Textination Newsline

Reset
(c) MAI Carbon
24.05.2022

From waste to secondary raw material - wetlaid nonwovens made from recycled carbon fibers

MAI Scrap SeRO | From Scrap to Secondary Ressources – Highly Orientated Wet-Laid-Nonwovens from CFRP-Waste

The »Scrap SeRO« project is an international joint project in the field of »recycling of carbon fibers«.

The technical project goal is the demonstration of a continuous process route for processing pyrolytically recycled carbon fibers (rCF) in high-performance second-life component structures. In addition to the technological level, the focus of the project is particularly on the international transfer character, in the sense of a cross-cluster initiative between the top cluster MAI Carbon (Germany) and CVC (South Korea).

MAI Scrap SeRO | From Scrap to Secondary Ressources – Highly Orientated Wet-Laid-Nonwovens from CFRP-Waste

The »Scrap SeRO« project is an international joint project in the field of »recycling of carbon fibers«.

The technical project goal is the demonstration of a continuous process route for processing pyrolytically recycled carbon fibers (rCF) in high-performance second-life component structures. In addition to the technological level, the focus of the project is particularly on the international transfer character, in the sense of a cross-cluster initiative between the top cluster MAI Carbon (Germany) and CVC (South Korea).

Through direct cooperation between market-leading companies and research institutions of the participating cluster members, the technical project processing takes place in the context of the global challenge of recycling, as well as the need for increased resource efficiency, with reference to the economically strategic material carbon fibers.

Efficient processing of recycled carbon fibers
The technological process route within the project runs along the industrial wet-laying technology, which is comparable to classic paper production. This enables a robust production of high-quality rCF nonwovens, which are characterized, among other things, by particularly high homogeneity and stability of characteristic values.

A special development focus is on a specific process control, which allows the generation of an orientation of the individual fiber filaments in the nonwoven material.

The given preferred fiber direction of the discontinuous fiber structure opens up strong synergy effects in relation to increased packing densities, i.e. fiber volume content, as well as a significantly optimized processing behavior in relation to impregnation, forming and consolidation, in addition to a load path-oriented mechanics.

The innovative wetlaid nonwovens are then further processed into thermoset and thermoplastic semi-finished products, i.e. prepregs or organosheets, using impregnation processes that are suitable for large-scale production.

rCF tapes are produced from this in an intermediate slitting step. By means of automated fiber placement, load path-optimized preforms can be deposited, which are then consolidated into complex demonstrator components.

The process chain is monitored at key interfaces by innovative non-destructive measurement technology and supplemented by extensive characterization methods. Especially for the processing of pyrolysed recycled carbon fibers, which were recovered from end-of-life waste or PrePreg waste, for example, there are completely new potentials with significant added value compared to the current state of the art for the overall process route presented here.

International Transfer
The fundamentally global challenge of recycling and the striving for increased sustainability is strongly influenced by national recycling strategies as a result of country-specific framework conditions. The globalized way in which companies deal with high-volume material flows places additional demands on a functioning circular economy. A networked solution can only be created on the basis of and in compliance with the respective guidelines and structural factors.

In the case of the high-performance material carbon fiber, there is a particularly high technical requirement for an ecologically and economically viable recycling industry. At the same time, the specific market size already opens up interesting scaling effects and potential for market penetration.

The Scrap SeRO project connects two of the world's leading top clusters in the field of carbon composites from South Korea and Germany on the basis of a cross-cluster initiative. As part of this first promising technology project, the foundation stone for future cooperation is to be laid that supports the effective recycling of carbon fibers. The project makes an important contribution to closing the material cycle for carbon fibers and thus paves the way for renewed use in further life cycles of this high-quality and energy-intensive material.

Info »Scrap SeRO«

  • Duration: 05/2019 – 04/2022
  • Funding: BMBF
  • Funding Amount: 2.557.000 €

National Consortium

  • Fraunhofer Institute for Casting, Composite and Processing Technology IGCV
  • ELG Carbon Fibre
  • J.M. Voith SE & Co. KG
  • Neenah Gessner
  • SURAGUS GmbH
  • LAMILUX Composites GmbH
  • Covestro Deutschland AG
  • BA Composites GmbH
  • SGL Carbon

International Consortium

  • KCarbon
  • Hyundai
  • Sangmyung University
  • TERA Engineering
Source:

Fraunhofer Institute for Casting, Composite and Processing Technology IGCV

Photo: pixabay
17.05.2022

The industrial future needs climate-neutral process heat

IN4climate.NRW publishes discussion paper

Not only private households, but above all industrial companies have a high demand for heat. On the way to climate neutrality, greater focus must be placed on the supply of process heat to the industry - especially in the industrial state of North Rhine-Westphalia (NRW). This is shown by the discussion paper of the climate protection think tank IN4climate.NRW.

In 2020, process heat accounted for a large percentage of industrial energy demand - 67 percent of the energy consumed by German industry - and is still predominantly supplied by fossil fuels (BMWi 2021a). That's almost 20 percent of Germany's total energy demand. No wonder: Whether glass, metal, cement or paper are melted, forged, fired or dried - all these processes require process heat. And in some cases up to a temperature of 3,000 °C.

IN4climate.NRW publishes discussion paper

Not only private households, but above all industrial companies have a high demand for heat. On the way to climate neutrality, greater focus must be placed on the supply of process heat to the industry - especially in the industrial state of North Rhine-Westphalia (NRW). This is shown by the discussion paper of the climate protection think tank IN4climate.NRW.

In 2020, process heat accounted for a large percentage of industrial energy demand - 67 percent of the energy consumed by German industry - and is still predominantly supplied by fossil fuels (BMWi 2021a). That's almost 20 percent of Germany's total energy demand. No wonder: Whether glass, metal, cement or paper are melted, forged, fired or dried - all these processes require process heat. And in some cases up to a temperature of 3,000 °C.

In the discussion paper "Process heat for a climate-neutral industry (Prozesswärme für eine klimaneutrale Industrie)", IN4climate.NRW formulates approaches and recommendations for action for a process heat transition. A total of thirteen partners of the initiative have signed the paper.

Samir Khayat, Managing Director of NRW.Energy4-Climate: "The switch to sustainable process heat supply is one of the decisive factors in ensuring that the transformation of industry can succeed. With the IN4climate.NRW initiative, we are bringing together the expertise from science, politics as well as industry, and developing concrete strategies to put climate neutrality in industry into practice."

Various figures illustrate the need for action: Only 6 percent of the energy required for process heat has so far been covered by renewable energies. Electricity also currently accounts for only 8 percent - as an energy source, it is still far from emission-free in today's electricity mix, but must become so in the future through the switch to 100 percent renewables.

NRW alone needs 40 percent of the process heat required by the whole of Germany
Tania Begemann, Project Manager Industry and Production at NRW.Energy4Climate and author of the paper: "The sustainable conversion of process heat has always been an important and urgent topic at IN4climate.NRW, but it becomes even more explosive in times of a global energy crisis. It is estimated that NRW alone requires 40 percent of the process heat required by the whole of Germany. In order to remain economically strong and an industrial state in the long term, it is therefore of particular importance for NRW to become independent of fossil process heat sources in the near future. We would like to draw attention to this with this paper. At the same time, this enormous challenge also offers NRW the opportunity to become a pioneer."

How can this be accomplished? The discussion paper shows central approaches and recommendations for action:

  • Increase efficiency: The development and use of high-temperature heat pumps should be specifically promoted within the framework of pilot plants and concepts. In addition, companies should be supported in the development and implementation of concepts that minimize process temperatures and use waste heat within the company.
  • Promote renewable heat sources: Local, renewable energy sources such as deep geothermal energy and solar thermal energy can be an important component of climate-neutral process heat supply and at the same time reduce the reliance on energy imports. Where renewables can supply industrial heating needs, they should be used. These forms of energy should therefore be supported in a targeted manner through inquiries and tenders.
  • Increase renewable electricity: The electrification of processes and applications is the prerequisite for the energy transition. Expanding renewable power generation along with a solid power grid, creating competitive prices for green power, and developing flexible systems are therefore key tasks.
  • Promote storable alternative energy sources: To be able to generate process heat even when renewable energies are not available, industry needs large quantities of storable energy carriers. In particular, sustainable hydrogen must be available at competitive prices and the necessary conditions, such as a transport and storage infrastructure, must be created. In addition to hydrogen, biomass is a valuable and storable energy carrier and raw material at the same time. This limited resource must therefore be used in a targeted and efficient manner.

The climate-neutral generation of process heat is of great importance for the whole of Germany, but especially for the industrial state of North Rhine-Westphalia, and at the same time represents a major challenge. The heat transition in industry requires an overall systemic and supraregional view and strategy development. On the one hand, such strategies should take into account the interaction of different sectors. On the other hand, they should include all heat requirements - from buildings to industry. In this paper, decision-makers from politics, industry and society will find initial reference points and impulses for this important, common task.

The paper was developed by the IN4climate.NRW initiative under the umbrella of the NRW.Energy4Climate state organization. It is supported by the institutes Fraunhofer UMSICHT, RWTH Aachen (Chair of Technical Thermodynamics), the VDZ research institute as well as the Wuppertal Institute, the companies Amprion, Currenta, Deutsche Rohstofftechnik (German raw material technology - RHM Group), Georgsmarienhütte, Kabel Premium Pulp and Paper, Lhoist, Pilkington Germany (NSG Group) and Speira as well as the Federal Association of the German Glass Industry.

Source:

Fraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT

(c) A3/Christian Strohmayr
10.05.2022

Fraunhofer reduces CO2 footprint and recycles trendy lightweight carbon material

Neo-ecology through innovative paper technology

To reduce the CO2 footprint, the Fraunhofer Institute for Casting, Composite and Processing Technology IGCV Augsburg research with a state-of-the-art wetlaid nonwoven machine for recycling carbon fibers. The production processes are similar to those of a paper manufacturing machine. The crucial difference: we turn not paper fibers into the paper but recycled carbon fibers into nonwoven roll fabrics. The carbon fiber thus gets a second life and finds an environmentally friendly way in nonwovens, such as door panels, engine bonnets, roof structures, underbody protection (automotive), and heat shields (helicopter tail boom), as well as in aircraft interiors.

“Wetlaid technology for processing technical fibers is currently experiencing a revolution following centuries of papermaking tradition.”
Michael Sauer, Researcher at Fraunhofer IGCV

Neo-ecology through innovative paper technology

To reduce the CO2 footprint, the Fraunhofer Institute for Casting, Composite and Processing Technology IGCV Augsburg research with a state-of-the-art wetlaid nonwoven machine for recycling carbon fibers. The production processes are similar to those of a paper manufacturing machine. The crucial difference: we turn not paper fibers into the paper but recycled carbon fibers into nonwoven roll fabrics. The carbon fiber thus gets a second life and finds an environmentally friendly way in nonwovens, such as door panels, engine bonnets, roof structures, underbody protection (automotive), and heat shields (helicopter tail boom), as well as in aircraft interiors.

“Wetlaid technology for processing technical fibers is currently experiencing a revolution following centuries of papermaking tradition.”
Michael Sauer, Researcher at Fraunhofer IGCV

The wetlaid technology used is one of the oldest nonwoven forming processes (around 140 BC - 100 AD). As an essential industry sector with diverse fields of application, wetlaid nonwovens are no longer only found in the classic paper. Instead, the application areas extend, for example, from adhesive carrier films, and packaging material, to banknotes and their process-integrated watermarks and security features. In the future, particularly sustainable technology fields will be added around battery components, fuel cell elements, filtration layers, and even function-integrated material solutions, e.g., EMI shielding function.

Fraunhofer IGCV wetlaid nonwovens line is specifically designed as a pilot line. In principle, very different fiber materials such as natural, regenerated, and synthetic fibers can be processed, mainly recycled and technical fibers. The system offers the highest possible flexibility regarding material variants and process parameters. In addition, sufficiently high productivity is ensured to allow subsequent scaled processing trials (e.g., demonstrator production).

The main operating range of the wetlaid line relates to the following parameters:

  • Processing speed: up to 30 m/min
  • Role width: 610 mm
  • Grammage: approx. 20–300 gsm
  • Overall machinery is ≥ IP65 standard for processing, e.g., conductive fiber materials
  • Machine design based on an angled wire configuration with high dewatering capacity, e.g., for processing highly diluted fiber suspensions or for material variants with high water retention capacity.
  • Machine modular system design with maximum flexibility for a quick change of material variants or a quick change of process parameters. The setup allows short-term hardware adaptations as well as project-specific modifications.

Research focus: carbon recycling at the end of the life cycle
The research focus of Fraunhofer IGCV is primarily in the field of technical staple fibers. The processing of recycled carbon fibers is a particular focus. Current research topics in this context include, for example, the research, optimization, and further development of binder systems, different fiber lengths and fiber length distributions, nonwoven homogeneity, and fiber orientation. In addition, the focus is on the integration of digital as well as AI-supported methods within the framework of online process monitoring. Further research topics, such as the production of gas diffusion layers for fuel cell components, the further development of battery elements, and filtration applications, are currently being developed.

Source:

Fraunhofer Institute for Casting, Composite and Processing Technology IGCV

Photo: pixabay
03.05.2022

The Journey to Carbon Neutrality: Reduction technologies and measuring tools

More and more sports and fashion brands are setting themselves the goal of becoming climate neutral within the next few years, on a corporate as well as product level. The CO2 balance serves as the gateway to sustainable apparel and for more transparency for the consumer.

This process begins with the materials supplied by textile producers, requiring knowledge of the amount of CO2 emitted during production. By evaluating and quantifying CO2 emissions, the industry gains in transparency and can turn to more sustainable options.

More and more sports and fashion brands are setting themselves the goal of becoming climate neutral within the next few years, on a corporate as well as product level. The CO2 balance serves as the gateway to sustainable apparel and for more transparency for the consumer.

This process begins with the materials supplied by textile producers, requiring knowledge of the amount of CO2 emitted during production. By evaluating and quantifying CO2 emissions, the industry gains in transparency and can turn to more sustainable options.

In close collaboration with sustainability insights platform Higg and partners such as Climate Partner, PERFORMANCE DAYS Munich and Functional Fabric Fair by PERFORMANCE DAYS Portland seek targeted answers to the question, “How can we cut down on CO2 emissions?” as part of its roadmap over the next three fairs. The Focus Topic “The Journey to Carbon Neutrality” will therefore highlight materials and fibers that provide solutions on how to produce and reprocess materials in the future in a climate-friendly manner, kicking off at the spring trade fair, to be held at the Oregon Convention Center in Portland on April 4-5, 2022, at the Munich’s Exhibition Center on April 27-28, 2022, continuing through the winter fair in October/November and culminating at the Spring 2023 fair.

When the conversation turns to environmental protection and climate change these days, the term CO2 neutrality is also often mentioned in connection with CO2 emissions and CO2 reduction. Yet what exactly does CO2 neutrality mean? Climate neutrality implies achieving a balance between carbon emissions themselves and the absorption of carbon in the atmosphere into carbon sinks. To achieve net zero emissions, all greenhouse gas emissions worldwide must be offset by carbon sequestration. The fashion and sportswear industries are among the world’s highest emitters of CO2.

If one wishes to examine their emissions across all stages of the value chain, it is worth looking beyond raw materials, production, logistics and trade. Consumer behavior can also influence emissions: According to the “Fashion on Climate” report published by the Global Fashion Agenda and McKinsey at the end of August 2020, even greater leverage lies in the products themselves: 61 percent of reductions in emissions could be achieved through CO2 reductions in material production and processing, by minimizing production and manufacturing waste, and in the manufacturing of garments. By 2030, that would account for around 1 billion tons annually. And last but not least, consumer behavior is also a factor that impacts the fashion industry’s climate footprint. If even more attention is paid to sustainable clothing, and if it is reused and worn longer, this can lead to a reduction in emissions of up to 347 million tons, according to the report.

A pioneering example on the road to sustainability was PERFORMANCE DAYS’ decision to only present sustainable materials at the PERFORMANCE FORUM from the trade fair event in November 2019 onwards. And from the upcoming Spring Fair onwards, the sustainable approach will be heightened further. Within the framework of this roadmap, the new Focus Topic is intended to accompany exhibitors on their way to climate neutrality over the course of three fairs. In doing so, PERFORMANCE DAYS and Functional Fabric Fair are pursuing a 3-step plan.  

  • Step 1, April 2022: The focus of the upcoming fair will be on CO2-reducing technologies and the measuring of a product’s carbon footprint.
  • Step 2, November 2022: Within the entire Focus Topic product category, only products that indicate CO2 emissions caused during production will be shown. This contributes to more transparency and comparability in the industry.
  • Step 3, April 2023: The PERFORMANCE FORUM will present the amount of CO2 emitted by each individual product. Furthermore, approaches to solutions will be shown as to how CO2 released during the manufacturing of materials can be offset and further reduced.

For the best possible implementation and presentation of the new Focus Topic, PERFORMANCE DAYS and Functional Fabric Fair trust in collaborators: Higg and Climate Partner – amongst others – will accompany the next three fairs. The Higg Materials Sustainability Index (Higg MSI) is considered the leading tool for assessing the environmental impact of materials in the apparel, footwear and textile industries. The Higg MSI is able to calculate the environmental impact of millions of possible material manufacturing variants. A packaging library has also been added to assist in making sustainable decisions for packaging. The Higg Index is neither a certificate nor a label, but rather an important self-assessment tool that textile companies can utilize internally to be able to identify and improve environmental and social issues throughout their value chain.

Climate Partner, on the other hand, seeks solutions for climate protection: This involves the balancing of CO2 emissions – which in turn are to offset the emissions of companies with recognized climate protection projects in order to make products, services and companies climate neutral. Climate Partner also sees itself as an advisor to companies on their climate protection strategies. Together, the aim is to work on reducing CO2 emissions and to support climate protection projects that benefit the everyday lives of people in developing countries. 

Source:

PERFORMANCE DAYS