammenhänge zwischen der Tape-Qualität und den daraus resultierenden mechanischen Verbundeigenschaften werden am Insitut für Texiltechnik Aachen (ITA) untersucht.

Die Bahnplanungssoftware des Tape-Legesystems liefert Informationen über die Ablegeposition eines Materialabschnittes im Bauteil. In der „pre-build“ Bauteilsimulation, die am ITA entwickelt wird, werden die Ablegepositionen und die Materialeigenschaften eines Tape-Abschnittes zu einem digitalen Zwilling des fehler-behafteten Bauteils verknüpft. Das Simulationsmodell ermöglicht damit eine Prognose, ob der induzierte Fehler im Bauteil zu einem kritischen Bauteilverhalten führen würde bevor der Tape-Legeprozess überhaupt gestartet wurde. In einem kritischen Fall wird der entsprechende Tape-Abschnitt durch das Tape-Legesystem ausgeschnitten und somit nicht abgelegt. Die neue Prozesskette wird auf den Anlagen der AFPT GmbH (Dörth, Deutschland) implementiert. Die Implementierung der notwendigen Infrastruktur für den Datenaustausch zwischen den einzelnen Teilsystemen und die Datenverarbeitung wird von der nebumind GmbH (Taufkirchen) durchgeführt.

Durch den Entfall von hohen Nebenzeiten für die Prüfung und Fehlerkorrektur, trägt die aktive Fehlervermeidung zu einer Produktivitätssteigerung von Tape-Legeprozessen bei. Durch die Vermeidung von hohen Sicherheitsaufschlägen kann der Materialeinsatz weiter optimiert werden. Die gewonnenen Erkenntnisse über den Zusammenhang zwischen Tape-Qualität und mechanischen Bauteileigenschaften vereinfachen die Materialauswahl und erhöhen die Zugänglichkeit der Tape-Legetechnologie für den Anwender.

Danksagung
Das Forschungsvorhaben wird im Rahmen des Technologietransfer-Programms Leichtbau (TTP LB) durch das Bundesministerium für Wirtschaft und Klimaschutz (BMWK) (Förderkennzeichen: 03LB5001E) aufgrund eines Beschlusses des Deutschen Bundestages gefördert.

Authors: Philipp Quenzel, M.Sc.

ITA Institut für Textiltechnik an der RWTH Aachen University, Otto-Blumenthal-Strasse 1, 52074 Aachen, Deutschland

Qualitätsanalyse

More entries from ITA Institut für Textiltechnik der RWTH Aachen University

28.09.2022

Reinforcement Learning im Faserverbundsektor

Fibres Composites

Abstract

(Faserverbundwerkstoffe): Das Projekt adressiert die Fehleranfälligkeit in kontinuierlichen Herstellungsverfahren von Hochmodulfaser-Tapes. Durch den Einsatz einer KI-basierten Regelung des Spreizverfahrens werden der hohe Produktausschuss, die niedrige Anlagenproduktivität und die aufwendige Anlageneinrüstung bisheriger Herstellungsverfahren vermieden.

Report

Systeme mit künstlicher Intelligenz (KI) werden in der Robotik mittlerweile vermehrt eingesetzt und dort beispielsweise für Bewegungs- und Handhabungsaufgaben verwendet, die mit reinen regelungstechnischen Systemen nicht mit ausreichender Genauigkeit ausgeführt werden können. Die Vorteile einer Ansteuerung von Industrierobotern durch KI-Systeme liegen beispielsweise in einer höheren Wiederholgenauigkeit und in der automatischen Anpassung an veränderte Umgebungsparameter, die nicht im Regelmodell berücksichtigt sind. Für kontinuierliche Produktionsprozesse hingegen hat der Einzug von KI-Systemen für die Optimierung der Produktionsparameter bislang nicht stattgefunden.

Einen kontinuierlichen Produktionsprozess mit hoher Anzahl an Einflussfaktoren, die zu einer hohen Komplexität des Gesamtsystems führen, stellt z.B. der Prozess zur Spreizung von Hochmodulfasergarnen für die Tape-Herstellung im Faserverbundsektor dar. Aufgrund derzeitiger Limitierungen innerhalb des Spreizprozesses treten bei gespreizten Hochmodulfasergarnen insbesondere Inhomogenitäten (bspw. Breiten- und Dickenverteilung) und Faserfehlorientierungen auf. Die vorhandenen Inhomogenitäten erschweren die Verarbeitbarkeit in den nachfolgenden Verarbeitungsprozessen.

Ziel des IGF-Projektes „intelli.line“ ist es, künstliche Intelligenz (KI) zur Regulierung der Produktionsparameter im Spreizprozess einzusetzen. Hierfür wird ein gängiges für das Faserspreizen angewendetes Verfahren – das Spreizen mittels Spreizstangen – gezielt weiterentwickelt. Durch die Integration zusätzlicher Sensorik für die Erfassung von Einflussfaktoren (bspw. Kameras, Temperatur-, Luftfeuchtigkeit-, Vibration-, Kraft-Sensor) wird innerhalb von umfangreichen Testläufen eine Datenbasis erzeugt, auf deren Grundlage ein selbstlernendes KI-System antrainiert wird (Reinforcement Learning). Dieses intelligente System wird als übergeordnete Kaskade in den bestehenden Regelkreis integriert und versetzt diesen in die Lage, sich auf wechselnde Materialien als auch verschiedener Chargen eines Materials zu adaptieren. Über einen rein adaptiven Regler hinaus kann das selbstlernende System dabei die Produktionsparameter an bisher (für das System) unbekannte Materialien anpassen. Auf diese Weise können die Zeiten für die Anlageninbetriebnahme und für den Materialwechsel reduziert werden. Zudem wird durch eine kontinuierliche Optimierung die Produktionsqualität erhöht und der Produktionsausschuss reduziert, was zu einer Senkung der Produktionskosten führt. Die gewonnenen Erkenntnisse können im Anschluss an das Projekt auf weitere Anwendungsbereiche übertragen werden.

Das Forschungsvorhaben wird im Rahmen des Programms zur Förderung der industriellen Gemeinschaftsforschung (IGF-Nr. 22237 N) vom Bundesministerium für Wirtschaft und Klimaschutz (BMWK) über die Arbeitsgemeinschaft industrieller Forschungsvereinigungen (AiF) e.V. aufgrund eines Beschlusses des Deutschen Bundestages gefördert.

Authors: Jan Patrick Böhler, M.Sc.

ITA Institut für Textiltechnik an der RWTH Aachen University, Otto-Blumenthal-Strasse 1, 52074 Aachen, Deutschland

Faserverbundwerkstoffe KI

More entries from ITA Institut für Textiltechnik der RWTH Aachen University