Textination Newsline

Reset
Photo: pixabay
11.05.2021

Turning Pineapple Leaves - a sustainable Alternative to Leather

  • Spanish entrepreneur Carmen Hijosa is nominated for European Patent Office (EPO) prize European Inventor Award 2021 for her sustainable alternative to leather
  • Development of a process for turning pineapple leaves into a soft, durable and versatile natural material
  • Environmentally-friendly alternative supports local farming communities and is sought after by major international fashion brands

The European Patent Office (EPO) announces that Spanish entrepreneur Carmen Hijosa has been nominated in the "SMEs" category of the European Inventor Award 2021 for developing a leather alternative made from pineapple leaf fibres. Her innovative textile uses a waste resource and can be produced with less impact on the environment compared with making cow leather.

  • Spanish entrepreneur Carmen Hijosa is nominated for European Patent Office (EPO) prize European Inventor Award 2021 for her sustainable alternative to leather
  • Development of a process for turning pineapple leaves into a soft, durable and versatile natural material
  • Environmentally-friendly alternative supports local farming communities and is sought after by major international fashion brands

The European Patent Office (EPO) announces that Spanish entrepreneur Carmen Hijosa has been nominated in the "SMEs" category of the European Inventor Award 2021 for developing a leather alternative made from pineapple leaf fibres. Her innovative textile uses a waste resource and can be produced with less impact on the environment compared with making cow leather. Hijosa has been commercialising her invention through her London-based SME since 2013, and today her natural leather alternative supports farming communities and cooperatives in the Philippines and is sought after by major international fashion brands.
 
The winners of the 2021 edition of the EPO's annual innovation prize will be announced at a ceremony starting at 19:00 CEST on 17 June which has this year been reimagined as a digital event for a global audience.

Inventing a natural textile from waste pineapple leaf fibre  
Conventional leather production is controversial, given the vast resources needed to raise cattle for slaughter, the risk of pollution posed by the chemical-heavy tanning process, and the often dire working conditions in tanneries. Hijosa experienced the reality of global leather production first-hand while working as a World Bank textile design consultant in the Philippines in 1993.

Moved by the negative environmental and social impacts of the local leather production process, she decided to develop a sustainable textile that was suitable for export and made better use of Filipino skills and raw materials. “Pineapple leaf fibres are very strong, fine and flexible, and have been used in the Philippines for 300 years in traditionally hand-woven textiles,” explains Hijosa. “I began to think: ‘What if I make a mesh with these pineapple leaf fibres, which is not unlike leather – a mesh of fibres?’.”
She set out to replicate leather’s mesh of collagen fibres, diving into a 12-year research and development process that involved completing several textile degrees, setting up a company and refinancing her house to keep researching and complete her PhD, before successfully creating the textile called Piñatex and perfecting its production. This involves stripping the cellulose fibres from leaves and first manufacturing textile grade fibres. These are then processed into a non-woven mesh textile, which is further enhanced and softened into a leather alternative.

The raw material that forms the base of Hijosa’s textile is a by-product of pineapple harvesting in the Philippines, offering an additional income to farmers and using an otherwise discarded resource. This waste source is significant with the world’s top ten pineapple producing countries creating enough leaves to potentially replace more than 50% of the world’s leather output with Hijosa’s material. Piñatex also requires much less water than textiles such as cotton, which consumes over 20 000 litres of water per kilogram. What is more, it is produced using fewer chemicals and less CO2 compared with leather production, further enhancing the sustainability credentials of Hijosa’s textile.

Innovation offering consumers more sustainable choices
In 2011, Hijosa filed a patent application for the textile and its production, before founding Ananas Anam as a start-up in 2013 to launch Piñatex commercially. For her, this part of the process was essential: “The IP was a pivotal part for securing funds, securing the product’s future and its market potential.” Today, she remains Chief Creative & Innovation Officer and is at the forefront of new developments in plant-based, waste-based textiles. Her pioneering work has positioned the company as a market leader at a time where consumers are starting to push for more sustainable choices.

Since 2013 the turnover of Hijosa’s company has roughly doubled every year through to 2019 and grown by 40% in 2020. It employs around 10 staff in its London site and works with factories in the Philippines and Spain, as well as the biggest Filipino pineapple-growing collective, which comprises 700 families who benefit from an additional income by supplying waste leaves. Piñatex is currently used by almost 3.000 brands in 80 countries. It can be found in a growing range of products – from trainers to jackets, car interiors, handbags and even in the world’s first all-vegan hotel suite.

A range of other plant-based alternatives to leather exist or are in development – based on anything from apple cores to mushrooms – highlighting the trend towards plant and waste-based textiles. The combined global leather (animal and synthetic) market was valued at EUR 374 billion in 2017, and although real leather is becoming scarce and therefore expensive, the overall market is predicted to grow at a Compound Annual Growth Rate of 5.40% until 2025. Although recent volcanic eruptions near their factories in the Philippines and pandemic-related restrictions have temporarily slowed production, Hijosa says the company’s outlook remains strong as consumers are starting to push for more sustainable choices.


Dr. Carmen Hijosa
… was born in Salas, Asturias, Spain, on 17 March 1952. After moving to Ireland at the age of 19, Hijosa co-founded the luxury leather manufacturing company Chesneau Leather Goods in 1977. There, she also served as director of design and sold to high-end clients such as Harrods. After running the company for 15 years, she began working as a textile consultant for the World Bank, as well as at research institutes in Germany and Ireland on EU-funded projects in the 1990s, bringing her textile design expertise to developing markets. In 1993, the World Bank asked her to consult on the Philippine leather industry. Seeing the industry’s negative environmental and social impact, she was driven to develop a sustainable alternative (a leather replacement derived from pineapple leaves). From 2009 to 2014, Hijosa completed a PhD in textiles at the Royal College of Art in London, further developing her prototype textile. In 2013, she founded the company Ananas Anam Ltd. to commercialise the leather alternative. Carmen Hijosa holds one European patent, EP2576881, granted in 2018.

About the European Inventor Award
The European Inventor Award is one of Europe's most prestigious innovation prizes. Launched by the EPO in 2006, it honours individual inventors and teams of inventors whose pioneering inventions provide answers to some of the biggest challenges of our times. The finalists and winners are selected by an independent jury consisting of international authorities from the fields of business, politics, science, academia and research who examine the proposals for their contribution towards technical progress, social development, economic prosperity and job creation in Europe. The Award is conferred in five categories (Industry, Research, SMEs, Non-EPO countries and Lifetime achievement). In addition, the public selects the winner of the Popular Prize from among the 15 finalists through online voting.

(c) Porsche AG
04.05.2021

Fraunhofer: Lightweight and Ecology in Automotive Construction

  • The “Bioconcept-Car” moves ahead

In automobile racing, lightweight bodies made from plastic and carbon fibers have been standard for many years because they enable drivers to reach the finish line more quickly. In the future, lightweight-construction solutions could help reduce the energy consumption and emissions of everyday vehicles. The catch is that the production of carbon fibers is not only expensive but also consumes considerable amounts of energy and petroleum. In collaboration with Porsche Motorsport and Four Motors, researchers at the Fraunhofer WKI have succeeded in replacing the carbon fibers in a car door with natural fibers. This is already being installed in small series at Porsche. The project team is now taking the next step: Together with HOBUM Oleochemicals, they want to maximize the proportion of renewable raw materials in the door and other body parts - using bio-based plastics and paints.

  • The “Bioconcept-Car” moves ahead

In automobile racing, lightweight bodies made from plastic and carbon fibers have been standard for many years because they enable drivers to reach the finish line more quickly. In the future, lightweight-construction solutions could help reduce the energy consumption and emissions of everyday vehicles. The catch is that the production of carbon fibers is not only expensive but also consumes considerable amounts of energy and petroleum. In collaboration with Porsche Motorsport and Four Motors, researchers at the Fraunhofer WKI have succeeded in replacing the carbon fibers in a car door with natural fibers. This is already being installed in small series at Porsche. The project team is now taking the next step: Together with HOBUM Oleochemicals, they want to maximize the proportion of renewable raw materials in the door and other body parts - using bio-based plastics and paints.

Carbon fibers reinforce plastics and therefore provide lightweight components with the necessary stability. Mass-produced natural fibers are not only more cost-effective but can also be produced in a considerably more sustainable manner. For the “Bioconcept-Car” pilot vehicle, researchers at the Fraunhofer WKI have developed body parts with 100 percent natural fibers as reinforcing components.

“We utilize natural fibers, such as those made from hemp, flax or jute. Whilst natural fibers exhibit lower stiffnesses and strengths compared to carbon fibers, the values achieved are nonetheless sufficient for many applications,” explained Ole Hansen, Project Manager at the Fraunhofer WKI. Due to their naturally grown structure, natural fibers dampen sound and vibrations more effectively. Their lesser tendency to splinter can help to reduce the risk of injury in the event of an accident. Furthermore, they do not cause skin irritation during processing.

The bio-based composites were successfully tested by the Four Motors racing team in the “Bioconcept-Car” on the racetrack under extreme conditions. Porsche has actually been using natural fiber-reinforced plastics in a small series of the Cayman GT4 Clubsport since 2019. During production, the researchers at the Fraunhofer WKI also conducted an initial ecological assessment based on material and energy data. “We were able to determine that the utilized natural-fiber fabric has a better environmental profile in its production, including the upstream chains, than the fabric made from carbon. Thermal recycling after the end of its service life should also be possible without any problems,” confirmed Ole Hansen.

In the next project phase of the "Bioconcept-Car", the researchers at the Fraunhofer WKI, in collaboration with the cooperation partners HOBUM Oleochemicals GmbH, Porsche Motorsport and Four Motors, will develop a vehicle door with a biogenic content of 85 percent in the overall composite consisting of fibers and resin. They intend to achieve this by, amongst other things, utilizing bio-based resin-hardener blends as well as bio-based paint systems. The practicality of the door - and possibly additional components - will again be tested by Four Motors on the racetrack. If the researchers are successful, it may be possible to transfer the acquired knowledge into series production at Porsche.

The German Federal Ministry of Food and Agriculture (BMEL) is funding the “Bioconcept-Car” project via the project-management agency Fachagentur Nachwachsende Rohstoffe e. V. (FNR).

Background
Sustainability through the utilization of renewable raw materials has formed the focus at the Fraunhofer WKI for more than 70 years. The institute, with locations in Braunschweig, Hanover and Wolfsburg, specializes in process engineering, natural-fiber composites, surface technology, wood and emission protection, quality assurance of wood products, material and product testing, recycling procedures and the utilization of organic building materials and wood in construction. Virtually all the procedures and materials resulting from the research activities are applied industrially.

 

  • EU Project ALMA: Thinking Ahead to Electromobility

E-mobility and lightweight construction are two crucial building blocks of modern vehicle development to drive the energy transition. They are the focus of the ALMA project (Advanced Light Materials and Processes for the Eco-Design of Electric Vehicles). Nine European organizations are now working in the EU project to develop more energy-efficient and sustainable vehicles. Companies from research and industry are optimizing the efficiency and range of electric vehicles, among other things by reducing the weight of the overall vehicle. The Fraunhofer Institute for Industrial Mathematics ITWM is providing support with mathematical simulation expertise.

According to the low emissions mobility strategy, the European Union aims to have at least 30 million zero-emission vehicles on its roads by 2030. Measures to support jobs, growth, investment, and innovation are taken to tackle emissions from the transport sector. To make transport more climate-friendly, EU measures are being taken to promote jobs, investment and innovation. The European Commission's Horizon 2020 project ALMA represents one of these measures.

(c) Befeni GmbH
27.04.2021

Befeni: FashionTech contra Fast Fashion

  • Sustainable fashion through highly automated just-in-time production on customer demand

The Befeni Group, based in Langenfeld (North Rhine-Westphalia) and Bangkok (Thailand), is one of the world's leading fashion tech companies with over 200 employees and around 200,000 customised shirts and blouses sold.

Thanks to highly automated processes and just-in-time production, the fashion start-up, which has been on the market for four years, is able to offer individually designed and custom-made fashion of high quality within a very short time. In addition to shirts and blouses, the range also includes jumpers, underwear and accessories.

  • Sustainable fashion through highly automated just-in-time production on customer demand

The Befeni Group, based in Langenfeld (North Rhine-Westphalia) and Bangkok (Thailand), is one of the world's leading fashion tech companies with over 200 employees and around 200,000 customised shirts and blouses sold.

Thanks to highly automated processes and just-in-time production, the fashion start-up, which has been on the market for four years, is able to offer individually designed and custom-made fashion of high quality within a very short time. In addition to shirts and blouses, the range also includes jumpers, underwear and accessories.

At Befeni, customers are measured personally and their data is then recorded in an online system. On this basis, a pattern is created in the in-house production in Bangkok and the garment is produced as an individual one-off. The customised order is then handed over personally by trained Befeni fashion consultants.

By deliberately avoiding middlemen, the company relies on a global value chain and offers fashion from in-house production at convincing conditions: The employees in Bangkok receive above-average pay. The individually made-to-measure shirt is available at a fixed price of 39.90 EUR. And the products are sold exclusively through 5,000 qualified fashion consultants in direct sales.

Sustainable Fashion as a future market

Constant new trends, quickly produced seasonal items in quantities and the disposal of surplus items are part of everyday life in today's fashion world. In the wake of the Corona crisis, this situation has become even more acute.

„We believe that the fast fashion trend is finite and that a rethink will take place among customers, the fashion industry and producers," says Maik Ernst, founder and CEO of Befeni. "Through our highly automated business model, we are able to sell directly from our fair, in-house production, excluding any middlemen. This way, we deliver the high-quality and handmade product a maximum of 3 weeks after receiving the customer's order - with personal advice from over 5,000 qualified, independent fashion consultants."

Jan Fennel, founder of Befeni and managing director of the in-house production in Bangkok, adds: "We also want our employees in Asia to benefit from the direct connection between production and customers. We are proud to give them pleasure not only through a monetary contribution, but also through direct feedback and appreciation - for example via video directly from the customers. With our working conditions, we also want to show that health, fun and care are a central part of the work in our team.“

Rethinking: How fashion is produced and offered

The Befeni tipping principle
The company has developed a system where satisfied customers can give a tip to "their" personal tailors. This goes directly to the tailors in the company's own production without deduction. The company wants to set an example and sees this approach as proof that an international fashion company can actively work for better working conditions in the manufacturing countries.

Facts and figures four years after the company was founded

  • Production
    Befeni produced 30% more blouses and shirts in 2020 compared to the previous year.
    No fast fashion, sustainable, demand-oriented production: production only starts after customer order, made to measure according to the individual measurements of the customers.
  • Increase in turnover
    Turnover generated in 2020: around EUR 6 million, +155% compared to the previous year
  • Number of customers
    +100% compared to the previous year: the number of customers rose from 40,000 to over 80,000, of which almost 10,000 are in Austria
  • Personnel policy
    Permanent employment of employees, above-average salaries and tip principle
  • Customizing: fashion according to individual customer wishes
    Customers can choose from more than 80 fabrics, different collar and cuff shapes and designs for each fashion piece.
photo: pixabay
20.04.2021

Biomolecules from renewable Raw Materials for the Textile Industry

Water-repellent and more: coating textiles sustainably with chitosan

Textiles can be coated with the biopolymer chitosan and thus made water-repellent by binding hydrophobic molecules. The good thing is that this can also replace toxic and petroleum-based substances that are currently used for textile finishing. In the last few years Fraunhofer IGB and partners in the HydroFichi project have researched how this can be done: A technology has been developed to provide fibers with the desired properties using biotechnological processes and chitosan.

Water-repellent and more: coating textiles sustainably with chitosan

Textiles can be coated with the biopolymer chitosan and thus made water-repellent by binding hydrophobic molecules. The good thing is that this can also replace toxic and petroleum-based substances that are currently used for textile finishing. In the last few years Fraunhofer IGB and partners in the HydroFichi project have researched how this can be done: A technology has been developed to provide fibers with the desired properties using biotechnological processes and chitosan.

The manufacture of textiles is, even nowadays, still largely characterized by the use of chemicals: biotechnological processes, enzymes and renewable raw materials have so far played a subordinate role. For example, at present chiefly perfluorinated chemicals are used when finishing textiles to obtain water- and oil-repellent properties. These are harmful to health and also only degradable to a small degree, which is why they remain in the environment for so long.

The Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB has been researching sustainable biobased alternatives for some time. In the HydroFichi project – short for Hydrophobic Finishing with Chitosan – which was completed at the end of January 2021, researchers at the institute developed a way of producing chitosan from waste streams and using the biopolymer not only as a sizing agent in the processing of yarns, but also for the functionalization of textiles in the finishing process.

Chitosan from waste for environmental protection, medical purposes or textiles
Chitosan is a renewable raw material that is derived from chitin; after cellulose, it is the second most common naturally occurring biopolymer. Sources of the nitrogen-containing polysaccharide can be crab shells from fishing waste, insect skins and shells that result from the production of animal feed, or – as a vegan variant – the cell walls of mushrooms. The structure of the two molecules is very similar; the only difference is an acetyl group, which is removed when it is converted to chitosan. Chitin is insoluble in water and most organic solvents. Chitosan is also not readily soluble; however, the addition of mild acids makes the biopolymer water-soluble and it can therefore be used as a textile auxiliary.

In order to isolate chitosan from a particular waste stream, chitin must first be obtained from the starting materials by means of demineralization and deproteinization and then its derivative chitosan. The properties of chitosan can be individually adapted by choosing the appropriate conditions. The biomolecule produced in this way can be used directly in a wide variety of practical applications – for example as a flocculant in wastewater treatment or as a drug carrier in medicines.

There are also numerous conceivable uses for chitosan in the textile industry. In sizing, for example, the efficiency of the natural substance has proved convincing in pilot scale tests carried out by the German Institutes of Textile and Fiber Research Denkendorf. Here, the effectiveness was shown in the significantly lower roughness of the yarns after weaving textile fabrics. The values achieved with chitosan from insects were comparable to those from commercial crab shells. In the future, this fact will enable completely new possibilities of extraction in line with the bioeconomy.

As a renewable raw material, chitosan replaces fossil chemicals
“Our aim in the HydroFichi project was to provide the textile industry with a raw material for a wide variety of applications that can be obtained from renewable educts, at the same time avoiding chemicals that damage the environment and health,” explains project manager Dr. Achim Weber, deputy head of the innovation field Functional Surfaces and Materials at Fraunhofer IGB. “In addition to simple coating with chitosan, which protects the fibers, we were also able to use the substance as an anchor molecule to create cross-linking points for a wide variety of functional groups and thus to provide textiles with specific properties such as making them water-repellent. Chitosan can therefore function as a matrix material or template at the same time, and this can be done with a wide variety of fiber materials.”

The finishes were evaluated using standardized tests, but also with specially designed test stands and methods. For example, measurements on treated textiles showed contact angles of over 140°. This means that the fabrics are very water-repellent and confirms that the processing of the textiles has been successful. In a next step, the technology developed at the IGB is to be transferred from the laboratory scale to the much larger pilot scale in order to make the sustainable biomolecule ready for market use as quickly as possible, for example in the sports and outdoor sector.

For the first time biotechnological processes in textile finishing
In the project, the IGB scientists and four partners from the textile industry – the German Institutes of Textile and Fiber Research Denkendorf (DITF), J.G. Knopf's Sohn GmbH, Helmbrechts, and Textilchemie Dr. Petry, Reutlingen – were able for the first time to establish biotechnological processes in raw material extraction and finishing that have proven to be compatible with all textile processes. So far, this is a unique selling point in the finishing of textiles. “We have all recognized the great potential of chitosan for efficient hydrophobization and as a functional carrier. And, thanks to the good cooperation, we were able to successfully establish techniques for tailor-made functionalization of textiles,” adds Dr. Thomas Hahn, who conducts research in the innovation field of Industrial Biotechnology at the IGB. “In addition, other fields of application for the biopolymer are very promising. That is why we initiated the follow-up project ExpandChi immediately after HydroFichi, in which together with our partners techniques are to be developed to use biobased chitosan as a functional carrier to replace other synthetic polymers, for example for a special anti-wrinkle or flame-retardant coating. The textile industry is very interested in utilizing such a sustainable biomolecule as quickly as possible.“

The “HydroFichi” project was funded by the German Federal Ministry of Education and Research (BMBF) under promotional reference 031B0341A; the follow-up project “ExpandChi”, which began in February 2021, is funded under promotional reference 031B1047A.