Research publications

31.07.2025

Development of Hybrid Yarn Structures from Carbon, Stainless Steel, and Elastomer Fibers for Composite Applications

Fibres Yarns Composites Recycling Sustainability

Abstract

As part of the IGF research project 01IF22916N, a complete, industry-ready process chain for producing three-component hybrid yarns from rCF, MF, and EF was successfully developed at the ITM of TU Dresden. The process chain comprises fiber preparation, carding, and drafting to form slivers, followed by modified flyer spinning to produce hybrid yarns.

Proof of concept was provided through the production of hybrid yarns with defined fiber volume contents and a functional demonstrator. Fig. 3 illustrates the full process chain from fiber preparation to demonstrator production from rCF, MF and EF at ITM. The resulting yarns ranged from 1500 to 3500 tex and were successfully processed into textile preforms. The resulting composites demonstrated excellent mechanical performance: a maximum flexural strength of 806 ± 18 MPa, flexural modulus of 83 ± 4 GPa, and an impact strength of up to 117 ± 17 kJ/m².

The results show that yarn twist significantly influences composite mechanical properties: moderate twist enhances flexural behavior, while higher twist improves impact resistance. By adjusting the yarn twist level, the mechanical performance of hybrid composites can be effectively tailored.

These novel hybrid yarns are particularly suited for producing cost-efficient, high-performance thermoset composites with complex geometries. Their application-specific performance and process-integrated production offer high innovation and market potential, especially in the fields of materials engineering, lightweight design, sustainability, and resource efficiency. For small and medium-sized enterprises (SMEs) in the textile industry, this technology provides opportunities to develop advanced fiber-reinforced products and establish themselves as key suppliers in sectors such as automotive, mechanical engineering, wind energy, aerospace, medical technology, and sports equipment.

Report

Introduction

The size of the CF-CFRP (carbon fiber-reinforced plastics) market was estimated at USD 21.12 billion in 2023. It is projected to grow from USD 22.57 billion in 2024 to USD 38.4 billion by 2032, with a CAGR of approximately 6.86% during the forecast period (2024–2032) [1]. Due to their high specific stiffness and strength, CFRPs are widely used in the automotive, sports, leisure, and aerospace industries [2]. However, CFRP components are brittle under impact loading, which can result in catastrophic failure and severe splintering [3]. This brittleness raises concerns for the use of thermoset CFRP structures in safety-critical components such as wind turbine blades or automotive B-pillars.

Current hybridization concepts aim to combine materials with high stiffness, strength, and ductility [4]. Existing approaches integrate carbon fibers (CF) with stainless steel fibers (MF) or elastomer fibers (EF) using metal or elastomer films in fiber-metal laminates (FMLs), such as CARALL [5–8], or in elastomer-based laminates, such as KRAIBON [9–14]. Metal films offer higher energy absorption due to their plastic deformability and elongation at break of up to 20%, surpassing CFRP and carbon/aramid hybrid composites [15–17]. Elastomer films reduce hazardous splintering under dynamic loading due to their elastic deformation behavior [9]. While such multilayer systems improve impact and splinter resistance, they also carry a high risk of delamination [18]. Moreover, there is a lack of cost-effective and sustainable composites with enhanced impact and splinter properties that fully utilize the benefits of their individual components.

Objective

The goal of this research project was the simulation-based development of novel three-component hybrid yarns with micro-scale hybridization using three distinct material concepts. These yarns were then used to produce functional composite structures for sustainable lightweight applications. By strategically combining ductile metal fibers (MF), highly elastic elastomer fibers (EF), and high-stiffness, high-strength recycled carbon fibers (rCF), scalable composites with tailored mechanical properties were developed.

The developed hybrid yarns form the basis for application-specific composites with high energy absorption capacity and improved damage resistance.

 

Hybrid Yarn Structures and Related Composites: Development and Characterization

Development and Production of Hybrid Yarns Using Flyer Spinning Technology

Starting from the selected and characterized rCF and EF fiber materials with an average fiber length of 80 mm and defined blend ratios, the fibers were prepared using mechanical pre-opening and blending units. The pre-opened and pre-mixed fibers were processed using a lab-scale carding machine to produce card slivers of rCF and EF. Characterization of these slivers revealed a CF damage level of 10–25%, while EF fibers showed no length reduction.

To avoid damaging the stainless steel fibres during carding, card slivers were firstly produced that were either 100% rCF or a blend of rCF and EF. These were combined with 100% MF slivers to develop sandwich-type structures (rCF/MF or rCF/EF/MF slivers), which served as feed material for the drafting process. The slivers were drafted multiple times to enhance fiber blending and homogeneity. These drafted slivers were then used to produce hybrid yarns.

The ITM’s specialized flyer spinning machine was modified to optimize drafting mechanics, sliver feed, and machine settings to avoid fiber misalignment. Based on experimental investigations, optimal settings were determined, and hybrid yarns with a yarn count of 1500 tex and twist levels ranging from 40 to 150 T/m were produced. These yarns were characterized in accordance with DIN EN ISO 13934-1, evaluating unevenness, yarn structure, and tensile behavior, and were subsequently used to produce composite.

Manufacturing of Recycled Carbon Fiber-Reinforced Composite

Using the developed hybrid yarns, unidirectional (UD) composites were produced via the resin transfer molding (RTM) process. The hybrid yarns were wound under constant tension onto a frame and consolidated under optimized parameters. The resin system consisted of Hexion RIMH 135 and hardener Hexion RIMH 137.

Composite characterization followed standardized test methods. Tensile specimens were prepared based on DIN EN ISO 527-5/A/2, with tensile testing conducted according to             DIN EN ISO 527-4. The flexural properties were evaluated in accordance with DIN EN ISO 14125 and impact resistance was assessed using DIN EN ISO 179-2 (Charpy method). The compression-after-impact (CAI) performance was measured following DIN ISO 18352. Additionally, a custom test rig was developed to analyze splintering behavior using a ZwickRoell HTM 5020 high-speed testing machine. Puncture resistance was evaluated according to DIN EN ISO 6603-2.

Selected Results and Discussion

Fig. 1 presents the relationship between flexural strength and modulus for various twist levels in hybrid yarn-based composites at a constant fiber volume content of 50 vol%. Both a CF-filament-based reference composite and three UD composites made from rCF/MF hybrid yarns (90 wt% rCF / 10 wt% MF) were investigated, differing only in yarn twist (40, 80 and 120 T/m). The reference composite achieved 725 ± 35 MPa flexural strength and a modulus of 74 ± 8 GPa. Notably, the T40 hybrid variant surpassed these values, reaching 806 ± 18 MPa and 83 ± 4 GPa, respectively.

However, increasing the yarn twist (80 and 120 T/m) led to a continuous decline in flexural properties. The intensified helical structure reduces fiber alignment in the load direction, which weakens load transfer and overall flexural performance.

Fig. 2 shows the impact strength of composites made from rCF/MF hybrid yarns at varying yarn twist levels. Results indicate a trend of increasing impact strength with higher twist (40 → 120 T/m), from 85 kJ/m² to 117 kJ/m². This improvement is attributed to a more compact yarn structure, enhanced fiber cohesion, and improved energy absorption during impact. Additionally, the tighter fiber arrangement enhances load transfer and structural integrity by reducing the number of loose fiber ends, resulting in greater resistance to sudden loads.

Summary

As part of the IGF research project 01IF22916N, a complete, industry-ready process chain for producing three-component hybrid yarns from rCF, MF, and EF was successfully developed at the ITM of TU Dresden. The process chain comprises fiber preparation, carding, and drafting to form slivers, followed by modified flyer spinning to produce hybrid yarns.

Proof of concept was provided through the production of hybrid yarns with defined fiber volume contents and a functional demonstrator. Fig. 3 illustrates the full process chain from fiber preparation to demonstrator production from rCF, MF and EF at ITM. The resulting yarns ranged from 1500 to 3500 tex and were successfully processed into textile preforms. The resulting composites demonstrated excellent mechanical performance: a maximum flexural strength of 806 ± 18 MPa, flexural modulus of 83 ± 4 GPa, and an impact strength of up to 117 ± 17 kJ/m².

The results show that yarn twist significantly influences composite mechanical properties: moderate twist enhances flexural behavior, while higher twist improves impact resistance. By adjusting the yarn twist level, the mechanical performance of hybrid composites can be effectively tailored.

These novel hybrid yarns are particularly suited for producing cost-efficient, high-performance thermoset composites with complex geometries. Their application-specific performance and process-integrated production offer high innovation and market potential, especially in the fields of materials engineering, lightweight design, sustainability, and resource efficiency. For small and medium-sized enterprises (SMEs) in the textile industry, this technology provides opportunities to develop advanced fiber-reinforced products and establish themselves as key suppliers in sectors such as automotive, mechanical engineering, wind energy, aerospace, medical technology, and sports equipment.

Acknowledgements

The IGF project 01IF22916N of the research association Forschungskuratorium Textil e.V. was funded via the DLR within the framework of the program for the promotion of industrial collaborative research and development (IGF) by the German Federal Ministry for Economic Affairs and Climate Action, based on a resolution of the German Bundestag. We thank the aforementioned institutions for their financial support.

 

References

  1. WiseGuyReports. (n.d.). CF & CFRP Market Report. Accessed on 29.07.2025, https://www.wiseguyreports.com/de/reports/cf-cfrp-market
  2. E. Witten; V. Mathes; M. Sauer; M. Kühnel: Composites-Marktbericht 2023 - Marktentwicklun-gen, Trends, Ausblicke und Herausforderungen. Deutsche Fachverband für Faserverbundkunststoffe/Composites - AVK, 2023
  3. J. Striewe; C. Reuter; K.-H. Sauerland; T. Tröster: Manufacturing and crashworthiness of fabric-reinforced thermoplastic composites. Thin-Walled Structures 123(2018), Pp. 501-508. https://doi.org/10.1016/j.tws.2017.11.011
  4. D. Nestler: Beitrag zum Thema Verbundwerkstoffe - Werkstoffverbunde: Status quo und For-schungsansätze. Chemnitz: Univ.-Verl., 2014. – ISBN 9783944640129
  5. ZHU, W.; XIAO, H.; WANG, J.; LI, X.: Effect of Different Coupling Agents on Interfacial Properties of Fibre-Reinforced Aluminum Laminates. Materials (Basel, Switzerland) 14(2021)4. https://doi.org/10.3390/ma14041019
  6. GUPTA, R. K.; MAHATO, A.; BHATTACHARYA, A.: Notch Shape Influence on Damage Evolution of Al/CFRP Laminates Under Tensile Loading: Experimental and Numerical Analysis. Appl Compos Mater (2022). https://doi.org/10.1007/s10443-022-10051-2
  7. TRZEPIECIŃSKI, T.; NAJM, S. M.; SBAYTI, M.; BELHADJSALAH, H.; SZPUNAR, M.; LEMU, H. G.: New Advances and Future Possibilities in Forming Technology of Hybrid Metal–Polymer Composites Used in Aerospace Applications. J. Compos. Sci. 5(2021)8, Pp. 217 f. https://doi.org/10.3390/jcs5080217
  8. PONNARENGAN, H.; KAMARAJ, L.; BALACHANDRAN, S. R.; KATHAR BASHA, S.: Evaluation of me-chanical properties of novel GLARE laminates filled with nanoclay. Polym. Compos. 42(2021)8, Pp. 4015-4028. https://doi.org/10.1002/pc.26113
  9. KRAIBON®: https://www.kraiburg-rubber-compounds.com/kraibon (31.07.2025)
  10. D. Düring; L. Weiß; D. Stefaniak; N. Jordan; C. Hühne: Low-velocity impact response of composi-te laminates with steel and elastomer protective layer. Composite Structures 134(2015), Pp. 18-26. https://doi.org/10.1016/j.compstruct.2015.08.001
  11. E. Stelldinger; A. Kühhorn; M. Kober: Experimental evaluation of the low-velocity impact dama-ge resistance of CFRP tubes with integrated rubber layer. Composite Structures 139(2016), Pp. 30-35. https://doi.org/10.1016/j.compstruct.2015.11.069
  12. E. Sarlin; M. Apostol; M. Lindroos; V.-T. Kuokkala; J. Vuorinen; T. Lepistö; M. Vippola: Impact properties of novel corrosion resistant hybrid structures. Composite Structures 108(2014), Pp. 886-893. https://doi.org/10.1016/j.compstruct.2013.10.023
  13. LI, Z.; ZHANG, J.; JACKSTADT, A.; KÄRGER, L.: Low-velocity impact behavior of hybrid CFRP-elastomer-metal laminates in comparison with conventional fiber-metal laminates. 02638223 287(2022), Pp. 115340 f. https://doi.org/10.1016/j.compstruct.2022.115340
  14. FLEISCHER, J. (HRSG.): Intrinsische Hybridverbunde für Leichtbautragstrukturen – Grundlagen der Fertigung, Charakterisierung und Auslegung. Berlin, Heidelberg: Springer Vieweg, 2021. – ISBN 978-3-662-62832-4
  15. Y. Swolfs; P. De Cuyper; M.G. Callens; I. Verpoest; L. Gorbatikh: Hybridisation of two ductile materials Steel fibre and self-reinforced polypropylene composites. Composites Part A: Applied Science and Manufacturing 100(2017), Pp. 48-54. https://doi.org/10.1016/j.compositesa.2017.05.001
  16. H.J. Koslowski: Chemiefaser-Lexikon. Deutscher Fachverlag, 2008. – ISBN 3871508764
  17. H. Schürmann: Konstruieren mit Faser-Kunststoff-Verbunden. Springer-Verlag GmbH, 2007. – ISBN 3540721894
  18. N. Montinaro; D. Cerniglia; G. Pitarresi: Evaluation of interlaminar delaminations in titanium-graphite fibre metal laminates by infrared NDT techniques. NDT & E International 98(2018), Pp. 134-146. https://doi.org/10.1016/j.ndteint.2018.05.004

 

 

Authors: Mahmud Hossain Anwar Abdkader Tobias Lang Thomas Gereke Chokri Cherif

Technische Universität Dresden
Fakultät Maschinenwesen
Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM)
01062 Dresden

https://tu-dresden.de/mw/itm

More entries from TU Dresden, Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik ITM

31.07.2025

Entwicklung von Hybridgarnstrukturen aus Carbon-, Edelstahl- und Elastomerfasern für Compositeanwendungen

Fibres Yarns Composites Recycling Sustainability

Abstract

Im Rahmen des IGF-Forschungsvorhabens 01IF22916N wurde am Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM) der TU Dresden eine durchgängige Prozesskette zur industriellen Herstellung von dreikomponentigen Hybridgarnen aus recycelten Carbonfasern (rCF), Metallfasern (MF) und Elastomerfasern (EF) erfolgreich entwickelt und umgesetzt. Die entwickelte Prozesskette umfasst die Faseraufbereitung und Charakterisierung, Krempel- und Verstreckungsprozess zur Bildung eines Faserbandes und die modifizierte Garnbildung im Flyer zur Herstellung der Hybridgarne. Der Eignungsnachweis der Technologie erfolgte durch die Herstellung dreikomponentiger Hybridgarne mit definierten Faservolumengehalten sowie durch die Fertigung eines Demonstrators. Abb. 3 zeigt die vollständige Prozesskette von der Faseraufbereitung bis zur Demonstratorherstellung aus rCF, MF und EF am ITM. Die realisierten Hybridgarne weisen Feinheiten zwischen 1500 tex und 3500 tex auf und konnten erfolgreich zu textilen Halbzeugen weiterverarbeitet werden. Die daraus hergestellten Composites zeigen hervorragende mechanische Eigenschaften: eine maximale Biegefestigkeit von 806 ± 18 MPa sowie ein maximales Biegemodul von 83 ± 4 GPa. Die maximale Schlagzähigkeit liegt bei 117±17 kJ/m². Die Untersuchungsergebnisse zeigen, dass die Garndrehung einen signifikanten Einfluss auf die mechanischen Eigenschaften des Verbundmaterials ausübt. Eine moderate Garndrehung kann positiv auf die Verbundbiegeeigenschaften auswirken, während eine höhere Garndrehung vorteilhaft auf die Verbundschlagfestigkeit auswirken. Insgesamt zeigt sich, dass durch die gezielte Einstellung der Garndrehung das mechanische Verhalten der Hybridverbunde erheblich beeinflusst und optimiert werden kann.

Die neuartigen Hybridgarne eignen sich besonders für die Herstellung kosteneffizienter duroplastischer Hochleistungsverbunde mit komplexer Geometrie. Durch ihre anwendungsbezogene Leistungsfähigkeit und die zugrunde liegende prozessintegrierte Technologie verfügen sie über ein hohes Innovations- und Marktpotenzial – insbesondere in den Bereichen Werkstofftechnik, Leichtbau, Nachhaltigkeit und Ressourceneffizienz. Für kleine und mittlere Unternehmen (KMU) der Textilindustrie eröffnet sich damit die Möglichkeit, innovative Produkte und Technologien für den Faserverbundmarkt zu entwickeln und sich als leistungsfähige Zulieferer für Branchen wie Automobilbau, Maschinenbau, Luftfahrt, Medizintechnik und Sportgeräteindustrie zu positionieren.

Report

Einleitung

Die Größe des CF-CFK-Marktes wurde im Jahr 2023 auf 21,12 Milliarden US-Dollar geschätzt. Die Branche des CF-CFK-Markets wird voraussichtlich von 22,57 Milliarden US-Dollar im Jahr 2024 auf 38,4 Milliarden US-Dollar im Jahr 2032 wachsen. Die Markt-CAGR (Wachstumsrate) wird im Prognosezeitraum 2024–2032 voraussichtlich bei etwa 6,86% liegen [1]. Dank ihrer hohen gewichtsspezifischen Steifigkeiten und Festigkeiten finden CFK breite Anwendung in der Automobil-, Sport-, Freizeit- sowie Luft- und Raumfahrtindustrie [2]. Jedoch sind CFK-Bauteile bei Schlagbelastung sehr spröde, was zu katastrophalen Schäden und starker Splitterbildung führen kann [3]. Deshalb ist der Einsatz von duroplastischen CFK-Strukturen in sicherheitsrelevanten Komponenten, wie Rotorblättern von Windkraftanlagen und PKW-B-Säulen, kritisch zu betrachten. Aktuelle Hybridisierungskonzepte zielen darauf ab, Materialien mit hoher Steifigkeit, Festigkeit und Duktilität zu vereinen [4]. Bestehende Ansätze kombinieren Carbonfasern (CF) mit Edelstahlfasern (MF) oder Elastomerfasern (EF) in Schichten aus Metallfolien und CFK als Faserverbund-Metall-Laminate (FML), bspw. CARALL [5-8], oder Elastomerfolien und CFK als Faserverbundlaminate, bspw. KRAIBON [9-14]. Metallfolien bieten aufgrund ihrer plastischen Verformbarkeit mit Bruchdehnungen von bis zu 20 % eine höhere Energieabsorption als CFK und Carbon/Aramid-Hybridcomposites [15-17]. Elastomerfolien reduzieren durch ihre elastische Verformbarkeit die gefährliche Splitterbildung unter dynamischer Belastung [9]. Diese Schichtsysteme verbessern das Impact- und Splitterverhalten zwar, bergen jedoch ein hohes Delaminationsrisiko [18]. Darüber hinaus fehlen kostengünstige und nachhaltige Composites mit geeigneten Impact- und Splittereigenschaften, die die Vorteile der Einzelkomponenten voll ausschöpfen und kostengünstig sowie nachhaltig sind.

Zielsetzung

Das Ziel des Forschungsvorhabens war die simulationsgestützte Entwicklung neuartiger Dreikomponenten-Hybridgarne, die auf Mikroebene hybridisierter sind, auf Basis dreier unterschiedlicher Materialkonzepte sowie deren Umsetzung in funktionale Compositestrukturen für nachhaltige Leichtbauanwendungen. Durch die gezielte Kombination duktiler Metallfasern (MF), hochelastischer Elastomerfasern (EF) sowie hochsteifer und hochfester recycelter Carbonfasern (rCF) sollten Verbundwerkstoffe mit skalierbaren mechanischen Eigenschaften entstehen.

Diese entwickelten Hybridgarne bildeten die Grundlage für die maßgeschneiderte Entwicklung von Composites für anwendungsorientierte Leichtbaulösungen mit hohem Energieabsorptionspotenzial und erhöhter Schadensresistenz.

 

Hybridgarnstrukturen und Composites: Entwicklung und Charakterisierung

Entwicklung und Fertigung von Hybridgarnen mittels Flyerspinntechnologie

Ausgehend von den ausgewählten und charakterisierten Fasermaterialien rCF und EF mit einer mittleren Faserausgangslänge von 80 mm und mit einem definierten Mischungsverhältnis wurden die Fasern mithilfe mechanischer Voröffnungs- und Vormischvorrichtungen aufbereitet. Anschließend wurden die vorgeöffneten und vorgemischten Fasern eine Speziallaborkrempel zugeführt, um Krempelbänder aus rCF und EF zu entwickeln. Die Charakterisierung der Krempelbänder zeigte, dass der Schädigungsgrad der Carbonfasern (CF) zwischen 10 und 25 % lag und die EF keine Fasereinkürzung aufweist.

Zum Schutz der Edelstahlfasern wurde zunächst ein Faserband aus 100 % rCF oder aus rCF und EF mit definierten Mischungsverhältnissen hergestellt. Anschließend wurden aus diesen und 100 % MF-Bändern Sandwichbandstrukturen (rCF/MF-Band oder rCF/EF/MF-Band) hergestellt, die als Ausgangsmaterial für die Strecke dienten. Zur Verbesserung der Gleichmäßigkeit des Faserbandes und zur besseren Durchmischung von rCF, EF und MF in der Faserstruktur wurde das Band mehrfach verstreckt. Die hergestellten Streckenbänder stehen für die weitere Entwicklung von Hybridgarnen zur Verfügung.

Zur Entwicklung von Hybridgarnen wurde der ITM-Spezialflyer hinsichtlich des verzugsstörungsfreien Streckwerks, der Bandzuführelemente und der Maschineneinstellparameter modifiziert. Anschließend wurden experimentelle Untersuchungen durchgeführt. Aus den ermittelten optimalen Einstellungen des ITM-Spezialflyers wurden Hybridgarne mit einer Feinheit von 1500 tex und verschiedenen Garndrehungen von 40-150 T/m hergestellt. Die entwickelten Hybridgarne wurden in Anlehnung an DIN EN ISO 13934-1 hinsichtlich Ungleichmäßigkeit, Garnstruktur und Kraft-Dehnungsverhalten charakterisiert und stehen für die Herstellung von Verbundplatten zur Verfügung.

Fertigung von recycelten carbonfaserverstärkten Verbundplatten

Auf Basis der entwickelten Hybridgarne wurden unidirektionale (UD) Verbundplatten mittels des RTM-Verfahrens (Resin Transfer Molding) hergestellt und charakterisiert. Hierzu wurden die Hybridgarne zunächst unter konstanter Spannung gleichmäßig auf einen Wickelrahmen gewickelt und anschließend mit optimierten Parametern konsolidiert. Als Harzsystem kam das Injektionsharz Hexion RIMH 135 in Kombination mit dem Härter Hexion RIMH 137 zum Einsatz.

Im Rahmen der Verbundcharakterisierung kamen mehrere genormte Prüfverfahren zur Anwendung. Die Probekörper für den Verbundzugversuch wurden in Anlehnung an DIN EN ISO 527-5/A/2 hergestellt und die Zugprüfung erfolgte gemäß DIN EN ISO 527-4. Zur Bestimmung der Biegeeigenschaften faserverstärkter Kunststoffe wurde die Norm DIN EN ISO 14125 herangezogen und die instrumentierte Schlagprüfung erfolgte nach DIN EN ISO 179-2, welche die Charpy-Schlageigenschaften beschreibt. Zur Bewertung der Restdruckfestigkeit nach Schlagbeanspruchung kam das CAI-Verfahren gemäß DIN ISO 18352 zum Einsatz. Ergänzend wurde ein Prüfstand zur optischen Analyse des Splitterverhaltens entwickelt, wobei die Hochgeschwindigkeitsprüfmaschine HTM 5020 von ZwickRoell zum Einsatz kam. Die Durchstoßversuche orientierten sich an der Norm DIN EN ISO 6603-2.

 

Ergebnisse und Diskussion (Auswahl)

Das in Abb. 1 dargestellte Diagramm zeigt den Zusammenhang zwischen der Verbundbiegefestigkeit und dem Biegemodul bei verschiedenen Garndrehungen eines Faserverbundmaterials mit einem konstanten Faservolumenanteil von 50 Vol.- %. Es wurden sowohl ein Referenzverbund aus CF-Filamentgarnen als auch drei Varianten eines unidirektionalen (UD) Verbunds untersucht, die aus entwickelten rCF/MF-Hybridgarnen bestehen. Diese Hybridgarne setzen sich aus 90 Masse- % recycelten Carbonfasern (rCF) und 10 Masse-% Metallfasern (MF) zusammen. Sie unterscheiden sich ausschließlich in der Garndrehung (40, 80 und 120 T/m). Der Referenzverbund erreicht mit einer Biegefestigkeit von etwa 725 ± 35 MPa und einem Biegemodul von ca. 74 ± 8 GPa bereits ein gutes mechanisches Eigenschaftsprofil. Bemerkenswert ist jedoch, dass die Variante mit moderater Garndrehung (T40) diese Werte übertrifft: Sie erreicht eine Biegefestigkeit von 806 ± 18 MPa und ein Biegemodul von 83 ± 4 GPa und erzielt damit die höchsten Werte innerhalb der untersuchten Proben. Mit zunehmender Garndrehung (T80 und T120) nehmen hingegen die Verbundbiegefestigkeit und das Biegemodul stetig ab. Die verstärkte Helixstruktur führt zu einer weniger effektiven Ausrichtung der Fasern in Längsrichtung. Dadurch wird die tragende Wirkung in Faserrichtung reduziert und die Verbundwirkung unter Biegebelastung geschwächt.

Die Abb. 2 zeigt die Schlagfestigkeit von Verbundwerkstoffen, die auf Basis neu entwickelter Hybridgarne aus recycelten Carbonfasern (rCF) und gehobelten Metallfasern (MF) hergestellt wurden. Dabei wurde die Schlagzähigkeit in Abhängigkeit von der Garndrehung untersucht. Es wurden drei Verbundplatten mit unterschiedlichen Garndrehungen (T40, T80 und T120) analysiert. Die Ergebnisse verdeutlichen, dass die Schlagfestigkeit tendenziell mit steigender Garndrehung (T40 → T120) zunimmt. Bei einer niedrigen Drehung (T40) beträgt die Schlagfestigkeit etwa 90 kJ/m² und bei der höchsten Drehung (T120) eine deutliche Steigerung der Schlagzähigkeit auf etwa 117±17 kJ/m². Dies legt nahe, dass eine höhere Drehung zu einer verbesserten Mikrostruktur und somit zu einer effizienteren Energieaufnahme bei Schlagbelastung führt. Dadurch erhöht sich die Kohäsion zwischen den Fasern, was die Energieaufnahmefähigkeit beim Schlag verbessert. Zudem bewirkt die engere Verspannung der Fasern eine bessere Lastübertragung im Verbund. Eine höhere Garndrehung reduziert auch die Anzahl loser Faserenden, was die strukturelle Integrität steigert. Insgesamt resultiert daraus ein widerstandsfähigeres Material gegenüber schlagartiger Beanspruchung.

Zusammenfassung

Im Rahmen des IGF-Forschungsvorhabens 01IF22916N wurde am Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM) der TU Dresden eine durchgängige Prozesskette zur industriellen Herstellung von dreikomponentigen Hybridgarnen aus recycelten Carbonfasern (rCF), Metallfasern (MF) und Elastomerfasern (EF) erfolgreich entwickelt und umgesetzt. Die entwickelte Prozesskette umfasst die Faseraufbereitung und Charakterisierung, Krempel- und Verstreckungsprozess zur Bildung eines Faserbandes und die modifizierte Garnbildung im Flyer zur Herstellung der Hybridgarne. Der Eignungsnachweis der Technologie erfolgte durch die Herstellung dreikomponentiger Hybridgarne mit definierten Faservolumengehalten sowie durch die Fertigung eines Demonstrators. Abb. 3 zeigt die vollständige Prozesskette von der Faseraufbereitung bis zur Demonstratorherstellung aus rCF, MF und EF am ITM. Die realisierten Hybridgarne weisen Feinheiten zwischen 1500 tex und 3500 tex auf und konnten erfolgreich zu textilen Halbzeugen weiterverarbeitet werden. Die daraus hergestellten Composites zeigen hervorragende mechanische Eigenschaften: eine maximale Biegefestigkeit von 806 ± 18 MPa sowie ein maximales Biegemodul von 83 ± 4 GPa. Die maximale Schlagzähigkeit liegt bei 117±17 kJ/m². Die Untersuchungsergebnisse zeigen, dass die Garndrehung einen signifikanten Einfluss auf die mechanischen Eigenschaften des Verbundmaterials ausübt. Eine moderate Garndrehung kann positiv auf die Verbundbiegeeigenschaften auswirken, während eine höhere Garndrehung vorteilhaft auf die Verbundschlagfestigkeit auswirken. Insgesamt zeigt sich, dass durch die gezielte Einstellung der Garndrehung das mechanische Verhalten der Hybridverbunde erheblich beeinflusst und optimiert werden kann.

Die neuartigen Hybridgarne eignen sich besonders für die Herstellung kosteneffizienter duroplastischer Hochleistungsverbunde mit komplexer Geometrie. Durch ihre anwendungsbezogene Leistungsfähigkeit und die zugrunde liegende prozessintegrierte Technologie verfügen sie über ein hohes Innovations- und Marktpotenzial – insbesondere in den Bereichen Werkstofftechnik, Leichtbau, Nachhaltigkeit und Ressourceneffizienz. Für kleine und mittlere Unternehmen (KMU) der Textilindustrie eröffnet sich damit die Möglichkeit, innovative Produkte und Technologien für den Faserverbundmarkt zu entwickeln und sich als leistungsfähige Zulieferer für Branchen wie Automobilbau, Maschinenbau, Luftfahrt, Medizintechnik und Sportgeräteindustrie zu positionieren.

 

Danksagung

Das IGF-Vorhaben 01IF22916N der Forschungsvereinigung Forschungskuratorium Textil e.V. wurde über das DLR im Rahmen des Programms zur Förderung der industriellen Gemeinschaftsforschung und -entwicklung (IGF) vom Bundesministerium für Wirtschaft und Klimaschutz aufgrund eines Beschlusses des Deutschen Bundestages gefördert. Wir danken den genannten Institutionen für die Bereitstellung der finanziellen Mittel.

 

Literaturangaben

  1. WiseGuyReports. (n.d.). CF & CFRP Market Report. Abgerufen am [29.07.2025], von https://www.wiseguyreports.com/de/reports/cf-cfrp-market
  2. E. Witten; V. Mathes; M. Sauer; M. Kühnel: Composites-Marktbericht 2023 - Marktentwicklun-gen, Trends, Ausblicke und Herausforderungen. Deutsche Fachverband für Faserverbundkunststoffe/Composites - AVK, 2023
  3. J. Striewe; C. Reuter; K.-H. Sauerland; T. Tröster: Manufacturing and crashworthiness of fabric-reinforced thermoplastic composites. Thin-Walled Structures 123(2018), S. 501-508. https://doi.org/10.1016/j.tws.2017.11.011
  4. D. Nestler: Beitrag zum Thema Verbundwerkstoffe - Werkstoffverbunde: Status quo und For-schungsansätze. Chemnitz: Univ.-Verl., 2014. – ISBN 9783944640129
  5. ZHU, W.; XIAO, H.; WANG, J.; LI, X.: Effect of Different Coupling Agents on Interfacial Properties of Fibre-Reinforced Aluminum Laminates. Materials (Basel, Switzerland) 14(2021)4. https://doi.org/10.3390/ma14041019
  6. GUPTA, R. K.; MAHATO, A.; BHATTACHARYA, A.: Notch Shape Influence on Damage Evolution of Al/CFRP Laminates Under Tensile Loading: Experimental and Numerical Analysis. Appl Compos Mater (2022). https://doi.org/10.1007/s10443-022-10051-2
  7. TRZEPIECIŃSKI, T.; NAJM, S. M.; SBAYTI, M.; BELHADJSALAH, H.; SZPUNAR, M.; LEMU, H. G.: New Advances and Future Possibilities in Forming Technology of Hybrid Metal–Polymer Composites Used in Aerospace Applications. J. Compos. Sci. 5(2021)8, S. 217 f. https://doi.org/10.3390/jcs5080217
  8. PONNARENGAN, H.; KAMARAJ, L.; BALACHANDRAN, S. R.; KATHAR BASHA, S.: Evaluation of me-chanical properties of novel GLARE laminates filled with nanoclay. Polym. Compos. 42(2021)8, S. 4015-4028. https://doi.org/10.1002/pc.26113
  9. KRAIBON®: https://www.kraiburg-rubber-compounds.com/kraibon (31.07.2025)
  10. D. Düring; L. Weiß; D. Stefaniak; N. Jordan; C. Hühne: Low-velocity impact response of composi-te laminates with steel and elastomer protective layer. Composite Structures 134(2015), S. 18-26. https://doi.org/10.1016/j.compstruct.2015.08.001
  11. E. Stelldinger; A. Kühhorn; M. Kober: Experimental evaluation of the low-velocity impact dama-ge resistance of CFRP tubes with integrated rubber layer. Composite Structures 139(2016), S. 30-35. https://doi.org/10.1016/j.compstruct.2015.11.069
  12. E. Sarlin; M. Apostol; M. Lindroos; V.-T. Kuokkala; J. Vuorinen; T. Lepistö; M. Vippola: Impact properties of novel corrosion resistant hybrid structures. Composite Structures 108(2014), S. 886-893. https://doi.org/10.1016/j.compstruct.2013.10.023
  13. LI, Z.; ZHANG, J.; JACKSTADT, A.; KÄRGER, L.: Low-velocity impact behavior of hybrid CFRP-elastomer-metal laminates in comparison with conventional fiber-metal laminates. 02638223 287(2022), S. 115340 f. https://doi.org/10.1016/j.compstruct.2022.115340
  14. FLEISCHER, J. (HRSG.): Intrinsische Hybridverbunde für Leichtbautragstrukturen – Grundlagen der Fertigung, Charakterisierung und Auslegung. Berlin, Heidelberg: Springer Vieweg, 2021. – ISBN 978-3-662-62832-4
  15. Y. Swolfs; P. De Cuyper; M.G. Callens; I. Verpoest; L. Gorbatikh: Hybridisation of two ductile materials Steel fibre and self-reinforced polypropylene composites. Composites Part A: Applied Science and Manufacturing 100(2017), S. 48-54. https://doi.org/10.1016/j.compositesa.2017.05.001
  16. H.J. Koslowski: Chemiefaser-Lexikon. Deutscher Fachverlag, 2008. – ISBN 3871508764
  17. H. Schürmann: Konstruieren mit Faser-Kunststoff-Verbunden. Springer-Verlag GmbH, 2007. – ISBN 3540721894
  18. N. Montinaro; D. Cerniglia; G. Pitarresi: Evaluation of interlaminar delaminations in titanium-graphite fibre metal laminates by infrared NDT techniques. NDT & E International 98(2018), S. 134-146. https://doi.org/10.1016/j.ndteint.2018.05.004

Authors: Mahmud Hossain Anwar Abdkader Tobias Lang Thomas Gereke Chokri Cherif

Technische Universität Dresden
Fakultät Maschinenwesen
Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM)
01062 Dresden

https://tu-dresden.de/mw/itm

More entries from TU Dresden, Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik ITM

11.06.2025

PE-based, spun-dyed and sustainable clothing made from organic raw materials

Fibres Yarns Knittings Recycling Sustainability Fashion

Abstract

The bioPEtex project in the BIOTEXFUTURE Innovation Space aims to develop sustainable clothing made from bio-based raw materials in the form of spun-dyed T-shirts. In an industry heavily dominated by fossil-based polymers such as polyester, bio-based polyethylene (bioPE), a bio-based polymer made from fermented starches or sugars, offers an environmentally friendly alternative. BioPE has the same properties as fossil-based PE and is fully recyclable. The use of spun-dyed bioPE also reduces energy and water consumption by 50 % and CO2 emissions by 60 %. The project involves the development of sustainably dyed compounds from bioPE for the spun-dyeing process and the development of multifilament yarns through melt spinning and false-twist texturing. The yarns are knitted on seamless machines and a T-shirt demonstrator is manufactured, which is finished with a sustainable elastic finish. The results will not only reduce the ecological footprint of the textile industry, but also promote innovative approaches to the circular economy.

Report

Introduction

The global annual man-made fibre production is growing steadily and is expected to exceed 100 million tonnes by 2030. Polyethylene terephthalate (PET) from the polyester (PES) family is the most widely used polymer, with an 80 % market share. Global clothing production alone almost doubled between 2000 and 2015. More than 80 % of all fibres produced are now used for clothing. Between 30 and 60 % of PET produced worldwide is used in clothing, i.e. approx. 18 to 36 million tonnes. This makes PET the most widely used material for clothing (as of 2021). The textile industry therefore faces enormous ecological challenges, particularly due to the high proportion of fossil raw materials used in textile production. Fossil-based polyesters account for around 52 % of the market and have a significant negative impact on the environment and resource consumption. Synthetic fibres in clothing are largely made from these fossil-based polyesters, the main component of which is PET, which is not yet 100 % bio-based. Clothing made from 100 % biopolymers has so far only been shown in studies and flagship projects, as it is too expensive for the mass market and not available in sufficient quantities. The bioPEtex project aims to establish 100 % bio-based polyethylene (bioPE) in the clothing market. The large-volume thermoplastic drop-in polymer is used to produce mono material, thermomechanically recyclable clothing. To achieve this, the challenge that PE is not produced for continuous fibre production and that there are no designated types for this purpose and no textile plant technology designed for the polymer must be solved. Based on preliminary work at the Institute für Textiltechnik (ITA), the current project status and Alberghini et al., it is foreseeable that the project will be successful. The consortium's expertise is ideally suited for rapid implementation. [Tex22; AHL+21; SB20Materials and Methods

In the scope of this project, commercially available bio-based polyethylenes are selected, procured and modified (see Figure 1).

Spinnable compounds made from BioPE are then developed. For subsequent spin dyeing in the melt spinning process, colour masterbatches with bio-based colour pigments are developed by our industry partner TECNARO GmbH, Ilsfeld, Germany, in order to realise a sustainable alternative to conventional dyeing with dyes. In addition, conventional dyeing of PE is challenging [BBO+13]. Various textured multifilament yarns with up to 100 filaments are developed from these bioPE compounds using melt spinning and texturing processes on a semi-industrial scale, so that a bio-based T-shirt can be manufactured. Until now, PE has only been used in the industry for staple fibres, highly drawn fibres for technical applications or for carbon fibres – but not yet as yarn in clothing [Fou99; Pei18; Wor17]. In addition to the elasticity provided by the meshes in the knitted fabric, innovative, pre-competitive, sustainable textile finishes are being tested and further developed.

Results

Initial results show promising progress in the processing of bioPE into spun-dyed yarns with suitable properties for textile applications. BioPE can be processed into multifilament yarns in stable melt spinning processes. Process development with dyed bioPE compounds is currently underway (see Figure 2).

The resulting partially oriented yarns (POY) with currently 96 filaments and a single filament titre of approx. 1 dtex have suitable properties for subsequent false-twist texturing (see Figure 3). Production speeds for melt spinning are currently in the industrial range (2,500 m/min). In a next step, yarns with 30 filaments and a higher single filament titre will be spun in order to give the resulting textile more stability in combination with the fine yarns.

Tensile strengths of approx. 20 cN/tex have been achieved to date, thus already meeting the target values derived from PET-POY. False-twist texturing on a laboratory scale (ITA) and on a semi-industrial scale (BB Engineering GmbH, Remscheid, Germany) has also been successful. The mechanical properties of the textured yarns (draw-textured yarn, DTY) are thus improved and the yarn volume and heat retention capacity are increased (see Figure 4). The close-up image of the DTY below shows that no tangling was introduced on a laboratory scale and that the yarn cohesion is therefore not yet ideal. However, the DTY can already be processed into a knitted fabric without any problems. These shortcomings are also remedied on a semi-industrial scale.

The resulting natural fibre-like, cool feel now makes it possible to use the yarn in textiles. Initial knitting trials with the lab-scale DTY have been successful at our industrial partner FALKE KGaA in Schmallenberg, Germany, once again confirming the cooling sensation when the textile is touched. Further yarns are being developed so that the next step can be to produce a T-shirt for sports applications using semi-industrial yarns and validate it as a demonstrator. The development of the bio-based elastic finish is also currently underway.

Summary

The bioPEtex project represents an innovative approach to producing sustainable clothing from bio-based materials. Targeted research and development aims to achieve both ecological and economic benefits. The results achieved could contribute to significantly reducing the ecological footprint of the textile industry and setting new standards for recyclability in the fashion industry. So far, developments with bio-based PE compounds have been successful, and smooth, partially oriented as well as textured yarns can be produced on a semi-industrial scale and processed into a cooling knit fabric. Validation as a demonstrator in the form of a seamless, bio-based T-shirt with elastic bio-based finishing is still pending in the further course of the project.

Acknowledgement

We thank the Federal Ministry of Research, Technology and Space for funding the Innovation Space BIOTEXFUTURE and the research project bioPEtex (031B1496). Furthermore, we would also like to thank everyone involved in this project for their contributions and commitment.

Bibliography

[AHL+21] Alberghini, M.; Hong, S.; Lozano, L. M.; Korolovych, V.; Huang, Y.; Signorato, F.; Zandavi, S. H.; Fucetola, C.; Uluturk, I.; Tolstorukov, M. Y.; Chen, G.; Asinari, P.; Osgood, R. M.; Fasano, M.; Boriskina, S. V.:
Sustainable polyethylene fabrics with engineered moisture transport for passive cooling
Nature Sustainability 4 (2021), H. 8, S. 715–724

[BBO+13] Baur, E.; Brinkmann, S.; Osswald, T. A.; Rudolph, N.; Schmachtenberg, E.; Saechtling, H.:
Saechtling Kunststoff Taschenbuch. 31. Ausgabe, [komplett überarb., aktualisiert und zum ersten Mal in Farbe]Aufl..- München: Hanser, 2013

[Fou99] Fourné, F.:
Synthetic Fibers. Hanser, München, 1999

[Pei18] Peijs, T.:
1.5 High Performance Polyethylene Fibers:
Comprehensive Composite Materials II: Elsevier, 2018, S. 86–126

[SB20] Siracusa, V.; Blanco, I.:
Bio-Polyethylene (Bio-PE), Bio-Polypropylene (Bio-PP) and Bio-Poly(ethylene terephthalate) (Bio-PET): Recent Developments in Bio-Based Polymers Analogous to Petroleum-Derived Ones for Packaging and Engineering Applications
Polymers 12 (2020), H. 8

[Tex22] Textile Exchange:
Preferred Fiber and Materials Market Report 2022
Burbank, California: 10/2022

[Wor17] Wortberg, G.:
Entwicklung polyethylenbasierter Precursoren für die thermochemische Stabilisierung zur Carbonfaserherstellung. Shaker Verlag, Dissertation
,

 

Authors: M. Ortega J. Langer R. Morgenroth M. van Haren G. Mourgas A. Langer T. Gries

ITA Institut für Textiltechnik der RWTH Aachen University, Otto-Blumenthal-Straße 1, 52074 Aachen, Germany

Clothtech SportTec Oekotech

More entries from ITA Institut für Textiltechnik der RWTH Aachen University

10.06.2025

PE-basierte, spinngefärbte und nachhaltige Kleidung aus Biorohstoffen

Fibres Yarns Knittings Recycling Sustainability Fashion

Abstract

Das Projekt BioPEtex im Innovationsraum BIOTEXFUTURE zielt darauf ab, nachhaltige Bekleidung aus biobasierten Rohstoffen in Form von spinngefärbten T-Shirts zu entwickeln. In einer Branche, die stark von fossilen Polymeren wie Polyester dominiert wird, bietet biobasiertes Polyethylen (BioPE), ein biobasierter Kunststoff aus fermentierten Stärken oder Zucker, eine umweltfreundliche Alternative. BioPE weist die gleichen Eigenschaften auf wie fossiles PE und ist vollständig recycelbar. Durch die Verwendung von spinngefärbtem BioPE können zudem der Energie- und Wasserverbrauch um 50 % gesenkt werden, während CO2-Emissionen um 60 % reduziert werden. Das Projekt umfasst die Entwicklung von nachhaltig eingefärbten Compounds aus BioPE für das Spinnfärbe-Verfahren sowie die Entwicklung von Multifilamentgarnen durch Schmelzspinnen und Falschdrahttexturierung. Die Garne werden auf Seamless-Maschinen verstrickt und ein T-Shirt-Demonstrator konfektioniert, welcher mit einer nachhaltigen elastischen Ausrüstung versehen wird. Die Ergebnisse werden nicht nur den ökologischen Fußabdruck der Textilindustrie verringern, sondern auch innovative Ansätze zur Kreislaufwirtschaft fördern.

Report

Einleitung

Die weltweite jährliche Chemiefaserproduktion wächst stetig und wird 2030 voraussichtlich 100 Mio. t überschreiten. Der Polyester (PES) Polyethylenterephthalat (PET) ist mit 80 % Marktanteil das meistgenutzte Polymer. Alleine die weltweite Kleidungsproduktion wurde zwischen 2000 und 2015 fast verdoppelt. Mittlerweile werden mehr als 80 % aller produzierten Fasern für Kleidung eingesetzt. Von weltweit produziertem PET werden 30 bis 60 % in Kleidung eingesetzt, also ca. 18 bis 36 Mio. t. So ist PET das meistgenutzte Material für Kleidung (Stand 2021). Die Textilindustrie steht somit vor enormen ökologischen Herausforderungen, insbesondere aufgrund des hohen Anteils an fossilen Rohstoffen in der Textilproduktion. Fossile Polyester machen etwa 52 % des Marktes aus und haben erhebliche negative Auswirkungen auf die Umwelt und den Ressourcenverbrauch. Kunstfasern in Bekleidung werden zum Großteil aus diesen fossilen Polyestern mit Hauptbestandteil Polyethylenterephthalat (PET) hergestellt, welches jedoch noch nicht zu 100 % biobasiert hergestellt wird. Kleidung aus 100 % Biopolymeren wird bisher nur in Studien und Leuchtturmprojekten gezeigt, da diese zu teuer für den Massenmarkt und nicht in ausreichender Menge vorhanden sind. Das Projekt bioPEtex verfolgt das Ziel, 100 % biobasiertes Polyethylen (BioPE) im Bekleidungsmarkt zu etablieren. Aus dem großvolumig vorhandenen thermoplastischen Drop-In-Polymer wird sortenreine und thermomechanisch recycelbare Kleidung hergestellt. Dazu muss das Defizit gelöst werden, dass PE nicht für die Endlosfaserherstellung produziert wird und es keine dafür ausgewiesenen Typen sowie keine auf das Polymer ausgelegte, textiltechnische Anlagetechnik gibt. Aufgrund von Vorarbeiten am Institut für Textiltechnik, dem aktuellen Projektstand und Alberghini et al. ist abzusehen, dass das Projekt erfolgreich sein wird. Die Expertise des Konsortiums ist für die schnelle Umsetzung bestens geeignet. [Tex22; AHL+21; SB20]

Material und Methoden

Im Rahmen des Projekts werden kommerziell verfügbare biobasierte Polyethylene ausgewählt, beschafft und modifiziert (vgl. Abbildung 1).

Anschließend werden spinnbare Compounds aus BioPE entwickelt. Für die nachfolgende Spinnfärbung im Schmelzspinnprozess werden durch den Industriepartner TECNARO GmbH, Ilsfeld, Farbmasterbatches mit biobasierten Farbpigmenten entwickelt, um eine nachhaltige Alternative zur konventionellen Färbung mit Farbstoffen zu realisieren. Zudem ist die konventionelle Anfärbung von PE herausfordernd [BBO+13]. Aus diesen BioPE-Compounds werden über Schmelzspinn- und Texturierprozesse im semi-industriellen Maßstab verschiedene texturierte Multifilamentgarne mit bis zu 100 Filamenten entwickelt, sodass ein biobasiertes T-Shirt konfektioniert werden kann. Bisher wird PE in der Industrie lediglich für Stapelfasern, hochverstreckte Fasern für technische Anwendungen oder für Carbonfasern eingesetzt – jedoch noch nicht als Garn in der Bekleidung [Fou99; Pei18; Wor17]. Zusätzlich zur Elastizität durch die Maschen im Gestrick werden innovative, vorwettbewerbliche, nachhaltige Textilausrüstungen getestet und weiterentwickelt.

Ergebnisse

Die ersten Ergebnisse zeigen vielversprechende Fortschritte bei der Verarbeitung von BioPE in spinngefärbten Garnen mit geeigneten Eigenschaften für textile Anwendungen. BioPE kann in stabilen Schmelzspinnprozessen zu Multifilamentgarnen verarbeitet werden. Die Prozessentwicklung mit gefärbten BioPE-Compounds wird zurzeit durchgeführt (vgl. Abbildung 2).

Die resultierenden teilverstreckten Garne (engl. Partially-Oriented Yarn, POY) mit aktuell 96 Filamenten und einem Einzelfilamenttiter von ca. 1 dtex weisen geeignete Eigenschaften für die anschließende Falschdrahttexturierung auf (vgl. Abbildung 3). Produktionsgeschwindigkeiten beim Schmelzspinnen befinden sich zurzeit im industriellen Bereich (2.500 m/min). In einem nächsten Schritt werden Garne mit 30 Filamenten mit höher Einzelfilamenttiter ausgesponnen, um dem resultierenden Textil in Kombination mit den feinen Garnen mehr Stabilität zu verleihen.

Zugfestigkeiten von ca. 20 cN/tex werden bisher erreicht und die angestrebten, von PET-POY abgeleiteten Zielwerte somit bereits erfüllt. Die Falschdrahttexturierung im Labor- (ITA) sowie im semi-industriellen Maßstab (BB Engineering GmbH, Remscheid) ist ebenfalls erfolgreich. Die mechanischen Garnkennwerte der texturierten Garne (engl. Draw-Textured Yarn, DTY) werden somit verbessert und das Garnvolumen sowie das Wärmerückhaltevermögen erhöht (vgl. Abbildung 4). In der Abbildung ist bei der Nahaufnahme des DTY zu sehen, dass im Labormaßstab keine Tangelung eingebracht wurde und der Garnzusammenhalt somit noch nicht ideal ist. Das DTY aus dem Labormaßstab lässt sich jedoch bereits ohne Probleme zu einem Gestrick verarbeiten. Im semi-industriellen Maßstab werden diese Defizite zudem behoben.

Mit dem resultierenden naturfaserähnlichen, kühlen Griff ist der Einsatz im Textil nun möglich. Erste Strickversuche mit dem Labor-DTY sind beim Industriepartner FALKE KGaA, Schmallenberg, erfolgreich und bestätigen erneut das kühlende Gefühl bei Berührung des Textils. Weitere Garne werden entwickelt, damit als nächster Schritt das T-Shirt für Sportanwendungen mit aus semi-industriellen Garnen produziert und als Demonstrator validiert werden kann. Die Entwicklung der biobasierten elastischen Ausrüstung erfolgt zurzeit ebenfalls.

Zusammenfassung

Das Projekt bioPEtex stellt einen innovativen Ansatz dar, um nachhaltige Bekleidung aus biobasierten Materialien herzustellen. Durch gezielte Forschung und Entwicklung sollen sowohl ökologische als auch ökonomische Vorteile realisiert werden. Die erzielten Ergebnisse könnten dazu beitragen, den ökologischen Fußabdruck der Textilindustrie erheblich zu verringern und neue Standards für Recyclingfähigkeit in der Modebranche zu setzen. Bisher sind die Entwicklungen mit biobasierten PE-Compounds erfolgreich und glatte teilverstreckte sowie texturierte Garne können im semi-industriellen Maßstab produziert und zu einem kühlenden Gestrick verarbeitet werden. Die Validierung als Demonstrator in Form eines seamless gestrickten, biobasierten T-Shirts mit elastischer biobasierter Ausrüstung steht im weiteren Projektverlauf noch aus.

Danksagung

Wir danken dem Bundesministerium für Forschung, Technologie und Raumfahrt (BMFTR) für die Förderung des Innovationsraums BIOTEXFUTURE und des Forschungsprojekts bioPEtex (FKZ: 031B1496). Zudem möchten wir allen Beteiligten in diesem Projekt für ihre Beiträge und ihr Engagement danken.

Literaturverzeichnis

  1. [AHL+21] Alberghini, M.; Hong, S.; Lozano, L. M.; Korolovych, V.; Huang, Y.; Signorato, F.; Zandavi, S. H.; Fucetola, C.; Uluturk, I.; Tolstorukov, M. Y.; Chen, G.; Asinari, P.; Osgood, R. M.; Fasano, M.; Boriskina, S. V.:
    Sustainable polyethylene fabrics with engineered moisture transport for passive cooling
    Nature Sustainability 4 (2021), H. 8, S. 715–724

    [BBO+13] Baur, E.; Brinkmann, S.; Osswald, T. A.; Rudolph, N.; Schmachtenberg, E.; Saechtling, H.:
    Saechtling Kunststoff Taschenbuch. 31. Ausgabe, [komplett überarb., aktualisiert und zum ersten Mal in Farbe]Aufl..- München: Hanser, 2013

    [Fou99] Fourné, F.:
    Synthetic Fibers. Hanser, München, 1999

    [Pei18] Peijs, T.:
    1.5 High Performance Polyethylene Fibers:
    Comprehensive Composite Materials II: Elsevier, 2018, S. 86–126

    [SB20] Siracusa, V.; Blanco, I.:
    Bio-Polyethylene (Bio-PE), Bio-Polypropylene (Bio-PP) and Bio-Poly(ethylene terephthalate) (Bio-PET): Recent Developments in Bio-Based Polymers Analogous to Petroleum-Derived Ones for Packaging and Engineering Applications
    Polymers 12 (2020), H. 8

    [Tex22] Textile Exchange:
    Preferred Fiber and Materials Market Report 2022
    Burbank, California: 10/2022

    [Wor17] Wortberg, G.:
    Entwicklung polyethylenbasierter Precursoren für die thermochemische Stabilisierung zur Carbonfaserherstellung. Shaker Verlag, Dissertation
    ,

Authors: Mathias Ortega J. Langer R. Morgenroth M. van Haren G. Mourgas A. Langer T. Gries

Institut für Textiltechnik der RWTH Aachen University, Otto-Blumenthal-Str. 1, 52074 Aachen

Clothtech Sporttech Oekotech

More entries from ITA Institut für Textiltechnik der RWTH Aachen University

03.01.2024

Innovative Verfahren für das Recycling von textilen Bodenbelägen

Nonwovens Recycling Circular economy Technical Textiles Interior Textiles

Abstract

Im Rahmen des Projekts ist das Ziel, Chemiefasern thermochemisch zu recyceln und eine stoffliche Nutzung zu erzielen, anhand von Bodenbelägen als Beispiel. Zu diesem Zweck wird ein materialspezifischer pyrolytischer Prozess entwickelt, um die Bestandteile der Bodenbeläge zu depolymerisieren. Die gewonnenen Öle aus der Pyrolyse werden gereinigt, um Monomere zu gewinnen, die anschließend polymerisiert werden. Zum Schluss werden Filamente ausgesponnen und zu einem Nadelvliesbodenbelag verarbeitet.

Report

Einleitung:

Es wird geschätzt, dass weltweit weniger als 3 % des Materials, das zur Herstellung von Kleidung verwendet wird, zu neuen Kleidungsstücken recycelt wird. Derzeit werden in der EU-Sammelquoten für Textilabfälle auf 25 % geschätzt; aber zwischen den Mitgliedstaaten bestehen große Unterschiede. Die überarbeitete Abfallrahmenrichtlinie ((EU) 2018/851) verpflichtet die Mitgliedstaaten, bis zum 1. Januar 2025 separate Sammelsysteme für Textilabfälle einzurichten. Die Richtlinie (Artikel 11 Absatz 6) fordert auch die Kommission auf, bis Dezember 2024 die Definition von Zielen für die Wiederverwendung und das Recycling von Textilabfällen zu prüfen. Um ambitionierte Ziele für die Wiederverwendung und das Recycling von Textilien zu erreichen und ein effektives Recycling in industriellen Maßstäben zu ermöglichen, müssen sich Unternehmen in der gesamten Wertschöpfungskette, von der Faserproduktion bis zum Recycling von Textilien vorbereiten und insbesondere bei der Lösung bestehender Engpässe unterstützt werden.[1]

Textile Bodenbeläge sind ein solches Textilprodukt und werden üblicherweise aus synthetischen Fasern und Garnen, z.B. Polyamiden (PA), Polyethylenterephthalat (PET) und Polypropylen (PP) durch Weben, Tuften oder Nadeln gefertigt. Dazu werden verschiedene Komponenten kombiniert und zu Verbundstoffen verarbeitet. Thermomechanische Recyclingverfahren wie das “Regranulieren” sind für diese textilen Bodenbeläge aufgrund der Verbundstruktur nicht anwendbar. Textile Bodenbeläge werden bisher verbrannt (energetische Verwertung). Die trägt zu weiteren CO2-Emissionen und vernichtet den Werkstoff. Zusätzlich ist die deutsche Wirtschaft von einer schärfer werdenden Knappheit fossiler Rohstoffträger und Materialien wie Erdöl und Kunststoffe betroffen. Der Wechsel zu erneuerbaren und kreislauffähigen Kohlenstoffquellen auf Basis von CO2 oder Biomasse sowie Recycling bietet die Möglichkeit, die Versorgungssicherheit aufrecht zu erhalten und gleichzeitig die Umwelt zu schonen.

Problemlösung:

Ziel des Projektes ist es, polymerhaltige textile Bodenbeläge pyrolytisch zu depolymerisieren, Produktöle der Pyrolyse zu reinigen und wieder die gewonnenen Monomere zu Kunststofffasern und textilen Bodenbelägen zu verarbeiten, wie in Abbildung 1 dargestellt.

Es wird erstmalig ein Prozess für das thermo-chemische Recycling textiler Bodenbeläge mit derzeitigem Design und den Qualitäten aus Abfällen bei der beim TEER entwickelt. Dazu werden abfallstämmige textile Bodenbeläge aus Produktion sowie aus zurückgebauten Gebäuden beprobt und laboranalytisch charakterisiert. Im Anschluss werden die Materialien im halb-technischen Maßstab mittels Pyrolyse thermochemisch zersetzt. Bei der thermischen Fragmentierung des Materials entstehen Kohlenwasserstoffe, welche bei Raumtemperatur zu einem ölartigen Produkt kondensiert werden können. Aus diesen Produktölen können u. a. Caprolactam, das Monomer für PA6 sowie weitere Grundchemikalien gewonnen werden.

Durch eine Anlage im Entwicklungsmaßstab, die von der NAUE GmbH konstruiert und gefertigt wird, werden die Pyrolyseöle aufgereinigt und hochwertige, fraktionierte Vorprodukte für die Polymersynthese gewonnen. Anschließend, werden am ITA aus den identifizierten chemischen Verbindungen und Vorprodukten thermoplastische Polymere synthetisiert und daraus Filamente für die Stapelfaserherstellung ausgesponnen.

Die Stapelfasern werden schließlich zu einem Nadelvliesbodenbelag bei der FINDEISEN GmbH weiterverarbeitet und ein Demonstrator aus anteilig recycelten textilen Bodenbelägen hergestellt, um den Stoffkreislauf zu schließen.

Literatur:

[1]         Europäische Kommission, Generaldirektion Binnenmarkt, Industrie, Unternehmer-tum und KMU, Duhoux, T., Maes, E., Hirschnitz-Garbers, M., et al., Study on the technical, regulatory, economic and environmental effectiveness of textile fibres re-cycling : final report, Publications Office, 2021, URL: https://data.eu-ropa.eu/doi/10.2873/828412

Authors: Laura Barbet, Stefan Schonauer, Ingo F. C. Naue, Ralf Winter, Fabian Römer

Institut für Textiltechnik der RWTH Aachen (ITA), Otto-Blumenthal-Str. 1, 52074 Aachen

More entries from ITA Institut für Textiltechnik der RWTH Aachen University

10.10.2023

BEWERTUNG VON PRODUKTIONSTECHNOLOGIEN FÜR SMART TEXTILES MIT DEM POTENZIAL EINER MATERIALTRENNUNGN FÜR RECYCLING

Recycling Smart Textiles

Abstract

In dieser Untersuchung wird der aktuelle Stand der Technik und Forschung der Produktionstechnologien von Smart Textiles unter Berücksichtigung des Recycling-Aspekts dargestellt. Es wird ein Überblick zu den Produktionstechnologien von Smart Textiles gegeben, und anhand der gefundenen Ergebnisse wird ein geeigneter Herstellungsprozess vorgeschlagen.

Die Ergebnisse zeigen, dass es mehrere Möglichkeiten gibt, Smart Textile herzustellen. Das 3D-Druckverfahren stellt eine vielversprechende Möglichkeit für eine effiziente und ressourcenschonende Produktion mit vielfältigen Anwendungsmöglichkeiten dar. Bisher wird das 3D-Druckverfahren größtenteils zur Erzeugung von Verbindungen zwischen elektronischen Komponenten und dem Aufdrucken von Halterungen untersucht. Damit das Potenzial dieser Technologie vollständig ausgeschöpft werden kann, ist weitere Forschung zur Herstellung von Sensoren und anderen elektronischen Geräten, sowie die Untersuchung der Waschbarkeit der Textilien notwendig. Abschließend wird ein Prozessablauf vorgeschlagen, um Smart Textiles nachhaltig herzustellen unter Berücksichtigung des Aspektes von Recycling.

In zukünftigen Untersuchungen sollten spezifische leitfähige oder abbaubare Materialien sowie ihre elektrischen Eigenschaften in Kombination mit dem 3D-Druckverfahren weiter untersucht werden. Zudem ist es wichtig, umfassende Analysen zum gesamten Herstellungsprozess von der Faser bis zum Smart Textiles durchzuführen. Hinsichtlich des 3D-Druckverfahrens fehlt es aktuell an Forschung bezüglich des großflächigen Bedruckens von Smart Textiles.

Report

Abstract

In den vergangenen Jahren haben Weiterentwicklungen in Bereichen der leitfähigen Materialien und Fasern sowie immer kleiner werdender Elektronik deutliche Fortschritte gemacht und die Entwicklung von Smart Textiles vorangetrieben. Dem Durchbruch auf dem Massenmarkt stehen allerdings noch einige Herausforderungen bevor. Die derzeit eingesetzten Produktionstechnologien für Smart Textilien erzielen keine skalierbaren und marktfähigen Produkte. Daher werden sie bisher nur in begrenzten Stückzahlen gefertigt und sind als Prototypen oder Demonstrationsprodukte erhältlich. Diese sind in der Regel mit vielen manuellen Fertigungsschritten behaftet und führen zu hohen Herstellungskosten. Auch die Entsorgung und Recyclingfähigkeit von Smart Textiles stellen eine große Herausforderung dar. Das Ziel dieses Forschungsansatzes ist es, ein Produktionsverfahren zu ermitteln, welches sowohl die Recyclingfähigkeit von Smart Textiles und seinen Komponenten berücksichtigt als auch den erwünschten Anforderungen und Belastungen eines Smart Textiles gerecht wird. [Ing19]

Einleitung

Smart Textiles, auch bekannt als intelligente Textilien, vereinen Textilien und Elektronik und schaffen multifunktionale Textilien. Ihre Fähigkeit, mit ihrer Umgebung und ihren Benutzern interagieren zu können, hat das Potenzial, unseren Alltag sowie verschiedene Industriezweige zu revolutionieren. Smart Textiles werden in Bereichen wie der Automobilindustrie, dem Bauwesen, dem Sportsektor oder der Medizin eingesetzt und können beispielsweise die Überwachung von Vitalparametern übernehmen. Durch die zunehmende Digitalisierung und Vernetzung der Welt spielen Smart Textiles eine immer größere Rolle.

Allerdings ist die Herstellung vom Smart Textiles ein komplexer Prozess, der verschiedene Technologien und Materialien erfordert. Häufig eingesetzte Verfahren, wie beispielsweise das Löten, sind nicht sehr nachhaltig und können aufgrund der hohen Temperaturen während der Bearbeitung zur Beschädigung der Textilsubstrate führen. [AS17]

Methode

Anhand einer strukturierten Literaturrecherche (Abbildung 1) werden Datenbanken durchsucht, Ergebnisse gesichtet und anschließen bewertet. Anschließend werden vergangene Forschungsarbeiten zusammengefasst und ein Überblick geschaffen. Die Suche wird in drei Phasen eingeteilt: Planung der Suche, Durchführung der Suche und Dokumentation. Damit wird eine umfassende und erfolgreiche Suche sichergestellt. Um möglichst viele und relevante Quellen zu erfassen, werden mehrere Datenbanken abgedeckt und eine Vorwärts- und Rückwärtsrecherche durchgeführt. Abschließend werden die Ergebnisse hinsichtlich Zukunftspotential, Wirtschaftlichkeit und Automatisierbarkeit bewertet.

 

s. Abbildung 1: Ablauf systematischer Literaturrecherche. Quelle: [BSN+19; XW19]

Ergebnisse

Auswertung bestehender Produktionsverfahren

Folgende Produktionsprozesse für Smart Textiles wurden in die Analyse mit einbezogen.

  • Direktes Löten
  • Roboterunterstütztes Ultraschalllöten
  • Nd: YAG-Laserlöten
  • Ultraschallplastikschweißen
  • 3D-Druckverfahren
  • Flüssiger Metalldruck
  • Dampfbeschichten
  • Nanobeschichten
  • Siebdruckverfahren
  • Transfersiebdruckverfahren
  • Integration faserbasierter Elektronik
  • Nahtlose Integration

Einige Produktionsverfahren für Smart Textiles haben sich bereits in anderen Industriezweigen bewährt und zeigen sich als effiziente Option für die Herstellung Smart Textiles.

Das „direkte Lötverfahren“, „roboterunterstützte Ultraschallöten“, „Transfersiebdruck- bzw. Siebdruckverfahren“, „Nanobeschichtungsverfahren“ und das „Ultraschallplastikschweißen“ sind bereits etablierte Verfahren. Sie sind in der Lage große Produktionsmengen effizient zu verarbeiten oder in Rolle-zu-Rolle Produktionen integriert zu werden. Zudem bieten die Verfahren „direktes Löten“ und „Siebdruckverfahren“ kurze Prozesszeiten und geringe Kosten.

Verfahren wie das „Nd: YAG-Laserlöten“, die „Integration faserbasierter Elektronik“, „Dampfbeschichtungsverfahren“ und „flüssig Metall-Druckverfahren“ sind wiederum weniger gut geeignet, um große Mengen herzustellen. Obwohl sie vielversprechende Ansätze darstellen, erfordern sie aktuell noch weitere Forschung und technologische Fortschritte. Bei den Verfahren „roboterunterstütztes Ultraschalllöten“ und der „faserbasierte Integration“ ist außerdem mit hohen Anschaffungs- und Materialkosten zu rechnen.

Nachhaltigkeit

In Bezug auf Nachhaltigkeit stellt der Einsatz von Silber in Verfahren wie dem „direkten Löten“ und dem „roboterunterstützten Ultraschallöten“ Bedenken dar. Silber ist eine begrenzte Ressource und braucht für seine Gewinnung einen hohen Energie- und Wasserverbrauch. Zudem kann die Wiederverwendung von Silber sehr anspruchsvoll werden und spezielle Verfahren erfordern, die ebenfalls mit sehr hohem Energieverbrauch und Kosten verbunden werden. Auch besteht die Gefahr, dass während des Lötens die Textilsubstrate beschädigt werden, wodurch zusätzlicher Abfall entsteht. Ebenfalls stellt das Trennen von Lot und Textil eine Herausforderung dar, wodurch Reparaturen oder der Austausch kaputter Komponenten, ohne Beschädigung des Textils, sehr schwer durchführbar sind.

Analoges Verhalten gilt für die Verfahren „roboterunterstütztes Ultraschallöten“, „Nd: YAG-Laserlöten“ und dem „Siebdruckverfahren“, die ebenfalls silberhaltige Lote und Lösungen verwenden. Auch nahtlose „Integrationsverfahren für faserbasierte Elektronik“ erweisen sich nicht als sehr nachhaltige Verfahren, obwohl sie stark im Fokus der Forschung stehen. Es sind aufwendige Verfahren, die aus mehreren Prozessschritten bestehen, beginnend mit der Herstellung der faserbasierten Elektronikgarne, über die Einarbeitung ins Gewebe bis hin zur Erstellung leitfähigen Verbindung. [MHG20; HHY19]

Im Gegensatz dazu zeigen das „Dampfbeschichtungsverfahren“ und das „Nanobeschichtungsverfahren“ nachhaltigere Merkmale, da sie umweltfreundliche und organische Gemische verwenden. Ebenfalls zeichnet sich das „3D-Druckverfahren“ durch seinen genauen Materialverbrauch als ressourcenschonendes Verfahren aus, mit der Abfall vermieden und Ressourceneffizienz gesteigert wird. [AZC+18; FHB+16] Im Vergleich zu den anderen Fertigungsverfahren verwendet das „3D-Druckverfahren“ weniger Rohmaterial, Wasser, Energie und Chemikalien. Defekte Komponenten können leicht ausgetauscht und repariert werden. Darüber hinaus können recyclebare Materialien sowie verschiedenen Materialkombinationen eingesetzt werden, um verschieden Eigenschaften zu erreichten.

Das „3D-Druckverfahren“ ermöglicht die Erstellung komplexer Formen und individueller Strukturen, die aufgeschmolzen und erneut für den Druck wiederverwendet werden können. Es kann sowohl zum Verbinden von Komponenten eingesetzt werden als auch zur Erstellung von Halterungen für SMD-Komponenten oder zur Einkapselung der Elektronik. Im Vergleich zu den anderen Verfahren kann auch mit deutlich weniger Anschaffungs- und Materialkosten gerechnet werden. Laufende Textilherstellungsprozesse müssen bei ihrer Integration nicht unterbrochen werden, sondern können als Add-On-Verfahren nach der Textilherstellung in die Prozesskette integriert werden. Zudem können durch die Auswahl der Filamente, Belastbarkeit und Flexibilität entsprechend kundenspezifische Anforderungen ausgesucht werden. Auch können einzelnen Komponenten problemlos entfernt und recycelt werden, was mit unlöslichen Verbindungen wie dem „direkten Lötverfahren“ oder der „faserbasierten Integration“ nicht möglich ist. Durch den Einsatz von Kunststoffmaterialien wird zudem auf begrenzte Ressourcen verzichtet und mit alternativen Materialien wie biobasierte Kunststoffe besteht die Möglichkeit den ökologischen Fußabdruck zu reduzieren. [Gon23; GGY+22; KGK22]

Recycling

Aktuell fehlen konkrete Recyclingverfahren, wie es sie für die Textil- oder Elektronikindustrie gibt. Allerdings gibt es zwei Ansätze zum Recyclen von Smart Textiles Komponenten.

Es besteht zum einen die Möglichkeit, recycelte SMD-Komponenten aus anderen Einsatzbereichen in Smart Textiles einzusetzen. Hierbei sollen die zu recycelten SMD-Komponenten mittels eines UV-härtenden, nicht leitenden Acrylklebstoff auf das elektrisch leitfähige Textilband angebracht und ausgehärtet werden. Folgende Schritte werden bei diesem Ansatz durchlaufen:

  • Sammeln der Produkte am Ende ihrer Lebensdauer.
  • Entfernen der Textilbänder.
  • Band auf Oberfläche mit Aceton für 20 Minuten mit Komponenten nach oben platzieren.
  • Band aus Aceton nehmen und Komponenten manuell mit Pinzette oder automatisch mit industriellem Roboterarm entnehmen.
  • Umweltfreundliche Entsorgung von gebrauchten Band- und Kleberückständen.
  • Visuelle und funktionelle Kontrolle der entfernten Komponenten und in drei Gruppen einsortieren: Perfekt Komponenten, Komponenten mit geringfügigen mechanischen Schäden ohne Beeinträchtigung ihrer Funktion und beschädigte Komponenten.
  • Reinigung der Komponenten und Rückstände mit Isopropylalkohol.
  • Herstellung neuer Proben mit den neuen Bändern und gebrauchten Komponenten.
  • Funktionstest der neuen Proben und einsortieren in zwei Qualitätskategorien: perfekt, und zweite Qualität. [HBN+23]

Zum anderen besteht die Möglichkeit, das Textilsubstart des Smart Textiles zu recyclen und wieder zu verwendeten. Dafür müssen die Webstühle angepasst werden, sodass eine vollständige Entwirrung des Garns am Ende seiner Lebenszeit möglich wird und diese gewaschen und wiederverwendet werden kann. Diese Methode kann erweitert werden, indem ein Smart Textile aus verschiedenen unabhängigen Modulen zusammengesetzt wird, die individuell aufgelöst und verändert werden können. Dies ermöglicht eine hohe Anpassbarkeit an individuelle Bedürfnisse sowie eine einfache Austauschbarkeit defekter Komponenten, ohne das gesamte Produkt wegwerfen zu müssen [WD20]

Bewertung der Produktionsprozesse

Auf Basis der Auswertung der Produktionsverfahren und der diskutierten Nachhaltigkeits- sowie Recycling-Aspekte werden die Verfahren anhand einer Skala von 1 bis 3 bewertet (Tabelle 1).

Tabelle 1: Bewertung der Produktionsverfahren
Verfahren Skalierbarkeit Nachhaltigkeit Wirtschaftslichkeit
Direktes Löten 3 1 2
Roboterunterstütztes Ultraschalllöten 3 1 2
ND: Yag-Laserlöten 1 1 2
Ultraschallplastikschweißen 2 2 2
3D-Druckverfahren 2 3 2
Flüssiger Metalldruck 1 1 1
Dampfbeschichten 2 2 2
Nanobeschichten 2 2 2
Siebdruckverfahren 3 1 2
Transfersiebdruckverfahren 1 1 2
Integration faserbasierter Elektronik 3 1 1
Nahtlose Integration 1 1 1


s. Abbildung 2: Prozessablauf mit 3D-Drucker


Das Textilsubstrat wird entwirrt und zu weiteren Produkte verarbeitet.

Dieser Prozessablauf kann einen ersten Ansatz einer Kreislaufwirtschaft darstellen, um Smart Textiles nachhaltig zu produziert.

 

Diskussion

Im Rahmen dieser Untersuchung wird deutlich, dass es Produktionsverfahren gibt, die das Potenzial der Skalierbarkeit besitzen. Obwohl die faserbasierte Integration von Elektronikkomponenten stark im Fokus der Forschung steht, ist es kein nachhaltiges und ressourcenschonendes Verfahren. Das 3D-Druckverfahren stellt dagegen eine attraktive Alternative dar, da es den Recycling-Aspekt mitberücksichtigt. Zudem ist erkennbar, dass es aktuell an Recyclingverfahren für Smart Textiles fehlt, wie es sie in der Textil- oder Elektronikindustrie gibt und Recyclingansätze nur begrenzt vorhanden sind.

Literaturverzeichnis

[AS17] Amft, O.; Schneegass, S. (Hrsg.):
Smart Textiles.
1st ed. 2017. - Cham: Springer International Publishing; Imprint: Springer, 2017

[AZC+18]        Andrew, T. L.; Zhang, L.; Cheng, N.; Baima, M.; Kim, J. J.; Allison, L.; Hoxie, S.:
Melding Vapor-Phase Organic Chemistry and Textile Manufacturing To Produce Wearable Electronics
ACCOUNTS OF CHEMICAL RESEARCH. 51 (2018) 4, S. 850–859

[BSN+19]        Blümle, A.; Sow, Dorothea; Nothacker, Monika; Schaefer, Corinna; Motschall, E.; Boeker, Martin; Lang, Britta; Kopp, Ina; Meerpohl, Jörg J.:
Manual systematische Recherche für Evidenzsynthesen und Leitlinien, 2019

[FHB+16]        Feng, J.; Hontanon, E.; Blanes, M.; Meyer, J.; Guo, X.; Santos, L.; Paltrinieri, L.; Ramlawi, N.; Smet, L. C. P. M. de; Nirschl, H.; Kruis, F. E.; Schmidt-Ott, A.; Biskos, G.:
Scalable and Environmentally Benign Process for Smart Textile Nanofinishing
ACS APPLIED MATERIALS & INTERFACES. 8 (2016) 23, S. 14756–14765

[GGY+22]       Gong, W.; Guo, Y.; Yang, W.; Wu, Z.; Xing, R.; Liu, J.; Wei, W.; Zhou, J.; Guo, Y.; Li, K.; Hou, C.; Li, Y.; Zhang, Q.; Dickey, M. D.; Wang, H.:
Scalable and Reconfigurable Green Electronic Textiles with Personalized Comfort Management
ACS Nano. 16 (2022) 8, S. 12635–12644

[Gon23]           Goncu-Berk, G.:
3D Printing of Conductive Flexible Filaments for E-Textile Applications
IOP Conference Series: Materials Science and Engineering. 1266 (2023) 1, S. 12001

[HBN+23]        Hirman, M.; Benešová, A.; Navrátil, J.; Steiner, F.; Tupa, J.:
New Recycling Procedure of SMD Components for Reuse in E-Textiles in Accordance to the Green Deal Policy, 2023

[HHY19]          Hong, H.; Hu, J.; Yan, X.:
UV Curable Conductive Ink for the Fabrication of Textile-Based Conductive Circuits and Wearable UHF RFID Tags
ACS APPLIED MATERIALS & INTERFACES. 11 (2019) 30, S. 27318–27326

[Ing19] Inga Gehrke, Volker Lutz, David Schmelzeisen, Vadim Tenner and Thomas Gries:
Smart Textiles Production: MDPI, 2019

[KGK22]          Kang, D. J.; Gonzaléz-García, L.; Kraus, T.:
Soft electronics by inkjet printing metal inks on porous substrates
Flexible and Printed Electronics. 7 (2022) 3, S. 33001

[MHG20]         Micus, S.; Haupt, M.; Gresser, G. T.:
Soldering Electronics to Smart Textiles by Pulsed Nd:YAG Laser
Materials (Basel, Switzerland). 13 (2020) 11

[WD20]            Wu, S.; Devendorf, L.:
Unfabricate: Designing Smart Textiles for Disassembly
Bernhaupt, R.:
Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, Honolulu HI USA, 25 04 2020 30 04 2020
New York,NY,United States: Association for Computing Machinery, 2020, S. 1–14

[XW19]            Xiao, Y.; Watson, M.:
Guidance on Conducting a Systematic Literature Review
Journal of Planning Education and Research. 39 (2019

Authors: Robin Oberlé1 Autor, Büsra Unay1 Co-Autor

1 RWTH Aachen – Institut für Textiltechnik der RWTH Aachen University (Germany)

Arbeitsgruppenleiter: Robert Boich – Institut für Textiltechnik der RWTH Aachen Univer-sity (Germany)

Produktion

More entries from ITA Institut für Textiltechnik der RWTH Aachen University

20.06.2023

Development of heavy tows from recycled carbon fibers for low-cost and high performance thermoset composites (rCF heavy tows)

Raw materials Fibres Yarns Composites Textile machinery Recycling Sustainability Circular economy Technical Textiles

Abstract

Within the framework of the IGF research project (21612 BR), the entire process chain for the industrial production of novel twist-free rCF heavy tows was developed at ITM. In particular, a novel technology for the production of rCF heavy tows based on recycled carbon (rCF ≥ 90 vol.%) and hot melt adhesive fibers (< 10 vol.%) was designed, constructed and successfully implemented. This includes fiber preparation, the carding process for card sliver formation, the stretching process for drawn sliver formation, and the final fabrication of the rCF heavy tows from rCF and hot melt adhesive fibers in a newly developed test set-up. The suitability of the developed technology is demonstrated by the implementation of rCF heavy tows with different rCF types, fiber lengths and fiber volume contents and a demonstrator. The developed rCF heavy tows with finenesses between 3000-7000 tex and their further processability into textile semi-finished products were successfully demonstrated. The developed rCF Heavy Tows and composites based on them exhibit a maximum composite tensile strength and a maximum Young’s modulus of 1158±72 MPa and 80±5.7 GPa, respectively. The rCF Heavy Tows are thus applicable for low-cost thermoset composites with high performance and complex geometry. Thus, the developed rCF Heavy Tows offer a very high innovation and market potential in the fields of materials and materials, lightweight construction, environmental and sustainability research, and resource efficiency. This opens up the opportunity for SMEs in the textile industry to develop new products and technologies for the fiber composite market and to establish themselves as suppliers for the automotive, mechanical engineering and aerospace, medical and sports equipment industries.

Report

Introduction, problem definition and aim of the project

Carbon fiber-reinforced plastics (CFRP) are increasingly used in lightweight applications due to their high stiffness and strength as well as low density, especially in aerospace, transportation, wind energy, sports equipment or construction. Global demand of CFRP is predicted to increase to 197,000 t/a by 2024, almost tripling compared to 2011. This shows an urgent need for solutions to recycle the high quality carbon fiber (rCF) in terms of the circular economy. This is necessary not only due to strict legal regulations, but also for ecological and economic reasons. In recent years, numerous research institutes and companies developed solutions for the reuse of rCF in the fields of nonwovens, injection molding or as hybrid yarns. However, the majority of these works involve the use of rCF in combination with thermoplastic fibers for thermoplastic composites. In the field of rCF-based thermoset CFRP, mainly rCF nonwovens made of 100% rCF have been so far developed. Since the fibers in the nonwovens mostly have a limited length and a low orientation and process-related additional high fiber damage occurs, with these materials only maximum 30% of the composite characteristic values of CFRP components made of carbon filament yarns can be so far achieved.

Currently, the matrix systems used in the field of high mechanical loaded CFRPs are predominantly thermoset. Such components exhibit high dimensional stability, high stiffness and strength as well as are suitable for the implementation of complex component geometries due to low-viscosity matrix systems. However, primary carbon filament yarns are particularly used for these components due to the insufficient properties of rCF. In addition to low sustainability, the utilization of these filament yarns result in at least 200 % higher cost. The production of primary carbon filament yarn requires a high-energy demand of about 230 MJ/kg with a CO2 emission equivalent to 20 kg CO2/kg CF. Here, a significant improvement of the CO2 balance is required to make a substantial contribution to the envisaged climate protection goals of the Federal Republic of Germany and the EU. For this reason, the focus of the project work is the development of novel, sustainable rCF heavy tows made of recycled carbon fibers (rCF) and associated manufacturing technologies for the implementation of cost-effective thermoset composites with high mechanical performance.

Acknowledgments

The IGF project 21612 BR of the Research Association Forschungskuratorium Textil e.V. was funded by the Federal Ministry of Economics and Climate Protection (BMWK) via the AiF within the framework of the program for the promotion of joint industrial research and development (IGF) on the basis of a resolution of the German Bundestag. We would like to thank the above-mentioned institutions for providing the financial resources.

Authors: Mahmud Hossain, Anwar Abdkader und Chokri Cherif

Technische Universität Dresden
Fakultät Maschinenwesen
Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM)
01062 Dresden

https://tu-dresden.de/mw/itm

More entries from TU Dresden, Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik ITM

20.06.2023

Entwicklung von Heavy Tows aus recycelten Carbonfasern für kostengünstige duroplastische Composites mit hohem Leistungsvermögen (rCF-Heavy Tows)

Raw materials Fibres Yarns Composites Textile machinery Recycling Sustainability Circular economy Technical Textiles

Abstract

Im Rahmen des IGF-Forschungsvorhabens (21612 BR) wurde am ITM die gesamte Prozesskette zur industriellen Herstellung neuartiger drehungsfreier rCF-Heavy Tows entwickelt. Insbesondere wurde eine neuartige Technologie zur Herstellung von rCF-Heavy Tows auf Basis recycelter Carbon- (rCF, ≥ 90 Vol.-%) und Schmelzklebefasern (< 10 Vol.-%) konzipiert, konstruiert und erfolgreich umgesetzt. Diese umfasst die Faseraufbereitung, den Krempelprozess zur Krempelbandbildung, den Streckprozess zur Streckenbandbildung sowie die abschließende Fertigung der rCF-Heavy Tows aus rCF und Schmelzklebefasern in einem neuen entwickelten Versuchsstand. Der Nachweis der Eignung der entwickelten Technologie erfolgt mit der Umsetzung von rCF-Heavy Tows mit unterschiedlichen rCF Typen, Faserlängen und Faservolumengehalten und eines Demonstrators. Die entwickelten rCF-Heavy Tows mit Feinheiten zwischen 3000-7000 tex und deren Weiterverarbeitbarkeit zu textilen Halbzeugen wurden erfolgreich nachgewiesen. Die entwickelten rCF-Heavy Tows und darauf basierende Verbunde weisen eine maximale Verbundzugfestigkeit bzw ein maximales Zug-Modul von 1158±72 MPa bzw. 80±5,7 GPa auf. Die rCF Heavy Tows sind somit für kostengünstige duroplastische Composites mit hohem Leistungsvermögen und komplexer Geometrie einsetzbar. Damit bieten die entwickelten rCF-Heavy Tows ein sehr hohes Innovations- und Marktpotential in den Bereichen Werkstoffe und Materialien, Leichtbau, Umwelt- und Nachhaltigkeitsforschung sowie Ressourceneffizienz. Damit eröffnet sich die Gelegenheit für KMU der Textilindustrie neue Produkte und Technologien für den Faserverbundwerkstoffmarkt und sich als Lieferant für die Automobil-, Maschinenbau- sowie Luftfahrt-, Medizin- und Sportgeräteindustrie zu etablieren.

Report

Einleitung, Problemstellung und Zielsetzung

Carbonfaserverstärkte Verbundwerkstoffe (CFK) werden aufgrund ihrer hohen Steifigkeit und Festigkeit sowie der geringen Dichte zunehmend in Leichtbauanwendungen eingesetzt, insbesondere in den Bereichen Luft- und Raumfahrt, Transport, Windenergie, Sport oder Bau. Der globale CFK Bedarf wird sich Prognosen zufolge bis 2024 auf 197.000 t/a erhöhen und damit im Vergleich zu 2011 fast verdreifachen. Das zeigt den dringenden Bedarf an Lösungen zur Wiederverwertung der hochwertigen CF (rCF) im Sinne der Circular Economy. Das ist nicht nur aufgrund strenger rechtlicher Bestimmungen, sondern auch aus ökologischen sowie ökonomischen Gründen eine Notwendigkeit. Zahlreiche Forschungsinstitute und Unternehmen entwickelten in den letzten Jahren Lösungen zur Wiederverwendung von rCF in den Bereichen Vliesstoffe, Spritzgießen oder als Hybridgarne. Diese Arbeiten umfassen allerdings mehrheitlich den Einsatz von rCF in Kombination mit thermoplastischen Fasern für thermoplastische Composites. Für den Bereich rCF basierter duroplastischer CFK wurden bisher vorwiegend rCF-Vliesstoffe aus 100% rCF entwickelt. Da die Fasern in den Vliesstoffen prinzipbedingt nur eine begrenzte Länge und eine geringe Orientierung aufweisen und zusätzlich prozessbedingt hohen Faserschädigung auftreten, sind damit bisher nur max. 30% der Verbundkennwerte von CFK-Bauteilen aus Carbonfilamentgarnen erreichbar.

Aktuell sind die im Bereich hochbelastbarer CFK verwendeten Matrixsysteme überwiegend duroplastisch. Derartige Bauteile weisen eine hohe Formstabilität und hohe Steifigkeiten sowie Festigkeiten auf und eignen sich aufgrund niedrigviskoser Matrixsysteme zur Umsetzung komplexer Bauteilgeometrien. Jedoch werden aufgrund der bisher für diese Bauteile nur ungenügend in rCF abbildbaren, notwendigen Eigenschaften vorrangig Primärcarbonfilamentgarne eingesetzt. Neben einer geringen Nachhaltigkeit verursacht das auch um mind. 200 % höhere Kosten. Die Herstellung primäres Carbonfilamentgarnes erfordert einen hohen Energiebedarf von ca. 230 MJ/kg mit einem CO2-Emissionsäquivalent von 20 kg CO2/kg CF. Hier ist eine deutliche Verbesserung der CO2-Bilanz notwendig, um einen wesentlichen Beitrag zu den anvisierten Klimaschutzzielen der BRD bzw. der EU leisten zu können. Aus diesem Grund ist der Fokus der Projektarbeit die Entwicklung neuartiger, nachhaltiger rCF-Heavy Tows aus recycelten Carbonfasern (rCF) und dazugehöriger Fertigungstechnologien zur Umsetzung kostengünstiger duroplastischer Composites mit hohem Leistungsvermögen.

Danksagung

Das IGF-Vorhaben 21612 BR der Forschungsvereinigung Forschungskuratorium Textil e.V. wurde über die AiF im Rahmen des Programms zur Förderung der industriellen Gemeinschaftsforschung und -entwicklung (IGF) vom Bundesministerium für Wirtschaft und Klimaschutz (BMWK) aufgrund eines Beschlusses des Deutschen Bundestages gefördert. Wir danken den genannten Institutionen für die Bereitstellung der finanziellen Mittel.

Authors: Mahmud Hossain, Anwar Abdkader und Chokri Cherif

Technische Universität Dresden
Fakultät Maschinenwesen
Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM)
01062 Dresden

https://tu-dresden.de/mw/itm

More entries from TU Dresden, Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik ITM

15.05.2023

Google Lens in der Altkleidersortierung

Recycling Sustainability Circular economy Interior Textiles Fashion

Abstract

Die Textilindustrie steht vor enormen ökologischen Herausforderungen, die auf ein lineares Wertschöpfungsmodell zurückzuführen sind. Gegenwärtig fallen 7 bis 7,5 Millionen Tonnen textiler Reststoffe in der EU-27 und der Schweiz jährlich an - dies entspricht mehr als 15 Kilogramm pro Person. Die größte Quelle dafür sind entsorgte Kleidungsstücke und Heimtextilien von Verbrauchern - sie machen etwa 85 Prozent der gesamten textilen Reststoffe aus. Diese großen Mengen an textilen Reststoffen müssen sortiert und verarbeitet werden.

Google Lens ist eine Bilderkennungssoftware von Google, die auf maschinellem Lernen und künstlicher Intelligenz basiert. Mit Hilfe der Kamera eines Smartphones kann Google Lens Bilder von Objekten, Texten oder Landschaften erfassen, diese erkennen und interpretieren. Die Technologie ist in der Lage, eine Vielzahl von Objekten und Materialien zu identifizieren und auf entsprechende Webseiten zu verweisen.

In einer Versuchsreihe am Institut für Textiltechnik wurde der Einsatz von Google Lens in der Altkleidersortierung getestet. Dabei stand die Auswertung der Genauigkeit von Google Lens zur Erkennung von verschiedenen Merkmalen im Vordergrund. Insgesamt zeigen die Ausführungen in diesem Artikel, dass Google Lens noch keine adäquate Lösung für die automatisierte Auswertung in der Altkleidersortierung darstellt. Die Ausführungen zeigen allerdings auch Potentiale für die Weiterentwicklung der Technologie auf. Auch eine Kombination mit weiterer Sensorik (z. B. NIR) oder eigens entwickelten Algorithmen zur Bildauswertung ist vielversprechend.

Report

Abstract:

Die Textilindustrie steht vor enormen ökologischen Herausforderungen, die auf ein lineares Wertschöpfungsmodell zurückzuführen sind. Dieses kennzeichnet sich durch kurze Nutzungsdauern, eine geringe Wiederverwendungsquote und geringes Faser-zu-Faser Recycling der Textilien. So wird ein großer Teil der nicht wiederverwendbaren textilen Reststoffe deponiert oder energetisch verwertet. Die Alttextilien werden von Sortierbetrieben entweder für das Recycling oder für den Weiterverkauf vorbereitet. Hier benötigt es neue Technologien zur Merkmalserkennung von Textilien, um die manuellen Prozessschritte zu ersetzen und zu verbessern. Herausforderungen der bisher händischen Sortierung sind der Arbeitskräftemangel und die unzureichende Objektivität und Qualität der Sortierung. In diesem Artikel werden neue Lösungen zur Automatisierung der Merkmalserkennung ausgewertet.

Herausforderungen in der Altkleidersortierung

Gegenwärtig fallen 7 bis 7,5 Millionen Tonnen textiler Reststoffe in der EU-27 und der Schweiz jährlich an - dies entspricht mehr als 15 Kilogramm pro Person [HJL+22]. Die größte Quelle dafür sind entsorgte Kleidungsstücke und Heimtextilien von Verbrauchern - sie machen etwa 85 Prozent der gesamten textilen Reststoffe aus. Diese großen Mengen an textilen Reststoffen müssen sortiert und verarbeitet werden. Aktuell wird die von Verbrauchern aussortierte Kleidung in Altkleidercontainern entsorgt. Von dort aus werden sie in Sortierbetriebe transportiert, in denen jedes Kleidungsstück inspiziert und händisch in verschiedene Kategorien sortiert wird. Es wird beispielsweise zwischen Qualität oder Art des Materials unterschieden. Diese Schritte gilt es zu automatisieren, um die Anzahl der Fehlsortierungen zu reduzieren und die Limitationen der manuellen Sortierung zu überwinden. Die manuelle Sortierung von Altkleidern ist durch den Arbeitskräftemangel und die unzureichende Qualität stark limitiert. Es gibt erste Ansätze, um die Herausforderungen zur Merkmalserkennung der Textilien zu lösen. Durch Nahinfrarotspektroskopie kann beispielsweise das Material des Textils erkannt und identifiziert werden. Allerdings können mit der Technologie weitere wichtige Merkmale wie die Art des Kleidungsstücks, die Marke und der Zustand nicht analysiert werden. Für die Auswertung dieser Merkmale können allerdings Bildverarbeitungssysteme verwendet werden. Einen Ansatz für die Auswertung von Bildmerkmalen bietet die Software Google Lens.

Die Funktion von Google Lens

Google Lens ist eine Bilderkennungssoftware von Google, die auf maschinellem Lernen und künstlicher Intelligenz basiert. Mit Hilfe der Kamera eines Smartphones kann Google Lens Bilder von Objekten, Texten oder Landschaften erfassen, diese erkennen und interpretieren. Die Technologie ist in der Lage, eine Vielzahl von Objekten und Materialien zu identifizieren und auf entsprechende Webseiten zu verweisen. Die Suchergebnisse werden nach Relevanz und Ähnlichkeit mit dem Objekt auf dem Foto klassifiziert. [Taf21] Darüber hinaus kann Google Lens auch QR-Codes scannen und automatisch Webseiten öffnen, Adressen suchen und Termine in den Kalender eintragen. Die Software ist auch in der Lage, Texte in anderen Sprachen zu erkennen und zu übersetzen, was besonders nützlich für Reisende ist. Insgesamt bietet Google Lens eine schnelle und effektive Möglichkeit, visuelle Informationen zu interpretieren und zu nutzen, um den Benutzern eine bessere Erfahrung zu bieten. Diese Eigenschaften machen einen Einsatz von Google Lens in der Altkleidersortierung interessant. Die Software ist bereits mit einer großen Menge von Daten trainiert und ermöglicht einen gezielten Zugriff auf sämtliche im Internet vorhandene Informationen zu einem Kleidungsstück.

Google Lens für die Sortierung von Altkleidern

In einer Versuchsreihe am Institut für Textiltechnik wurde der Einsatz von Google Lens in der Altkleidersortierung getestet. Dabei stand die Auswertung der Genauigkeit von Google Lens zur Erkennung von verschiedenen Merkmalen im Vordergrund. In dem Versuch wurde die Informationsgewinnung durch den Einsatz von Google Lens in den folgenden sechs Merkmalen geprüft:

  • Typ des Textils bzw. Art der Bekleidung
  • Farbe
  • Material
  • Marke
  • Preisklasse
  • Geschlecht

Die Versuchsdurchführung ist in die folgenden drei Schritte aufgeteilt: Aufnahme von Bildern, Auswertung der Bilder mit Google Lens und Auswertung der fünf relevantesten Suchergebnisse hinsichtlich der sechs Merkmale. Die Aufnahme der Bilder erfolgt in einem statischen Versuchsaufbau. Die Textilien werden auf einem ebenen Untergrund ausgebreitet und von oben unter Beleuchtung fotografiert (siehe Abbildung 1). Für die Auswertung des Versuches werden die sechs Merkmale in definierte Ausprägungen eingeteilt (z. B. werden sechs Preisklassen definiert). Die Auswertung erfolgt anhand der ersten fünf von Google vorgeschlagenen Ergebnisse. Für die Vergleichbarkeit der Ergebnisse erfolgt eine Einteilung in ein Punktesystem: pro Textil wird je ein Punkt pro Merkmal und Treffer vergeben, wenn dieses Merkmal richtig erkannt wird, sodass pro Textil und Treffer maximal 6 Punkte zu vergeben sind. Ein Merkmal gilt als richtig erkannt, wenn die Information eindeutig aus dem Text auf der weitergeleiteten Webseite hervorgeht. Insgesamt werden 90 Textilien ausgewertet. Die Trefferquote wird als Quotient aus der erreichten Punktzahl und der maximal erreichbaren Punktzahl angegeben.

Zunächst erfolgt eine Auswertung des Einflusses des Alters eines Textils auf die Treffergenauigkeit: neuere Textilien erreichen eine Treffergenauigkeit von 32,96 %, wohingegen ältere Textilien (älter als 30 Jahre) eine Treffergenauigkeit von lediglich 22,58 % erreichen. Dieser Umstand ist auf die höhere Verfügbarkeit von Daten neuer Textilien zurückzuführen. Auch bei der Art der Textilien zeigen sich Unterschiede in der Auswertung: Heimtextilien weisen lediglich eine Trefferquote von 15,00 % auf, wohingegen Textilien in der Kategorie „Bluse/Hemd“ eine Trefferquote von 45,33 % aufweisen. Am besten wird die Art der Bekleidung erkannt (56,22 % Trefferquote), wohingegen die Marke nur zu 4,67 % erkannt wird. Dieser Umstand ist sowohl auf die große Ähnlichkeit verschiedener Marken als auch auf die teilweise nur geringe direkte Erkennbarkeit von Markennamen oder Logos zurückzuführen. Auch das Material wird nur zu ca. 13,11 % richtig erkannt, da dieses Merkmal nicht direkt visuell zu erkennen ist. Zuletzt bietet auch die Betrachtung der Unterschiede in Abhängigkeit der Relevanz der Treffer kein eindeutiges Ergebnis: beim ersten und relevantesten Treffer liegt die durchschnittliche Trefferquote bei 29,66 % und beim zweiten bis fünften Treffer ebenfalls zwischen 25,19 % und 32,09 %. Anzumerken ist allerdings, dass die Ergebnisse insgesamt nicht ausreichend sind. Für einen sinnvollen Einsatz der Technologie sind Trefferquoten von ca. 90-95 % erforderlich. So lässt sich insgesamt feststellen, dass Google Lens mit dem gewählten Versuchsaufbau und der gewählten Auswertelogik nicht für den Einsatz in der Altkleidersortierung geeignet ist.

 

Weiterentwicklung der Technologie

Eine Lösungsmöglichkeit zur Weiterentwicklung der Technologie liegt in der erweiterten Auswertung von Informationen. Zum Beispiel können zusätzlich auch Bilder auf der Webseite (z. B. Fotos von Etiketten) oder der Seitenquelltext ausgewertet werden. Außerdem ist die Einteilung der Merkmalskategorien kritisch zu prüfen, da diese einen erheblichen Einfluss auf die Auswertung hat. Weiterhin sind Änderungen am Versuchsaufbau denkbar: eine Lösung könnte z. B. in der Aufhängung von Textilien bestehen oder in der Änderung der Beleuchtung. Außerdem kann die Suche in Google Lens mit Texten verknüpft werden, sodass eine Suche näher eingegrenzt und mit zusätzlichen Sensoren verknüpft werden könnte. Diese Lösungsmöglichkeiten werden in weiteren Projekten und Versuchen am ITA weiterentwickelt.

Insgesamt zeigen die Ausführungen in diesem Artikel, dass Google Lens noch keine adäquate Lösung für die automatisierte Auswertung in der Altkleidersortierung darstellt. Die Ausführungen zeigen allerdings auch Potentiale für die Weiterentwicklung der Technologie auf. Auch eine Kombination mit weiterer Sensorik (z. B. NIR) oder eigens entwickelten Algorithmen zur Bildauswertung ist vielversprechend.

Bildunterschriften:

Abbildung 1: Aufbau des Versuches (eigene Darstellung)

Literatur:

[HJL+22]                       Hedrich, Saskia; Janmark, Jonatan; Langguth, Nikolai; Magnus, Karl-Hendrik; Strand, Moa:
Scaling textile recycling in Europe - turning textile waste into value: Juli 2022

[Taf21]                           Taffel, S.:
Google’s lens: computational photography and platform capitalism
Media, Culture & Society Band:43 (2021) H. 2, S. 237–25
5

Authors: Pohlmeyer, Florian* Johannsen, Hanna* Möbitz, Christian* Gries, Thomas* Kleinert, Tobias

*alle: Institut für Textiltechnik der RWTH Aachen University, Otto-Blumenthal-Str. 1, 52074 Aachen

Kleinert, Tobias (Lehrstuhl für Informations- und Automatisierungssysteme für die Prozess- und Werkstofftechnik der RWTH Aachen University, Turmstr. 46, 52064 Aachen)

More entries from ITA Institut für Textiltechnik der RWTH Aachen University

29.09.2022

Projekt CoopLaserJoining

Composites Textile machinery Recycling

Abstract

Der Fokus des Forschungsvorhabens liegt auf der Verbesserung der Multimaterialverbindungen von recyceltem Carbon mit Aluminium und der Entwicklung eines intelligenten Strahlschalters zur Betreibung von parallelgeschalteten Laserprozessen mit einer Laserquelle.

Report

Mit der Weiterentwicklung der Elektromobilität wird der Bedarf der Automobilindustrie an Leichtbaukomponenten immer deutlicher. Die Leichtbauteile werden benötigt, um das Gewicht des Fahrzeugs zu reduzieren und damit die Reichweite zu erhöhen. Gleichzeitig steigt mit der jährlichen Wachstumsrate von 11% bei carbonfaserverstärkten (CFK) Verbundwerkstoffen die Sorge um die Entsorgung bzw. Wiederverwendung von Carbonfasermaterialien speziell aus der Automobilindustrie. Denn nach EU-Regelung müssen 85 Prozent des im Automobil verbauten Materials wiederverwendet werden und 95 Prozent recyclingfähig sein. Im Multimaterialbau stehen die Fügestellen im Fokus. Fügestellen sind kritische Bereiche für die mechanischen Eigenschaften des Konstrukts, behindern aber gleichermaßen die Materialtrennung am Lebensende und erschweren damit das Recycling.

Ziel des Vorhabens von CoopLaserJoining ist die Entwicklung modernster Laserbearbeitungs- und Fügetechnologien für rezyklierbare Carbonfaserverbundwerkstoffe für den Einsatz in Automobilkarosserieteilen. Zur Erhöhung der Produktivität der Laserbearbeitungsprozesse wird ein intelligenter Strahlschalter entwickelt, welcher die vorhandene Laserleistung auf zwei oder mehr Bearbeitungsköpfe aufteilt. So kann die Zykluszeit für die Lasermaterialbearbeitung in beiden Fügeprozessen mindestens halbiert werden und erhöht so Effizienz und Wettbewerbsfähigkeit der Laserprozesse.
Hierbei konzentriert sich das Projektkonsortium auf die Einbringung von Krafteinleitungselementen mittels Ultrakurzpuls (UKP)-Laserbohren in Preforms zur Erhöhung der Haftfestigkeit und Verkürzung der Prozesskette. Außerdem erlauben lösbare Verbindungen eine Verbesserte Trennbarkeit der Materialien und schaffen somit die Voraussetzung zum einfachen Recycling der Materialien.

Das Vorhaben wird am Beispiel der Automobilindustrie für die kostenorientierte Massenproduktion durchgeführt. Ein Aluminium-Leichtbaurahmen wird mit verschiedenen CFK-Komponenten verstärkt. Die Dauerfestigkeit und Belastbarkeit der Bauteile wird im Wesentlichen durch die Fertigungstechnologie sowie die Technik des Verbindens der CFK-Bauteile mit dem Aluminium-rahmen bestimmt. Die Festigkeit der resultierenden Verbindungen wird durch Belastung bis zum Versagen bewertet. So ist es möglich, für unter-schiedliche Funktionsteile eine optimierte Fertigungs- und Fügetechnik zu identifizieren und den Fügeprozess an die spezifischen Anforderungen anzupassen.

Projektbeteiligte
Fraunhofer Institut für Lasertechnik, Amphos GmbH, Seoul National University of Science and Technology, Sungwoo Hitech CO., LTD.

Das Forschungsvorhaben CoopLaserJoining (01DR21026B) wird am Institut für Textiltechnik der RWTH Aachen University (ITA), dem Fraunhofer Institut für Lasertechnik (ILT) und der Firma Amphos GmbH durchgeführt. Es wird vom Bundesministerium für Bildung und Forschung im Rahmen der Fördermaßnahme IB-Asien gefördert.

Authors: Santino Wist

ITA Institut für Textiltechnik an der RWTH Aachen University, Otto-Blumenthal-Strasse 1, 52074 Aachen, Deutschland

More entries from ITA Institut für Textiltechnik der RWTH Aachen University