Textination Newsline

Reset
14 results
This image from the CoCuRA software shows how it identifes conventional cotton, organic cotton and other agricultural fields. Source GOTS
17.09.2024

Detecting organically grown cotton with AI support via satellite

The project:

  • analysed 2.7 million square kilometres in India for organic cotton
  • demonstrates 97% accuracy rate in detecting cotton fields, over 80% accu-racy in determining their organic status.
  • aims to increase organic cotton integrity and availability

In a pioneering move that could reshape sustainable agriculture, the Global Organic Textile Standard (GOTS) and AI firm Marple have unveiled the results of their revolutionary Satellite Cotton Monitoring Project in India, demonstrating a 97% accuracy rate in detecting cotton fields and over 80% accuracy in determining their organic status. Addressing critical challenges in the industry, this innovative project aims to increase organic cotton availability and secure fibre integrity, building on GOTS's existing robust measures.

The project:

  • analysed 2.7 million square kilometres in India for organic cotton
  • demonstrates 97% accuracy rate in detecting cotton fields, over 80% accu-racy in determining their organic status.
  • aims to increase organic cotton integrity and availability

In a pioneering move that could reshape sustainable agriculture, the Global Organic Textile Standard (GOTS) and AI firm Marple have unveiled the results of their revolutionary Satellite Cotton Monitoring Project in India, demonstrating a 97% accuracy rate in detecting cotton fields and over 80% accuracy in determining their organic status. Addressing critical challenges in the industry, this innovative project aims to increase organic cotton availability and secure fibre integrity, building on GOTS's existing robust measures.

Global Standard is a trailblazer, solution provider and thought leader in the voluntary sustainability standards space, and the Satellite Cotton Monitoring Project continues this tradition of innovation and creative thinking.

How it Works
Co-financed by Global Standard, the non-profit behind GOTS, and the European Space Agency’s (ESA) Business Applications and Space Solutions (BASS) programme, the project leverages the Cotton Cultivation Remote Assessment (CoCuRA) software developed by Marple.

Field teams visited over 6,000 fields in India, across the states of Gujarat, Haryana, Madhya Pradesh and Maharashtra, collecting data on crops, soil types and cultivation status. This data was then used by Marple to refine the CoCuRA algorithm for cotton specifics in India. Once the algorithm was trained, it was applied to the entire agricultural area of India, covering a staggering 2.7 million square kilometres. Within seconds, CoCuRA detected all organic and conventional cotton fields with remarkable accuracy. A project of this magnitude is only possible with CoCuRA with no other comparable project or data in existence.

Enhancing Organic Cotton Availability
The technology's ability to pinpoint cotton fields where farmers use near-organic or uncertified organic methods can ensure a steady increase in certified organic cotton by facilitating their certification process.

Jeffrey Thimm, organic production specialist at Global Standard, said, "This technology identifies farmers who use sustainable methods that meet organic standards but lack certification. By integrating these farms into conversion projects, it boosts organic cotton supply, promotes sustainable farming practices and enables farmers to access premiums on their supplies."

Securing Organic Fibre Integrity
Building on GOTS's robust integrity measures, the CoCuRA software integrates AI technology with satellite data to verify cultivation practices meticulously. The data collected also contributes to Global Standards’ Global Fibre Registry, consolidating comprehensive data on raw material production before entering the GOTS value chain, further adding to fraud detection and prevention.

Sustainability in Textiles
Global Standard is recognised for its comprehensive approach to sustainability. From promoting human rights along the value chain to banning harmful chemicals in certified textiles, GOTS sets a benchmark for integrity and sustainability. In addition, GOTS certification is a powerful tool that helps companies comply with legal requirements globally.

"For over 20 years, we have been pioneering solutions to help the industry on its journey towards sustainability,” said Claudia Kersten, managing director of Global Standard. “This project is a game changer, combining satellite technology with AI to meet the growing demand for genuine organic cotton. In addition, this eye in the sky will prevent fraud by allowing us to crosscheck locations and field sizes in a very cost-efficient way. It's a win-win-win situation: farmers have an incentive to grow organic and improve their lives, the industry can secure its supply and meet its sustainability goals, and consumers have a greater choice of organic textiles."

Future Prospects and Global Impact
Following the successful pilot in India, the project aims to expand globally.

Daniel Lanz, managing partner at Marple, said, "India faces unique challenges in the satellite-based detection of agricultural fields. Firstly, the country is extremely large and spans several climate zones. Secondly, field sizes are very small, and thirdly, field boundaries are often indistinguishable, with one field merging into the next. Despite these challenges, CoCuRA has achieved astonishing accuracy in detecting cotton fields and assessing their cultivation methods. This breakthrough provides a pioneering overview of cotton production in India that would be impossible to achieve on the ground. CoCuRA will help protect the integrity of organic farmers and may facilitate more smallholders transitioning to organic farming by simplifying the certification process."

Guillaume Tuan Prigent, a business developer and partnership officer in ESA’s Applications Projects and Studies Division said, “The potential impact of the solution lies in its ability to be scaled and this is exactly what we are working on. We are looking to deliver a solution that could have a global impact for the benefit of all. “

Global Standard is eager to see this technology extend to other regions and additional fibres, which could revolutionise how crops are monitored.

Oyster mushroom Image: Andre Mouton, Pixabay
02.09.2024

Fungal Mycelium as the Basis for Sustainable Products

Fungi have more to offer than meets the eye. Their thread-like cells, which grow extensively and out of sight underground like a network of roots, offer huge potential for producing sustainable, biodegradable materials. Researchers at the Fraunhofer Institute for Applied Polymer Research IAP in Potsdam Science Park are using this mycelium to develop a wide range of recyclable products, from wallets and insulation to packaging.

Flexible mycelium materials in different thicknesses can be used as upholstery material, insulation board or alternatives to leather.

Fungi have more to offer than meets the eye. Their thread-like cells, which grow extensively and out of sight underground like a network of roots, offer huge potential for producing sustainable, biodegradable materials. Researchers at the Fraunhofer Institute for Applied Polymer Research IAP in Potsdam Science Park are using this mycelium to develop a wide range of recyclable products, from wallets and insulation to packaging.

Flexible mycelium materials in different thicknesses can be used as upholstery material, insulation board or alternatives to leather.

To most of us, fungi look like a curved cap and a stem. However, the largest part of the organism consists of a network of cell filaments called mycelium, which mainly spreads below ground and can reach significant proportions. This finely branched network has been underutilized until now. However, for researchers at the Fraunhofer Institute for Applied Polymer Research IAP in Potsdam, mycelium represents a pioneering raw material with the potential to replace petroleum-based products with natural, organic mycelium composites. Organic residues from regional agricultural and forestry activities are used as the substrate for the fungal cultures. In various projects, the researchers are using mycelium-based materials to produce insulation, packaging, and animal-free alternatives to leather products.

Mycelium-based materials from regional agricultural residues
“Faced with climate change and dwindling fossil raw materials, there is an urgent need for biodegradable materials that can be produced with lower energy consumption,” says Dr. Hannes Hinneburg, a biotechnologist at Fraunhofer IAP. Together with his team, he is using mycelium — for instance, from edible mushrooms or bracket fungi such as the oyster mushroom or tinder fungus — to transform locally available plant residues into sustainable materials. “The mycelium has properties that can be used to produce environmentally friendly, energy-efficient materials, since the growth of the fungi takes place under ambient conditions and CO2 remains stored in the residues. When cellulose and other organic residues decompose, a compact, three-dimensional network forms, enabling a self-sustaining structure to develop,” explains Hinneburg. This produces a material that is a complex compound with an organic substrate such as cereal residues, wood chips, hemp, reeds, rape or other agricultural residues. These substances are a source of nutrients for the fungus and are permeated entirely by a fine network of mycelia during the metabolic process. This produces a fully organic composite that can be made into the required shape and stabilized through thermal treatment. “First, you mix water together with agricultural residues such as straw, wood chips and sawdust to form a mass. Once the level of humidity and particle size have been determined, and the subsequent heat treatment to kill off competing germs has been completed, the substrate is ready. It provides food for the fungi and is mixed with the mycelium. Following a growth phase of around two to three weeks in the incubator, the mixture will produce, depending on the formulation and process used, a substance similar to leather or a composite that can be processed further,” says Hinneburg, summarizing the production process. No light is required for this process — a bonus as far as energy efficiency is concerned.

Versatile applications: strength and elasticity can be specifically configured
The fungal materials can be cultivated with a wide range of properties. Depending on the application, they can be hard-wearing, stretchable, tear-resistant, impermeable, elastic, soft and fluffy, or open-pored. The result is determined by the combination of the type of fungus and agricultural residues, plus variable parameters such as temperature and humidity. The duration of mycelial growth also influences the end product. The versatility of the material means it can take on a huge variety of forms, from thick blocks to wafer-thin layers, and be used in a multitude of scenarios. This makes it possible to use fungi-based materials for textile upholstery, packaging, furniture, bags or insulation boards for interiors. When used as a construction material, the fungus primarily functions as a biological adhesive since a wide range of organic particles are joined together via the mycelium.

“The many positive properties of the material, heat-insulating, electrically insulating, moisture-regulating and fire-resistant, enable an important step toward circular and climate-positive construction,” says Hinneburg, one of whose current projects involves developing a novel polystyrene alternative for thermal insulation. In another project, he is working alongside the Institute for Food and Environmental Research and Agro Saarmund e.G. to produce environmentally friendly, mycelium-based packaging trays from residues and raw materials sourced from local agricultural and forestry activities. In work he has done with designers, he has also developed the base material for animal-free alternatives to leather products such as bags and wallets. As the mycelium-based materials look similar to their leather counterparts, they can be used to complement leather items in certain areas.

Developing industrial processes
In Europe, only a few companies are currently developing mycelium-based materials for commercial use. The challenges in this area include access to biogenic residues, the ability to ensure consistent product quality and the means to scale up activities efficiently.

To address these challenges, the researchers are using a newly developed roll-to-roll method, for which they have already created a prototype. This method offers significant advantages over standard manufacturing processes involving boxes and shelving systems: By using a standardized, continuous production method under controlled process conditions (such as temperature and humidity), the researchers can ensure that the mycelium-based products have consistent material properties. What’s more, resources can be used more efficiently, and production can be scaled to an industrial level. “This is crucial in order to meet growing industry demand for sustainable materials and to become less dependent on petroleum in the long term. Production can also be improved further by using innovative technologies such as artificial intelligence to optimize the combination of residues and types of fungi,” says Hinneburg.

Source:

Fraunhofer Institute for Applied Polymer Research IAP

AI AI generated women, Pixabay
09.07.2024

How the Fashion Industry Is Using AI

Nearly every industry is poised to undergo an unprecedented transformation with the introduction of artificial intelligence (AI). AI, in simple terms, refers to technology, often in the form of computer programs, designed to replicate the human brain’s ability to perform tasks and continuously improve.

Generative AI, powered by deep learning algorithms, is making a significant impact on fashion brands. This advanced technology has the capacity to comprehend patterns within data and generate entirely new examples of text, images and even video (Bain, 2023).

Because of its ability to create new content, the fashion industry is integrating its technology into nearly all of its processes in some way, from design and product descriptions to product recommendations and 3D design (Mcdowell, 2023a).

Table 1 provides a few real-world examples of how AI is already being used in the industry.

Nearly every industry is poised to undergo an unprecedented transformation with the introduction of artificial intelligence (AI). AI, in simple terms, refers to technology, often in the form of computer programs, designed to replicate the human brain’s ability to perform tasks and continuously improve.

Generative AI, powered by deep learning algorithms, is making a significant impact on fashion brands. This advanced technology has the capacity to comprehend patterns within data and generate entirely new examples of text, images and even video (Bain, 2023).

Because of its ability to create new content, the fashion industry is integrating its technology into nearly all of its processes in some way, from design and product descriptions to product recommendations and 3D design (Mcdowell, 2023a).

Table 1 provides a few real-world examples of how AI is already being used in the industry.

Category How it works Example
Fashion Design
  • Transforms textual descriptions or uploaded images into illustrations
  • Adjusts these designs before production
  • Cala’s tool with DALL-E technology
  • Tommy Hilfiger’s AI-Assisted Design Collaboration with IBM and the Fashion Institute of Technology
  • Project Muze by Google and Zalando
Visual Content and Marketing Imagery
  • Generates advertising and marketing content using given parameters or inputs
  • Text, images and videos are common outputs
  • Stitch Fix’s AI visuals
  • Casablancas Spring/Summer 2023 campaign
  • Revolve’s AI-driven ad campaign
Copywriting
  • Generates copy based on keywords and instructions provided by the user
  • Streamlines the process of creating product descriptions, marketing emails and other written content
  • Adore Me AI optimization
  • Product descriptions for Search Engine Optimization (SEO)
Shopping Assistants
  • Utilizes natural language processing to interact with customers as chatbots
  • Offers product recommendations and provides information
  • Kering’s experimental KNXT platform
  • Luxury personal shopper powered by ChatGPT

 

AI in design
Generative AI has the power to revolutionize fashion design. Designers can harness AI image generators like DALL-E, Midjourney or Stable Diffusion to bring their creative visions to life.

Cala, a supply chain startup, was the first group to harness AI in the design creation process for fashion brands. In January 2023 it introduced a tool that allows users to describe their design ideas in text or upload images which AI will then transform into illustrations or realistic images. Users can then fine tune these designs before turning them into physical products. This tool marks a pioneering use of the DALL-E API in the fashion industry, enabling the creation of clothing, accessories, shoes and lifestyle products based on descriptions or images (OpenAI, 2022).

Apparel brands are also leveraging this technology. Tommy Hilfiger collaborated with IBM and the Fashion Institute of Technology on a project named Reimagine Retail. This initiative aimed to give retailers a competitive advantage in the speed of forecasting emerging design trends by analyzing a vast array of data from images and fabrics to colors (Saunders, 2019).

While generative AI empowers designers to explore new concepts and ideas rapidly by generating various design variations, there are limitations to the technology. Manual editing and adjustments are often necessary as AI cannot turn all concepts into finished products. Concerns regarding intellectual property may also arise as some AI-generated designs could be based on copyrighted work. Legal issues in this area are still evolving, prompting brands to involve their legal teams and establish guidelines (Bain, 2023).

AI in Copywriting: Efficiency and personalization
Generative AI tools are serving as valuable assistants to marketing teams, streamlining the writing process for product descriptions and marketing emails. Copywriters input keywords and instructions and AI generates copy that can be edited as needed, enabling brands to produce written content more efficiently.

The lingerie brand Adore Me has been using AI tools to optimize product descriptions for Search Engine Optimization (SEO) to make them more likely to appear at the top of search engine results (Mcdowell, 2023a). Adore Me and other brands using AI this way report dozens of hours in time savings.

Using AI’s potential to personalize content at a one-to-one level requires businesses to have structured first-party data and robust data privacy measures (Bain, 2023). For now, human oversight is still required, and web teams will likely need to make adjustments to established workflows in order to incorporate AI.

AI-enhanced visual content for fashion marketing
Generative AI is also being applied to create visual marketing content.
Stitch Fix uses AI to curate personalized clothing recommendations for customers and is exploring how it could use DALL-E 2 to visualize garments tailored to individual preferences for color, fabric and style (Davenport & Mittal, 2022).

French fashion house Casablanca Paris is also implementing AI. It collaborated with the British photographer and AI artist Luke Nugent for its Spring / Summer 2023 campaign. The AI-generated images blended dreamlike backdrops with cutting edge technology.

Fashion brands can benefit from reduced production times, cost savings and increased creative freedom by using AI-driven innovations to develop visual assets for marketing and ad campaigns. However, ensuring that AI-generated images accurately represent products can be tricky as the output may differ from the original product photos (Bain, 2023; Mcdowell, 2023a).

AI Chatbots: Transforming the shopping experience
Many retailers are also using generative AI as online shopping assistants, commonly known as chatbots. These chatbots use natural language processing to understand and respond to customer questions or even make personalized product recommendations (Zeng et al., 2023). For instance, within Kering’s experimental KNXT platform, a luxury personal shopper powered by ChatGPT provides tailored recommendations and insights to users based on specific contexts (Mcdowell, 2023b).

Despite these advantages, chatbot technology still has room for improvement. It may struggle to suggest the right products due to inventory constraints or provide somewhat generic styling suggestions. However these chatbots are a work in progress, and companies are confident that their AI tools’ language capabilities will continue to improve as they gather more data and user feedback.

As the fashion industry evolves, generative AI-driven chatbots have the potential to revolutionize the way customers interact with brands, offering increasingly personalized and efficient services.

A new industry standard
Businesses in the fashion, textile and apparel space can no longer be ambivalent or willfully ignorant about AI. They must do the research and reflection needed to develop a clear organizational stance on AI or risk getting left behind.

Organizational strategies for AI need to go beyond looking at the future trajectory of AI. Executives must set up clear objectives around how to integrate the technology into their workflows.

The customer base of each brand will be central to a successful AI strategy. This means understanding both their attitudes towards AI as well as their preferences and expectations.

Source:

Wilson College of Textiles, Yoo-Won Olivia Min and B. Ellie Jin

Skin contact and remote hugs via smart textiles (c) Oliver Dietze
10.04.2024

Skin contact and remote hugs via smart textiles

Smart textiles are making virtual reality more immersive and enabling wearers to experience the sensation of physical touch. An ultrathin film that can transmit touch sensations is able to turn textiles into a virtual second skin. For seriously ill children in hospital isolation wards, this new technology offers them the chance to feel the physical closeness of their parents during computer-simulated visits and to experience again the feeling of being held, hugged or cuddled.

The research team led by Professors Stefan Seelecke and Paul Motzki from Saarland University will be presenting the technology behind these smart textiles at Hannover Messe from 22 to 26 April.

Smart textiles are making virtual reality more immersive and enabling wearers to experience the sensation of physical touch. An ultrathin film that can transmit touch sensations is able to turn textiles into a virtual second skin. For seriously ill children in hospital isolation wards, this new technology offers them the chance to feel the physical closeness of their parents during computer-simulated visits and to experience again the feeling of being held, hugged or cuddled.

The research team led by Professors Stefan Seelecke and Paul Motzki from Saarland University will be presenting the technology behind these smart textiles at Hannover Messe from 22 to 26 April.

A hand on a shoulder, the stroke of an arm or a simple hug. Human touch can bring calm, comfort and closeness, a sense of safety and of being protected. When the nerve cells in our skin are stimulated by touch, numerous parts of our brain are triggered, causing immediate changes in our body's biochemistry. Hormones and signalling molecules are released, including oxytocin, which creates a sense of well-being and bonding. Video calls, on the other hand, tend to leave us cold. We miss the closeness and emotional connection that in-person meetings produce. But what happens when physical closeness is essential, when children are seriously ill, but their parents are unable to visit? When physical contact is not possible due to a weakened immune system?

An interdisciplinary research team at Saarland University, htw saar University of Applied Sciences, the Centre for Mechatronics and Automation Technology (ZeMA) and the German Research Center for Artificial Intelligence (DFKI) is working on a technology that will enable children in hospital isolation wards to feel in a very natural way the close physical proximity of their parents during virtual visits. The 'Multi-Immerse' project is at the interface of engineering science, neurotechnology, medicine and computer science and the members of the research team are developing ways to realize multi-sensory virtual encounters between individuals. The aim is to create new technology that will allow young patients to see, hear and feel their parents and siblings in as realistic a manner as possible so that the children experience a strong sense of close physical interaction even though they are physically separated.

The research group led by Professors Stefan Seelecke and Paul Motzki at Saarland University and ZeMA in Saarbrücken is responsible for the tactile side of the project and for creating technical systems that deliver a realistic sense of touch. The Saarbrücken engineers are experts in using thin silicone films to impart novel capabilities to surfaces. They have developed films that are a mere 50 micrometres thick and that can be worn like a second skin. Just as our skin is our body's interface to the outside world, these ultrathin films are the body's interface to the virtual world. The goal is to create a lifelike sensation of touch from interactions between people in a virtual environment.

When incorporated into textiles, these high-tech films allow the child to experience being touched when the mother or father strokes a second smart textile elsewhere. 'The films, known as dielectric elastomers, act both as sensors – detecting the tactile input from mum or dad – and as actuators – that transmit these movements to the child,' explained Professor Seelecke, who heads the Intelligent Material Systems Lab at Saarland University. When functioning as a sensor, the film is able to recognize with very high precision how a hand or finger presses or stretches the film as it brushes over it. This physical deformation caused by the parent's hand is then reproduced exactly in a second textile that is in contact with the child's skin – giving the child the realistic impression of being stroked on the arm, for example.

‘A highly flexible electrically conducting layer is printed onto each side of the ultrathin film to create what is known as a dielectric elastomer. If we apply a voltage to the elastomer film, the electrodes attract each other, compressing the polymer and causing it to expand out sideways, thus increasing its surface area,' said Professor Paul Motzki, who holds a cross-institutional professorship in smart material systems for innovative production at Saarland University and at ZeMA. Even the slightest movement of the film alters its electrical capacitance, which is a physical quantity that can be precisely measured. When a finger runs over the film, the film deforms and an exact value of the electrical capacitance can be assigned to each individual position of the film. A sequence of these measured capacitance values represents the path taken by the finger as it moves. The film is therefore its own flexible sensor that can recognize how it is being deformed.

By knowing how capacitance values and film deformations correlate, the researchers can use the smart textile to transfer the stroking motion of a parent's hand to the child's arm. The research team is able to precisely control the motion of the elastomer film. By combining the capacitance data and intelligent algorithms, the team has developed a control unit that can predict and program motion sequences and thus precisely control how the elastomer film deforms. 'We can get the film to perform continuously controlled flexing motions so that it exerts increasing pressure on the skin, or we can get it to remain in a fixed position”, explained PhD student Sipontina Croce, who is carrying out doctoral research in the project. They can also create tapping movements at a specified frequency. The amplitude and frequency of the motion can be precisely regulated.

At this year's Hannover Messe, the team will be demonstrating their technology with a “watch” that has a smart film applied to its back. 'We can create chains of these smart components so that they can transmit long stroking motions. To do this, we interconnect the components so that they can communicate and cooperate collectively within a network,' explained Paul Motzki.

This smart-textile technology is inexpensive, lightweight, noiseless and energy-efficient. By providing a tactile element to computer gaming, the novel elastomer-film technology can also be used to make the gaming experience more realistic. In related projects, the engineers have used their technology to create interactive gloves for future industrial production processes, or to create the sensation of a tactile 'button' or 'slider' on flat glass display screens, which is literally bringing a new dimension to touchscreen interactions.

At this year's Hannover Messe, the experts for intelligent materials from Saarbrücken will be showcasing other developments that make use of dielectric elastomers, such as sensory shirts or shoe soles, or industrial components like pumps, vacuum pumps and high-performance actuators.

Source:

Universität des Saarlandes

Smart glove teaches new physical skills Image: Alex Shipps/MIT CSAIL
18.03.2024

Smart glove teaches new physical skills

Adaptive smart glove from MIT CSAIL researchers can send tactile feedback to teach users new skills, guide robots with more precise manipulation, and help train surgeons and pilots.

You’ve likely met someone who identifies as a visual or auditory learner, but others absorb knowledge through a different modality: touch. Being able to understand tactile interactions is especially important for tasks such as learning delicate surgeries and playing musical instruments, but unlike video and audio, touch is difficult to record and transfer.

Adaptive smart glove from MIT CSAIL researchers can send tactile feedback to teach users new skills, guide robots with more precise manipulation, and help train surgeons and pilots.

You’ve likely met someone who identifies as a visual or auditory learner, but others absorb knowledge through a different modality: touch. Being able to understand tactile interactions is especially important for tasks such as learning delicate surgeries and playing musical instruments, but unlike video and audio, touch is difficult to record and transfer.

To tap into this challenge, researchers from MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) and elsewhere developed an embroidered smart glove that can capture, reproduce, and relay touch-based instructions. To complement the wearable device, the team also developed a simple machine-learning agent that adapts to how different users react to tactile feedback, optimizing their experience. The new system could potentially help teach people physical skills, improve responsive robot teleoperation, and assist with training in virtual reality.

Will I be able to play the piano?
To create their smart glove, the researchers used a digital embroidery machine to seamlessly embed tactile sensors and haptic actuators (a device that provides touch-based feedback) into textiles. This technology is present in smartphones, where haptic responses are triggered by tapping on the touch screen. For example, if you press down on an iPhone app, you’ll feel a slight vibration coming from that specific part of your screen. In the same way, the new adaptive wearable sends feedback to different parts of your hand to indicate optimal motions to execute different skills.

The smart glove could teach users how to play the piano, for instance. In a demonstration, an expert was tasked with recording a simple tune over a section of keys, using the smart glove to capture the sequence by which they pressed their fingers to the keyboard. Then, a machine-learning agent converted that sequence into haptic feedback, which was then fed into the students’ gloves to follow as instructions. With their hands hovering over that same section, actuators vibrated on the fingers corresponding to the keys below. The pipeline optimizes these directions for each user, accounting for the subjective nature of touch interactions.

“Humans engage in a wide variety of tasks by constantly interacting with the world around them,” says Yiyue Luo MS ’20, lead author of the paper, PhD student in MIT’s Department of Electrical Engineering and Computer Science (EECS), and CSAIL affiliate. “We don’t usually share these physical interactions with others. Instead, we often learn by observing their movements, like with piano-playing and dance routines.

“The main challenge in relaying tactile interactions is that everyone perceives haptic feedback differently,” adds Luo. “This roadblock inspired us to develop a machine-learning agent that learns to generate adaptive haptics for individuals’ gloves, introducing them to a more hands-on approach to learning optimal motion.”

The wearable system is customized to fit the specifications of a user’s hand via a digital fabrication method. A computer produces a cutout based on individuals’ hand measurements, then an embroidery machine stitches the sensors and haptics in. Within 10 minutes, the soft, fabric-based wearable is ready to wear. Initially trained on 12 users’ haptic responses, its adaptive machine-learning model only needs 15 seconds of new user data to personalize feedback.

In two other experiments, tactile directions with time-sensitive feedback were transferred to users sporting the gloves while playing laptop games. In a rhythm game, the players learned to follow a narrow, winding path to bump into a goal area, and in a racing game, drivers collected coins and maintained the balance of their vehicle on their way to the finish line. Luo’s team found that participants earned the highest game scores through optimized haptics, as opposed to without haptics and with unoptimized haptics.

“This work is the first step to building personalized AI agents that continuously capture data about the user and the environment,” says senior author Wojciech Matusik, MIT professor of electrical engineering and computer science and head of the Computational Design and Fabrication Group within CSAIL. “These agents then assist them in performing complex tasks, learning new skills, and promoting better behaviors.”

Bringing a lifelike experience to electronic settings
In robotic teleoperation, the researchers found that their gloves could transfer force sensations to robotic arms, helping them complete more delicate grasping tasks. “It’s kind of like trying to teach a robot to behave like a human,” says Luo. In one instance, the MIT team used human teleoperators to teach a robot how to secure different types of bread without deforming them. By teaching optimal grasping, humans could precisely control the robotic systems in environments like manufacturing, where these machines could collaborate more safely and effectively with their operators.

“The technology powering the embroidered smart glove is an important innovation for robots,” says Daniela Rus, the Andrew (1956) and Erna Viterbi Professor of Electrical Engineering and Computer Science at MIT, CSAIL director, and author on the paper. “With its ability to capture tactile interactions at high resolution, akin to human skin, this sensor enables robots to perceive the world through touch. The seamless integration of tactile sensors into textiles bridges the divide between physical actions and digital feedback, offering vast potential in responsive robot teleoperation and immersive virtual reality training.”

Likewise, the interface could create more immersive experiences in virtual reality. Wearing smart gloves would add tactile sensations to digital environments in video games, where gamers could feel around their surroundings to avoid obstacles. Additionally, the interface would provide a more personalized and touch-based experience in virtual training courses used by surgeons, firefighters, and pilots, where precision is paramount.

While these wearables could provide a more hands-on experience for users, Luo and her group believe they could extend their wearable technology beyond fingers. With stronger haptic feedback, the interfaces could guide feet, hips, and other body parts less sensitive than hands.

Luo also noted that with a more complex artificial intelligence agent, her team's technology could assist with more involved tasks, like manipulating clay or driving an airplane. Currently, the interface can only assist with simple motions like pressing a key or gripping an object. In the future, the MIT system could incorporate more user data and fabricate more conformal and tight wearables to better account for how hand movements impact haptic perceptions.

Luo, Matusik, and Rus authored the paper with EECS Microsystems Technology Laboratories Director and Professor Tomás Palacios; CSAIL members Chao Liu, Young Joong Lee, Joseph DelPreto, Michael Foshey, and professor and principal investigator Antonio Torralba; Kiu Wu of LightSpeed Studios; and Yunzhu Li of the University of Illinois at Urbana-Champaign.

The work was supported, in part, by an MIT Schwarzman College of Computing Fellowship via Google and a GIST-MIT Research Collaboration grant, with additional help from Wistron, Toyota Research Institute, and Ericsson.

Source:

Alex Shipps, MIT CSAIL

Photo: Walmart Inc.
15.01.2024

What is a Virtual Fitting Room? Advantages and Early Adopters

One of the major concerns of online shopping is a consumer’s inability to touch, feel and experience products. This concern is more problematic for fashion products, when the right fit is critical for purchase decisions. Virtual Fitting Room (VFR), a technology that allows consumers to test size and fit without having to try clothing on themselves, eases this concern.

What is a Virtual Fitting Room (VFR)?
A Virtual Fitting Room (VFR) is a function that shows and visualizes a shopper’s outfit without physically trying on and touching items. VFR utilizes Augmented Reality (AR) and Artificial Intelligence (AI). By using AR for VFR, a webcam scans the body shape of shoppers and creates a 360-degree, 3D model based on their body shape.

One of the major concerns of online shopping is a consumer’s inability to touch, feel and experience products. This concern is more problematic for fashion products, when the right fit is critical for purchase decisions. Virtual Fitting Room (VFR), a technology that allows consumers to test size and fit without having to try clothing on themselves, eases this concern.

What is a Virtual Fitting Room (VFR)?
A Virtual Fitting Room (VFR) is a function that shows and visualizes a shopper’s outfit without physically trying on and touching items. VFR utilizes Augmented Reality (AR) and Artificial Intelligence (AI). By using AR for VFR, a webcam scans the body shape of shoppers and creates a 360-degree, 3D model based on their body shape.

AI further operates VFR by using algorithms and machine learning to design a full-body 3D model of a shopper standing in front of the camera. A combination of AR and AI technology allows VFR to place items on real-time images as a live video so that customers can check the size, style and fit of the products they’re considering purchasing.

Shoppers can try on clothes and shoes at home without visiting a physical store. In order to do this, customers need to first make sure they have the right settings on their phone. Then, they download a brands’ mobile applications with the Virtual Fitting Room function or visit apparel brands’ websites that support this VFR function and upload a photo of their body shape. Some brands allow a customer to create an avatar using their body shape to test out the fashion items virtually, instead of uploading a photo of themselves.

How does using a Virtual Fitting Room benefit fashion retailers?

  • Provides a convenient shopping experience
    Research conducted by the National Retail Federation in 2020 stated that 97% of consumers have ended a shopping trip or stopped searching for the item they had in mind because the process was inconvenient.
    Shoppers surveyed not only said that in-person shopping was inconvenient but that online shopping felt even more inconvenient to them.
    VFR eliminates all of these processes. Shoppers can walk over to the VFR and see what the clothes look like quickly without needing to change them.
     
  • Overcomes the limitations of online shopping
    As of 2017, 62% of shoppers preferred to shop at physical apparel stores because they could see, touch, feel and experience products. This was a major problem that online shopping could not overcome.
    VFR solves this problem effectively. According to a Retail Perceptions Report, about 40% of buyers said they would be willing to pay more if they could experience the product through AR technology. By incorporating new technologies, VFR makes shopping fun and offers a personalized shopping experience to customers, which can attract more people to online channels.
     
  • Reduces the return rate
    High return rates are a big administrative headache for fashion brands. Moreover, it threatens to cut into the profits of fashion brands if they offer free returns. 30% of the return rate in e-commerce fashion shopping is due to purchases of small-sized products, and another 22% happens due to purchases of too large-sized products.
    However, VFR alleviates this problem. Whether in store or online, people can check the fit and size of items without having to wear them themselves.

Which brands are already using Virtual Fitting Room (VFR) technology?
Gucci

Gucci is the first luxury brand which adopted VFR. They partnered with Snapchat to launch an augmented reality shoe try-on campaign. It created a virtual lens that superimposed and overlaid a digital version of the shoe on the shopper’s foot when the foot was photographed using a cell phone camera.

Along with the Shop Now button, which guides shoppers to its online store, Gucci achieved 18.9 million Snapchat users and reported positive return on ad spend, which is a marketing metric that measures the amount of revenue earned on all dollars spent on advertising from this campaign.

Otero Menswear
Otero Menswear is a brand focused on apparel for men shorter than 5’10” (1,78 m). Otero added VFR software to its online store to provide perfect fitting sizes to its customers. First, it asks customers four quick questions about their height, leg length, waist size and body type. Then, it offers a virtual avatar corresponding with the answers. Shoppers then use this avatar to see how different sizes of Otero clothing would look on them.
 
Walmart
In May 2021, Walmart announced that they plan to acquire Zeekit, a virtual fitting room platform, to provide enhanced and social shopping experiences for customers during the pandemic.

When customers upload pictures of themselves and enter their body dimensions, Zeekit builds a virtual body and then customers can dress it accordingly. Customers will simply post their photos or choose virtual models on the platform that represent the best fitting of their height, body and skin tone. Shoppers can even share their virtual clothes with others to get various opinions. Walmart brings a comprehensive and social experience to digital shopping for customers through this acquisition of VFR.

According to research by Valuates Reports, it is expected that sales of the global virtual fitting room market will grow to $6.5 million by 2025. By adopting VFR, consumers will be able to experience convenience in an advanced shopping environment. At the same time, fashion retailers will be able to increase online sales and reduce return rates by offering customers personalized online shopping experiences using VFR technology.

Source:

Heekyeong Jo and B. Ellie Jin
This article was originally published by members of the Wilson College of Textiles’ Fashion Textile and Business Excellence Cooperative.

Conceptualisation of a running shoe made out of a metamaterial. AI generated with DALL-E   (Visualisation: ETH Zurich) Conceptualisation of a running shoe made out of a metamaterial. AI generated with DALL-E (Visualisation: ETH Zurich)
18.12.2023

AI for safer bike helmets and better shoe soles

Researchers have trained an artificial intelligence to design the structure of so-called metamaterials with desired mechanical properties for a wide range of applications.

Researchers have trained an artificial intelligence to design the structure of so-called metamaterials with desired mechanical properties for a wide range of applications.

  • ETH researchers have used artificial intelligence to design metamaterials that show unusual or extraordinary responses to complex loads.
  • Their new AI tool deciphers the essential features of a metamaterial’s microstructure and accurately predicts its deformation behaviour.
  • The tool not only finds optimal microstructures but also bypasses time-consuming engineering simulations.

Bike helmets that absorb the energy of an impact, running shoes that give you an extra boost with every step, or implants that behave just like natural bone. Metamaterials make such applications possible. Their inner structure is the result of a careful design process, following which 3D printers produce structures with optimised properties. Researchers led by Dennis Kochmann, Professor of Mechanics and Materials in the Department of Mechanical and Process Engineering at ETH Zurich, have developed novel AI tools that bypass the time-consuming and intuition-based design process of metamaterials. Instead, they predict metamaterials with extraordinary properties in a rapid and automated fashion. A novelty, their framework applies to large (so-called non-linear) loads, e.g. when a helmet absorbs major forces during an impact.

Kochmann’s team has been among the pioneers in designing small-scale cellular structures (similar to beam networks in timber-frame houses) to create metamaterials with specific or extreme properties. “For example, we design metamaterials that behave like fluids: hard to compress but easy to deform. Or metamaterials that shrink in all directions when compressed in a particular one,” explains Kochmann.

Efficient, optimal material design
The design possibilities seem endless. However, the full potential of metamaterials is far from realised, since the design process is based on experience, involving trial and error. Furthermore, small changes in the structure can give rise to huge changes in properties.

In their recent breakthrough, the researchers succeeded in using AI to systematically explore the abundant design and mechanical properties of two types of metamaterials. Their computational tools can predict optimal structures for desired deformation responses at the push of a button. Key is the use of large datasets of the deformation behaviour of real structures to train an AI model that not only reproduces data but also generates and optimises new structures. By leveraging a method known as “variational autoencoders”, the AI learns the essential features of a structure from the large set of design parameters and how they result in specific properties. It then uses this knowledge to generate a metamaterial blueprint whenever the researchers specify its desired properties and requirements.

Assembling building blocks
Li Zheng, a doctoral student in Kochmann’s group, trained an AI model using a dataset of one million structures and their simulated response. “Imagine a huge box of Lego bricks – you can arrange them in countless ways and over time learn design principles. The AI does this extremely efficiently and learns essential design features and how to assemble the building blocks of metamaterials to give them a particular softness or hardness”, says Zheng. Unlike prior approaches using a small catalogue of building blocks as the basis for design, the new method gives the AI freedom to add, remove, or move building blocks around almost arbitrarily.  Together with Sid Kumar, an assistant professor at TU Delft and a former member of Kochmann’s team, they showed in a recently published paper that the AI model can even go beyond what it has been trained to do and predict structures that are far better than anything ever generated before.

Learning from the movies
Jan-Hendrik Bastek, also doctoral student in Kochmann’s group, used a different approach to achieve something similar. He used a method originally introduced for AI-based video generation, which has become commonplace: if you type in ‘an elephant flying over Zurich’, the AI generates a realistic video of an elephant circling the Fraumünster Church. Bastek trained his AI system using 50,000 video sequences of deforming 3D-printable structures. “I can insert the trajectory of how I want the structures to deform, and the AI produces a video of the optimal structure and the complete deformation response,” explains Bastek. Most previous approaches have focused on only predicting a single image of the optimal structure. However, giving the AI videos of the entire deformation process is crucial to retain accuracy in such complex scenarios. Based on the video sequences, the AI can create blueprints for new materials, taking into account highly complex scenarios.

Big benefits for bike helmets and shoe soles
The researchers have made available their AI tools to the metamaterials community. This will hopefully lead to the design of many new and unusual materials. The tools are opening new avenues for the development of protective equipment such as bicycle helmets and for further applications of metamaterials from medical engineering to soft robotics. Even shoe soles can be designed to absorb shocks better when running or to provide a forward boost when stepping down. Will AI completely replace the manual engineering design of materials? “No,” laughs Kochmann. “Used well, AI can be a highly efficient and diligent assistant, but it must be given the right instructions and the right training – and that requires scientific principles and engineering knowhow.”

Source:

ETH Zürich

A quick check with a smartphone, and the integrated spectrum analyzer recognizes the fabric the garment is made from. Photo: © Fraunhofer IPMS. A quick check with a smartphone, and the integrated spectrum analyzer recognizes the fabric the garment is made from.
10.10.2023

Checking clothing using a smartphone, AI and infrared spectroscopy

Researchers at Fraunhofer have developed an ultra-compact near-infrared spectrometer suitable for recognizing and analyzing textiles. Mixed fabrics can also be reliably identified through the combination of imaging, special AI (artificial intelligence) algorithms and spectroscopy. The technology could be used to optimize recycling old clothing, so old apparel could be sorted according to type. A highly miniaturized version of the system can even fit into a smartphone. This could lead to a host of new applications for end-users in everyday life — from checking clothes when out shopping to detecting counterfeits.

Researchers at Fraunhofer have developed an ultra-compact near-infrared spectrometer suitable for recognizing and analyzing textiles. Mixed fabrics can also be reliably identified through the combination of imaging, special AI (artificial intelligence) algorithms and spectroscopy. The technology could be used to optimize recycling old clothing, so old apparel could be sorted according to type. A highly miniaturized version of the system can even fit into a smartphone. This could lead to a host of new applications for end-users in everyday life — from checking clothes when out shopping to detecting counterfeits.

Infrared spectrometers are powerful measuring instruments when it comes to non-destructive analysis of organic materials. The Fraunhofer Institute for Photonic Microsystems IPMS in Dresden has recently developed a spectral analyzer system that recognizes and analyzes textile fabrics. The system can also reliably recognize mixed fabrics. Possible applications range from checking fabrics when out shopping to cleaning garments correctly, and even sustainable, sorted recycling. The spectrometer is so tiny, it can be integrated into a smartphone.

Researchers at Fraunhofer rely on near-infrared (NIR) spectroscopy to achieve the required reliability and accuracy when identifying textiles. The system works for wavelengths between 950 and 1900 nanometers, which is close to the visible spectrum. Advantages of near-infrared technology include being easy to use and having a wide range of applications. “We combine NIR spectroscopy with imaging and AI to achieve higher accuracy when recognizing and analyzing objects,” explains Dr. Heinrich Grüger, research scientist in the Sensoric Micromodules department at Fraunhofer IPMS.

How textile analysis works
Firstly, a conventional camera module captures an image of the garment. The AI selects a specific point from the fabric’s image data to be examined by the spectral analyzer module. Light reflected from the fabric is captured by the spectrometer module. There, it passes through an entrance slit, is transformed into parallel light beams using a collimating mirror and projected onto a grating using a scanning mirror. Depending on the angle of incidence and exit, the grating splits the light beams into different wavelengths. Light reflected from the grating is directed by the scanner mirror to a detector which captures the light as an electrical signal. An A/D converter then digitizes these signals, which are subsequently analyzed in the signal processor. The resulting spectrometric profile for the textile fabric reveals which fibers it is made from by comparing to a reference database.“ The optical resolution is 10 nanometers. This high resolution means the NIR spectrometer can also use AI to identify mixed fabrics such as items of clothing made from polyester and cotton,” says Grüger. Measuring just 10 mm × 10 mm and being 6.5 mm thick, the system is so compact it could easily be integrated into a standard smartphone.

Recycling old clothing
Grüger sees an important application for the AI-controlled spectrometer when it comes to recycling. According to the Federal Statistical Office of Germany, approximately 176,200 tons of textile and clothing waste was collected from private homes in Germany in 2021. NIR spectroscopy could improve recycling efficiency and reduce the mountain of old clothing. This would enable companies that recycle old clothing to sort it more efficiently and faster. Textiles that are still in one piece, for instance, go to the second-hand trade. Damaged textiles are sorted for recycling, and the fibers they are made from, such as linen, silk, cotton or lyocell, can be reused. Severely soiled textiles would be incinerated or processed into insulation mats, for example. Spectroscopic identifies and sorts textiles more accurately and much faster than a human can.

If NIR spectroscopy was to be integrated into a smartphone, end-users might also benefit from the Fraunhofer institute’s technology. When buying clothes, a quick check with a smartphone reveals whether that expensive silk scarf is genuinely made from silk, or whether that exclusive dress from the fashion label is not instead a counterfeit, exposed through an alternative mix of fabrics. And should the label with the cleaning instructions no longer be legible, the smartphone has a textile scanner to identify the fabric and so determine the appropriate wash cycle.

Food check and dermatology
Researchers at Fraunhofer IPMS can even envisage applications beyond the textile industry. Smartphones fitted with spectrometers might be used to provide information about the quality of groceries such as fruit and vegetables when out shopping. The technology might conceivably also be used to examine skin. A quick scan with the cell phone spectrometer could identify particularly dry or greasy patches. Perhaps applications in medical diagnostics might even be conceivable — examining patches of skin where a melanoma is suspected, for example — but this would need professional involvement too.

Source:

Fraunhofer Institute for Photonic Microsystems

Photo: Pixabay
19.07.2022

The future of fashion: Revolution between fast and slow fashion

The fashion industry is massively influenced by the change in social values. Which trends can be observed and in which direction is the fashion future developing - an excerpt from the Retail Report 20231 by Theresa Schleicher.

The fashion industry is massively influenced by the change in social values. Which trends can be observed and in which direction is the fashion future developing - an excerpt from the Retail Report 20231 by Theresa Schleicher.

The fashion industry has been slowed down by the global health pandemic and further affected by the measures taken in the wake of the Ukraine war: Fragile supply chains, increased transportation and energy costs, and rising prices are having an impact on the globalized fashion industry. Those who were moving the fastest are being hit the hardest. Fast fashion based on the principle of "faster and faster, cheaper and cheaper, more and more" - which has been in the fast lane for years - is now experiencing an unprecedented crash. Even without these momentous events, the fashion system would have reached its limits. What could have developed evolutionarily is now being revolutionized. Now and in the future, it will be particularly difficult for brands and retail companies that do not have a sharp profile or that have lost many customers in the attempt to offer mass-produced goods at prices that are still lower than those of their competitors.

New value paradigm in society - also for fashion
While fashion retailers and fashion brands are focusing on expanding online and have been putting their foot on the gas pedal since the corona pandemic at the latest, a parallel change in values is taking place in society. Many behaviors that have been practiced, tested and lived for months will continue to shape our consumer behavior and lifestyles in the future. The uncertainty in society as well as a shrinking economy and rising consumer prices as a result of the Ukraine war will further contribute to this shift in values.

The old paradigm was "primarily shaped by pragmatic factors such as price, quantity, safety and convenience, so consumer behavior was predominantly based on relatively simple cost-benefit calculations." The new value paradigm, on the other hand, is more strongly influenced by "soft factors". For example, the quality of a product is defined more holistically. In addition to price, "ecological, [...] ethical and social aspects are also taken into account. It is about positive or negative experiences that one has had with producers and about the visions that they pursue with their companies". This new value paradigm is forcing the large chain stores in particular to rethink. They have to develop their business models further in the direction of sustainability, transparency and responsibility - and show attitude. The influence of the neo-ecology megatrend combined with the push towards the sense economy is reshuffling the cards in the fashion industry.

The most important driver for the change in consumer behavior is climate protection, which is also becoming personally more important to more and more people because they are feeling the effects of climate change themselves in their everyday lives. The transition to a sustainable, bio-based and circular economy is accompanied by fundamental changes in the technical, economic and social environment.

Circular fashion as an opportunity for fast fashion
The development of the fashion industry - especially the fast fashion industry - towards a more circular economy is not a short-term trend, but one of the most long-term and at the same time forward-looking trends in retailing of all.

Even before the pandemic, a growing proportion of consumers placed value on sustainably produced clothing instead of constantly shopping the latest trends. A reset is needed, but the fashion industry faces a difficult question: How can it respond to the demand for new trends without neglecting its responsibility for the environment?

The solution for reducing emissions and conserving raw materials and resources seems obvious: produce less. On average, 2,700 liters of water are needed to produce a T-shirt - that much drinking water would last a person for two and a half years. In Europe, each person buys an average of 26 kilograms of textiles per year - and disposes eleven kilograms. Of this, almost 90 percent is incinerated or ends up in landfills. Overproduction, precarious working conditions during production and the use of non-sustainable materials are the major problems of the fast fashion industry. It is time to slow down fast fashion.

Fashion recycling by Design & Recycling as a Service
A first step towards keeping fashion and textiles in the cycle for longer is to recycle materials properly. In the future, recycling must be considered as early as the design stage - not only for sustainably produced fashion, but also for fast fashion. The H&M Group, for example, developed the Circulator for this purpose: The digital evaluation tool guides the designer through materials, components and design strategies that are best suited for the product depending on its purpose, and evaluates them in terms of their environmental impact, durability and recyclability.

However, more and more young companies are specializing in offering recycling for textiles as a service. They work directly with fashion retailers or fashion brands to enable the best possible recycling, re-circulation or even upcycling. Until now, it has not been worthwhile for large textile companies to invest in their own recycling systems. But Recycling as a Service is a market of the future, led by innovative start-ups such as Resortecs that are tackling previous hurdles in our recycling system. In the future, more and more new service providers will pop up around returns and recycling and help fashion retailers to align their material cycles more sustainably.

Secondhand conquers the fast fashion market
Another way to extend the life of clothing is to pass it on to new users. We are witnessing the triumph of vintage, retro and more - chic secondhand stores and chains like Resales and Humana are popping up everywhere. The renaming of secondhand to pre-owned or pre-loved also illustrates the increased appreciation of worn clothing. The trend toward secondhand also pays off economically for companies: The number of platforms whose business model revolves around the resale of clothing is increasing, and secondhand fashion is arriving in the middle of society. The luxury segment and especially vintage fashion are stable in price because the availability of these unique pieces is limited. Fast fashion, on the other hand, is available in sufficient quantities and is particularly interesting for price-sensitive customers, as secondhand is considered one of the most sustainable forms of consumption - meaning that fashion can be shopped with a clear conscience - and is usually even offered at a lower price than new goods. The second-hand market will continue to professionalize and become more socially acceptable. As a result, the fast fashion industry will also be forced to produce higher quality clothing in order to become or remain part of the circular system.

Slow fashion gains momentum thanks to technology
The development and orientation of fast fashion towards circular processes is also changing sustainable fashion. In the future, fast fashion and slow fashion can learn from each other to fully exploit their potential: fast fashion will become more sustainable, while slow fashion will focus on faster availability and delivery and make the customer experience as pleasant as possible. Fast and slow fashion are no longer compelling opposites - because the sustainable fashion movement can also benefit from technological innovations that are being established above all by the fashion platforms, and lift slow fashion to a new level.

At the same time, Sustainable Luxury is a new form of luxury consumption - especially in the field of designer fashion, sustainability is becoming the all-important criterion. Sustainability as a means of distinction for true luxury and sustainability as a basic prerequisite for a functioning fashion industry are increasingly converging. This is where the transition between a slowdown of fast fashion and an acceleration of slow fashion takes place.

Trend Sustainable Luxury
Luxury is defined less and less by the object and its possession and is increasingly becoming an expression of one's own lifestyle and values. Consumers' understanding of premium and luxury has changed - not least driven by the neo-ecology megatrend. In the future, it will no longer be just about owning something as expensive and ostentatious as possible. What began as a rebellion against careless consumption of luxury brands that promise high-end products but accept unfair and environmentally damaging manufacturing conditions in the process has increasingly become accepted as a value attitude. Luxury products have no less a claim than to improve the world.

Sustainable and ethical products and services made from innovative materials that have the power to solve problems and make the world a better place. At the same time, this highly ethically and morally charged form of sustainability is turning into a means of distinction: For the materials are so new, the manufacturing processes still so experimental, that the products are unique and often only available in very small quantities or on order. And this exclusive sustainability naturally comes at a price. After all, a company that pursues a mission is not concerned with simply cutting costs - certainly not at the expense of others or the environment. Instead of leather and fur, luxury fashion is now made from oranges, pineapples, hemp, cacti: there are more and more new, innovative and sustainable materials from which unique garments and accessories can be made.

Predictive, Pre-Order & Made-to-Order
Artificial intelligence and Big Data analysis can help predict fashion demand. Fast fashion leaders like Shein are characterized by agile production which is supported by AI algorithms for trend prediction fed with data from TikTok and other social media services. This could sustainably reduce overproduction and unsaleable goods in the future. As critical as Shein's practices are, the automation of processes also offers immense opportunities for a more sustainable fashion industry, as production only starts when goods are in demand.

AI support in the design process can be used to produce more sustainable fashion - and make it available more quickly. In a future of an avatar economy and in the world of virtual influencers, it may even be possible to dispense with part of the production process: Fashion will remain virtual - and thus more resource-efficient. Digital fashion will become increasingly important as the metaverse is built.

5 Key Takeaways on the Future of Fashion

  1. The current crisis in the fashion industry is an opportunity to move more in the direction of circular fashion. Above all, the new value paradigm in society, understanding quality more holistically and consuming more mindfully, is providing a push towards fairer, more ecological and more social fashion. Fast fashion and sustainability are not mutually exclusive.
  2. There are already first approaches to keep fast fashion in the cycle longer or to return it to the cycle. One important development is to consider recycling or reuse as early as the design and manufacturing process - known as recycling by design. In addition, there is a growing number of start-ups specializing in the optimized recycling of textiles and cooperating with major fashion players.
  3. Above all, the booming online trade in used fashion, often communicated as the pre-loved or pre-owned category, is making secondhand respectable for the mainstream. Such fashion, with a story and an aura of uniqueness, is also a cost-effective but more sustainable alternative to fast fashion.
  4. But slow fashion is also changing, especially due to the dominance of new technologies. Slow fashion can also benefit from processes that are currently manifesting themselves in the online fashion market, such as fast delivery or pre-order services. Slow fashion thus becomes more convenient, better and faster available. It will be easier for sustainably oriented fashion enthusiasts to consume according to their values and attitudes.
  5. The trend toward sustainable luxury continues: Sustainability as a means of distinction for a new form of luxury enables alternative manufacturing processes and innovative materials in the luxury fashion market. These are being showcased by an avant-garde and, if they prove successful, adapted by fast fashion.

1 https://onlineshop.zukunftsinstitut.de/shop/retail-report-2023/

Source:

Retail Report 2023 | Theresa Schleicher, Janine Seitz | June 2022

Photo: Pixabay
12.04.2022

Disrupted supply chains: Only nearshoring and digital technologies will help in the long term

  • McKinsey survey: Globally, more than 90 percent of supply chain managers are investing in the resilience of their supply chains during the Corona crisis.
  • But more often than not, they are simply increasing inventories instead of focusing on long-term effective measures such as regionalization of suppliers.
  • Only the healthcare industry has consistently relied on nearshoring and regionalization of suppliers so far.

Supply chain managers worldwide are under pressure: More than 90 percent invested during the Corona crisis to make their supply chains more resilient to external disruptions. More often than planned, however, supply chain managers resorted to the ad hoc measure of simply increasing inventories. And less often than planned, they also relied on long-term effects by regionalizing their supply base.

  • McKinsey survey: Globally, more than 90 percent of supply chain managers are investing in the resilience of their supply chains during the Corona crisis.
  • But more often than not, they are simply increasing inventories instead of focusing on long-term effective measures such as regionalization of suppliers.
  • Only the healthcare industry has consistently relied on nearshoring and regionalization of suppliers so far.

Supply chain managers worldwide are under pressure: More than 90 percent invested during the Corona crisis to make their supply chains more resilient to external disruptions. More often than planned, however, supply chain managers resorted to the ad hoc measure of simply increasing inventories. And less often than planned, they also relied on long-term effects by regionalizing their supply base. These are the key findings of a comparative study for which management consultants McKinsey & Company surveyed more than 70 supply chain managers from leading companies worldwide - for the first time in 2020 and again this year. Further results: Digital technologies are used much more frequently today than at the beginning of the pandemic, for example real-time monitoring or analytics based on artificial intelligence (AI).

The survey also quantifies the striking shortage of IT specialists in the area of supply management: in 2021, only one percent of the companies surveyed had enough IT specialists. "In the wake of the digitalization push, the need for IT skills is becoming even more of a bottleneck than it already has been," reports Vera Trautwein, McKinsey expert for supply chain management and co-author of the study. "As a result, the scope for action is also decreasing dramatically." In 2020, ten percent of the supply chain managers surveyed still had access to sufficient experts with the relevant IT know-how in their departments. How did the supply chain managers act during the crisis? Almost all respondents (92 percent) have invested in the resilience of their supply chains, and 80 percent have also invested in digital supply chain technologies. But while 40 percent of the 2020 respondents in McKinsey's first "Supply Chain Pulse" had still planned nearshoring and expanding their supplier base, only 15 percent ultimately put this into action. Instead, significantly more managers than expected - 42 percent versus 27 percent - expanded their inventories.

The 2020/21 comparative study also shows that supply chain managers have acted very differently in the crisis, depending on the industry. Healthcare can be considered a pioneer in the regionalization of the supply chain: 60 percent of the respondents in the industry have actually concentrated procurement, production and sales in a region such as Europe or North America, which they have also announced. In 2020, 33 percent of companies in the automotive, aerospace and defense industries had also announced this. However, according to their own figures, only 22 percent actually did so. This was despite the fact that more than three quarters of supply chain managers had given this measure priority. The chemicals and raw materials sectors made the fewest changes to their supply chains.

After the crisis is before the crisis
Over the years, supply chains have evolved into a high-frequency sensitive organism. Consistently globalized, optimized to fluctuations in consumer demand and with as little inventory as possible to cut costs. "This strategy has left companies vulnerable," notes McKinsey partner Knut Alicke. "And during the crisis, measures were taken that were more effective in the short term." As a result, supply chains are not yet resilient enough to prevent future disruptions. "For companies, nearshoring of suppliers remains a key factor in increasing their crisis resilience in the medium to long term." In addition, however, he said, the expansion and use of digital technologies are the key factors for resilient supply chains.

The pressure to act is great: Massive supply chain disruptions occur on average every 3.7 years and disrupt supply chains for at least one month. This was the conclusion of another McKinsey study on supply chains entitled "Risk, resilience, and rebalancing in global value chains" back in 2020.

Source:

McKinsey & Company [Düsseldorf, Germany]

Wanted: Start-ups with innovations for textile care © Photo: Messe Frankfurt Exhibition GmbH / Jens Liebchen
09.02.2021

Wanted: Start-ups with innovations for textile care

From 24-hour deliveries, status tracking and green packaging to textile recycling and innovative cleaning technology: new services have the potential to revolutionise the business of dry cleaners and laundries. Against this background, Messe Frankfurt invites start-ups to present their products and ideas at Texcare International. The world’s most important event for the textile-care sector in Frankfurt am Main from 27 November to 1 December 2021 offers young entrepreneurs outstanding opportunities to draw the market’s attention to their innovations.

From 24-hour deliveries, status tracking and green packaging to textile recycling and innovative cleaning technology: new services have the potential to revolutionise the business of dry cleaners and laundries. Against this background, Messe Frankfurt invites start-ups to present their products and ideas at Texcare International. The world’s most important event for the textile-care sector in Frankfurt am Main from 27 November to 1 December 2021 offers young entrepreneurs outstanding opportunities to draw the market’s attention to their innovations.

The demands placed by both private and commercial customers on textile care are extremely high, especially in terms of speed, immediate availability, transparent communication and sustainable solutions. In this connection, Johannes Schmid-Wiedersheim, Director of Texcare International at Messe Frankfurt, says, “Start-ups have an important role to play when it comes to promoting digitalisation and sustainability in the world of textile care. In many cases, they succeed quickly in transforming the results of scientific research or trends from other sectors into useful projects. To support this, we want specifically to promote young, agile companies at Texcare International and offer them an attractive ‘Start-up Package’.”

Digital platforms offer dry cleaners and laundries an opportunity to promote their services online in a modern way. Summarising what makes these platforms so important, Daniel Dalkowski, Managing Director of the European Research Association for Innovative Textile Care (EFIT), says, “Digital platforms are undoubtedly one of the most important achievements of recent times – not just because there are so many of them but also because they have found imitators in the sector. In this case, the innovation is to be seen in a combination of ordering, flexible logistics and billing in a smartphone app or online platform.”

With their robotics solutions and bright ideas for artificial intelligence, IT start-ups help textile care companies on their way to becoming smart laundries. Elgar Straub, Managing Director, VDMA Textile Care, Fabric and Leather Technologies, explains how machine and plant manufacturers have benefited from their input: “In the field of mechanical engineering, an important role is played by start-ups offering technical solutions covering a broad spectrum of sectors, e.g., virtual machine commissioning and the optimisation of production process chains.”

Naturally, company founders in other disciplines are also putting forward their ideas. Against the background of the plastic waste debate, there are, for instance, numerous start-ups offering biodegradable packaging materials. As well, there are start-ups in the field of textile recycling, which process used workwear or laundry and thus contribute to the circular economy. And what does the future hold for the sector? One thing is for the experts certain: artificial intelligence and automation offer a great potential for ‘outsiders’ with genuine innovations to gain a foothold in the market. Improvements in the logistics chain of laundries and dry cleaners also have excellent chances of success.

Market entry at Texcare International Texcare
International from 27 November to 1 December 2021 offers start-ups an outstanding opportunity to draw attention to their services and to make contact with established companies. The Start-up Package of Messe Frankfurt includes a turnkey exhibition stand.

The prerequisites for participation:

  • The company was founded no more than ten years ago per 27 November 2021
  • The company employs max. ten people.
  • The annual turnover does not exceed € 1 million (net).
  • The start-up offers innovative products or services especially for the textile-care sector.

The product spectrum of Texcare International embraces machines and plant, laundry and cleaning substances, IT and logistics solutions and workwear and laundry.

More information:
texcare Startup Start-ups
Source:

Messe Frankfurt Exhibition GmbH

08.12.2020

Fraunhofer FEP: Boosting Innovations for COVID-19 Diagnostic, Prevention and Surveillance

The recently launched 6.1 million Euro project INNO4COV-19, funded by the European Commission (grant agreement no. 101016203), will support the marketing of new products to combat COVID-19 over the next two years, throughout Europe. The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP is contributing its know-how in sterilization using accelerated electrons and on near-to-eye visualization.

The €6.1 million project INNO4COV-19 is committed to supporting the commercialization of new products across Europe for combatting COVID-19 over the next two years. Looking for the fast development of products – from medical technologies to surveillance solutions - the project will boost innovation to tackle the new coronavirus, reinforcing Europe's technological leadership, and invigorating an industrial sector capable of protecting citizens' safety and well-being.

The recently launched 6.1 million Euro project INNO4COV-19, funded by the European Commission (grant agreement no. 101016203), will support the marketing of new products to combat COVID-19 over the next two years, throughout Europe. The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP is contributing its know-how in sterilization using accelerated electrons and on near-to-eye visualization.

The €6.1 million project INNO4COV-19 is committed to supporting the commercialization of new products across Europe for combatting COVID-19 over the next two years. Looking for the fast development of products – from medical technologies to surveillance solutions - the project will boost innovation to tackle the new coronavirus, reinforcing Europe's technological leadership, and invigorating an industrial sector capable of protecting citizens' safety and well-being.

Officially starting on October 1, the virtual kick-off took place on October 6 – 7, counting with the support of two European Commission officers.

The 11-partner consortium led by INL – International Iberian Nanotechnology Laboratory, is looking for efficient and fast solutions that can help in the fight against COVID-19 jointly with the other actively involved industrial and RTO partners.

The mission of INNO4COV-19 is to create a “lab-to-fab” platform and a collaboration resource where companies and reference laboratories will find the tools for developing and implementing innovative technologies – from idea assessment to market exploitation. This work will be carried out as part the European Union Coronavirus initiative and in strong collaboration with all the funded projects where to accelerate the time to market for any promising product.

INNO4COV-19 is set to assist up to 30 test cases and applications from several areas spanning from Medical technologies, Environmental Surveillance systems, Sensors, Protection of Healthcare workers and Artificial Intelligence and Data mining. To achieve this, INNO4COV-19 is awarding half of the budget to support 30 enterprises selected through a set number of open calls during the first year of the project.

The first call will be launched in November 2020 across several platforms. Awardees will receive up to €100,000 each and benefit from the INNO4COV-19 consortium's technical, regulatory, and business expertise.

Roll-to-Roll Equipment and Electron Beam Technology for Large Area Sterilization of textile materials
During pandemic events like COVID-19, MERS, SARS or Ebola a substantial shortage of sterile materials for medical uses was observed due to peak demands. Fraunhofer FEP will contribute their roll-to-roll equipment and electron beam technology for the purpose of large area sterilization of textile materials to the INNO4COV-19 project.

Usually the textile material is produced in non-sterile conditions and therefore must be sterilized before being delivered to the consumers (e. g. hospitals); Sterilization at product level (sterilizing the final manufactured masks) is limited in throughput, due to a high number of individual small pieces, that must be sterilized.

Project manager Dr. Steffen Günther of Fraunhofer FEP explains the role and aims of the institute in more detail: “INNO4COV-19 will establish and verify a process chain for high throughput (4500 m²/h) electron beam sterilization of fabric material in roll-form in a single TRL 7 pilot machine to allow efficient manufacturing of sterile face masks and other fabric based sterile products without the need to sterilize the final product.”

OLED Microdisplays for Detecting Infected People
Another topic of Fraunhofer FEP within INNO4COV-19 deals with the earliest possible detection of infected people. A widely used strategy to early identify individuals with disease symptoms is body temperature screening using thermal cameras.

One possibility to allow continuous body temperature monitoring, is the integration of a thermal camera into a smart wearable device. Therefore, Fraunhofer FEP is using their OLED microdisplay technology. This allows small (< 3 × 2 cm²), ultrathin (< 5 mm including control circuitry) and ultra-low power (< 5 mW) devices to show visual information. In combination with an infrared sensor a thermal imager will be realized to both measure body temperature and directly displays the result via near-to-eye visualization. The system can be embedded within smart glasses, hats, caps or personal face shields.

About INNO4COV-19 project:
Website: www.inno4cov19.eu
Please contact: info@inno4cov19.eu

 

Source:

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP

Photo: Messe Frankfurt Exhibition GmbH / Jens Liebchen
25.02.2020

AUTOMATION PROGRESSES ALONG THE LAUNDRY SECTOR

The productivity of a laundry depends on unbroken process flows and transparent commodity streams. Thanks to increasing digitalisation and consistent integration of data, the through-put of textiles in laundries is being continually improved. The solutions required for automation in the sector are therefore a high priority at Texcare International, from 20 to 24 June in Frankfurt am Main.
 

The productivity of a laundry depends on unbroken process flows and transparent commodity streams. Thanks to increasing digitalisation and consistent integration of data, the through-put of textiles in laundries is being continually improved. The solutions required for automation in the sector are therefore a high priority at Texcare International, from 20 to 24 June in Frankfurt am Main.
 
The be-all and end-all for the laundry sector is the ability to monitor the quantity, quality and storage location of the textiles that are circulating on site, at all times. The data collected form the basis for precise price calculations, throw up any weak points in the system and serve to provide documentation for third parties. But it is only when all the machinery and plant involved in a given textile service are interlinked on a single network that the logistics of the laundry service run seamlessly, with minimal down-time of the machinery, reduced quantities in circulation and the resultant increase in productivity that is closely associated with it.

Transparent tracking for each individual laundry item
Automation in the processing of workwear is already well advanced. As the dirty laundry is sorted on arrival, each item is recorded using an identification system such as a barcode or RFID technology. From this moment on, all the stages that the textiles undergo are controlled. ‘Readers’ or ‘gates’ on the premises enable each item to be recorded as it progresses through the system, right up to the point of order picking; and they monitor whether an item is sent to a repair station or directed into storage. In addition, high-frequency transponders (UHF tags) can monitor the movements of laundry items outside of the laundry: in hospitals, for instance, identification systems have been installed, which record the despatch and return of apparel and enable an extensive process of textile management via data transfer procedures.

Robots for the soiled laundry area
This already high degree of automation in a workwear laundry facility is, however, capable of still further refinement. Artificial intelligence can simplify the ‘dirty’ work in the reception area: robots separate and sort the soiled clothing and x-ray machines, cameras and metal detectors are used to identify any foreign bodies. The advantages of such systems are particularly in evidence in hospital laundries: medical instruments, which regularly find their way into the laundry bags, are automatically separated from the clothing, thus minimising damage to the items themselves and to the machinery. The useful life of the textiles is extended and costs are reduced. Moreover, there is no danger of infection for the staff.

Real-time laundry processes
Whilst individual control and traceability are already widespread in the professional treatment of work apparel, when it comes to flat linen, often only generalisations about quantity, quality and storage location for the textiles are possible. “In order to assess a business’s efficiency, calculate prices and efficiently control processes and procedures, laundries need reliable figures […],” observes Martin Rauch, CSO of the Jensen Group, who operate on a worldwide basis.

In the pursuit of automated production, ultra-modern information and communications technologies assume a key role. They synchronise the machines involved in a given production process and facilitate communication and cooperation between plant, product and the human being. This way, you get self-organising, flexible production with unbroken processes and high levels of utilisation of equipment. With the synchronisation of commodity streams and information flow in the laundry, all items arrive at the right processing station at the appropriate time. A central database controls all the processes in the entire laundry, regulates the machinery and the linked sub-systems, chooses the correct processing programmes and optimises machine use.
 
Data accompanies the laundry throughout
“Trolleys of laundry standing around, waiting times at the machines, excessive buffering and time spent searching for items are all lost capital […],” says Matthias Schäfer, who is responsible for product management, laundry logistics / smart laundry at Kannengiesser (Vlotho).

When data and goods flows are successfully synchronised throughout a flat-linen laundry, each washing station contributes its information along with that of other stations, right from the initial sorting of the soiled linen through to the folding machines. The laundry can, therefore, be monitored throughout the entire operation, as the information from each station is sent on with the item, either automatically or – after the drier – in the form of bar-coded labels. (“Stabilisation of production through the synchronisation of material and production flows.”)

RFID identification systems do indeed enable complete transparency to be built into the passage of goods through the various stages, as each chip or tag carries the necessary information for each individual item. In view of the high cost of the transponders, ‘chipping’ of flat linen is, however, currently an option for only very few laundries. So the textile care sector is waiting on more economical, more functionally reliable solutions from the machinery and plant manufacturers.
 
Smart to the very end of the chain
Further potential for automation resides in the picking and packaging. Collecting together items for delivery manually is subject to error and that leads to customer complaints. With intelligent storage facilities and transport solutions, smart stacking management and the networking of equipment with the laundry’s information system, order picking becomes simpler, quicker and more reliable. To ensure that the integration can function, modern machines are equipped with interfaces, so that each new installation can be linked seamlessly into a laundry’s existing system. The same goes for accessory machines, which exchange all the important information relating to preparation and repair online.

User friendly apps
Digital developments are not only large scale: they are to be found on a smaller scale as well. For launderettes, too, apps provide important information on the status of the equipment, enable operators to see what is going on, even at considerable distances, as well as being able to provide digital payment models. Moreover, in heavily used laundry facilities, they can take on the entire job of time management, as Andreas Barduna, Head of Business Management, Miele Professional (Gütersloh) is very aware.

At Texcare International, from 20 to 24 June 2020, machinery and plant manufacturers from all over the world will be presenting their smart solutions for the laundries of tomorrow. The focus will be very much on artificial intelligence and smart information systems, which will help maximize the degree of automation within the sector.

Hong Kong Photo: Pixabay
17.07.2018

CHINESE ALIBABA GROUP BUILDS LOGISTICS CENTER IN HONG KONG

  • Investment costs of USD 1.5 billion
  • State-of-the-art technology to be used

Hong Kong (GTAI) - Chinese e-commerce giant Alibaba wants to build up a global sales network. The Hong Kong Special Administra-tive Region (SAR) plays an important role in its strategy. A 380,000 square meter logistics center is to be built there, in which state-of-the-art warehouse and robot technology will be used. According to the plan, it will be operational by 2023. Foreign specialist suppliers can hope for orders.

The Chinese Alibaba Group is the largest e-commerce provider in the country. Now it wants to ex-pand into other markets. According to the company announcement, more than USD 1.5 billion are to be invested in the development of a worldwide distribution and logistics network.

  • Investment costs of USD 1.5 billion
  • State-of-the-art technology to be used

Hong Kong (GTAI) - Chinese e-commerce giant Alibaba wants to build up a global sales network. The Hong Kong Special Administra-tive Region (SAR) plays an important role in its strategy. A 380,000 square meter logistics center is to be built there, in which state-of-the-art warehouse and robot technology will be used. According to the plan, it will be operational by 2023. Foreign specialist suppliers can hope for orders.

The Chinese Alibaba Group is the largest e-commerce provider in the country. Now it wants to ex-pand into other markets. According to the company announcement, more than USD 1.5 billion are to be invested in the development of a worldwide distribution and logistics network.

The Small Special Administrative Region (SVR) plays a deciding role in its expansion strategy. It is home of the largest cargo airport in the world. According to the Hong Kong Civil Aviation Department, the volume there amounted to almost 5 million tons in 2017. According to the prognosis of the Airport Authority, the state operator, it should reach almost 9 million tons by 2030.

Hong Kong offers decisive locational advantages for international logistics groups and e-commerce providers. According to calculations by the Air-port Authority, around half of the world's population can be reached within five flight hours. As there are no customs duties or VAT and the SVR has an efficient bureaucracy, a fast dispatch is practically guaranteed. This fits into Alibaba's strategy, as the group wants to limit the delivery time for or-ders from abroad to a maximum of 72 hours.

Handling capacity of up to 1.7 million tons of freight
The e-commerce giant therefore wants to set up one of its worldwide distribution centers in Hong Kong via its logistics arm called Cainiao - others are planned in Hangzhou, Dubai, Kuala Lumpur, Liège and Moscow. It should get a size of around 380,000 square meters in size and will be able to handle a maximum of 1.7 million tons of freight. The corresponding investment costs will summarize to around USD 1.5 billion. It is scheduled to go into operation by 2023.

The group informed through the South China Morning Post (which it owns) that the new logistics center will be equipped with state-of-the-art technology. An automatic warehouse and highly efficient air conditioning are planned. According to industry experts, artificial intelligence-based systems and numerous robots will be used.

The project should thus also generate business opportunities for foreign suppliers of building and storage technology. There are hardly any sector manufacturers in Hong Kong itself. There are corresponding producers in China. However, they cannot always offer the most modern and best products and services available on the market. Particularly there is a pent-up demand for software.

Contact addresses
Designation Internet address Note
Alibaba https://www.alibabagroup.com/en/news/article?news=p180606 (homepage); https://www.alibabagroup.com/en/news/article?news=p180606 (project press release) Biggest e-commerce pro-vider in China
South China Morning Post http://www.scmp.com/frontpage/international (homepage); http://www.scmp.com/tech/enterprises/article/2149561/alibaba-affiliate-cainiao-forms-jv-build-us15-billion-logistics
(project review)
Renowned English-language newspaper. Be-longs to Alibaba
Civil Aviation Department https://www.cad.gov.hk/english/home.html (homepage)
https://www.cad.gov.hk/english/facts_statstics.html
(Hong Kong Air Traffic Statistics)
Supreme Aviation Authority Hong Kong

 

Further information
For more information on Hong Kong's economy, industries, business practices, law, customs, tenders, and development projects, visit http://www.gtai.com/hongkong.
The page http://www.gtai.de/asien-pazifik offers an overview of various topics in the region.

Source:

Roland Rohde, Germany Trade & Invest www.gtai.de