Research publications

21.10.2025

Tubular tissues with rigid and flexible structural zones and mass transport for the biomimetic construction of the trachea

Fabrics Smart Textiles Medicine

Abstract

The successful treatment of tracheal (windpipe) injuries is an immense challenge and has great social and medical relevance. Every treatment and subsequent care of the trachea with a stoma leads to functional disadvantages such as humidification of the air we breathe, poorer sense of smell and taste, or faulty voice formation. Another disadvantage is that up to 20% of patients suffer from stenosis (narrowing) of the trachea [1]. As part of the interdisciplinary IGF research project 01IF22889N of the ITM, an integrally manufactured, textile, pressure-stable biomimetic tracheal implant was therefore developed.

Report

Initial situation and problem definition

The windpipe (trachea) fulfils two main functions: (I) it provides an airtight and mechanically stable passage from the larynx to the bronchial tree of the lungs for air transport, and (II) it facilitates the transport of mucus. Function (I) is performed by a tubular structure consisting of cartilage rings and longitudinal muscles, which provide lateral stability and longitudinal flexibility. This keeps the lumen open for breathing air. In addition, the inhaled air is moistened and warmed. Function (II) is a cleaning mechanism that is performed by a special mucous membrane layer (mucociliary respiratory epithelial layer). Here, mucus-producing cells and cells with tiny hairs (cilia) on their surface transport mucus and particles [2].

After an injury to the trachea, these functions are impaired by the insertion of a tracheal cannula. In Germany, 53,000 tracheal resections (replacement of part of the trachea) are performed annually [3]. A high proportion, around 40,000 patients, receive non-clinical care through a surgically created opening in the windpipe, known as a stoma [3]. This treatment has significant disadvantages: 1. poorer humidification and warming of the inhaled air, 2. poorer sense of smell and taste, 3. impaired voice formation, and 4. narrowing of the windpipe.

The gold standard for tracheal reconstruction is end-to-end anastomosis, in which part of the trachea is removed and the remaining ends are sutured together [4]. However, for this procedure to be performed, at least half of the trachea must remain in adults and one third in children, otherwise the operation cannot be carried out [5]. Nevertheless, complications occur in up to 20% of cases [6]. As the sutured ends of the trachea are subject to considerable force, this can lead to the suture tearing and the trachea shifting into the chest cavity. There is also a risk that the ends will not grow together properly, leading to scarred narrowing of the trachea, tracheitis, hoarseness, loss of voice and paralysis of the vocal cord nerves, as well as swallowing disorders [7]. Approaches investigated to date – including synthetic implants, constructs made from the patient's own tissue, donor tracheas and tissue engineering procedures – have not yet been able to replicate a functional cilia layer for mucus and particle transport. Neither this lack of transport function nor the high complication rate and shortage of suitable donor tissue currently allow for reliable use in cases of larger tracheal defects following clinically necessary resection. As a result, there is currently no implant available that can adequately replace the trachea.

It is therefore necessary to develop novel implants that mimic both the mechanical stability and the internal transport function of the natural trachea. The aim of the IGF project was therefore to develop a textile, functional and biomimetic tubular fabric. This fabric should have a cilia-like structure for active substance transport. At the same time, rigid, 3D-printed support structures, which can be integrated during the weaving process, were to protect the tubular fabric from collapsing. Both aspects serve to safely bridge missing or removed tracheal tissue. The ciliary movement should be achieved by electroactive piezoelectric PVDF fibres integrated into the tissue in the form of polarised naps. The ciliary movement is to be activated by the piezoelectric effect, which is triggered by the electric field generated by current-carrying conductors.

Development of tubular tissue structures

To produce a tubular fabric with cilia on the fabric surface, various variants were developed for a multi-layer fabric with naps pointing into the interior of the tube. The fabrics were manufactured using commercially available shuttle loom technology with a Jacquard unit for versatile adaptation of the fabric structure.

The tubular base structure was woven from polyester threads. Depending on the variant, cilia threads or a combination of cilia threads (piezoelectric PVDF or Nitinol threads) and conductor threads (silver-plated polyamide, Madeira HC40) were incorporated into the base fabric. The use of conductor threads was necessary when using electroactive PVDF multifilament threads or short fibres to stimulate cilia movement. When using one-way or two-way shape memory (SM) filaments as cilia material, no separate conductor filaments had to be incorporated into the fabric, as the SM filaments were directly contacted and conductive in order to initiate the movement of the cilia.

Development of biomimetic support structures

The human trachea has approximately 15 to 20 tracheal cartilages. They are horseshoe-shaped, have a diameter of 20 mm, with the open side facing dorsally (towards the back), and are approximately 4 mm wide and 1 mm thick. Their outer surface is flat and the inner surface is convex. Tracheal cartilages that can be integrated into the web (cartilage clips/support structures) should be manufactured using 3D printing and should be able to withstand a compression force of at least 1.2 N.

Based on this geometry, a total of 10 different models were developed. The differences in geometry resulted from variations in the leg geometry (C- and U-shaped), wall thickness and radius. The support structures were produced using photopolymer printing based on the stereolithography concept with an Objet 30 Prime from Stratasys in order to achieve the necessary geometric details. Exemplary structures are shown in Figure 1.

To examine the cartilage structures, clamps that meet the requirements for commercially available measurement technology were developed, designed and implemented using 3D printing. The clamps developed enable pressure loading in various anatomical positions of the cartilage segments (anterior-posterior & medial-lateral).

Integration of support structures into the tissue structure

Based on the previously presented woven tubular fabric, including the naps anchored in the base fabric on the fabric surface, a weaving structure was developed that could accommodate and fix the developed support structures at defined intervals in the base fabric. The integration of the support structures was achieved by weaving a fabric pocket over the entire circumference of the fabric. The dimensions (width and thickness) of the fabric pocket were adapted to those of the support structures, which were fixed between two layers of fabric and secured against slipping and "twisting out" of the structure. The number of support structures per defined fabric length was adjustable in terms of binding, and different clip widths could also be integrated into the tubular fabric by adjusting the fabric pocket size. The implemented demonstrator is shown in Figure 3. The inward-facing cilia and tissue pockets with the integrated support structures are clearly visible.

Textile physical analysis of the support and tissue structures as well as movement analysis

The average tensile strength of the human trachea is approximately 230 N [8]. The tubular tissue structures with integrated support structures exhibited a maximum tensile strength of approximately 4300 N. A yield strength of approximately 1400 N was determined. This means that the mechanical requirements of the human trachea are fully met. All support structures developed to prevent the trachea from collapsing exhibited a compression force greater than 1.2 N. In some cases, the target value was exceeded tenfold.

In addition, the influence of repeated or cyclic tensile loading on the position of the support structures integrated into the tissue was investigated. To this end, a load cycle test with 150 cycles was performed, in which a tensile load of up to a maximum force of 230 N (target value) was repeatedly applied, followed by relief to the initial position. A sample holder was developed and implemented for this purpose so that the tubular structure was loaded biomimetically across the entire cross-section. The results show that the support structures woven into the tissue pockets remained firmly fixed and did not "twist out" in the circumferential direction. The selected integration and fixation method thus ensures permanent positional stability under cyclic loading.

Motion analysis of the various patterns showed that PVDF fibres did not enable ciliary movement. However, the SM filaments with a two-way effect demonstrated repeatable ciliary movement. This approach can be used in the future to replicate the functioning of human cilia. As a further alternative approach, fabrics with parallel conductor threads were flocked with polyamide short fibres. Using an alternating electric field, intermittent cilia movement could also be simulated here.

Summary

A novel tracheal implant was developed at ITM that excellently replicates the macroscopic structure of the human trachea. The developed structure could be manufactured using commercially available shuttle weaving technology without any design modifications. To maintain a pressure-stable tubular structure, 3D-printed support structures were integrated into tissue pockets. Production can be carried out integrally and can be adapted to individual patients in terms of tissue length, support structure spacing, number of support structures and pressure stability. In addition, various concepts were investigated to replicate the microscopic structure in order to generate mass transport. The basis for this was the creation of polnop tissue and the use of piezoelectric PVDF fibres. It was found that PVDF nubs did not allow for movement on a microscopic scale. Ciliary movement was achieved using other actuator fibres such as nitinol fibres. Ciliary movement can also be achieved using flock fibres.

Acknowledgements

The project ‘Tubular tissues with rigid and flexible structural zones and mass transport for the biomimetic construction of the trachea (01IF22889N)’ is funded by the Federal Ministry for Economic Affairs and Energy as part of the ‘Industrial Collective Research (IGF)’ programme on the basis of a resolution passed by the German Bundestag.

References

[1]  Aleksanya, A.; Stoelben, E.: Laryngotracheal resection as an alternative to permanent tracheostomy. Pneumologie 73 (2019), No. 4, pp. 211–218. URLhttps://www.thieme-connect.com/products/ejournals/html/10.1055/a-0809-0232

[2]  Udelsma, Brooks; Mathisen, Douglas J.; Ott, Harald C.: A reassessment of tracheal substitutes—a systematic review. In: Annals of Cardiothoracic Surgery 7 (2018), No. 2, pp. 175–182. URLhttps://www.annalscts.com/article/view/16458/16661

[3]  BVMe d:  BVMed provides information on tracheotomy and laryngectomy care. URL https://www.bvmed.de/verband/presse/pressemeldungen/bvmed-informiert-ueber-tracheotomie-und-laryngektomie-versorgung. – Update date: 19 May 2016 – Review date: 15 October 2025

[4]  Canzan, F.; Aggazzotti Cavazza, E.; Mattioli, F.; Ghidini, A.; Bottero, S.; Presutti, L.: Step-by-Step Tracheal Resection with End-to-End Anastomosis. In: Ghidini, Angelo; Mattioli, Francesco; Bottero, Sergio; Presutti, Livio (eds.): Atlas of Airway Surgery :  ACham: Springer International Publishing, 2017, pp. 75–82

[5]  Weme, Richard D.; Detamore, Michael; Weatherly, Robert A.: Immunohistochemical characterisation of rabbit tracheal cartilages. In: Journal of Biomedical Science and Engineering 03 (2010), No. 10, pp. 1007–1013

[6]  Damian o, Giuseppe; Palumbo, Vincenzo Davide; Fazzotta, Salvatore; Curione, Francesco; Lo Monte, Giulia; Brucato, Valerio Maria Bartolo; Lo Monte, Attilio Ignazio: Current Strategies for Tracheal Replacement: A Review.  In: Life 11 (2021), No. 7, pp. 618. URLhttps://www.mdpi.com/2075-1729/11/7/618

[7]  Rettinge, Gerhard; Hosemann, Werner; Hüttenbrink, Karl-Bernd; Werner, Jochen Alfred: ENT Surgery : . 5th, completely revised edition. Stuttgart: Thieme, 2018

[8]  A. Berghau s: . In: Cardiac, Thoracic and Vascular Surgery 1987 (1987), Volume 1. URL https://epub.ub.uni-muenchen.de/6218/1/6218.pdf – Review date 2025-10-15

 

Authors: Pötzsch, H. F. Happel, A. Bruns, M. Wöltje, M. Cherif, Ch.

Technische Universität Dresden
Fakultät Maschinenwesen
Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM)
01062 Dresden

https://tu-dresden.de/mw/itm

More entries from TU Dresden, Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik ITM

21.10.2025

Tubuläre Gewebe mit rigiden und flexiblen Strukturzonen und Stofftrans-port zum biomimetischen Aufbau der Trachea

Fabrics Smart Textiles Medicine

Abstract

Die erfolgreiche Therapie von Verletzung der Trachea (Luftröhre) stellt eine immense Herausforderung dar und hat eine große gesellschaftliche und medizinische Relevanz. Jede Behandlung und anschließende Versorgung der Trachea mit einem Stoma führen zu funktionellen Nachteilen wie der Befeuchtung der Atemluft, schlechterem Geruchs- und Geschmackssinn oder fehlerhafte Stimmbildung. Ein weiterer Nachteil ist, dass bis zu 20 % der Patienten an einer Stenose (Verengung) der Trachea leiden [1]. Im Rahmen des interdisziplinären IGF-Forschungsprojektes 01IF22889N des ITM wurde deshalb ein integral gefertigtes, textiles, druckstabiles biomimetisches Tracheaimplantat entwickelt.

Report

Ausgangssituation und Problemstellung

Die Luftröhre (Trachea) erfüllt zwei Hauptfunktionen: (I) Realisierung des luftdichten und mechanisch stabilen Übergangs vom Kehlkopf zum Bronchialbaum der Lunge für den Lufttransport und (II) Erleichterung des Schleimabtransports. Funktion (I) übernimmt. eine röhrenförmige Konstruktion aus Knorpelspangen und Längsmuskeln, die für die seitliche Stabilität sowie die Längsflexibilität sorgen. Auf diese Weise wird das Lumen für die Atemluft offengehalten. Zusätzlich wird beim Einatmen die Atemluft angefeuchtet und erwärmt. Funktion (II) ist ein Reinigungsmechanismus, der durch eine besondere Schleimhautschicht (mukoziliäre respiratorische Epithelschicht) erfüllt wird. Hierbei übernehmen schleimproduzierende Zellen und Zellen mit Flimmerhärchen (Zilien) auf der Oberfläche den Transport von Schleim und Partikeln [2].

Nach einer Verletzung der Trachea sind diese Funktionen durch das Einsetzen einer Trachealkanüle beeinträchtigt. So werden in Deutschland jährlich 53.000 Trachearesektionen (Ersetzen eines Teils der Trachea) durchgeführt [3]. Ein hoher Anteil, etwa 40.000 Patienten erhalten dabei eine außerklinische Versorgung durch eine operativ geschaffene Öffnung in der Luftröhre, ein sogenanntes Stoma [3]. Diese Versorgung ist mit erheblichen Nachteilen verbunden: 1. einer schlechteren Befeuchtung und Erwärmung der Atemluft, 2. eines schlechteren Geruchs- und Geschmackssinns, 3. einer fehlerhaften Stimmbildung, und 4. einer Verengung der Luftröhre.

Der Gold-Standard für die Rekonstruktion der Trachea ist die End-to-End Anastomose, bei der ein Teil der Luftröhre entfernt und die verbleibenden Enden miteinander vernäht werden [4]. Für die Anwendung muss aber bei Erwachsenen mindestens die Hälfte und bei Kindern ein Drittel der Trachea vorhanden bleiben, da die Operation sonst nicht durchgeführt werden kann [5]. Trotzdem treten in bis zu 20 % der operierten Fälle Komplikationen auf [6]. Da auf die vernähten Tracheaenden große Kräfte wirken, kann dies zum Ausreißen der Naht und zu einer Verschiebung der Luftröhre in den Brustraum führen. Auch besteht die Gefahr, dass die Enden nicht richtig zusammenwachsen und es zu narbigen Verengungen der Luftröhre, Luftröhrenentzündungen, Heiserkeit, Stimmverlust und Lähmung der Stimmlippennerven sowie Schluckstörungen kommt [7]. Bisher untersuchte Ansätze – darunter synthetische Implantate, Konstrukte aus patienteneigenem Gewebe, Spendertracheen und Tissue-Engineering-Verfahren – konnten bislang keine funktionsfähige Zilienschicht für den Schleim- und Partikeltransport nachbilden. Weder diese fehlende Transportfunktion noch die hohe Komplikationsrate und der Mangel an geeignetem Spendergewebe erlauben aktuell einen verlässlichen Einsatz bei größeren Tracheadefekten nach einer klinisch notwendigen Resektion. Deshalb steht derzeit kein Implantat als adäquater Tracheaersatz zur Verfügung.

Somit ist es notwendig, neuartige Implantate zu entwickeln, die sowohl die mechanische Stabilität, als auch die innere Transportfunktion der natürlichen Trachea nachahmen. Ziel des durchgeführten IGF-Projekts war es deshalb ein textiles, funktionelles und biomimetisches Schlauchgewebe zu entwickeln. Dieses Gewebe sollte eine zilienähnliche Struktur für den aktiven Stofftransport aufweisen. Gleichzeitig sollten rigide, 3D-gedruckte Stützstrukturen, die bereits während des Webprozesses integriert werden können, das Schlauchgewebe vor einem Kollaps schützen. Beide Aspekte dienen dazu, fehlendes oder entferntes Tracheagewebe sicher zu überbrücken. Die Zilienbewegung sollte hierbei durch elektroaktive piezoelektrische PVDF-Fasern realisiert werden, die in Form von Polnoppen in das Gewebe integriert wurden. Die Aktivierung der Zilienbewegung soll hierbei durch den piezoelektrischen Effekt erfolgen, der durch das erzeugte elektrische Feld von stromdurchflossenen Leitern aktiviert wurde.

Entwicklung tubulärer Gewebestrukturen

Zur Herstellung eines tubulären Gewebes mit Zilien an der Gewebeoberfläche wurden verschiedene Varianten für ein mehrlagiges Gewebe mit in das Schlauchinnere zeigende Polschlaufen entwickelt. Die Gewebe wurden mittels marktverfügbarer Spulenschützenwebmaschinentechnologie unter Verwendung einer Jacquardeinheit für eine vielseitige Anpassung der Gewebestruktur gefertigt.

Die schlauchförmige Grundstruktur wurde aus Polyesterfäden gewebt. Je nach Variante wurden Zilienfäden bzw. eine Kombination aus Zilienfäden (piezoelektrisches PVDF oder Nitinol-Fäden) und Leiterfäden (besilbertes Polyamid, Madeira HC40) in das Grundgewebe eingebunden. Der Einsatz von Leiterfäden war bei Verwendung von elektroaktiven PVDF-Multifilamentfäden oder Kurzfasern nötig, um die Zilienbewegung anzuregen. Beim Einsatz von Ein- bzw. Zwei-Weg-Formgedächtnis (FG)-Fäden als Zilienmaterial waren keine separaten Leiterfäden in das Gewebe einzubinden, da die FG-Fäden direkt kontaktiert wurde und leitfähig waren, um die Bewegung der Zilien einzuleiten.

Entwicklung biomimetischer Stützstrukturen

Die menschliche Luftröhre besitzt etwa 15 bis 20 Trachealknorpel. Sie sind hufeisenförmig, haben einen Durchmesser von 20 mm, wobei die offene Seite nach dorsal (zum Rücken gewandt) weist, und etwa 4 mm breit und 1 mm stark ist. Ihre Außenfläche ist plan und die nach innen weisende Oberfläche konvex. Webtechnisch integrierbare Trachealknorpel (Knorpelspangen/Stützstrukturen) sollten mittels 3D-Druck gefertigt werden und sollten einer Kompressionskraft von mind. 1,2 N standhalten.

Basierend auf dieser beschriebenen Geometrie wurden insgesamt 10 verschiedene Modelle entwickelt. Die Unterschiede der Geometrien ergaben sich aus der Variation in der Schenkelgeometrie (C- und U-förmig), Wandstärke und Radius. Die Erzeugung der Stützstrukturen wurde mittels Photopolymerdruck nach dem Stereolithographiekonzept mit einem Objet 30 Prime, Fa. Stratasys umgesetzt, um die notwendigen Geometriedetails realisieren zu können. Exemplarische Strukturen sind in Abbildung 1 dargestellt.

Zur Untersuchung der Knorpelstrukturen sind anforderungsgerechte Klemmen für marktverfügbare Messtechnik entwickelt, konstruiert und mittels 3D-Druck umgesetzt worden. Die entwickelten Klemmen ermöglichen eine Druckbelastung in verschiedenen anatomischen Lagen der Knorpelspangen (anterior-posterior & medial-lateral).

Integration der Stützstrukturen in die Gewebestruktur

Auf Basis der zuvor vorgestellten Bindung für das Schlauchgewebe inklusive der im Grundgewebe verankerten Schlaufen an der Gewebeoberfläche, wurde eine Bindung entwickelt, welche die entwickelten Stützstrukturen in definierten Abständen im Grundgewebe aufnehmen und fixieren konnte. Die webtechnische Integration der Stützstrukturen wurde durch das Weben einer Gewebetasche über den gesamten Schlauchumfang des Gewebes realisiert. Die Dimensionen (Breite und Dicke) der Gewebetasche wurden an die der Stützstrukturen angepasst, wodurch diese zwischen zwei Gewebelagen fixiert und gegen ein Verrutschen sowie ein „Herausdrehen“ aus der Struktur gesichert wurden. Die Anzahl der Stützstrukturen pro definierter Gewebelänge war bindungstechnisch einstellbar, ebenso konnten unterschiedliche Spangenbreiten durch Anpassung der Gewebetaschengröße in das Schlauchgewebe integriert werden. Der umgesetzte Demonstrator ist in 3 dargestellt. Deutlich erkennbar sind die nach innen zeigenden Zilien und Gewebetaschen mit den integrierten Stützstrukturen.

Textilphysikalische Analyse der Stütz- und Gewebestrukturen sowie Bewegungsanalyse

Die mittlere Reißkraft der menschlichen Luftröhre liegt bei ca. 230 N [8]. Die tubulären Gewebestrukturen mit integrierten Stützstrukturen wiesen eine Maximalzugkraft von ca. 4300 N auf. Dabei ist eine Streckgrenze von ca. 1400 N ermittelt worden. Somit werden die mechanischen Anforderungen der menschlichen Trachea vollständig erfüllt. Alle entwickelten Sützstrukturen zum Vermeiden des Zusammenfallens der Trachea wiesen eine höhere Kompressionskraft als 1,2 N auf. Teilweise wurde der Zielwert um das zehnfach übertroffen.

Darüber hinaus wurde der Einfluss wiederholter bzw. zyklischer Zugbelastung auf die Position der in das Gewebe integrierten Stützstrukturen untersucht. Dazu wurde ein Lastwechselversuch mit 150 Zyklen durchgeführt, bei dem eine Zugbelastung bis zu einer maximalen Kraft von 230 N (Zielkennwert) und eine anschließende Entlastung bis zur Ausgangsposition wiederholt wurde. Hierfür ist eine Probenaufnahme entwickelt und umgesetzt worden, damit die tubuläre Struktur biomimetisch über den gesamten Querschnitt belastet wurde. Die Ergebnisse zeigen, dass die in die Gewebetaschen eingewebten Stützstrukturen stabil fixiert blieben und kein „Herausdrehen“ in Umfangsrichtung auftrat. Die gewählte Integrations- und Fixiermethode gewährleistet somit eine dauerhafte Positionsstabilität unter zyklischer Belastung.

Die Bewegungsanalyse der verschiedenen Muster hat ergeben, dass mittels PVDF-Fasern keine Zilienbewegung ermöglicht wurde. Jedoch konnte mittels der FGL-Fäden mit einem Zwei-Wege-Effekt eine wiederholbare Bewegung der Zilien gezeigt werden. Dieser Ansatz kann zukünftig dazu verwendet werden, die Funktionsweise menschlicher Zilien nachzustellen. Als weiteren alternativen Ansatz wurden Gewebe mit parallelen Leiterfäden mit Polyamid Kurzfasern beflockt. Mittels eines elektrischen Wechselfeldes konnte auch hier eine intermittierende Zilienbewegung nachgestellt werden.

Zusammenfassung

Am ITM wurde ein neuartiges Trachealimplantat entwickelt, welches die makroskopische Struktur der menschlichen Luftröhre hervorragend nachbildet. Die entwickelte Struktur war mittels marktverfügbarer Schützenwebtechnologie ohne eine konstruktive Anpassung herstellbar. Zum Erhalt einer druckstabilen tubulären Struktur sind 3D-gedruckte Stützstrukturen in Gewebetaschen integriert worden. Die Fertigung kann integral erfolgen und ist patientenindividuell anpassbar in Gewebelänge, Stützstrukturabstand, -anzahl und Druckstabilität. Darüber hinaus wurden zur Nachbildung der mikroskopischen Struktur verschiedene Konzepte untersucht, um einen Stofftransport zu erzeugen. Grundlage war die Erzeugung von Polnoppengeweben und der Verwendung von piezoelektrischen PVDF-Fasern. Hierbei hat sich herausgestellt, dass mittels PVDF-Noppen keine Bewegung im mikroskopischen Maßstab erzielbar war. Mittels anderer Aktorfasern wie Nitinolfasern konnte eine Zilienbewegung erzeugt werden. Zudem ist auch mittels Flockfasern eine Zilienbewegung erzeugbar.

Danksagung

Das Projekt „Tubuläre Gewebe mit rigiden und flexiblen Strukturzonen und Stofftrans-port zum biomimetischen Aufbau der Trachea (01IF22889N)“ wird im Rahmen des Programms „Industrielle Gemeinschaftsforschung (IGF)“ durch das Bundesministerium für Wirtschaft und Energie aufgrund eines Beschlusses des Deutschen Bundestages gefördert.

Literaturverzeichnis

[1] Aleksanyan, A. ; Stoelben, E.: Die laryngotracheale Resektion als Alternative zum permanenten Tracheostoma. In: Pneumologie 73 (2019), Nr. 4, S. 211–218. URL https://www.thieme-connect.com/products/ejournals/html/10.1055/a-0809-0232

[2] Udelsman, Brooks ; Mathisen, Douglas J. ; Ott, Harald C.: A reassessment of tracheal substitutes-a systematic review. In: Annals of Cardiothoracic Surgery 7 (2018), Nr. 2, S. 175–182. URL https://www.annalscts.com/article/view/16458/16661

[3] BVMed: BVMed informiert über Tracheotomie- und Laryngektomie-Versorgung. URL https://www.bvmed.de/verband/presse/pressemeldungen/bvmed-informiert-ueber-tracheotomie-und-laryngektomie-versorgung. – Aktualisierungsdatum: 2016-05-19 – Überprüfungsdatum 2025-10-15

[4] Canzano, F. ; Aggazzotti Cavazza, E. ; Mattioli, F. ; Ghidini, A. ; Bottero, S. ; Presutti, L.: Step-by-Step Tracheal Resection with End-to-End Anastomosis. In: Ghidini, Angelo; Mattioli, Francesco; Bottero, Sergio; Presutti, Livio (Hrsg.): Atlas of Airway Surgery : A Step-by-Step Guide Using an Animal Model. Cham : Springer International Publishing, 2017, S. 75–82

[5] Wemer, Richard D. ; Detamore, Michael ; Weatherly, Robert A.: Immunohistochemical characterization of the rabbit tracheal cartilages. In: Journal of Biomedical Science and Engineering 03 (2010), Nr. 10, S. 1007–1013

[6] Damiano, Giuseppe ; Palumbo, Vincenzo Davide ; Fazzotta, Salvatore ; Curione, Francesco ; Lo Monte, Giulia ; Brucato, Valerio Maria Bartolo ; Lo Monte, Attilio Ignazio: Current Strategies for Tracheal Replacement: A Review. In: Life 11 (2021), Nr. 7, S. 618. URL https://www.mdpi.com/2075-1729/11/7/618

[7] Rettinger, Gerhard ; Hosemann, Werner ; Hüttenbrink, Karl-Bernd ; Werner, Jochen Alfred: HNO-Operationslehre : Mit allen wichtigen Eingriffen. 5., vollständig überarbeitete Auflage. Stuttgart : Thieme, 2018

[8] A. Berghaus: Alloplastischer Trachealersatz. In: Herz-, Thorax- und Gefässchirurgie 1987 (1987), Band 1. URL https://epub.ub.uni-muenchen.de/6218/1/6218.pdf – Überprüfungsdatum 2025-10-15

 

Authors: Pötzsch, H. F. Happel, A. Bruns, M. Wöltje, M. Cherif, Ch.

Technische Universität Dresden
Fakultät Maschinenwesen
Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM)
01062 Dresden

https://tu-dresden.de/mw/itm

More entries from TU Dresden, Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik ITM

31.07.2025

Development of Hybrid Yarn Structures from Carbon, Stainless Steel, and Elastomer Fibers for Composite Applications

Fibres Yarns Composites Recycling Sustainability

Abstract

As part of the IGF research project 01IF22916N, a complete, industry-ready process chain for producing three-component hybrid yarns from rCF, MF, and EF was successfully developed at the ITM of TU Dresden. The process chain comprises fiber preparation, carding, and drafting to form slivers, followed by modified flyer spinning to produce hybrid yarns.

Proof of concept was provided through the production of hybrid yarns with defined fiber volume contents and a functional demonstrator. Fig. 3 illustrates the full process chain from fiber preparation to demonstrator production from rCF, MF and EF at ITM. The resulting yarns ranged from 1500 to 3500 tex and were successfully processed into textile preforms. The resulting composites demonstrated excellent mechanical performance: a maximum flexural strength of 806 ± 18 MPa, flexural modulus of 83 ± 4 GPa, and an impact strength of up to 117 ± 17 kJ/m².

The results show that yarn twist significantly influences composite mechanical properties: moderate twist enhances flexural behavior, while higher twist improves impact resistance. By adjusting the yarn twist level, the mechanical performance of hybrid composites can be effectively tailored.

These novel hybrid yarns are particularly suited for producing cost-efficient, high-performance thermoset composites with complex geometries. Their application-specific performance and process-integrated production offer high innovation and market potential, especially in the fields of materials engineering, lightweight design, sustainability, and resource efficiency. For small and medium-sized enterprises (SMEs) in the textile industry, this technology provides opportunities to develop advanced fiber-reinforced products and establish themselves as key suppliers in sectors such as automotive, mechanical engineering, wind energy, aerospace, medical technology, and sports equipment.

Report

Introduction

The size of the CF-CFRP (carbon fiber-reinforced plastics) market was estimated at USD 21.12 billion in 2023. It is projected to grow from USD 22.57 billion in 2024 to USD 38.4 billion by 2032, with a CAGR of approximately 6.86% during the forecast period (2024–2032) [1]. Due to their high specific stiffness and strength, CFRPs are widely used in the automotive, sports, leisure, and aerospace industries [2]. However, CFRP components are brittle under impact loading, which can result in catastrophic failure and severe splintering [3]. This brittleness raises concerns for the use of thermoset CFRP structures in safety-critical components such as wind turbine blades or automotive B-pillars.

Current hybridization concepts aim to combine materials with high stiffness, strength, and ductility [4]. Existing approaches integrate carbon fibers (CF) with stainless steel fibers (MF) or elastomer fibers (EF) using metal or elastomer films in fiber-metal laminates (FMLs), such as CARALL [5–8], or in elastomer-based laminates, such as KRAIBON [9–14]. Metal films offer higher energy absorption due to their plastic deformability and elongation at break of up to 20%, surpassing CFRP and carbon/aramid hybrid composites [15–17]. Elastomer films reduce hazardous splintering under dynamic loading due to their elastic deformation behavior [9]. While such multilayer systems improve impact and splinter resistance, they also carry a high risk of delamination [18]. Moreover, there is a lack of cost-effective and sustainable composites with enhanced impact and splinter properties that fully utilize the benefits of their individual components.

Objective

The goal of this research project was the simulation-based development of novel three-component hybrid yarns with micro-scale hybridization using three distinct material concepts. These yarns were then used to produce functional composite structures for sustainable lightweight applications. By strategically combining ductile metal fibers (MF), highly elastic elastomer fibers (EF), and high-stiffness, high-strength recycled carbon fibers (rCF), scalable composites with tailored mechanical properties were developed.

The developed hybrid yarns form the basis for application-specific composites with high energy absorption capacity and improved damage resistance.

 

Hybrid Yarn Structures and Related Composites: Development and Characterization

Development and Production of Hybrid Yarns Using Flyer Spinning Technology

Starting from the selected and characterized rCF and EF fiber materials with an average fiber length of 80 mm and defined blend ratios, the fibers were prepared using mechanical pre-opening and blending units. The pre-opened and pre-mixed fibers were processed using a lab-scale carding machine to produce card slivers of rCF and EF. Characterization of these slivers revealed a CF damage level of 10–25%, while EF fibers showed no length reduction.

To avoid damaging the stainless steel fibres during carding, card slivers were firstly produced that were either 100% rCF or a blend of rCF and EF. These were combined with 100% MF slivers to develop sandwich-type structures (rCF/MF or rCF/EF/MF slivers), which served as feed material for the drafting process. The slivers were drafted multiple times to enhance fiber blending and homogeneity. These drafted slivers were then used to produce hybrid yarns.

The ITM’s specialized flyer spinning machine was modified to optimize drafting mechanics, sliver feed, and machine settings to avoid fiber misalignment. Based on experimental investigations, optimal settings were determined, and hybrid yarns with a yarn count of 1500 tex and twist levels ranging from 40 to 150 T/m were produced. These yarns were characterized in accordance with DIN EN ISO 13934-1, evaluating unevenness, yarn structure, and tensile behavior, and were subsequently used to produce composite.

Manufacturing of Recycled Carbon Fiber-Reinforced Composite

Using the developed hybrid yarns, unidirectional (UD) composites were produced via the resin transfer molding (RTM) process. The hybrid yarns were wound under constant tension onto a frame and consolidated under optimized parameters. The resin system consisted of Hexion RIMH 135 and hardener Hexion RIMH 137.

Composite characterization followed standardized test methods. Tensile specimens were prepared based on DIN EN ISO 527-5/A/2, with tensile testing conducted according to             DIN EN ISO 527-4. The flexural properties were evaluated in accordance with DIN EN ISO 14125 and impact resistance was assessed using DIN EN ISO 179-2 (Charpy method). The compression-after-impact (CAI) performance was measured following DIN ISO 18352. Additionally, a custom test rig was developed to analyze splintering behavior using a ZwickRoell HTM 5020 high-speed testing machine. Puncture resistance was evaluated according to DIN EN ISO 6603-2.

Selected Results and Discussion

Fig. 1 presents the relationship between flexural strength and modulus for various twist levels in hybrid yarn-based composites at a constant fiber volume content of 50 vol%. Both a CF-filament-based reference composite and three UD composites made from rCF/MF hybrid yarns (90 wt% rCF / 10 wt% MF) were investigated, differing only in yarn twist (40, 80 and 120 T/m). The reference composite achieved 725 ± 35 MPa flexural strength and a modulus of 74 ± 8 GPa. Notably, the T40 hybrid variant surpassed these values, reaching 806 ± 18 MPa and 83 ± 4 GPa, respectively.

However, increasing the yarn twist (80 and 120 T/m) led to a continuous decline in flexural properties. The intensified helical structure reduces fiber alignment in the load direction, which weakens load transfer and overall flexural performance.

Fig. 2 shows the impact strength of composites made from rCF/MF hybrid yarns at varying yarn twist levels. Results indicate a trend of increasing impact strength with higher twist (40 → 120 T/m), from 85 kJ/m² to 117 kJ/m². This improvement is attributed to a more compact yarn structure, enhanced fiber cohesion, and improved energy absorption during impact. Additionally, the tighter fiber arrangement enhances load transfer and structural integrity by reducing the number of loose fiber ends, resulting in greater resistance to sudden loads.

Summary

As part of the IGF research project 01IF22916N, a complete, industry-ready process chain for producing three-component hybrid yarns from rCF, MF, and EF was successfully developed at the ITM of TU Dresden. The process chain comprises fiber preparation, carding, and drafting to form slivers, followed by modified flyer spinning to produce hybrid yarns.

Proof of concept was provided through the production of hybrid yarns with defined fiber volume contents and a functional demonstrator. Fig. 3 illustrates the full process chain from fiber preparation to demonstrator production from rCF, MF and EF at ITM. The resulting yarns ranged from 1500 to 3500 tex and were successfully processed into textile preforms. The resulting composites demonstrated excellent mechanical performance: a maximum flexural strength of 806 ± 18 MPa, flexural modulus of 83 ± 4 GPa, and an impact strength of up to 117 ± 17 kJ/m².

The results show that yarn twist significantly influences composite mechanical properties: moderate twist enhances flexural behavior, while higher twist improves impact resistance. By adjusting the yarn twist level, the mechanical performance of hybrid composites can be effectively tailored.

These novel hybrid yarns are particularly suited for producing cost-efficient, high-performance thermoset composites with complex geometries. Their application-specific performance and process-integrated production offer high innovation and market potential, especially in the fields of materials engineering, lightweight design, sustainability, and resource efficiency. For small and medium-sized enterprises (SMEs) in the textile industry, this technology provides opportunities to develop advanced fiber-reinforced products and establish themselves as key suppliers in sectors such as automotive, mechanical engineering, wind energy, aerospace, medical technology, and sports equipment.

Acknowledgements

The IGF project 01IF22916N of the research association Forschungskuratorium Textil e.V. was funded via the DLR within the framework of the program for the promotion of industrial collaborative research and development (IGF) by the German Federal Ministry for Economic Affairs and Climate Action, based on a resolution of the German Bundestag. We thank the aforementioned institutions for their financial support.

 

References

  1. WiseGuyReports. (n.d.). CF & CFRP Market Report. Accessed on 29.07.2025, https://www.wiseguyreports.com/de/reports/cf-cfrp-market
  2. E. Witten; V. Mathes; M. Sauer; M. Kühnel: Composites-Marktbericht 2023 - Marktentwicklun-gen, Trends, Ausblicke und Herausforderungen. Deutsche Fachverband für Faserverbundkunststoffe/Composites - AVK, 2023
  3. J. Striewe; C. Reuter; K.-H. Sauerland; T. Tröster: Manufacturing and crashworthiness of fabric-reinforced thermoplastic composites. Thin-Walled Structures 123(2018), Pp. 501-508. https://doi.org/10.1016/j.tws.2017.11.011
  4. D. Nestler: Beitrag zum Thema Verbundwerkstoffe - Werkstoffverbunde: Status quo und For-schungsansätze. Chemnitz: Univ.-Verl., 2014. – ISBN 9783944640129
  5. ZHU, W.; XIAO, H.; WANG, J.; LI, X.: Effect of Different Coupling Agents on Interfacial Properties of Fibre-Reinforced Aluminum Laminates. Materials (Basel, Switzerland) 14(2021)4. https://doi.org/10.3390/ma14041019
  6. GUPTA, R. K.; MAHATO, A.; BHATTACHARYA, A.: Notch Shape Influence on Damage Evolution of Al/CFRP Laminates Under Tensile Loading: Experimental and Numerical Analysis. Appl Compos Mater (2022). https://doi.org/10.1007/s10443-022-10051-2
  7. TRZEPIECIŃSKI, T.; NAJM, S. M.; SBAYTI, M.; BELHADJSALAH, H.; SZPUNAR, M.; LEMU, H. G.: New Advances and Future Possibilities in Forming Technology of Hybrid Metal–Polymer Composites Used in Aerospace Applications. J. Compos. Sci. 5(2021)8, Pp. 217 f. https://doi.org/10.3390/jcs5080217
  8. PONNARENGAN, H.; KAMARAJ, L.; BALACHANDRAN, S. R.; KATHAR BASHA, S.: Evaluation of me-chanical properties of novel GLARE laminates filled with nanoclay. Polym. Compos. 42(2021)8, Pp. 4015-4028. https://doi.org/10.1002/pc.26113
  9. KRAIBON®: https://www.kraiburg-rubber-compounds.com/kraibon (31.07.2025)
  10. D. Düring; L. Weiß; D. Stefaniak; N. Jordan; C. Hühne: Low-velocity impact response of composi-te laminates with steel and elastomer protective layer. Composite Structures 134(2015), Pp. 18-26. https://doi.org/10.1016/j.compstruct.2015.08.001
  11. E. Stelldinger; A. Kühhorn; M. Kober: Experimental evaluation of the low-velocity impact dama-ge resistance of CFRP tubes with integrated rubber layer. Composite Structures 139(2016), Pp. 30-35. https://doi.org/10.1016/j.compstruct.2015.11.069
  12. E. Sarlin; M. Apostol; M. Lindroos; V.-T. Kuokkala; J. Vuorinen; T. Lepistö; M. Vippola: Impact properties of novel corrosion resistant hybrid structures. Composite Structures 108(2014), Pp. 886-893. https://doi.org/10.1016/j.compstruct.2013.10.023
  13. LI, Z.; ZHANG, J.; JACKSTADT, A.; KÄRGER, L.: Low-velocity impact behavior of hybrid CFRP-elastomer-metal laminates in comparison with conventional fiber-metal laminates. 02638223 287(2022), Pp. 115340 f. https://doi.org/10.1016/j.compstruct.2022.115340
  14. FLEISCHER, J. (HRSG.): Intrinsische Hybridverbunde für Leichtbautragstrukturen – Grundlagen der Fertigung, Charakterisierung und Auslegung. Berlin, Heidelberg: Springer Vieweg, 2021. – ISBN 978-3-662-62832-4
  15. Y. Swolfs; P. De Cuyper; M.G. Callens; I. Verpoest; L. Gorbatikh: Hybridisation of two ductile materials Steel fibre and self-reinforced polypropylene composites. Composites Part A: Applied Science and Manufacturing 100(2017), Pp. 48-54. https://doi.org/10.1016/j.compositesa.2017.05.001
  16. H.J. Koslowski: Chemiefaser-Lexikon. Deutscher Fachverlag, 2008. – ISBN 3871508764
  17. H. Schürmann: Konstruieren mit Faser-Kunststoff-Verbunden. Springer-Verlag GmbH, 2007. – ISBN 3540721894
  18. N. Montinaro; D. Cerniglia; G. Pitarresi: Evaluation of interlaminar delaminations in titanium-graphite fibre metal laminates by infrared NDT techniques. NDT & E International 98(2018), Pp. 134-146. https://doi.org/10.1016/j.ndteint.2018.05.004

 

 

Authors: Mahmud Hossain Anwar Abdkader Tobias Lang Thomas Gereke Chokri Cherif

Technische Universität Dresden
Fakultät Maschinenwesen
Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM)
01062 Dresden

https://tu-dresden.de/mw/itm

More entries from TU Dresden, Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik ITM

31.07.2025

Entwicklung von Hybridgarnstrukturen aus Carbon-, Edelstahl- und Elastomerfasern für Compositeanwendungen

Fibres Yarns Composites Recycling Sustainability

Abstract

Im Rahmen des IGF-Forschungsvorhabens 01IF22916N wurde am Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM) der TU Dresden eine durchgängige Prozesskette zur industriellen Herstellung von dreikomponentigen Hybridgarnen aus recycelten Carbonfasern (rCF), Metallfasern (MF) und Elastomerfasern (EF) erfolgreich entwickelt und umgesetzt. Die entwickelte Prozesskette umfasst die Faseraufbereitung und Charakterisierung, Krempel- und Verstreckungsprozess zur Bildung eines Faserbandes und die modifizierte Garnbildung im Flyer zur Herstellung der Hybridgarne. Der Eignungsnachweis der Technologie erfolgte durch die Herstellung dreikomponentiger Hybridgarne mit definierten Faservolumengehalten sowie durch die Fertigung eines Demonstrators. Abb. 3 zeigt die vollständige Prozesskette von der Faseraufbereitung bis zur Demonstratorherstellung aus rCF, MF und EF am ITM. Die realisierten Hybridgarne weisen Feinheiten zwischen 1500 tex und 3500 tex auf und konnten erfolgreich zu textilen Halbzeugen weiterverarbeitet werden. Die daraus hergestellten Composites zeigen hervorragende mechanische Eigenschaften: eine maximale Biegefestigkeit von 806 ± 18 MPa sowie ein maximales Biegemodul von 83 ± 4 GPa. Die maximale Schlagzähigkeit liegt bei 117±17 kJ/m². Die Untersuchungsergebnisse zeigen, dass die Garndrehung einen signifikanten Einfluss auf die mechanischen Eigenschaften des Verbundmaterials ausübt. Eine moderate Garndrehung kann positiv auf die Verbundbiegeeigenschaften auswirken, während eine höhere Garndrehung vorteilhaft auf die Verbundschlagfestigkeit auswirken. Insgesamt zeigt sich, dass durch die gezielte Einstellung der Garndrehung das mechanische Verhalten der Hybridverbunde erheblich beeinflusst und optimiert werden kann.

Die neuartigen Hybridgarne eignen sich besonders für die Herstellung kosteneffizienter duroplastischer Hochleistungsverbunde mit komplexer Geometrie. Durch ihre anwendungsbezogene Leistungsfähigkeit und die zugrunde liegende prozessintegrierte Technologie verfügen sie über ein hohes Innovations- und Marktpotenzial – insbesondere in den Bereichen Werkstofftechnik, Leichtbau, Nachhaltigkeit und Ressourceneffizienz. Für kleine und mittlere Unternehmen (KMU) der Textilindustrie eröffnet sich damit die Möglichkeit, innovative Produkte und Technologien für den Faserverbundmarkt zu entwickeln und sich als leistungsfähige Zulieferer für Branchen wie Automobilbau, Maschinenbau, Luftfahrt, Medizintechnik und Sportgeräteindustrie zu positionieren.

Report

Einleitung

Die Größe des CF-CFK-Marktes wurde im Jahr 2023 auf 21,12 Milliarden US-Dollar geschätzt. Die Branche des CF-CFK-Markets wird voraussichtlich von 22,57 Milliarden US-Dollar im Jahr 2024 auf 38,4 Milliarden US-Dollar im Jahr 2032 wachsen. Die Markt-CAGR (Wachstumsrate) wird im Prognosezeitraum 2024–2032 voraussichtlich bei etwa 6,86% liegen [1]. Dank ihrer hohen gewichtsspezifischen Steifigkeiten und Festigkeiten finden CFK breite Anwendung in der Automobil-, Sport-, Freizeit- sowie Luft- und Raumfahrtindustrie [2]. Jedoch sind CFK-Bauteile bei Schlagbelastung sehr spröde, was zu katastrophalen Schäden und starker Splitterbildung führen kann [3]. Deshalb ist der Einsatz von duroplastischen CFK-Strukturen in sicherheitsrelevanten Komponenten, wie Rotorblättern von Windkraftanlagen und PKW-B-Säulen, kritisch zu betrachten. Aktuelle Hybridisierungskonzepte zielen darauf ab, Materialien mit hoher Steifigkeit, Festigkeit und Duktilität zu vereinen [4]. Bestehende Ansätze kombinieren Carbonfasern (CF) mit Edelstahlfasern (MF) oder Elastomerfasern (EF) in Schichten aus Metallfolien und CFK als Faserverbund-Metall-Laminate (FML), bspw. CARALL [5-8], oder Elastomerfolien und CFK als Faserverbundlaminate, bspw. KRAIBON [9-14]. Metallfolien bieten aufgrund ihrer plastischen Verformbarkeit mit Bruchdehnungen von bis zu 20 % eine höhere Energieabsorption als CFK und Carbon/Aramid-Hybridcomposites [15-17]. Elastomerfolien reduzieren durch ihre elastische Verformbarkeit die gefährliche Splitterbildung unter dynamischer Belastung [9]. Diese Schichtsysteme verbessern das Impact- und Splitterverhalten zwar, bergen jedoch ein hohes Delaminationsrisiko [18]. Darüber hinaus fehlen kostengünstige und nachhaltige Composites mit geeigneten Impact- und Splittereigenschaften, die die Vorteile der Einzelkomponenten voll ausschöpfen und kostengünstig sowie nachhaltig sind.

Zielsetzung

Das Ziel des Forschungsvorhabens war die simulationsgestützte Entwicklung neuartiger Dreikomponenten-Hybridgarne, die auf Mikroebene hybridisierter sind, auf Basis dreier unterschiedlicher Materialkonzepte sowie deren Umsetzung in funktionale Compositestrukturen für nachhaltige Leichtbauanwendungen. Durch die gezielte Kombination duktiler Metallfasern (MF), hochelastischer Elastomerfasern (EF) sowie hochsteifer und hochfester recycelter Carbonfasern (rCF) sollten Verbundwerkstoffe mit skalierbaren mechanischen Eigenschaften entstehen.

Diese entwickelten Hybridgarne bildeten die Grundlage für die maßgeschneiderte Entwicklung von Composites für anwendungsorientierte Leichtbaulösungen mit hohem Energieabsorptionspotenzial und erhöhter Schadensresistenz.

 

Hybridgarnstrukturen und Composites: Entwicklung und Charakterisierung

Entwicklung und Fertigung von Hybridgarnen mittels Flyerspinntechnologie

Ausgehend von den ausgewählten und charakterisierten Fasermaterialien rCF und EF mit einer mittleren Faserausgangslänge von 80 mm und mit einem definierten Mischungsverhältnis wurden die Fasern mithilfe mechanischer Voröffnungs- und Vormischvorrichtungen aufbereitet. Anschließend wurden die vorgeöffneten und vorgemischten Fasern eine Speziallaborkrempel zugeführt, um Krempelbänder aus rCF und EF zu entwickeln. Die Charakterisierung der Krempelbänder zeigte, dass der Schädigungsgrad der Carbonfasern (CF) zwischen 10 und 25 % lag und die EF keine Fasereinkürzung aufweist.

Zum Schutz der Edelstahlfasern wurde zunächst ein Faserband aus 100 % rCF oder aus rCF und EF mit definierten Mischungsverhältnissen hergestellt. Anschließend wurden aus diesen und 100 % MF-Bändern Sandwichbandstrukturen (rCF/MF-Band oder rCF/EF/MF-Band) hergestellt, die als Ausgangsmaterial für die Strecke dienten. Zur Verbesserung der Gleichmäßigkeit des Faserbandes und zur besseren Durchmischung von rCF, EF und MF in der Faserstruktur wurde das Band mehrfach verstreckt. Die hergestellten Streckenbänder stehen für die weitere Entwicklung von Hybridgarnen zur Verfügung.

Zur Entwicklung von Hybridgarnen wurde der ITM-Spezialflyer hinsichtlich des verzugsstörungsfreien Streckwerks, der Bandzuführelemente und der Maschineneinstellparameter modifiziert. Anschließend wurden experimentelle Untersuchungen durchgeführt. Aus den ermittelten optimalen Einstellungen des ITM-Spezialflyers wurden Hybridgarne mit einer Feinheit von 1500 tex und verschiedenen Garndrehungen von 40-150 T/m hergestellt. Die entwickelten Hybridgarne wurden in Anlehnung an DIN EN ISO 13934-1 hinsichtlich Ungleichmäßigkeit, Garnstruktur und Kraft-Dehnungsverhalten charakterisiert und stehen für die Herstellung von Verbundplatten zur Verfügung.

Fertigung von recycelten carbonfaserverstärkten Verbundplatten

Auf Basis der entwickelten Hybridgarne wurden unidirektionale (UD) Verbundplatten mittels des RTM-Verfahrens (Resin Transfer Molding) hergestellt und charakterisiert. Hierzu wurden die Hybridgarne zunächst unter konstanter Spannung gleichmäßig auf einen Wickelrahmen gewickelt und anschließend mit optimierten Parametern konsolidiert. Als Harzsystem kam das Injektionsharz Hexion RIMH 135 in Kombination mit dem Härter Hexion RIMH 137 zum Einsatz.

Im Rahmen der Verbundcharakterisierung kamen mehrere genormte Prüfverfahren zur Anwendung. Die Probekörper für den Verbundzugversuch wurden in Anlehnung an DIN EN ISO 527-5/A/2 hergestellt und die Zugprüfung erfolgte gemäß DIN EN ISO 527-4. Zur Bestimmung der Biegeeigenschaften faserverstärkter Kunststoffe wurde die Norm DIN EN ISO 14125 herangezogen und die instrumentierte Schlagprüfung erfolgte nach DIN EN ISO 179-2, welche die Charpy-Schlageigenschaften beschreibt. Zur Bewertung der Restdruckfestigkeit nach Schlagbeanspruchung kam das CAI-Verfahren gemäß DIN ISO 18352 zum Einsatz. Ergänzend wurde ein Prüfstand zur optischen Analyse des Splitterverhaltens entwickelt, wobei die Hochgeschwindigkeitsprüfmaschine HTM 5020 von ZwickRoell zum Einsatz kam. Die Durchstoßversuche orientierten sich an der Norm DIN EN ISO 6603-2.

 

Ergebnisse und Diskussion (Auswahl)

Das in Abb. 1 dargestellte Diagramm zeigt den Zusammenhang zwischen der Verbundbiegefestigkeit und dem Biegemodul bei verschiedenen Garndrehungen eines Faserverbundmaterials mit einem konstanten Faservolumenanteil von 50 Vol.- %. Es wurden sowohl ein Referenzverbund aus CF-Filamentgarnen als auch drei Varianten eines unidirektionalen (UD) Verbunds untersucht, die aus entwickelten rCF/MF-Hybridgarnen bestehen. Diese Hybridgarne setzen sich aus 90 Masse- % recycelten Carbonfasern (rCF) und 10 Masse-% Metallfasern (MF) zusammen. Sie unterscheiden sich ausschließlich in der Garndrehung (40, 80 und 120 T/m). Der Referenzverbund erreicht mit einer Biegefestigkeit von etwa 725 ± 35 MPa und einem Biegemodul von ca. 74 ± 8 GPa bereits ein gutes mechanisches Eigenschaftsprofil. Bemerkenswert ist jedoch, dass die Variante mit moderater Garndrehung (T40) diese Werte übertrifft: Sie erreicht eine Biegefestigkeit von 806 ± 18 MPa und ein Biegemodul von 83 ± 4 GPa und erzielt damit die höchsten Werte innerhalb der untersuchten Proben. Mit zunehmender Garndrehung (T80 und T120) nehmen hingegen die Verbundbiegefestigkeit und das Biegemodul stetig ab. Die verstärkte Helixstruktur führt zu einer weniger effektiven Ausrichtung der Fasern in Längsrichtung. Dadurch wird die tragende Wirkung in Faserrichtung reduziert und die Verbundwirkung unter Biegebelastung geschwächt.

Die Abb. 2 zeigt die Schlagfestigkeit von Verbundwerkstoffen, die auf Basis neu entwickelter Hybridgarne aus recycelten Carbonfasern (rCF) und gehobelten Metallfasern (MF) hergestellt wurden. Dabei wurde die Schlagzähigkeit in Abhängigkeit von der Garndrehung untersucht. Es wurden drei Verbundplatten mit unterschiedlichen Garndrehungen (T40, T80 und T120) analysiert. Die Ergebnisse verdeutlichen, dass die Schlagfestigkeit tendenziell mit steigender Garndrehung (T40 → T120) zunimmt. Bei einer niedrigen Drehung (T40) beträgt die Schlagfestigkeit etwa 90 kJ/m² und bei der höchsten Drehung (T120) eine deutliche Steigerung der Schlagzähigkeit auf etwa 117±17 kJ/m². Dies legt nahe, dass eine höhere Drehung zu einer verbesserten Mikrostruktur und somit zu einer effizienteren Energieaufnahme bei Schlagbelastung führt. Dadurch erhöht sich die Kohäsion zwischen den Fasern, was die Energieaufnahmefähigkeit beim Schlag verbessert. Zudem bewirkt die engere Verspannung der Fasern eine bessere Lastübertragung im Verbund. Eine höhere Garndrehung reduziert auch die Anzahl loser Faserenden, was die strukturelle Integrität steigert. Insgesamt resultiert daraus ein widerstandsfähigeres Material gegenüber schlagartiger Beanspruchung.

Zusammenfassung

Im Rahmen des IGF-Forschungsvorhabens 01IF22916N wurde am Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM) der TU Dresden eine durchgängige Prozesskette zur industriellen Herstellung von dreikomponentigen Hybridgarnen aus recycelten Carbonfasern (rCF), Metallfasern (MF) und Elastomerfasern (EF) erfolgreich entwickelt und umgesetzt. Die entwickelte Prozesskette umfasst die Faseraufbereitung und Charakterisierung, Krempel- und Verstreckungsprozess zur Bildung eines Faserbandes und die modifizierte Garnbildung im Flyer zur Herstellung der Hybridgarne. Der Eignungsnachweis der Technologie erfolgte durch die Herstellung dreikomponentiger Hybridgarne mit definierten Faservolumengehalten sowie durch die Fertigung eines Demonstrators. Abb. 3 zeigt die vollständige Prozesskette von der Faseraufbereitung bis zur Demonstratorherstellung aus rCF, MF und EF am ITM. Die realisierten Hybridgarne weisen Feinheiten zwischen 1500 tex und 3500 tex auf und konnten erfolgreich zu textilen Halbzeugen weiterverarbeitet werden. Die daraus hergestellten Composites zeigen hervorragende mechanische Eigenschaften: eine maximale Biegefestigkeit von 806 ± 18 MPa sowie ein maximales Biegemodul von 83 ± 4 GPa. Die maximale Schlagzähigkeit liegt bei 117±17 kJ/m². Die Untersuchungsergebnisse zeigen, dass die Garndrehung einen signifikanten Einfluss auf die mechanischen Eigenschaften des Verbundmaterials ausübt. Eine moderate Garndrehung kann positiv auf die Verbundbiegeeigenschaften auswirken, während eine höhere Garndrehung vorteilhaft auf die Verbundschlagfestigkeit auswirken. Insgesamt zeigt sich, dass durch die gezielte Einstellung der Garndrehung das mechanische Verhalten der Hybridverbunde erheblich beeinflusst und optimiert werden kann.

Die neuartigen Hybridgarne eignen sich besonders für die Herstellung kosteneffizienter duroplastischer Hochleistungsverbunde mit komplexer Geometrie. Durch ihre anwendungsbezogene Leistungsfähigkeit und die zugrunde liegende prozessintegrierte Technologie verfügen sie über ein hohes Innovations- und Marktpotenzial – insbesondere in den Bereichen Werkstofftechnik, Leichtbau, Nachhaltigkeit und Ressourceneffizienz. Für kleine und mittlere Unternehmen (KMU) der Textilindustrie eröffnet sich damit die Möglichkeit, innovative Produkte und Technologien für den Faserverbundmarkt zu entwickeln und sich als leistungsfähige Zulieferer für Branchen wie Automobilbau, Maschinenbau, Luftfahrt, Medizintechnik und Sportgeräteindustrie zu positionieren.

 

Danksagung

Das IGF-Vorhaben 01IF22916N der Forschungsvereinigung Forschungskuratorium Textil e.V. wurde über das DLR im Rahmen des Programms zur Förderung der industriellen Gemeinschaftsforschung und -entwicklung (IGF) vom Bundesministerium für Wirtschaft und Klimaschutz aufgrund eines Beschlusses des Deutschen Bundestages gefördert. Wir danken den genannten Institutionen für die Bereitstellung der finanziellen Mittel.

 

Literaturangaben

  1. WiseGuyReports. (n.d.). CF & CFRP Market Report. Abgerufen am [29.07.2025], von https://www.wiseguyreports.com/de/reports/cf-cfrp-market
  2. E. Witten; V. Mathes; M. Sauer; M. Kühnel: Composites-Marktbericht 2023 - Marktentwicklun-gen, Trends, Ausblicke und Herausforderungen. Deutsche Fachverband für Faserverbundkunststoffe/Composites - AVK, 2023
  3. J. Striewe; C. Reuter; K.-H. Sauerland; T. Tröster: Manufacturing and crashworthiness of fabric-reinforced thermoplastic composites. Thin-Walled Structures 123(2018), S. 501-508. https://doi.org/10.1016/j.tws.2017.11.011
  4. D. Nestler: Beitrag zum Thema Verbundwerkstoffe - Werkstoffverbunde: Status quo und For-schungsansätze. Chemnitz: Univ.-Verl., 2014. – ISBN 9783944640129
  5. ZHU, W.; XIAO, H.; WANG, J.; LI, X.: Effect of Different Coupling Agents on Interfacial Properties of Fibre-Reinforced Aluminum Laminates. Materials (Basel, Switzerland) 14(2021)4. https://doi.org/10.3390/ma14041019
  6. GUPTA, R. K.; MAHATO, A.; BHATTACHARYA, A.: Notch Shape Influence on Damage Evolution of Al/CFRP Laminates Under Tensile Loading: Experimental and Numerical Analysis. Appl Compos Mater (2022). https://doi.org/10.1007/s10443-022-10051-2
  7. TRZEPIECIŃSKI, T.; NAJM, S. M.; SBAYTI, M.; BELHADJSALAH, H.; SZPUNAR, M.; LEMU, H. G.: New Advances and Future Possibilities in Forming Technology of Hybrid Metal–Polymer Composites Used in Aerospace Applications. J. Compos. Sci. 5(2021)8, S. 217 f. https://doi.org/10.3390/jcs5080217
  8. PONNARENGAN, H.; KAMARAJ, L.; BALACHANDRAN, S. R.; KATHAR BASHA, S.: Evaluation of me-chanical properties of novel GLARE laminates filled with nanoclay. Polym. Compos. 42(2021)8, S. 4015-4028. https://doi.org/10.1002/pc.26113
  9. KRAIBON®: https://www.kraiburg-rubber-compounds.com/kraibon (31.07.2025)
  10. D. Düring; L. Weiß; D. Stefaniak; N. Jordan; C. Hühne: Low-velocity impact response of composi-te laminates with steel and elastomer protective layer. Composite Structures 134(2015), S. 18-26. https://doi.org/10.1016/j.compstruct.2015.08.001
  11. E. Stelldinger; A. Kühhorn; M. Kober: Experimental evaluation of the low-velocity impact dama-ge resistance of CFRP tubes with integrated rubber layer. Composite Structures 139(2016), S. 30-35. https://doi.org/10.1016/j.compstruct.2015.11.069
  12. E. Sarlin; M. Apostol; M. Lindroos; V.-T. Kuokkala; J. Vuorinen; T. Lepistö; M. Vippola: Impact properties of novel corrosion resistant hybrid structures. Composite Structures 108(2014), S. 886-893. https://doi.org/10.1016/j.compstruct.2013.10.023
  13. LI, Z.; ZHANG, J.; JACKSTADT, A.; KÄRGER, L.: Low-velocity impact behavior of hybrid CFRP-elastomer-metal laminates in comparison with conventional fiber-metal laminates. 02638223 287(2022), S. 115340 f. https://doi.org/10.1016/j.compstruct.2022.115340
  14. FLEISCHER, J. (HRSG.): Intrinsische Hybridverbunde für Leichtbautragstrukturen – Grundlagen der Fertigung, Charakterisierung und Auslegung. Berlin, Heidelberg: Springer Vieweg, 2021. – ISBN 978-3-662-62832-4
  15. Y. Swolfs; P. De Cuyper; M.G. Callens; I. Verpoest; L. Gorbatikh: Hybridisation of two ductile materials Steel fibre and self-reinforced polypropylene composites. Composites Part A: Applied Science and Manufacturing 100(2017), S. 48-54. https://doi.org/10.1016/j.compositesa.2017.05.001
  16. H.J. Koslowski: Chemiefaser-Lexikon. Deutscher Fachverlag, 2008. – ISBN 3871508764
  17. H. Schürmann: Konstruieren mit Faser-Kunststoff-Verbunden. Springer-Verlag GmbH, 2007. – ISBN 3540721894
  18. N. Montinaro; D. Cerniglia; G. Pitarresi: Evaluation of interlaminar delaminations in titanium-graphite fibre metal laminates by infrared NDT techniques. NDT & E International 98(2018), S. 134-146. https://doi.org/10.1016/j.ndteint.2018.05.004

Authors: Mahmud Hossain Anwar Abdkader Tobias Lang Thomas Gereke Chokri Cherif

Technische Universität Dresden
Fakultät Maschinenwesen
Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM)
01062 Dresden

https://tu-dresden.de/mw/itm

More entries from TU Dresden, Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik ITM

21.07.2025

Entwicklung gewirkter Anbindungsimplantate zur Weichteilrekonstruktion

Knittings Technical Textiles Medicine

Abstract

Die erfolgreiche Therapie von Knochendefekten stellt eine immense Herausforderung dar und hat eine große gesellschaftliche und medizinische Relevanz, insbesondere bei einer immer älter werdenden Gesellschaft. Jede Implantation einer Endoprothese geht mit einem Verlust von Knochen und dem umliegenden Weichgewebe einher, dessen Anbindung an die Endoprothese für die Funktionalität jedoch unerlässlich ist. Im Rahmen des interdisziplinären Forschungsprojektes IGF-Projektes 21998BR des ITM und OUPC wurde deshalb ein textiles Anbindungsimplantat entwickelt, das eine einfache Anpassung und universelle Anbindung des Weichgewebes an eine Endoprothese erlaubt.

Report

Ausgangssituation und Problemstellung

Die erfolgreiche Therapie von Knochendefekten stellt eine große Herausforderung dar und ist von großer sozialer und medizinischer Relevanz, insbesondere in einer alternden Gesellschaft. Die demografische Entwicklung der Gesellschaft wird zwangsläufig zu einer Zunahme von Revisionen (Wechseloperationen) führen. Die Gründe hierfür sind vielfältig und liegen u. a. in der limitierten Lebensdauer der Endoprothesen sowie in Komplikationen wie Lockerungen, Frakturen oder Infektionen [1]. Jede Revision geht dabei mit einem erhöhten Knochenverlust einher und führt zur Entfernung des umgebenden Weichgewebes (Muskeln, Sehnen, Bänder, Bindegewebe). Das Weichgewebe ist jedoch für die Funktionalität der Gliedmaßen, beispielsweise die aktive Kniestreckung oder die Vermeidung von Hinken [2], unerlässlich. Eine unzureichende Weichteildeckung kann zudem schwerwiegende Komplikationen wie Auskugeln und periprothetische Infektionen verursachen, insbesondere bei großen Defekten.

Die Behandlung von Knochendefekten erfordert daher sowohl die Implantation einer Endoprothese als auch die Rekonstruktion, einschließlich der Verbindung des umgebenden Weichgewebes mit der Endoprothese. Allerdings wird die Rekonstruktion des Weichgewebes heute meist unzureichend durchgeführt [2, 3]. Lediglich bei sog. Megaprothesen wird ein einfacher gestrickter PES-Schlauch als Anbindungsschlauch zur Fixation von Weichgewebe als Zusatzprodukt beschrieben. Allerdings weisen bisherige Lösungen eine unzureichende Stabilität auf und/ oder bedingen einen hohen Konfektionsaufwand während des operativen Eingriffs. Eine vergrößerte Oberfläche durch Falten und Taschenbildung des Anbindungsschlauchs kann das Risiko von Infektionen und Komplikationen erhöhen. Diese können sich auch über den Heilungsprozess der Endoprothesenimplantation hinaus erstrecken. So können periprothetische Infektionen auch Monate bis Jahre nach der Implantation auftreten. Darüber hinaus können nicht resorbierbare (nicht im Körper abbaubare) Materialien zu langanhaltenden Problemen im Körper führen. Dazu zählen Heilungsstörungen sowie akute und chronische Infektionen. [4, 5]. Zudem resultiert ein signifikanter Verlust an Weichgewebe bei einer Revision durch herausschneiden des verwachsenen PES-Schlauchs, der wiederrum die Wahrscheinlichkeit von Komplikationen erhöht. Die Verwendung eines synthetischen, nicht resorbierbaren Implantats wird daher kritisch gesehen und ist nur bei zwingend notwendigen großen Knochenverlusten indiziert. In der Mehrzahl der Fälle, in denen Endoprothesen implantiert werden, wird auf die Verwendung eines Anbindungsimplantats verzichtet. Die daraus resultierenden Einschränkungen hinsichtlich der Funktionalität werden aus Sorge vor schwerwiegenderen Komplikationen toleriert.

Zur signifikanten Verbesserung der Anbindung von Weichgewebe an die Endoprothese ist die Entwicklung eines resorbierbaren sowie leicht und individuell an die jeweilige Prothesengeometrie anpassbaren Anbindungsimplantats nötig.

Entwicklung des umlaufenden Schusseintragssystems

Die Wirktechnik bietet hervorragende Lösungsansätze zur Entwicklung von Anbindungsimplantaten, die leicht an die Geometrie und die Länge der implantierten Endoprothese angepasst werden können und ausreichend Festigkeit bietet, um ein Ausreißen bei Belastung zu vermeiden. Verfahrens- und strukturbedingt weisen Gewirke bereits eine gute Dimensionsstabilität auf und gestatten eine große Vielfalt der Strukturgestaltung. Die Entwicklung einer schlauchförmigen Struktur mit integrierten, umlaufenden Schussfäden wird als vielversprechende Lösung für intraoperativ individualisierbare Verbindungsimplantate erachtet. Diese Konstruktion ermöglicht es dem Chirurgen, den Durchmesser der schlauchförmigen Struktur durch Anziehen und Verknoten der umlaufenden Schussfäden präzise einzustellen. Dadurch kann der Schlauchdurchmesser schnell, individuell und faltenfrei an die Endoprothese angepasst werden, ohne dass aufwendige Konfektionsarbeiten erforderlich sind (Abbildung 1).

Allerdings erlaubt die Wirktechnik aktuell nicht, konturgerechte Schläuche ohne Jacquard-Technik herzustellen und gleichzeitig einen umlaufenden Schussfaden über den gesamten Umfang einschließlich einer Fadenreserve zu integrieren. Dazu wurde am ITM ein neues umlaufendes Schusseintragssystem entwickelt. Die Innovation der neu entwickelten Technologie liegt in der Realisierung eines nachrüstbaren, umlaufenden Schusseintragssystems mit einer Schussfadenreserve für die doppelbarrige Raschelmaschine (Abb. 2).

Der minimale Bauraum innerhalb der Wirkstelle aber auch ein positionsgenaues Fadenlegen stellen die wichtigsten Anforderungen an ein umlaufendes Schussfadensystem dar. Zur Bewegung des Fadenführers um die Wirkstelle wurde eine umschließende Führungsbahn entwickelt und umgesetzt. Sie ermöglicht das Eintragen eines durchgehenden Schussfadens im vorderen und hinteren Nadelbett. Der auf einer Spule gewickelte Schussfaden wird dazu mit Hilfe eines speziellen Fadenführers auf einer umlaufenden Bahn transportiert. Der Fadenführer bewegt sich sensorgesteuert präzise entlang des vorderen und hinteren Nadelbetts. Mit Hilfe von drehbaren Haken kann eine Fadenreserve variabel integriert werden. Diese innovative Technologie ermöglicht die Integration eines umlaufenden Schussfadens in schlauchförmige Kettengewirke, wobei die Fadenreserve in einem variablen Abstand angeordnet werden kann. Diese zusätzliche Fadenreserveeinrichtung ermöglicht die Einstellung des Schlauchdurchmessers auf die Endkontur, die für die Herstellung von Anbindungsimplantaten unerlässlich ist. Die Entwicklung dieses umlaufenden Schusseintragssystems stellt eine völlig neue Technologie dar, die unabhängig von Maschinenhersteller und Arbeitsbreite modular und effizient in jede doppelbarrige Raschelmaschine integriert oder nachgerüstet werden kann.

Entwicklung des gewirkten Anbindungsimplantats

Zur anforderungsgerechten Entwicklung eines textilen Anbindungsimplantats wurde die Struktur simulationsgestützt auf Basis der Wirktechnologie ausgelegt. Die zentrale Herausforderung bestand in der Entwicklung eines universell einsetzbaren Implantats, dass sich faltenfrei an unterschiedlichste Prothesengeometrien verschiedener Hersteller sowie an die anatomische Gegebenheiten der einzusetzenden Knochensegmente, insbesondere Femur und Tibia, anpassen lässt. Auch die variable Länge modular aufgebauter Endoprothesen musste dabei berücksichtigt werden. Darüber hinaus sollte das Implantat aus einem resorbierbaren Material bestehen, das eine sichere Anbindung des Weichgewebes gewährleistet, bis das neugebildete Narbengewebe im Bereich der Endoprothese die Funktion dauerhaft übernommen hat.

Im Projekt wurde eine systematische CAE-gestützte Struktur- und Bindungsentwicklung für drei Funktionsmustern durchgeführt: 1) Endkonturnahe Schlauchstruktur mit über die Länge variablen Durchmesser; 2) definierte Formbarkeit durch Integration umlaufender Schussfäden; 3) integral gefertigte Verstärkungszonen. Zur Erreichung der geforderten mechanischen Eigenschafen, insbesondere hinsichtlich Strukturdehnung, Zugfestigkeit, lokaler Verstärkung und Anpassungsfähigkeit an unterschiedliche Geometrien, wurden verschiedene Grundbindungen wie Franse, Samt und Teilschuss simulationsgestützt und experimentell analysiert.

Die Grundbindungen Trikot gegenlegig und Franse Teilschuss erzielten die höchsten zugmechanischen Eigenschaften bei gleichzeitig geringster Strukturdehnung. Auf dieser Basis wurden die komplexeren Bindungskonzepte für die Funktionsmuster entwickelt. Als Vorzugslösung konnte ein Franse-Teilschuss-Schlauch mit konstantem Durchmesser und integrierten umlaufenden Schussfäden identifiziert werden. Diese Variante erfüllte die Anforderungen an Universalität und einfache Handhabung besonders gut. Die offene Struktur ermöglicht ein faltenfreies Zusammenziehen und damit eine flexible Anpassung an verschiedene Prothesengeometrien (Abb. 3).

Zur Gewährleistung der langsamen Resorption und hohen Ausreißfestigkeit wurden Seidenfibroingarne verzwirnt (Cordonnet, 70 tex) eingesetzt.

Im Anschluss an die Entwicklung wurde das Anbindungsimplantat in einem eigens entwickelten Prüfstand auf das Ausreißen hin untersucht. Im besonderen Fokus stand die Einspannvorrichtung für die Endoprothesen, die eine biomechanische Prüfung anatomischer Lastszenarien erlaubt. Im Gegensatz zu den in den herkömmlichen Prüfständen verwendeten festen Prüfwinkeln wurde ein Aufbau mit variierbaren Winkeln (0°, 15°, 30°, 45°, 60° und 90°) ausgelegt. Der Prüfaufbau erlaubt dadurch die Nachstellung von wirkenden Kräften beispielsweise beim Stehen, Gehen oder Sitzen. Die neu entwickelten Anbindungsimplantate erreichten an den Anbindungsstellen mit umlaufendem Schussfaden eine Höchstzugkraft von über 300 N. Damit entsprechen sie in etwa der Höchstzugkraft des verwendeten chirurgischen Nahtmaterials und des aktuell verfügbaren Anbindungsschlauch aus PES (ohne gezielte Degradation und ohne Möglichkeit zur Durchmesseranpassbarkeit).

Die Ausreißfestigkeit des neu entwickelten Anbindungsschlauches lässt sich durch die zusätzliche Einbindung des umlaufenden Schussfadens an weiteren Stellen gezielt steigern. Im Vergleich zur herkömmlichen Methode sind für Anpassung und Implantation des Anbindungsimplantats deutlich weniger Arbeitsschritte erforderlich, was zu einer spürbaren Reduktion in der Operationszeit führen kann. Die integrierten umlaufenden Schussfäden ermöglichen zudem eine direkte Anbindung des Weichgewebes, sodass auf zusätzliche Fäden verzichtet werden kann. Das Anbindungsimplantat kann individuell in der Länge zugeschnitten und aufgeschnitten werden, ohne dass dabei Laufmaschen entstehen oder das Gewirk aufgezogen wird. Durch die potenzielle Resorbierbarkeit des Seidenmaterials kann die Fremdkörperlast im Gewebe reduziert werden, was wiederrum das Risiko postoperativer Infektionen senken kann. Im Revisionsfall entfallen zudem aufwendige Resektionsprozesse zur Entfernung eingewachsener Implantate. Ein weiterer Vorteil liegt in der universellen Anwendbarkeit des Anbindungsimplantats: Es kann flexibel an verschiedene Prothesengeometrien angepasst werden, z. B., wie in Abbildung 4 gezeigt, an die Knieprothese.

Zusammenfassung

In Zusammenarbeit mit dem OUPC wurde am ITM ein neuartiges Anbindungsimplantat entwickelt, das sich flexibel und ohne Faltenwurf an unterschiedliche Endoprothesengeometrien anpassen lässt. Die integrierten umlaufenden Schussfäden ermöglichen nicht nur eine formgerechte Anpassung und Fixierung an der Prothese, sondern dienen zugleich als strukturelle Verstärkung an den Anbindungsstellen. Die überstehenden Fadenenden können zusätzlich zur Re-Adaption des Weichgewebes genutzt werden.

Zur Realisierung dieses Konzepts wurde am ITM ein innovatives Schusseintragssystem mit integrierter Fadenreserve entwickelt, das sich modular in jede RR-Raschelmaschine nachrüsten lässt. Durch die gezielte Strukturentwicklung lässt sich das Anbindungsimplantat leicht ab- oder einschneiden und kann so individuell an chirurgische Anforderungen und patientenspezifische Gegebenheiten angepasst werden. Diese Flexibilität erfüllt die hohen Anforderungen an ein universell einsetzbares Anbindungsimplantat.

In Ausreißversuchen konnte eine ausreichende mechanische Stabilität des Anbindungsimplantats aus langzeitresorbierbarem Seidenfibroin nachgewiesen werden.

Danksagung

Das IGF-Vorhaben 21998 BR der Forschungsvereinigung Textil e.V. wurde über die AiF und den DLR Projektträger im Rahmen des Programms zur Förderung der industriellen Gemeinschaftsforschung (IGF) vom Bundesministerium für Wirtschaft und Energie aufgrund eines Beschlusses des Deutschen Bundestages gefördert.

Literaturverzeichnis

[1]    Schmolders, J. ; Koob, S. ; Schepers, P. ; Gravius, S. ; Wirtz, D.C. ; Burger, C. ; Pennekamp, P.H. ; Strauss, A.C.: Tumorprothesen in der endoprothetischen Revisionschirurgie der unteren Extremität – Ergebnisse von 25 Patienten nach Versorgung mit einem modularen Tumor- und Revisionssystem (MUTARS®). In: Zeitschrift fur Orthopadie und Unfallchirurgie 155 (2017), Nr. 1, S. 61–66

[2]    Nottrott, M. ; Streitbürger, A. ; Höll, S. ; Gosheger, G. ; Hardes, J.: 9 Tumorendoprothetik. In: Krukemeyer, M. G.; Möllenhoff, G. (Hrsg.): Endoprothetik : Ein Leitfaden für den Praktiker. 3. Aufl. : De Gruyter, 2012, S. 203–221

[3]    Calori, G.M. ; Mazza, E.L. ; Vaienti, L. ; Mazzola, S. ; Colombo, A. ; Gala, L. ; Colombo, M.: Reconstruction of patellar tendon following implantation of proximal tibia megaprosthesis for the treatment of post-traumatic septic bone defects. In: Injury 47 (2016), S77-S82

[4]    Hardes, J. ; Ahrens, H. ; Gosheger, G. ; Nottrott, M. ; Dieckmann, R. ; Henrichs, M.-P. ; Streitbürger, A.: Komplikationsmanagement bei Megaprothesen. In: Der Unfallchirurg 117 (2014), Nr. 7, S. 607–613

[5]    Hillmann, A. ; Ipach, I.: Tumorendoprothetik : Stellenwert in der modernen Revisionsendoprothetik. In: Der Orthopade 44 (2015), Nr. 5, S. 375–380

Authors: Laura Pietz Anke Golla Paul Penzel Michael Wöltje Stefan Zwingenberger Jens Goronzy Hagen Fritzsche Klaus-Dieter Schaser Chokri Cherif

Technische Universität Dresden
Fakultät Maschinenwesen
Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM)
01062 Dresden

https://tu-dresden.de/mw/itm

More entries from TU Dresden, Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik ITM

18.06.2025

Entwicklung von kettengewirkten Tapes für das kurvenbahngerechte Tapele-gen als Basis für die materialeffiziente Fertigung lastpfadgerechter, bionischer FKV-Bauteile

Knittings Composites Technical Textiles

Abstract

Im IGF-Vorhaben 22653 BR wurde ein neuartiges textilbasiertes Halbzeug zur ressourcenschonenden Fertigung lastpfadgerechter, bionischer Faserverbundbauteile entwickelt: das Curvy Tape. Ziel war die Herstellung kettengewirkter Tapes als Endlosfaserband, die sich auch auf komplex gekrümmten Geometrien faltenfrei und lagegenau ablegen lassen. Zentrale Innovation ist das Prinzip der Fadenreserve: Die Curvy Tapes verfügen über segmentierte, gegeneinander verschiebbare Faserbändchen, deren Scherbarkeit gezielt durch Wirkparameter wie Stichlänge, Bindung und Wirkfadenspannung einstellbar ist.

Ein simulationsgestütztes Auslegungstool erlaubt die präzise Vorhersage geeigneter Tapeparameter in Abhängigkeit von Bauteilgeometrie, Faserart und Ablagepfad. Die entwickelten Fertigungs- und Ablagekonzepte wurden prototypisch umgesetzt, u. a. durch nachrüstbare Zusatzmodule für Multiaxial-Kettenwirkmaschinen. Anhand eines Kotflügel-Demonstrators konnte die technische Machbarkeit und wirtschaftliche Vorteilhaftigkeit validiert werden. Der Materialverschnitt wurde im Vergleich zu herkömmlichen sequenziellen Preformverfahren bei gleicher Leistungsfähigkeit halbiert, die strukturelle Überdimensionierung um bis zu 30 % reduziert. Die Technologie ist insbesondere für KMU attraktiv, da sie eine hohe Produktqualität mit niedrigen Investitionskosten kombiniert. Curvy Tapes eröffnen neue Perspektiven für den FKV-Leichtbau in Mobilität, Energie und Maschinenbau.

Report

Ausgangssituation und Problemstellung

Der Trend zum ressourcenschonenden Leichtbau hat sich in nahezu allen Technikbereichen etabliert und wird durch die Notwendigkeit zur CO₂-Reduktion sowie zur Steigerung der Materialeffizienz weiter verstärkt [1–3]. Insbesondere Faserkunstoffverbunde (FKV) gelten dank ihres geringen spezifischen Gewichts und ihrer richtungsabhängigen mechanischen Eigenschaften als Schlüsselelemente für eine nachhaltige Auslegung von Leichtbaustrukturen [4–7]. Der Markt für glas- und carbonfaserverstärkte FKV wächst stetig, mit Anwendungen in der Luftfahrt, Automobilindustrie, Energiebranche und Medizintechnik [8–10]. Dabei gewinnen sogenannte unidirektionale Tapes (UD-Tapes) zunehmend an Bedeutung, da sie eine präzise Faserorientierung ermöglichen und in hochautomatisierten Fertigungsprozessen eingesetzt werden können [11–14].

Trotz dieser Vorteile stoßen die am Markt verfügbaren UD-Tapes an ihre Grenzen, wenn es um die wirtschaftliche und materialsparende Herstellung komplexer, mehrfach gekrümmter Bauteile geht [11, 15]. Eine kurvenbahngerechte Tapeablage ist mit bestehenden Technologien nur stark eingeschränkt möglich. Insbesondere bei kleinen Kurvenradien treten Strukturdefekte wie Falten, Verzerrungen oder Gassen auf. Diese verfahrensbedingten Fehler resultieren aus dem Umstand, dass die Faserlängen an der Innen- und Außenbahn eines Kurvenverlaufs unterschiedlich sind, mit herkömmlichen Tapes jedoch nicht innerhalb eines durchgehenden Faserbandes ausgeglichen werden können. Bisherige Lösungen erfordern daher aufwändige, diskontinuierliche, segmentierte Ablageprozesse mit Überlappungsbereichen und folglich hohem Materialverschnitt und strukturellen Überdimensionierungen (siehe Abbildung 1) [16]. Das ist ein signifikanter Nachteil im Hinblick auf Ressourceneffizienz und Bauteilperformance.

Gerade kleine und mittelständische Unternehmen (KMU), die einen Großteil der textilen Wertschöpfungskette in Deutschland abbilden, sehen sich mit der Herausforderung konfrontiert, zunehmend komplexere, bionisch ausgelegte FKV-Bauteile wirtschaftlich und prozesssicher fertigen zu müssen. Der steigende Bedarf an maßgeschneiderten, lastpfadgerechten Strukturen erfordert neue textile Halbzeuge und Fertigungsmethoden, die eine bauteilunabhängige, verzugsfreie Ablage auch auf komplexen 3D-Konturen ermöglichen. Das mit etablierten UD-Tapes nicht umsetzbare Intra-Ply-Gleiten, also das gezielte Scheren von Tapesegmenten innerhalb eines Faserbandes, stellt dabei eine zentrale Technologiekomponente dar, die bislang nicht verfügbar ist. Hinzu kommt, dass bestehende Tapelegeanlagen in ihrer Funktionalität begrenzt sind und die für eine kurvenbahngerechte Ablage notwendigen Klemm-, Abzugs- und Fixiermechanismen nicht bereitstellen können. Die Problemstellung lässt sich daher in zwei Hauptbereiche gliedern: Zum einen fehlt ein textiltechnisch realisierbares Halbzeug, das eine mechanisch belastbare, faltenfreie sowie kurvenbahngerechte Tapeablage erlaubt: das sogenannte Curvy Tape. Zum anderen existieren bislang keine wirtschaftlich skalierbaren Ablageverfahren, die die Vorteile der UD-Tape-Technologie mit der Flexibilität einer individuell lenkbaren Faserbandführung vereinen. Die Entwicklung solcher Tapes und der zugehörigen Ablagetechnologien stellt somit einen dringenden, industriegetragenen Forschungsbedarf dar. Ziel muss es sein, durch neue Material- und Prozessansätze lastpfadgerechte Verstärkungsstrukturen effizient, materialsparend und automatisiert fertigen zu können, insbesondere für die hohe Variantenvielfalt und Kleinserienfertigung im KMU-Umfeld.

Ergebnisse

Im Rahmen des IGF-Projekts „Curvy Tapes“ wurden umfassende Forschungs- und Entwicklungsarbeiten zur Realisierung kurvenbahngerecht ablegbarer Tapes für die Fertigung bionisch ausgelegter FKV-Bauteile durchgeführt. Ausgangspunkt war die Erarbeitung eines technischen Anforderungskatalogs zur Spezifikation geometrischer, mechanischer und verfahrenstechnischer Zielgrößen. In enger Abstimmung mit dem projektbegleitenden Ausschuss wurden Materialien, Tapestrukturen und relevante Maschinenkomponenten definiert. Unter anderem wurde die Verarbeitung von Carbonfasern mit 1600 tex auf vorhandenen Kettenwirkmaschinen der Baureihe Malimo festgelegt. Die zentralen Anforderungen umfassten u. a. eine Tapebreite von bis zu 300 mm sowie eine Gassenfreiheit < 1 mm.

Ein wesentlicher Arbeitsschwerpunkt lag auf der simulationsgestützten Entwicklung eines Auslegungsmodells zur Beschreibung der mechanischen Eigenschaften der Tapestrukturen und ihrer Verformung bei der Ablage. Dabei wurde unter Verwendung von LS-Dyna (LSTC, USA) ein FEM-basiertes Mesoskalenmodell erstellt, das die Interaktion zwischen den strukturbildenden Parametern (z. B. Stichlänge, Wirkfadenspannung, Bindung) und der resultierenden Scherbarkeit der Tapesegmente abbildet. Die Validierung erfolgte durch experimentelle Versuche an textilphysikalisch charakterisierten Funktionsmustern (siehe Abbildung 2). Zur Ermittlung der Fadenlängen entlang kurvenförmiger Ablagepfade wurde ergänzend ein algorithmisches Tool auf Basis von CAD-Modellen entwickelt, das eine automatisierte Berechnung der notwendigen Fadenreserven erlaubt.

Zur Herstellung der Curvy Tapes wurde ein neuartiges Fertigungsverfahren auf Basis der Multiaxial-Kettenwirktechnik konzipiert. Hierzu wurde ein modular nachrüstbarer Teilschussleger entwickelt, der das Einbringen von wirkfadenbasierten Scherstellen innerhalb der Tapeebene ermöglicht. Verschiedene Wirkbindungen, insbesondere Varianten der Franse-Teilschuss- und Trikot-Bindung, sowie gleitoptimierte Monofilfäden (PET 22 dtex, KSO Textil GmbH, Deutschland) wurden auf ihre Eignung hin untersucht. Die Tapes wurden dabei so gestaltet, dass sie entweder während der Ablage (Post-Fadenreserve) oder bereits bei der Herstellung (Pre-Fadenreserve) über segmentweise integrierte Fadenlängenreserven verfügen. Zusätzlich wurde ein kombinierter Ansatz verfolgt, um die geometrischen Freiheitsgrade bei der Tapeablage weiter zu erhöhen.

Die hergestellten Tapestrukturen wurden systematisch charakterisiert. Es kamen modifizierte Fadenauszugs- und Scherrahmenversuche (siehe Abbildung 3) zum Einsatz, um das Intra-Ply-Gleiten und die Scherfähigkeit der neuartigen Tapesegmente zu quantifizieren.

Dabei zeigte sich, dass die Auslegung der Bindung, insbesondere die Stichlänge und die Wirkfadenspannung, maßgeblich die mechanische Kopplung der Segmente beeinflussen. Curvy Tapes mit einer Franse-Teilschuss-Bindung und einer Stichlänge von 3,6 mm erwiesen sich als besonders vorteilhaft. Gegenüber herkömmlichen Biaxialgelegen wurde die erforderliche Scherkraft um bis zu 56 % reduziert, die Drapierbarkeit deutlich verbessert und kritische Faltenbildung signifikant verzögert (Einsetzen kritischer Scherung der Curvy Tapes bei 50 mm gegenüber 25 mm bei Biaxial-Gelegen, siehe Abbildung 4). Zudem wurde die Parallelität der Verstärkungsfasern auch bei hohen Scherwinkeln zuverlässig aufrechterhalten.

Parallel zur Materialentwicklung wurden Ablagekonzepte für die Preformherstellung erarbeitet. Ziel war die prozesssichere Ablegung der Tapes auf 2D- und 3D-Oberflächen mit definierter Fadenorientierung. Hierzu wurde ein roboterkompatibles Bereitstellungsmodul für das Handling, den Abzug und das Nachführen der neuartigen Curvy Tapes entwickelt. Die Fixierung während des Ablegevorgangs erfolgte bevorzugt durch den Auftrag eines aerosolförmigen duromerbasierten Sprühklebers, der eine sichere Positionierung der Tapesegmente ermöglichte, ohne die nachträgliche Ausformung der Fadenreserven zu beeinträchtigen.

Im weiteren Projektverlauf wurde eine vollständige Prozesskette von der Tapeherstellung über die Preformfertigung bis hin zur Konsolidierung in einem Harzsystem aufgebaut. Die auf dieser Grundlage gefertigten Demonstratoren, insbesondere ein PKW-Kotflügel mit komplexer Kontur, dienten der praxisnahen Funktionsvalidierung. Dabei konnte gezeigt werden, dass mit den neuartigen Curvy Tapes eine signifikant höhere Faserorientierungstreue im Vergleich zu herkömmlichen Flächengebilden (bspw. Gewebe oder Biaxial-Gelege) erreicht wird. Die Faserabweichung innerhalb der Preform lag bei unter einem Grad, Gassen traten nur in Einzelfällen auf und blieben unterhalb kritischer Schwellen. Die erzielten mechanischen Eigenschaften wurden durch standardisierte Biegeversuche quantifiziert und die verbesserte Leistungsfähigkeit validiert. Curvy Tapes wiesen im Vergleich zu Biaxialgelegen gleicher Fadendichte eine wesentlich geringere Streuung der Durchbiegung auf und erzielten damit eine homogenere Bauteilperformance.

Die Ergebnisse belegen die hohe Eignung der Curvy Tapes für den industriellen Einsatz. Eine wirtschaftliche Bewertung anhand eines realitätsnahen Szenarios (PKW-Kotflügel, siehe Abbildung 5) zeigte eine Reduktion der Materialkosten um 30 % und eine Gesamtkosteneinsparung von knapp 24 % gegenüber konventionellen UD-Tapes. Unter Berücksichtigung moderater Investitionskosten für die Nachrüstung bestehender Kettenwirkmaschinen (< 30.000 €) amortisiert sich die Technologie bei einer Tape-Fertigungsmenge von 10.000 m²/a bereits innerhalb eines Jahres. Die entwickelten Verfahren und Materialien können damit unmittelbar von KMU adaptiert werden und tragen zur signifikanten Steigerung der Ressourcen- und Energieeffizienz entlang der gesamten Wertschöpfungskette bei.

Zusammenfassung

Mit dem Projekt „Curvy Tapes“ wurde eine technologische Grundlage geschaffen, um Hochleistungsfasern wie Carbon oder Glas deutlich materialeffizienter und gezielter in Faserverbundbauteilen einzusetzen. Die im Vorhaben entwickelten neuartigen Tapestrukturen ermöglichen erstmals eine durchgängig falten- und gassenfreie sowie lastpfadgerechte Ablage entlang beliebiger Kurvenverläufe. Dadurch lassen sich nicht nur mechanisch leistungsfähigere sowie bionisch ausgelegte Bauteile fertigen, sondern auch Materialverluste und Überdimensionierungen signifikant verringern. Das Projekt leistet somit einen direkten Beitrag zur Ressourcenschonung, zur Reduktion industrieller CO₂-Emissionen und zur Nachhaltigkeit in der Produktion.

Insbesondere kleine und mittelständische Unternehmen (KMU) profitieren von den Ergebnissen: Die modular konzipierten Fertigungs- und Ablagekonzepte sind gezielt auf bestehende Produktionsumgebungen und Maschinenparks in KMU zugeschnitten. Investitionen bleiben gering, der Umsetzungshorizont kurz. Gleichzeitig eröffnen die Curvy Tapes vielfältige neue Geschäftsfelder, etwa in der Herstellung von hochbeanspruchten Leichtbauteilen für Automobil, Luftfahrt oder erneuerbare Energien. Für den Textilmaschinenbau und die FKV-verarbeitende Industrie entsteht ein substantieller Innovationsimpuls mit hohem Marktpotenzial.

Darüber hinaus fördert die Technologie die Verbreitung bionischer, funktional optimierter Konstruktionsprinzipien in der industriellen Praxis. Der gesellschaftliche Nutzen liegt damit nicht nur in einer effizienteren Ressourcennutzung, sondern auch in der Stärkung der Wettbewerbsfähigkeit des Innovationsstandorts Deutschland und der langfristigen Sicherung qualifizierter industrieller Arbeitsplätze.

Danksagung

Das IGF-Vorhaben 22653 BR der Forschungsvereinigung Forschungskuratorium Textil e. V. wurde über das DLR im Rahmen des Programms zur Förderung der Industriellen Gemeinschaftsforschung (IGF) vom Bundesministerium für Wirtschaft und Energie aufgrund eines Beschlusses des Deutschen Bundestages gefördert. Der Schlussbericht und weiterführende Informationen sind am Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik der TU Dresden erhältlich.

Literaturverzeichnis

Literaturverzeichnis

[1]    Bundesministerium für Wirtschaft und Energie: Fachprogramm Neue Fahrzeug- und Systemtechnologien. URL www.bmwi.de/Redaktion/DE/Artikel/Technologie/fahrzeug-und-systemtechnologien.html – Überprüfungsdatum 2025-05-09

[2]    Ehlerding, S.: Leichtbaustrategie für mehr Klimaschutz. In: Tagesspiegel (2021-01-20)

[3]    Bundesministeriums für Wirtschaft und Energie: „Leichtbau-Perspektiven für Deutschland“ - Ergebnisse aus dem Strategieprozess der Initiative Leichtbau des Bundesministeriums für Wirtschaft und Energie (BMWi) : Erscheinungsdatum: 19.01.2021. URL www.bmwi.de/Redaktion/DE/Downloads/E/eckpunkte-f%C3%BCr-eine-leichtbau-strategie.pdf?__blob=publicationFile&v=8 – Überprüfungsdatum 2025-05-09

[4]    Kroll, L. (Hrsg.): Technologiefusion für multifunktionale Leichtbaustrukturen : Ressourceneffizienz durch die Schlüsseltechnologie "Leichtbau". Berlin, Germany : Springer Vieweg, 2019

[5]    Cherif, C. (Hrsg.): Leichtbau mit Textilverstärkung für Serienanwendungen : Bindematerialien - Textile Preforms - Verbundbauteile ; Buch zum DFG-AiF-Clustervorhaben - Leichtbau und Textilien. Dresden : Verl. Wissenschaftliche Skripten, 2013

[6]    Cherif, C.: Textile Werkstoffe für den Leichtbau : Techniken - Verfahren - Materialien - Eigenschaften. Berlin, Heidelberg : Springer-Verlag Berlin Heidelberg, 2011

[7]    Flemming, M. ; Ziegmann, G. ; Roth, S.: Faserverbundbauweisen : Halbzeuge und Bauweisen. Berlin, Heidelberg : Springer Berlin Heidelberg, 1996

[8]    Pfeiffer, J.: Leichtbau-Batteriepack verringert Gewicht und erhöht Reichweite von E-Autos. URL www.konstruktionspraxis.vogel.de/leichtbau-batteriepack-verringert-gewicht-und-erhoeht-reichweite-von-e-autos-a-974846/ – Überprüfungsdatum 2022-01-26

[9]    Howell, E. ; Geyer, C.: Interview with Christoph Geyer. In: Reinforced Plastics 63 (2019), Nr. 2, S. 76–78

[10]  Günnel, T.: Leichtbau: Wie der Staat die Technologien fördert. In: Automobil Industrie (2020-09-11)

[11]  Brasington, Alex ; Sacco, Christopher ; Halbritter, Joshua ; Wehbe, Roudy ; Harik, Ramy: Automated fiber placement: A review of history, current technologies, and future paths forward. In: Composites Part C: Open Access 6 (2021), S. 100182

[12]  Hofbauer, Daniel: Herstellung endlosfaserverstärkter, thermoplastischer Halbzeuge für Karosseriestrukturbauteile in Großserie. In: Technologies for Lightweight Structures (TLS) 1 (2017), Nr. 1

[13]  Kuroda, Yoshito: Kunststoffe mit unidirektionaler Verstärkung für die Serie. In: Lightweight Design 11 (2018), Nr. 5, S. 82–85

[14]  Altstädt, Volker ; Spörrer, Andreas ; Mühlbacher, Mathias ; Michel, Peter ; Seidel, Sonja: Großserientauglicher Hochleistungsleichtbau mit UD-Tapes. In: Lightweight Design 5 (2012), Nr. 2, S. 18–25

[15]  Ufer, J. ; Göttinger, M. ; Hersbeck, L.: Preform Technology for High Volume Manufacturing of Long Fiber Reinforced Structures (LCC Symposium). München, 2014

[16]  YouTube: We are COMPOSITES: Fiber Placement Center. URL https://www.youtube.com/watch?v=zZhTDG2GoEU. – Aktualisierungsdatum: 2021-11-30 – Überprüfungsdatum 2025-05-09

Authors: Konrad Zierold Paul Penzel Chokri Cherif

Technische Universität Dresden
Fakultät Maschinenwesen
Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM)
01062 Dresden

https://tu-dresden.de/mw/itm

More entries from TU Dresden, Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik ITM

06.06.2025

Kationenfunktionalisierte Chitinfasern – Entwicklung eines kontinuierlichen Spinnprozesses für ionenfunktionalisierte Biopolymerfasern auf Basis von Chitin

Raw materials Fibres Sustainability

Abstract

Im Rahmen des IGF-Projektes „Kationenfunktionalisierte Chitinfasern“ wurde erfolgreich ein kontinuierlicher, KMU-gerechter Spinnprozess zur Herstellung neuartiger, kationenfunktionalisierter Chitinfasern entwickelt. Mit diesem Verfahren war es erstmals möglich, reine Chitinfasern aus kostengünstigen Rohstoffen und unter Verwendung unbedenklicher Lösungsmittel im technisch relevanten Maßstab herzustellen. Damit konnte Chitin, eines der am häufigsten vorkommenden Biopolymere, erstmals für faserbasierte Anwendungen wirtschaftlich nutzbar gemacht werden. Durch die Funktionalisierung der Chitinfasern mit bioaktiven Ionen, insbesondere Calciumionen, wurde eine gezielte Modifikation der Fasereigenschaften erreicht. Diese Innovation ermöglichte eine deutlich verbesserte enzymatische Stabilität und damit eine kontrollierte Degradation der Fasern, wie sie für viele medizinische und textile Anwendungen erforderlich ist. Darüber hinaus eröffnete die entwickelte Technologie die Möglichkeit, maßgeschneiderte Funktionalisierungen der Chitinfasern für spezifische Anwendungen zu realisieren. Auf Basis der Projektergebnisse wurde somit unmittelbar produktvorbereitendes Basiswissen geschaffen, das die Entwicklung innovativer Produkte im Bereich der Medizintextilien, der regenerativen Medizin sowie des Tissue Engineering ermöglicht.

Report

Einleitung, Problemstellung und Zielsetzung

Die Textilindustrie steht im Spannungsfeld wachsender Anforderungen: Klimawandel, Ressourcenknappheit und ein zunehmend nachhaltigkeitsbewusstes Konsumverhalten fordern neue Lösungen entlang der gesamten Wertschöpfungskette. Bisher wird der Markt von synthetischen Fasern dominiert, die auf fossilen Rohstoffen basieren und damit erheblich zur Umwelt- und Klimabelastung beitragen [1–2]. Naturfasern stellen eine grünere Alternative dar, sind jedoch nicht uneingeschränkt nachhaltig. Ihr Anbau verbraucht oft sehr viel Wasser und es werden Düngemittel und Pflanzenschutzmittel eingesetzt, was ihre Umweltbilanz ebenfalls belastet [3].

In diesem Kontext rückt Chitin, das nach Cellulose zweithäufigste natürlich vorkommende Polymer, zunehmend in den Fokus als vielversprechender, bio-basierter Rohstoff mit hoher Funktionalität [4]. Es fällt in großen Mengen als Nebenprodukt in der Lebensmittelindustrie, beispielsweise bei der Verarbeitung von Krebs- und Schalentieren, an. Damit ist es nicht nur reichlich verfügbar, sondern auch kostengünstig und nachhaltig. Chitin und seine Derivate, wie beispielsweise Chitosan, weisen eine Vielzahl wünschenswerter Eigenschaften auf: Sie sind biologisch abbaubar, bioaktiv, biokompatibel und weisen aufgrund ihrer kristallinen Struktur eine hohe mechanische Festigkeit auf. Dadurch eignet es sich hervorragend für hochwertige, funktionale Textilanwendungen, z. B. im Bereich medizinischer Einwegprodukte, in dem der Bedarf kontinuierlich wächst und gleichzeitig enorme Abfallmengen anfallen. Die Herausforderung besteht jedoch in der technologischen Nutzbarmachung dieses Rohstoffs: Chitin ist aufgrund seiner teilkristallinen molekularen Struktur kaum löslich, was einerseits die positiven Funktionen des Werkstoffs ermöglicht jedoch andererseits die Weiterverarbeitung zu textilen Strukturen erheblich erschwert. Herkömmliche Lösungsansätze setzen auf aggressive und gesundheits- sowie umweltbedenkliche Lösungsmittel wie Trichloressigsäure oder LiCl/DMA. Diese führen zu Polymerabbau, Materialschwächung und aufwendigen Reinigungsschritten [5–7]. Für medizinische Anwendungen sind diese Prozesse ungeeignet und eine Skalierung in den industriellen Maßstab ist kaum umsetzbar.

Ein alternativer, deutlich nachhaltigerer Ansatz ist die Verwendung ionischer Flüssigkeiten (engl. ionic liquids, IL). Diese modernen Lösungsmittel haben das Potenzial, Chitin in Lösung zu bringen, ohne dessen Struktur zu beeinträchtigen. Allerdings sind auch hier die technologischen Barrieren hoch, sodass bisherige Prozesse überwiegend diskontinuierlich und für geringe Produktionsmengen realisiert wurden [8–10]. Somit fehlt bislang ein wirtschaftlich tragfähiger und durchgehend nachhaltiger Prozess, der die Herstellung von Chitinfasern kontinuierlich und in industriell relevanter Menge ermöglicht.

Das Ziel des IGF-Projektes 22568 „Kationenfunktionalisierte Chitinfasern“ bestand daher in der Entwicklung eines kontinuierlichen, lösungsmittelbasierten Nassspinnverfahrens für 100 % reine Chitinmultifilamentgarne, das sowohl materialschonend als auch prozesstechnisch skalierbar ist. Durch eine integrierte Funktionalisierung mit bioaktiven Kationen (z. B. Calcium- oder Strontium-Ionen, welche die Knochenregeneration unterstützen) sollte zudem die Grundlage für die Herstellung von Funktionstextilien geschaffen werden, um neue Anwendungsfelder für Unternehmen zu eröffnen – insbesondere im wachstumsstarken Bereich der Smart und Medical Textiles.

Erzielte Ergebnisse

Im IGF-Projekt „Kationenfunktionalisierte Chitinfasern“ wurde erfolgreich ein kontinuierlicher, KMU-gerechter Spinnprozess zur Herstellung reiner Chitinmultifilamentgarne im industriell relevanten Maßstab realisiert. Durch die gezielte Funktionalisierung mit bioaktiven Ionen konnten die Fasereigenschaften spezifisch angepasst und eine kontrollierte, enzymatische Abbaubarkeit erreicht werden. Im Folgenden werden die wesentlichen Projektergebnisse und technologischen Entwicklungen im Detail erläutert.

Prozessentwicklung für die kontinuierliche Fertigung von Chitinmultifilamentgarnen

Im Projektverlauf wurden verschiedene IL systematisch auf ihre Eignung als Lösungsmittel für die Filamenterspinnung untersucht. Die besten Ergebnisse lieferte 1-Ethyl-3-methylimidazoliumpropionat (EMIMOPr, proionic GmbH, Raaba-Grambach, AT). Diese IL konnte verschiedene untersuchte Chitinqualitäten und -provenienzen bei moderaten Temperaturen (60 – 90 °C) effizient lösen, ohne das Polymer zu degradieren. Entscheidend war dabei auch, dass EMIMOPr im späteren Prozessschritt vollständig aus den Fasern entfernt werden konnte. In Abbildung 1 sind die ermittelten FT-IR-Spektren am Beispiel des verwendeten Chitinpulvers (grau) sowie der daraus hergestellten Multifilamentgarne (rot) nach dem Spinnprozess graphisch dargestellt. Die Ergebnisse zeigten keine Veränderung der chemischen Struktur des Chitins nach dem Spinnprozess und keine Lösungsmittelspuren.

Mit dieser IL konnten stabile Spinnlösungen mit Chitinkonzentrationen zwischen 3 Gew.-% und 5 Gew.-% hergestellt werden. Um eine gute Prozessführung zu gewährleisten – insbesondere bei der Überführung in den Technikumsmaßstab – wurden die rheologischen Eigenschaften gezielt untersucht und eingestellt. Der im Labormaßstab entwickelte Spinnprozess wurde anschließend erfolgreich auf eine modulare Lösungsmittelnassspinnanlage (Fourné Maschinenbau GmbH, Alfter-Impekoven, DE) mit individuell steuerbaren Zonen für Extrusion, Koagulation, Waschen und Trocknung im semi-industriellen Technikumsmaßstab übertragen. Ein besonderes Augenmerk lag dabei auf der Konfiguration der Spinndüsen, um einen stabilen Spinnprozess und eine homogene Filamentstruktur zu erzeugen.

Im Vergleich zu bisherigen Projektergebnissen und etablierten Spinnprozessen – insbesondere dem konventionellen Chitosanspinnen mit Essigsäure als Lösungsmittel [11] sowie der Verwendung von IL (z. B. 1-Ethyl-3-Methylimidazoliumacetat, EMIMOAc [12]) für Chitosan mit Deacetylierungsgraden über 70 % – zeigen die im Rahmen dieses Projektes hergestellten Chitinfilamentgarne signifikant höhere Festigkeiten von ≥ 20 N (vgl. Abbildung 3, rechts). Die erzielten mechanischen Eigenschaften übertreffen damit sämtliche in bisherigen Vorhaben erzielten Ergebnisse und unterstreichen das große Potenzial des neu entwickelten Spinnverfahrens. Der Forschungsbedarf hinsichtlich der beobachteten Wertestreuungen in Abhängigkeit von der Düsengeometrie sowie anlagenbedingte Limitierungen, die derzeit das Verspinnen von Lösungen mit höheren Viskositäten erschweren, bildet zudem eine solide Grundlage für zukünftige Projekte zur weiteren Prozessoptimierung und -weiterentwicklung.

Funktionalisierung der Chitinfasern mit bioaktiven Ionen

Ein weiteres zentrales Ziel war die Entwicklung eines Verfahrens zur in den Spinnprozess integrierten neuartigen Funktionalisierung von Chitinfasern mit bioaktiven Calcium-, Strontium- und Magnesiumionen, die zusätzliche Eigenschaften mitbringen – insbesondere für den Einsatz in medizinischen Textilien, etwa bei knochenaufbauenden Implantaten oder Wundauflagen. Hierzu wurden drei unterschiedliche methodische Ansätze konzipiert und experimentell untersucht: (1) die direkte Einbringung der Ionen in die Spinnlösung, (2) die Funktionalisierung der Filamente während der Koagulation im Fällbad sowie (3) der Vergleich dieser Inline-Methoden mit einer nachgelagerten Funktionalisierung von Chitinmonofilamenten nach der Erspinnung. Eine schematische Darstellung der untersuchten Funktionalisierungsansätze ist in Abbildung 4 am Beispiel der Funktionalisierung mit Calcium-Ionen dargestellt.

Aussichtsreiche Ergebnisse wurden insbesondere bei der Funktionalisierung direkt im Spinnprozess während der Koagulation erzielt. Durch die Zugabe von Calcium-, Magnesium- oder Strontiumsalzen in das Koagulationsbad (deionisiertes Wasser) konnten die Ionen effektiv in die noch nicht vollständig verfestigten Filamente eingebracht werden. Die Inline-Funktionalisierung ermöglichte eine gleichmäßige Ionenverteilung, ohne die mechanische Struktur der Fasern negativ zu beeinflussen.

Anhand der in Zusammenarbeit mit Partnern aus der Industrie und Forschung (u.a. Anton Paar GmbH, Institut für Abfall- und Kreislaufwirtschaft der TUD) durchgeführten Untersuchungen wie EDX-Analysen (vgl. Abbildung 5), optische Emissionsspektrometrie (ICP-OES) (vgl. Abbildung 6), Zeta-Potential-Messungen und FTIR-Spektroskopie, wurde nachgewiesen, dass die Ionen dauerhaft in der Faserstruktur eingebunden sind, sowohl an der Oberfläche als auch im Inneren des Filaments. Insbesondere Calciumionen weisen eine hohe Affinität zu Chitin auf und bleiben auch nach längeren Wasch- und Trocknungsprozessen in der Faser erhalten. Zur Untersuchung des Ionenabgabeverhaltens bzw. der Ionenfreisetzung unter physiologisch relevanten Bedingungen wurden systematische Elutionsversuche durchgeführt. Die erzielten Ergebnisse zeigen, dass der Großteil der Ionen innerhalb kurzer Zeit (≤ 7 d) aus den Filamenten freigesetzt wird und nur ein geringer Restanteil langfristig in der Faserstruktur verbleibt. Im Hinblick auf potenzielle Anwendungen, beispielsweise in der Entwicklung bioaktiver Medizintextilien oder für Systeme zur gezielten Wirkstofffreisetzung, stellt das beobachtete Freisetzungsverhalten einen Vorteil dar: Die schnelle Ionenabgabe könnte entzündungshemmende, wundheilungsfördernde oder mineralisierende Effekte unmittelbar nach Applikation unterstützen und damit die Funktionalität solcher Materialien deutlich erhöhen.

Trotz der spröden Materialstruktur – eine bekannte Eigenschaft kristalliner Biopolymere, wie Chitin – konnten durch gezielte Prozessanpassung textile Flächenstrukturen realisiert werden. Insbesondere durch die Kombination mit Stützgarnen, wie Baumwolle oder Viskose, konnten Zwirne hergestellt werden, die sich anschließend zu Geweben und Gestricken weiterverarbeiten ließen. Erste Demonstratoren, u. a. Maschen- und Gewebemuster, belegten die grundsätzliche Eignung für technische und medizinische Textilanwendungen (vgl. Abbildung 7). Trotz der derzeit noch hohen Sprödigkeit des Garnmaterials zeigen die Ergebnisse ein großes Potenzial für zukünftige Anwendungen. Durch gezielte Maßnahmen, wie z. B. das Aufbringen von Schlichten oder die Kombination mit anderen bioabbaubaren Polymeren (z. B. Viskose, Cellulose, Baumwolle etc.), könnte die Flexibilität weiter verbessert werden, wodurch ein breites Anwendungsspektrum in medizinischen und technischen Textilien ermöglicht wird. Insgesamt stellt die Entwicklung einen vielversprechenden Ansatz zur Nutzung biobasierter Materialien in anspruchsvollen textilen Anwendungen dar.

 Zusammenfassung

Im Rahmen des IGF-Projektes „Kationenfunktionalisierte Chitinfasern“ wurde erfolgreich ein kontinuierlicher, KMU-gerechter Spinnprozess zur Herstellung neuartiger, kationenfunktionalisierter Chitinfasern entwickelt. Mit diesem Verfahren war es erstmals möglich, reine Chitinfasern aus kostengünstigen Rohstoffen und unter Verwendung unbedenklicher Lösungsmittel im technisch relevanten Maßstab herzustellen. Damit konnte Chitin, eines der am häufigsten vorkommenden Biopolymere, erstmals für faserbasierte Anwendungen wirtschaftlich nutzbar gemacht werden. Durch die Funktionalisierung der Chitinfasern mit bioaktiven Ionen, insbesondere Calciumionen, wurde eine gezielte Modifikation der Fasereigenschaften erreicht. Diese Innovation ermöglichte eine deutlich verbesserte enzymatische Stabilität und damit eine kontrollierte Degradation der Fasern, wie sie für viele medizinische und textile Anwendungen erforderlich ist. Darüber hinaus eröffnete die entwickelte Technologie die Möglichkeit, maßgeschneiderte Funktionalisierungen der Chitinfasern für spezifische Anwendungen zu realisieren. Auf Basis der Projektergebnisse wurde somit unmittelbar produktvorbereitendes Basiswissen geschaffen, das die Entwicklung innovativer Produkte im Bereich der Medizintextilien, der regenerativen Medizin sowie des Tissue Engineering ermöglicht.

Danksagung

Das IGF-Vorhaben 22568 „Kationenfunktionalisierte Chitinfasern“ der Forschungsvereinigung Forschungskuratorium Textil e.V. wurde über den Projektträger DLR im Rahmen des Programms zur Förderung der „Industriellen Gemeinschaftsforschung“ (IGF) des Bundesministeriums für Wirtschaft und Klimaschutz (BMBK) aufgrund eines Beschlusses des Deutschen Bundestages gefördert. Wir danken den genannten Institutionen für die Bereitstellung der finanziellen Mittel. Darüber hinaus danken wir den Mitgliedern des projektbegleitenden Ausschusses für ihre Unterstützung während der Projektbearbeitung.

Literatur

[1]        A new textiles economy: Redesigning fashion’s future: Ellen MacArthur Foundation, 2017.

[2]        Deutsche Stiftung Meeresschutz: Studie Mikroplastik im Meer und seinen Klimafolgen.  https://www.stiftung-meeresschutz.org/themen/meeresverschmutzung/mikroplastik-im- meer-und-seine- klimafolgen/ (20.05.2025).

[3]        GOEL, S.: Wool is 44% Carbon. Leonardo 45(2012)2, pp. 186–187.

[4]        SHAMSHINA, J. L.: Chitin in ionic liquids: historical insights into the polymer's dissolution and isolation. A review. Green Chemistry 21(2019)15, pp. 3974–3993.

[5]        EP0051421A1. Kifune; Inoue; Mori: Chitin fibers, process for the production of the same and surgical sutures formed of such chitin fibers.

[6]        NGUYEN, K. D.: Temperature Effect of Water Coagulation Bath on Chitin Fiber Prepared through Wet-Spinning Process. Polymers 13(2021)12.

[7]        LIANG, Y.; JIANG, N.; LIU, X.; NIE, L.; SONG, D.; JIANG, L.; YU, H.; XU, W.; ZHU, K.: Fabrication of Shaped Chitin Fibers by Gradient Regeneration Combined with a Physical Pressure Method. ACS Applied Polymer Materials 6(2024)2.

[8]        SHAMSHINA, J. L.; ZAVGORODNYA, O.; BERTON, P.; CHHOTARAY, P. K.; CHOUDHARY, H.; ROGERS, R. D.: Ionic Liquid Platform for Spinning Composite Chitin–Poly(lactic acid) Fibers.  ACS Sustainable Chemistry & Engineering 6(2018)8.

[9]        ZHU, C.; RICHARDSON, R. M.; SONG, Y.; RAHATEKAR, S. S.; LUCIA, L.; AYOUB, A.: One Step Dissolution, Extrusion, and Fiber Spinning of Chitin Using Ionic Liquid Solvents // Polysac- charide-based Fibers and Composites. Band 18, Cham: Springer, 2018. - ISBN 978-3-319- 56595-8. 117.

[10]      Ota, A.; Beyer, R.; Hageroth, U.; Müller, A.; Tomasic, P.; Hermanutz, F.; Buchmeoser, M. R.: Chitin/Cellulose blend fibers prepared by wet and dry wet spinning. Polymers for Ad- vanced Technologies 32(2021)1, pp. 335.

[11]      TOSKAS, G.; BRÜNLER, R.; HUND, H.; HUND, R.-D.; HILD, M.; AIBIBU, D.; CHERIF, C.: Pure chitosan microfibres for biomedical applications. Autex Research Journal 13(2013)4, pp. 134– 140.

[12]      KUZNIK, I., KRUPPKE, I., PÖTZSCH H. F., CHERIF, C.: Pure chitosan multifilament yarns made using a semi-industrial pilot scale wet-spinning process with ionic liquids. J. Appl. Polym. Sci. 2024, 141(23), e55457.

Authors: Kuznik, Irina Scheele, Sabrina Benecke, Lukas Kruppke, Iris Cherif, Chokri

Technische Universität Dresden
Fakultät Maschinenwesen
Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM)
01062 Dresden

https://tu-dresden.de/mw/itm

More entries from TU Dresden, Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik ITM

05.02.2025

Integral flachgestrickte Drucksensoren für smart Textiles

Knittings Sensor Technology Smart Textiles Tests

Abstract

Im IGF-Projekt 21990 BR1 wurde das „Textiles Smart-Skin-3D-System (S3D)“ entwickelt – ein innovatives, flachgestricktes Sensorsystem, das Druck- und Näherungsmessungen nahtlos in textile Produkte integriert. Ziel war es, flexible und robuste Sensorik bereits im Herstellungsprozess einzubetten und so die Komplexität sowie potenzielle Schwachstellen herkömmlicher Mehrkomponentensysteme zu vermeiden. Hierzu wurden komplexe 3D-gestrickte Strukturen realisiert, die leitfähige Sensorgarne und gezielt eingearbeitete dielektrische Materialien wie silikonbasierte Inserts nutzen, um kapazitive Messprinzipien anzuwenden.

Die Optimierung von Garnauswahl und Strickparametern ermöglichte eine präzise Erfassung von Druckkräften und Annäherungen. Als Demonstrator wurde ein vollständig integrierter Sensorhandschuh mit 13 Sensorflächen entwickelt, der Greif- und Haltekräfte misst. Zyklische elektromechanische Prüfungen bestätigten ein stabiles Sensorverhalten. Insbesondere zeigte die Variante mit einem 1 mm starken Dielektrikum optimale Übertragungscharakteristika, geringe Hysterese und eine Sensordrift im akzeptablen Rahmen. Zusätzlich erbrachte ein textilbasierter Näherungssensor zuverlässige Messwerte für Abstände bis zu 120 mm.

Die Ergebnisse belegen das Potenzial flachgestrickter Sensoren als integraler Bestandteil smarter, tragbarer Textilien – mit Anwendungsmöglichkeiten in Telerehabilitation, Medizintechnik, Arbeitsschutz und weiteren Digitalisierungsbereichen.

Summary

In the IGF project 21990 BR1, the “Textiles Smart-Skin-3D-System (S3D)” was developed – an innovative, flat-knit sensor system that seamlessly integrates pressure and proximity measurements into textile products. The aim was to embed flexible and robust sensor technology into the manufacturing process, thereby avoiding the complexity and potential weaknesses of conventional multi-component systems. To achieve this, complex 3D-knit structures were created using conductive sensor yarns and strategically incorporated dielectric materials, such as silicone-based inserts, to implement a capacitive sensing approach.

Optimizing yarn selection and knitting parameters enabled the precise detection of pressure forces and proximity. A demonstrator in the form of a fully integrated sensor glove with 13 sensing areas was developed, capable of measuring gripping and holding forces. Cyclic electromechanical tests confirmed stable sensor performance. In particular, the variant with a 1 mm thick dielectric exhibited optimal transfer characteristics, low hysteresis, and acceptable sensor drift. Additionally, the textile-based proximity sensor reliably measured distances of up to 120 mm.

The results demonstrate the potential of flat-knit sensors as an integral component of smart, wearable textiles with applications in telerehabilitation, medical technology, occupational safety, and other digitalization sectors.

Report

Einleitung

Vor dem Hintergrund globaler Megatrends wie der Digitalisierung in der Medizin bestehen für die Textilindustrie große Chancen, vom erwarteten weiteren Wachstum von am Körper tragbaren, flexibel einsetzbaren und computergestützten Systemen zu profitieren. Zu dieser neuen Geräteklasse, den sogenannten Wearables, gehören Textilien, die über die klassischen Funktionen von Bekleidung oder beispielsweise Bandagen hinaus mit elektronischen Zusatzfunktionen ausgestattet sind. Da Textilien häufig die Schnittstelle zwischen dem Menschen und seiner Umwelt darstellen, sind sie prädestiniert, auch bei der Digitalisierung menschlicher Wahrnehmungen und Fähigkeiten (z. B. Bewegungen, Haptik etc.) und umgekehrt der Rückkopplung von der virtuellen in die analoge Welt eine entscheidende Brückenfunktion zu übernehmen und so als künstliche Haut (bzw. Smart Skin) bestehende optische und akustische Schnittstellen zu ergänzen.

Ein Bereich in dem smarte Textilien einen großen Zugewinn nützlicher Informationen bereitstellen, ist die Medizin und Rehabilitationstechnik. Vor dem Hintergrund einer alternden Bevölkerung und damit einhergehend einer hohen Belastung medizinischer Versorger, die unter gleichzeitigem Personalmangel leiden, ist nicht immer ein ausreichendes Angebot in erreichbarer Nähe realisierbar. Vor allem im Bereich der medizinischen Folgebehandlungen für Physiotherapie einhergehend mit langen Transportwegen oder fehlender Transportfähigkeit des Patienten kann dies zu Heilungsverlangsam oder sogar -verhinderung führen. Eine Unterstützung von Patienten durch einen medizinischen Laien (Familienangehörige, Bekannte etc.) mit einem geringfügigen Lernaufwand soll durch den in diesem Projekt entwickelten Handschuh ermöglicht werden. Dieser ermöglicht die Überwachung von Greif- und Haltebewegungen sowie Feedback zur Korrektur. In der Telerehabilitation gibt es keine vergleichbaren Systeme, die autonom ohne Experteneinsatz arbeiten [1, 2]. Das Projekt fokussierte auf die Entwicklung multifunktionaler Druck-/ Näherungssensorik durch flachstricktechnische Verfahren. Diese ermöglichen die kostengünstige Integration in Funktionsbekleidung, aber auch in Roboterkomponenten.

Zielsetzung und Lösungsweg

Das Ziel des IGF-Forschungsprojekts war die Entwicklung, Charakterisierung und Erprobung textilbasierter Drucksensoren, die mittels Flachstricktechnik in einen Handschuh integriert werden sollten um die aufgebrachte Kraft auf den Fingergliedern und dem Handballen zu überwachen. Es wurden flächenbasierte, gestrickte Sensorkonzepte mit einem kapazitiven Messprinzip verfolgt. Die entwickelten Sensoren wurden mittels zyklischer elektromechanischer Druckprüfungen untersucht und eine Vorzugsvariante der Sensoren zur Integration in einem Funktionsdemonstrator ermittelt. Weiterhin wurden kapazitive Näherungssensoren entwickelt und evaluiert.

Ergebnisse

Entwicklung der gestrickten Drucksensoren

Für die Entwicklung der Sensoren wurde die Umsetzung eines kapazitiven Drucksensors mithilfe von Flachstricktechnik verfolgt. Die Vorteile kapazitiver Sensoren gegenüber resistiver Sensoren liegen in ihrer Unempfindlichkeit gegenüber Temperatur [3], was in einer körpernahen Anwendung von Vorteil ist. Der einfachste Aufbau eines Kondensators ist der Plattenkondensator. In diesem Aufbau sind zwei parallele Platten durch ein Dielektrikum getrennt. Durch das Aufbringen einer Druckkraft F auf diese Platten und damit ein Zusammendrücken des Dielektrikums mit der Dielektrizitätskonstante  ε ändert sich der Plattenabstand d und somit die Kapazität C wie in Abbildung 1 gezeigt. Hier wird deutlich, dass die Kapazitätsänderung ∆C indirekt proportional zur Änderung des Plattenabstands ∆d, die wiederum abhängig ist von der induzierten Kraft, dem E-Modul E und den geometrischen Maßen des Plattenkondensators mit b = Breite und l = Länge.

Für den Aufbau der gestrickten kapazitiven Sensoren wurden verschiedene Konzepte erstellt, die in Abbildung 2 dargestellt sind. Anhand einer systematischen Variantenbewertung nach ergonomischen, stricktechnischen, sensortechnischen Anforderungen und praktischer Versuchstests wurde eine Sensorvariante mit einem Insert als Dielektrikum und einer vollflächigen Elektrode aus leitfähigem Garn als Vorzugsvariante gewählt und zu einer Handschuhfinger gleichenden Doppelschlauchstruktur erweitert.

Zur Auswahl des Elektrodengarns wurden Vorversuche durchgeführt um die stricktechnische Eignung der teilweise anspruchsvoll zu verarbeitenden Garne auf Stahl- und Silberbasis zu bewerten. Hierbei wurden Garne von Statex (Shieldex® 235 f 36dtex Z130), Amann (Steel-tech® 100 tex 93, Silver-tech+® 150 tex 22) und Bekaert (Bekinox® VN 14.1.9.100Z) genutzt. In diesen Vorversuchen erwies sich Silver-tech+® 150 als Vorzugsvariante, da es sehr gut mit dem umgebenden Basismaterial aus Umwindegarn (Tencel CV Nm40 mit PA6.6 78/78f23/1) fertigungstechnisch kompatibel war.

Herstellung der Sensoren

Ziel des Projekts war die Herstellung eines Sensorhandschuhs mittels Flachstricktechnik, eine Strickmethode, die die Möglichkeit bietet Fully Fashioned Artikel in einem Arbeitsschritt herzustellen, wodurch komplizierte gestrickte Flächen endkonturnah hergestellt werden können. Um ein höchstmöglich automatisiert herstellbares Produkt zu entwickeln wurde der Drucksensor mit einem Fokus auf Vermeidung nachfolgender Konfektionierungsschritte entwickelt. Daher wurde der Drucksensor als eine Doppelschlauchstruktur konzeptioniert. Diese wird durch zwei Elemente geformt: Zum einen durch die Tasche des Sensors, zum anderen durch einen Fingerling, der eine Tragbarkeit des Sensors ermöglicht. In Abbildung 3 ist der Aufbau schematisch dargestellt. Im Sensorbereich ergibt sich daher ein dreilagiges Doppelschlauch-gestrick. Das umfasst die äußere sowie innere Elektrode und die Rückseite des Fingers. Das Dielektrikum wird durch ein Insert, welches während des Strickprozesses eingelegt wird, gebildet. Diese Variante des Konzeptes ermöglicht eine weitestgehend automatisierte Fertigung des Handschuhs an der Flachstrickmaschine ohne nachgelagerte Konfektionsschritte. Für die Einbringung des Dielektrikums ist eine Unterbrechung des Strickprozesses erforderlich.

Validierung der Sensoren

Die gestrickten kapazitiven Sensoren wurden auf ihre Eignung als Drucksensor in zyklischen elektromechanischen Messungen überprüft. Der Versuchsaufbau mit Mess- und Versuchsgeräten sowie der Prüfablauf sind in Abbildung 4 dokumentiert. Um den Einfluss des Dielektrikums zu untersuchen, wurden Sensoren mit einem 2 mm und einem 1 mm starken silikonbasierten Dielektrikum hergestellt. Aus den ermittelten Daten wurden das Übertragungsverhalten (als Zusammenhang zwischen Kompressionskraft und Sensorsignal), die Sensordrift (als Signalwerte bei Entlastung der Sensoren) und die Hysterese (als maximale Differenz zwischen Be- und Entlastungskurve über den Messbereich) berechnet (siehe Abbildung 5).

Es zeigte sich, dass beide Varianten ein stabiles Sensorverhalten aufweisen, wobei die Sensorvariante mit einem 1 mm starken Dielektrikum bessere Ergebnisse im Übertragungsverhalten und in Hysterese zeigte. Die Sensordrift lag hier etwas höher, lag aber bei beiden Varianten unter 5 % und damit in einem, für praktische Anwendungen dieser Technologie, akzeptablen Bereich. Dieser Versuch zeigte, dass das Dielektrikum einen entscheidenden Einfluss auf das Sensorverhalten hat und dieses durch die relativ kleine Anpassung des Insertmaterials für verschiedene Messbereiche und -sensitivitäten angepasst werden kann. Weitere Ausführungen, Ergebnisse und Diskussionen können aus der Publikation in [4] entnommen werden.

Näherungssensor

Das Konzept für die textile Näherungssensorik wurde mit einer einzelnen textilen gestrickten Elektrode und einem Arduino Uno umgesetzt. Für die Versuchsdurchführung wurde eine menschliche Hand als zu erfassendes Objekt an den Sensor geführt und der Abstand zwischen Hand und Sensor gemessen. In Abbildung 6 sind das Sensorsignal und korrelierte Abstände der Hand dazu gezeigt, sowie das Schaltbild dargestellt. Hierbei konnten Abstände von bis zu 120 mm zur Hand noch erfasst werden mit einer guten Signalstabilität, sodass hier eine Quantifizierung des Abstands denkbar ist.

Demonstrator

Die Vorzugsvariante für den Druck- und Näherungssensor wurde übertragen auf einen vollständig gestrickten und integral gefertigten Handschuh mit 13 Sensoren, wobei 2 Sensorflächen für Daumen, 3 Sensorflächen für Zeige- und Mittelfinger und 5 Sensorflächen auf der Handfläche für die Erfassung von Kräften realisiert wurden. Der finale Funktionsdemonstrator ist in Abbildung 7 gezeigt. Die elektrischen Zuleitungen wurden für diesen FD manuell realisiert. Eine sensorische Funktionalisierung des Ringfingers und des kleinen Fingers war durch die begrenzte Anzahl an Fadenführern innerhalb der Strickmaschine nicht möglich (max. 13 Sensorflächen). Die Signale der einzelnen Sensoren wurden mittels eines RaspberryPi 5 und einer dafür entwickelten Software ausgewertet. In verschiedenen Greiftests wurden die Sensoren validiert. Bei allen funktionsfähigen Sensoren konnte ein verlässlicher Anstieg des Signals bei Kompression erfasst werden.

Zusammenfassung und Ausblick

Die Verwendung textiltechnischer Lösungen zur Überwachung des menschlichen Körpers und der auf ihn wirkenden Lasten ist ein vielversprechendes Forschungsfeld, das Anwendungen in der Physiotherapie, im Arbeitsschutz und in der Digitalisierung von Arbeitsprozessen ermöglicht. Im Rahmen dieses Projekts lag der Fokus auf der Entwicklung und Integration von Druck- und Näherungssensoren in textile Strukturen. Dabei wurden innovative textilbasierte Ansätze verfolgt, insbesondere die Herstellung vollständig textilintegrierter Sensoren im Fully-Fashioned-Verfahren. Im Gegensatz zu herkömmlichen Systemen, die oft aus vielen Einzelkomponenten bestehen und dadurch Schwachstellen aufweisen, bieten textilbasierte Sensorsysteme eine höhere Kompatibilität mit textilen Basissystemen und eine höhere Flexibilität. Die in dieser Arbeit entwickelten Sensoren sind vielseitig einsetzbar und können in zahlreiche textile Strukturen, und vor allem gestrickter Strukturen, diverser Form und Größe übertragen werden.

Unter Beachtung industrienaher Anforderungen, die zusammen mit den am Projekt beteiligten Industriepartnern festgelegt wurden, wurden verschiedene Konzepte für Druck- und Näherungssensoren für einen Sensorhandschuh unter Nutzung von Flachstricktechnik entwickelt. Die bevorzugte Lösung für gestrickte Druck- und Näherungssensoren basiert auf einem Doppelschlauchgestrick, das einen flexiblen Plattenkondensator darstellt. Diese Sensoren bestehen aus Elektroden aus leitfähigem Garn und einem weichen Material, beispielsweise Silikon, das als Dielektrikum dient. Dadurch, dass das Material für das Dielektrikum flexibel gewählt werden kann, sind Messbereich und -verhalten auch für andere Anwendungen mit diesem Konzept einfach zu variieren. Für die Druckmessung wurde das Ansprechverhalten der entwickelten Sensoren eingehend getestet, und ihre Stabilität analysiert und ein funktionsgerechtes Messverhalten der Sensoren im Messbereich 0 bis 10 N festgestellt.

Die Vorzugsvariante der Sensoren wurde in einem Funktionsdemonstrator mit 13 Sensorflächen umgesetzt. Dies sollte in weiteren Arbeiten um 6 weitere Sensorflächen für die einzelnen Fingergelenke von Ring- und kleinem Finger ergänzt werden. Die Anzahl der Sensorflächen war in diesem Projekt durch die Anzahl der verfügbaren Fadenführer begrenzt. Weiterhin sollte das Einlegen des dielektrischen Inserts stärker automatisiert werden um die Zeit, die benötigt wird um die Drucksensorhandschuhe zu stricken, reduziert wird.

Danksagung

Das IGF-Vorhaben 21990 BR der Forschungsvereinigung Forschungskuratorium Textil e.V., Reinhardtstr. 12-14, 10117 Berlin wurde über die AiF im Rahmen des Programms zur Förderung der industriellen Gemeinschaftsforschung und -entwicklung (IGF) vom Bundesministerium für Wirtschaft und Klimaschutz aufgrund eines Beschlusses des Deutschen Bundestages gefördert.

Die Autoren danken den genannten Institutionen für die Bereitstellung der finanziellen Mittel. Der Forschungsbericht und weiterführende Informationen sind am Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik der TU Dresden erhältlich.

 

Literatur

 

[1]   K. Ettle et al., "Telepräsenzroboter für die Pflege und Unterstützung von Schlaganfallpatientinnen und -patienten (TePUS) im Regierungsbezirk Oberpfalz: DeinHaus 4.0," Regensburg, Jun. 2020. Accessed: Nov. 30 2020.

[2]   K. Berkenkamp, "Telerehabilitation in der Schlaganfallversorgung – Einflussfaktoren auf Adoption und Akzeptanz von klinisch tätigen Ärzten und Therapeuten," 2020.

[3]   J. Mersch, C. A. G. Cuaran, A. Vasilev, A. Nocke, C. Cherif, and G. Gerlach, "Stretchable and Compliant Textile Strain Sensors," IEEE Sensors J., vol. 21, no. 22, pp. 25632–25640, 2021, doi: 10.1109/JSEN.2021.3115973.

[4]   S. Fischer, C. Böhmer, S. Nasrin, C. Sachse, C. Cherif. Flat-Knitted Double-Tube Structure Capacitive Pressure Sensors Integrated into Fingertips of Fully Fashioned Glove Intended for Therapeutic Use. Sensors 2024, 24, 7500. https://doi.org/10.3390/s24237500

 

 

Authors: Carola Bömer

Technische Universität Dresden
Fakultät Maschinenwesen
Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM)
01062 Dresden

https://tu-dresden.de/mw/itm

More entries from TU Dresden, Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik ITM

05.02.2025

Reparatur komplex gekrümmter Faser-Kunststoff-Verbund-Bauteile in Duromerbauweise

Knittings Composites Textile machinery Technical Textiles

Abstract

Das Ziel war die Entwicklung von Technologien zur Herstellung zweiachsig-gestufter, end-konturgerechter 3D-Textilpatches mit freien Fadenenden, die für die Reparatur komplex gekrümmter faserverstärkter Kunststoffbauteile (FKV) in Duromerbauweise, wie sie in der Anlagen- und Fahrzeugindustrie eingesetzt werden, geeignet sind. Dafür wurde die Mehrlagenstricktechnik (MLG) weiterentwickelt, unterstützt durch eine simulationsbasierte Prozesskette. Diese ermöglichte es, die 3D-Textilpatches passgenau und lastpfadgerecht in Schadstellen einzubringen und anschließend im Vacuum Assisted Process (VAP) zu rein-filtrieren. Für die Realisierung der 3D-Textilpatches wurden modulare Zusatzeinrichtungen für Flachstrickmaschinen entwickelt. Diese ermöglichten die gezielte Garnzuführung, Unterbrechung, Ablängen und Wiedereinführung von Kett- und Schussfäden mit definierten Längen und freien Fadenenden. Durch Variation der Strickparameter wurden optimal gestufte 3D-Textilpatches erzeugt. Diese Patches entsprachen in Geometrie, Lastpfad und Faservolumengehalt den Eigenschaften des unbeschädigten Bauteils. Zur Verankerung der 3D-Textilpatches an den Bauteilen war eine präzise Entfernung der Matrix notwendig. Dafür wurde ein UV-aktiviertes Halbleiteroxid-Verfahren zur schichtweisen, selektiven Matrixdegradation weiterentwickelt. Ein robotergeführtes System kam zum Einsatz, um das Halbleiteroxid präzise aufzutragen und die UV-Aktivierung gezielt zu steuern, um die Matrix exakt abzutragen, ohne die Randbereiche zu beschädigen. Insgesamt ermöglicht die Kombination aus simulationsgestützter Entwicklung, innovativer Textiltechnologie, chemischen Verfahren und robotergestützter Applikationen die Realisierung einer Repa-raturtechnologie, die die Tragfähigkeit komplexer 3D-FKV-Bauteile nahezu vollständig wiederherstellen und ihre Lebensdauer signifikant verlängern kann.

Report

1 Einleitung

Faser-Kunststoff-Verbunde (FKV) können zur konsequenten Ausnutzung des Leichtbau-potenzials beitragen, da den aus der jeweiligen Bauteilanwendung resultierenden struk-turmechanischen Anforderungen durch textile Verstärkungsstrukturen mit maßgeschnei-derten, anisotropen Eigenschaften in hohem Maße entsprochen werden kann. Zudem können FKV im Vergleich zu Metallen deutlich höhere gewichtsbezogene Steifigkeiten und Festigkeiten aufweisen. Mit dem gegenwärtig steigenden Einsatz von FKV erhöht sich auch der Bedarf an leistungsfähigen und bedarfsgerechten Reparaturkonzepten für geschä-digte Komponenten [1]. Schäden an FKV-Bauteilen resultieren vor allem aus deren Ge-brauch, z. B. durch außergewöhnliche Betriebslasten sowie Impakt- bzw. Stoßbeanspru-chungen. Als häufigste Ursachen beispielsweise in der Luftfahrt traten u. a. Impaktereig-nisse durch Vogelschlag sowie Kollisionen mit Vorfeldfahrzeugen und aufgewirbelten Teilen auf den Start- und Landebahnen auf [2]. Ebenso können Produktionsfehler, die bei sicherheitskritischen Anwendungen zu einem Ausschussbauteil führen, eine Reparatur erforderlich machen, z. B. bei lokal unvollständiger Infiltration des Laminats. Für die verfügbaren Reparaturverfahren besteht gegenwärtig noch keine flächendeckende Verbreitung sowie keine uneingeschränkte Anwendbarkeit [3]. Es wurden verschiedene Reparaturmethoden für spezielle Bauteilgruppen und Einzelfälle entwickelt, z. B. das Heraustrennen der Schadstelle und das anschließende Fügen eines neuen FKV-Patches durch Kleben bzw. Nieten, wobei die verstärkenden Endlosfasern durchtrennt und so die mechanische Leistungsfähigkeit herabgesetzt werden. Bei Klebeverbindungen muss die Reparaturfläche deshalb großflächig geschäftet werden, um eine effiziente Kraftübertragung über Schubbelastung zu gewährleisten. Damit sind solche Reparaturkonzepte vor allem für großflächige und nur leicht gekrümmte Bauteile geeignet, z. B. Flugzeugkomponenten. Komplex gekrümmte Bauteile mit hoher Wandstärke, z. B. im Anlagen- und Fahrzeugbau, sind aufgrund der notwendigen großen Schäftverhältnisse bis zu 1:60 [4, 5] und der tech-nisch herausfordernden spanenden Schäftung, z. B. durch Fräsen, vor allem im eingebau-ten Zustand des Bestandsbauteils nicht unmittelbar bzw. nur zu Lasten erheblich redu-zierter mechanischer Eigenschaften reparierbar.

Ein hohes Innovationspotenzial zur Behebung der genannten Defizite von Reparaturen gekrümmter FKV-Bauteile besitzt ein von der TU Dresden patentiertes Verfahren bei dem der Matrixwerkstoff im geschädigten Bereich chemisch durch gezielte Aktivierung von Halbleiteroxiden (HLO) mit einer gesteuerten Ultraviolett (UV)-Strahlungsquelle abgebaut und die Faserstruktur freigelegt werden [6–8]. Dieses Verfahren wurde am ITM bisher an ebenen CFK-Proben (Carbonfaserverstärkter Kunststoff) validiert [8–10] und an lediglich leicht gekrümmten, dünnwandigen Basisbauteilen erfolgreich erprobt.

Mit dem hier verfolgten Lösungsansatz sollen neuartige, biaxial gestufte, endkontur- und lastpfadgerechte 3D-Textilpatches mit freien Fadenenden im Kantenbereich zur Reparatur komplex gekrümmter 3D-FKV-Bauteile entwickelt und getestet werden. Zur Fertigung derartiger 3D-Textilpatches auf Flachstrickmaschinen sind technologisch-konstruktive Weiterentwicklungen zur Realisierung konturgerechter Stufungen mit freien Fadenenden notwendig, um eine bestmögliche Kraftübertragung zwischen Patch und Verbundbauteil sicherstellen zu können. Zur kraftschlüssigen Anbindung des 3D-Textilpatches an die Grundstruktur wird zudem das Matrixabbauverfahren so weiterentwickelt, dass ein sequentieller (d. h. schichtweiser, gestufter) 3D-Matrixabbau erfolgt. Weiterhin wird ein Simulationsmodell entwickelt mit dem der Reparaturbereich und die Patches ausgelegt werden können. Die Umsetzung der Reparatur soll zudem automatisiert mittels Robotertechnik möglich sein.


2 Stand der Forschung und Technik


2.1 Reparaturansätze für FKV

Für die Reparatur von FKV-Bauteilen sind heute vor allem folgende Strategien anwendbar: der Austausch von Bauteil(-sektion)en, die Dopplerreparatur und das Einkleben eines Reparaturpatches nach vorheriger Schäftung. Die Reparatur dünnwandiger Bauteile erfolgt mittels Doppler ohne Wiederherstellung der Oberfläche, da ein oder beidseitig Metallbleche oder FKV-Patches auf die Schadstelle geklebt oder genietet werden [11]. Bei der kontinuierlichen oder gestuften Schäftung wird die Schadstelle mechanisch händisch bzw. mittels CNC-Fräse oder laserbasiert abgetragen [12, 13]. Robotergestützte Verfahren sind vor allem für großflächige und leicht gekrümmte Strukturen in der Luftfahrt bekannt [5, 14–16]. Die Reparatur der Schadstelle erfolgt jedoch weiterhin durch Handlaminieren bzw. das Einkleben eines neuen FKV-Patches. Bei komplex gekrümmten Strukturen ist dagegen das mechanische Fräsen aufgrund der schwierigen Zugänglichkeit und der großen Schäftungsbereiche nur schwer möglich. Der Laserabtrag erfordert eine komplexe Anlagentechnik und führt zu signifikanter Faserschädigung durch thermische Einwirkung. Insgesamt fehlt also ein effizientes Verfahren zur Freilegung der Schadstelle für komplex gekrümmte Geometrien. Bei einem an der RWTH Aachen eintwickeltem Reparaturkonzept für Automobile in CFK-Bauweise wurde die Schadstelle an einem Hutprofilbauteil durch konventionelles mechanisches Schäften abgetragen und ein FKV-Patch eingeklebt [12, 17]. Dessen Herstellung erfolgte als textile Preform im Doppler-Diaphragma-Umformverfahren mit anschließender Harzinfusion und Konsolidierung. Die konsolidierten FKV-Patches wurden in die geschäftete Reparaturstelle durch mechanische Bearbeitung eingepasst und manuell eingeklebt.

Der wesentliche Nachteil der genannten FKV-Reparaturverfahren ist der trotz bestehender Automatisierungsansätze generell hohe manuelle Arbeitsaufwand, der daher bei der Übertragung auf komplex gerümmte Bauteile in der Regel zu zeit- und kostenaufwändig ist und häufig eine mangelnde Reproduzierbarkeit der Verbundqualität im Reparaturbereich erwarten lassen. Die Übertragung der Schubkräfte durch den Reparaturpatch erfordert eine großflächige Entfernung der noch intakten Verbund- und damit der textilen Verstärkungsstruktur beim Schäften weit über die eigentliche Schadstelle hinaus. Damit sind die verfügbaren Reparaturansätze hauptsächlich für großflächige und nur leicht gekrümmte Bauteile geeignet, z. B. Flugzeugrümpfe, Rotorblätter oder Bootsrümpfe. Neben Reparaturverfahren mit spanendem Abtrag gibt es auch reine Matrixentfernungsverfahren. Bei halbleiterbasierten Verfahren wird durch aktivierte Metallhalbleiteroxide eine radikalische Depolymerisation der Matrix initiiert. Mit Hilfe thermischer Aktivierung wird dies zum Recycling von CFK-Strukturen durch TSUKADA et al. eingesetzt [18]. Die Nutzung dieses Verfahrens für einen lokalen Abtrag der Matrix wurde ansatzweise durchgeführt, wobei sich die Untersuchungen ausschließlich auf thermische Betrachtungen beschränkten. Am ITM der TU Dresden wurde ein UV-induziertes Matrixabbauverfahren umgesetzt [8, 10]. Wesentliche Vorteile sind die kurzen Prozesszeiten und der faserschonende Matrixabbauprozess zur Freilegung der Fasern.


2.2 Mehrlagenstrick-Technik zur Fertigung dreidimensionaler textiler Verstärkungsstrukturen


Zur Herstellung endkonturgerechter 3D-Textilpatches ist die Mehrlagenstrick-(MLG)-Technik aufgrund der damit realisierbaren hohen Strukturdiversität in der Flächenbildung anforderungsgerechter Verstärkungsstrukturen prädestiniert, mit einem hohen Potenzial zur direkten Ausbildung endkonturnaher und anforderungsgerechter Geometrien textiler Verstärkungsstrukturen, die als verstärkte MLG-Halbzeuge mit in der Maschenstruktur in-tegrierten, belastungsgerecht angeordneten Verstärkungsfadensystemen gefertigt werden können [19–21]. Um endkonturgerechte und zur Verstärkungsrichtung in der Reparaturstelle des Bestandsbauteils passende, in Negativform gestufte 3D-Textilpatches mit freien Fadenenden zur bestmöglichen Kraftübertragung zwischen Patch und Verbundbauteil herstellen zu können, sind allerdings technologisch-konstruktive Entwicklungen der MLG-Technik erforderlich, wofür im Forschungsprojekt zwei Zusatzeinrichtungen entwickelt werden sollten.


2.3 Modellierung von textilen Verstärkungsstrukturen


Modelle für textile Strukturen auf Basis der Finite-Elemente-Methode (FEM) lassen sich in makroskopische Kontinuumsansätze und diskrete Ansätze unterscheiden, die die Mikro- bzw. Mesostruktur des Textils abbilden. In Makroskalenansätzen wird das Textil als homogenes Material mit verschmierten Eigenschaften modelliert [22–24]. Diskrete Textilmodelle auf der Mikro- oder Mesoskala bilden dagegen das textile Werkstoffverhalten über die Abbildung der Faser- oder Garnarchitektur ab [25–27]. Modellentwicklungen konzentrierten sich dabei primär auf Gewebe, Geflechte und Gelege. Gestricke und damit verstärkte FKV wurden in der Literatur bisher vergleichsweise wenig betrachtet. Modelle für unverstärkte Gestricke [28, 29] und mit starken Vereinfachungen für biaxial verstärkte Gestricke [30–32] wurden u. a. am ITM der TU Dresden vorgestellt. Die Anwendungen bezogen sich auf 2D-Gestricke, die simulativ in textilphysikalischen Charakterisierungen und Drapieruntersuchungen analysiert wurden. Die Auslegung 3D-gestrickter Verstärkungsstrukturen war bisher nicht Gegenstand der Forschung und erfordert die Entwicklung numerischer Modelle für die angestrebte Simulationskette.

3 Material und Methoden


3.1 Material


Beispielhaft soll das Reparaturverfahren für ein Faserverbund-Bauteil in CFK-Duromerbauweise und einem darauf basierenden textilen Patch dargestellt werden. Das FKV-Bauteil entspricht einer Halbkugel mit einem Durchmesser von 200 mm und einer Wandstärke von ca. 2,0 mm. Das Bauteil wurde aus einer mehrlagengestrickten Preform mit dem Lagenaufbau: 0/90/0/90/0/90 hergestellt. Materialseitig wurden die Reparaturpatches aus Kohlenstofffasern (CF) mit einer Feinheit von 800 tex in Kett- und Schussrichtung und aus einem PA6-Garn (25 tex) als Maschenfaden hergestellt.

3.2 Entwicklung eines FEM-Simulationsmodells zur Auslegung gestrickter 3D-Textilpatches


Das zu reparierende Bauteil sowie die Reparaturpatches wurden in einem Mesoskalen-FEM-Modell in der Software LS-DYNA modelliert und simuliert. Kett- und Schussfäden wurden mittels Schalenelementen und die Maschenfäden mittels Balkenelementen ins Modell implementiert. Die Matrix wurde mittels Solid-Elementen abgebildet und anschließend mit der modellierten textilen Struktur zu einem Verbundmodell kinematisch gekoppelt. Das Basistextil des Verbundbauteils bestand aus jeweils drei Kett- und Schusslagen in 0°/90°-Richtung. Zur Simulation eines Defektes wurde ein Loch mit 5 mm Durchmesser integriert. Im Defektbereich des Bauteils, in den später das 3D-Textilpatch eingebracht wird, wurden die Matrix zunächst entfernt und die Textilschichten entsprechend der Topologie des 3D-Textilpatches gestuft entfernt. Für die Untersuchung der notwendigen Überlappungslänge des Textilpatches wurden drei Stufen festgelegt. Die Überlappungslänge des Textilpatches sollte nicht zu klein sein, da dies die manuelle Handhabung erschwert. Andererseits sollte sie auch nicht zu groß sein, da dies einen erhöhten Materialbedarf mit sich bringt. Die gewählten Varianten waren 10 mm, 15 mm und 20 mm. Für die Schichten des Patches wurde eine Verstärkungsfaserorientierung 0°/90° gemäß der Faserorientierung im Ausgangsbauteil modelliert.

 

3.3 Verfahrensentwicklung zum sequentiellen 3D-Matrixabbau an gekrümmten Strukturen


Das Ziel war die Entwicklung einer selbstklebenden Halbleiteroxid-(HLO)-Formulierung für vertikale und über Kopf zu reparierenden Bauteilen. Dazu wurden drei Polymere (Polyurethan, Polyvinylalkohol und Acrylat) hinsichtlich ihrer Haftungseigenschaften untersucht. Die Polymerlösungen wurden in drei Konzentrationen in Wasser hergestellt und mit den HLO (TiO₂, CeO₂) versetzt. Die rheologische Charakterisierung zeigte für die 40 %ige PU-Formulierung stabile Viskositätswerte (160-443 mPa·s), die sich durch die HLO-Zugabe kaum veränderten und im angegebenen Bereich (20-500 mPa·s) lagen. Nur die 40 %ige Polyurethan (PU)-Lösung und die 15 ̶ 17 %ige Polyvinylalkohol(PVA)-Lösung wurden als versprühbar bewertet (max. 1000 mPa·s). Das Trocknungsverhalten der Polymerlösungen wies einen gleichmäßigen Wasserverlust und eine vollständige Trocknung nach etwa 35 Minuten auf, wobei eine Ausnahme bei der 40 %igen PU-Lösung zu verzeichnen war. Die Auswahl eines geeigneten selbsthaftenden HLO-Lösungssprühfilms für einen photokatalytischen Matrixabbau erfolgte mittels des UV-Strahlers HB2 HANDELD LED 385 nm (UVITERNO AG, Berneck/ Schweiz). Für die Verfahrensvalidierung wurde der HLO-Lösungssprühfilm mit dem HLO Ceriumdioxid (CeO2, LIFE TECHNOLOGIES GMBH, Darmstadt/ Deutschland) mit einer Menge von 0,4 mg/cm2 und einer 40% PU-Dispersion (KREMER PIGMENTE GMBH & CO. KG, Aichstetten/ Deutschland) gewählt.

3.4 Technologisch-konstruktive Entwicklung der Mehrlagenstricktechnologie zur Fertigung gestufter 3D-Textilpatches


Für die textiltechnische Herstellung der 3D-Reparaturpatches war die technologische Entwicklung der Mehrlagenstricktechnologie notwendig. Die biaxiale Abstufung, die der Faserorientierung des Bauteils entspricht, wurde durch folgende Schritte umgesetzt: (i) eine schichtweise Integration von Fasern und (ii) Zuschneiden und anschließendes Wiedereinbringen einer variierenden Anzahl von Kett- und Schussfäden mit offenen Enden. Um in den Überlappungsbereichen zwischen den freiliegenden Fadenenden im Reparaturbereich und den Verstärkungsfäden des neu einzusetzenden 3D-Textilpatches eine tragfähige Verbindung herzustellen, sind in diesen Bereichen keine Maschen vorhanden. Die Herausforderung bestand in der Entwicklung und stricktechnischen Umsetzung anforderungsgerechter Gestrickkonstruktionen durch die maschenreihenweise Interaktion mehrerer Schuss- und Maschenfadenführer. Dabei musste jeweils ein Maschenfadenführer aktiv vor der letzten einzubindenden Kettfadenlage versetzt werden, um den einzubindenden Teil des Mehrlagenaufbaus zu fixieren. Um alle vier Lagen zu fixieren, wurde der Maschenfadenführer 2 verwendet. Sollte nur die Kettfadenlage 1 mit Schussfadenlage 1 fixiert werden, wurde Maschenfadenführer 1 verwendet. In den Stufenbereichen musste die Kuliertiefe lokal angepasst werden, abhängig von der Anzahl der Kett- und Schussfäden, die in einer Masche eingebunden waren. Diese Anpassung wurde durch die Steuerung des Schlittenhubs in Kombination mit den Maschinenparametern (wie Abzug und Schlosseinstellung) analysiert. Für das gezielte und schrittweise Einbringen der Schussfäden sowie die Erzeugung der freien Fadenenden der gestuften Patches wurde eine Zusatzeinrichtung für Flachstickmaschinen entwickelt und umgesetzt. Die wesentlichen Funktionen der Zusatzeinrichtung umfassen: (i) Überfahrbarkeit über die Gestrickkante hinaus und (ii) Fixierung, Speicherung und Schneiden des Fadens. Im Rahmen eines konstruktiven Entwicklungsprozesses wurde zunächst die Funktionsstruktur sowohl der bestehenden Flachstrickmaschine als auch der Zusatzeinrichtung gestaltet. Die obere Reihe (Blautöne) zeigt den abstrahierten Funktionsablauf der Flachstrickmaschine, inklusive der Modifikationen vom Strickprozess bis zur Speicherung der Ware. Dunkelblaue Markierungen heben die gegenüber dem Standardstrickprozess abweichenden Funktionen hervor. Die untere Reihe (Lilatöne) überträgt diese abstrahierten Funktionen auf die spezifischen Prozesskomponenten und konkretisiert sie. Gemäß dem regulären Strickprozess wird der Schussfaden zunächst voreilend eingelegt und durch den Maschenfaden während der Maschenbildung fixiert. Am Ende jeder Maschenreihe wird der Schussfaden mithilfe des Schussfadenführers über die Gestrickkante hinausgeführt. Beim Richtungswechsel des Schussfadenführers wird die entstehende Umkehrschlaufe durch die Zusatzeinrichtung fixiert. Nach der Fertigung der folgenden Maschenreihe und dem Abschluss der Abzugsbewegung wird die zuvor fixierte Umkehrschlaufe von der Zusatzeinrichtung geschnitten, wodurch die gewünschten freien Fadenenden entstehen. Um eine endkonturnahe biaxiale Abstufung der 3D-Textilpatches mit freien Fadenenden in Kettrichtung zu ermöglichen, wurde eine zweite Zusatzeinrichtung entwickelt. Diese übernimmt die Funktionen Fixieren, Trennen und Wiedervorlegen der Kettfäden. Mit ihrer Hilfe konnten lagenweise definierte Kettfadenabschnitte bedarfsgerecht in die Reparaturpatches exemplarisch integriert werden. Zur technologisch-konstruktiven Erweiterung der Fadenführsysteme für die Verarbeitung von Multifilamentgarnen (z. B. Carbonrovings) wurden geeignete Konzepte erstellt. Die daraus abgeleiteten Vorzugslösungen für die Zusatzeinrichtungen wurden auf die geforderte Dynamik und erforderlichen Funktion hin entwickelt. Vor den stricktechnischen Untersuchungen wurden beide Zusatzeinrichtungen umgesetzt, mechanisch in die Flachstrickmaschine Stoll ADF-530 integriert und getestet. Weiterhin erfolgte die endkonturgerechte, stricktechnische Umsetzung der entwickelten Gestrickkonstruktionen für die Patches. Für die Herstellung der gestuften Reparatur-patches mit differierender Dicke wurden systematische Versuchsreihen geplant und durchgeführt, um die miteinander in Wechselwirkung stehenden Maschinenparameter (u.a. Kuliertiefe, Fadenspannung, Warenabzug und Strickgeschwindigkeit) und deren Einfluss auf die Struktureigenschaften (Flächenmasse, Verstärkungsfadendichte, freie Überlappungslänge, Geometrie) der 3D-Textilpatches sowie geeignete Parameterkombinationen zu ermitteln.

4 Ergebnisse und Diskusison

Simulation

Zur Patchauslegung mit verschiedenen Überlappungslängen wurde mit dem entwickelten Siumlationsmodell ein Druckversuch am FKV-Bauteil (Halbkugel) mit realitätsnahen Lagerungs- und Belastungsrandbedingungen simuliert. Die Simulation des Druckversuchs zeigt, dass bei einer Patchüberlappungslänge von 20 mm eine Wiederherstellung von 92 % der Tragfähigkeit erreicht werden kann.

Untersuchungen zum 3D-Matrixabbau

Im Rahmen der Untersuchung zum sequentiellen 3D-Matrixabau wurden die Strahlerleistung, die Abbautiefe, die Bestrahlungsdauer sowie der Abstand zwischen Bauteil und Strahler an Reinharz- (RH) und CFK-Platten analysiert. Dazu wurden HLO als Pulver oder als Sprühfilm aufgebracht und anschließend mit dem UV-Strahler bestrahlt. Die Parameter variierten zwischen Strahlerabständen von 10–45 mm, Leistungen von 20–100 % und Bestrahlungszeiten von 30–160 s in mehreren Etappen. Die Resultate der Analyse demonstrierten, dass bei einem Strahlerabstand von 25 mm kein signifikanter Matrixabbau mehr zu beobachten war. Daher wurde für die Validierungsversuche ein Abstand von 10 mm gewählt, um eine hinreichende Bestrahlungsstärke zu gewährleisten.  Eine inhomogene HLO-Verteilung führte zu einer Begrenzung des Abbaus auf einzelne Bereiche und einer Verringerung der Effizienz. Lichtmikroskopische Untersuchungen belegen, dass die Pulverauftragsmethode eine signifikant höhere Effektivität aufweist als die Sprühfilmauftragsmethode. Letztere bedingt längere Bestrahlungszeiten, um eine vergleichbare Freilegung der Einzelfilamente zu erzielen. Die Anwendung beider Methoden führte zu einer erfolgreichen Freilegung der Filamente. Thermogravimetrische Analysen (TGA) sowie lichtmikroskopischen Aufnahmen belegen, dass die Rückstände anorganischer Materialien mit steigender Bestrahlungsstärke zunehmen. Es lässt sich eine signifikante Zunahme der Rückstände nach der Bestrahlung beobachten. Dies verdeutlicht die Notwendigkeit einer zusätzlichen Reinigung, um unerwünschte Rückstände, die sich durch die Matrixbehandlung anreichern, zu entfernen und die Effizienz der Verfahren zu sichern. Die validierten Prozessparameter wurden erfolgreich auf den photokatalytischen Matrixabbau des FKV-Bauteils angewandt. Dabei wurde der Bauteil-Strahler-Abstand von 10 mm sowie die zweistufige Behandlungsstrategie in Form von einer Bestrahlung in zwei Zeitetappen beibehalten. Die durchgeführten Untersuchungen legen nahe, dass ein mehrstufiger Abbau erforderlich sein kann, um die gewünschten freigelegten Faserbereiche zu erzielen. Die Ergebnisse der Untersuchungen belegen, dass die behandelten FKV-Proben erfolgreich freigelegte Einzelfilamente aufweisen. Mikroskopische Analysen von Rovings verdeutlichten besonders klare Freilegungen, jedoch wurden im Vergleich zur CF-Referenz leichte Abbaurückstände beobachtet. Diese könnten durch inhomogene HLO-Aufträge oder lokale Schwankungen im Matrixabbau bedingt sein.

Untersuchungen der gestrickten 3D-Textilpatches


Bei der Herstellung wurde der maßgebliche Parameter Kuliertiefe variiert und in Abhängigkeit davon die Kennwerte der textilen Strukturen ermittelt. Die Flächenmasse, die massenmäßige Zusammensetzung (entspricht Anteile Kett-, Schuss- und Maschenfäden) der zwei- und vierlagigen biaxialen Reparaturpatches und die Fadendichten zeigten keine klare Abhängigkeit vom variierten Maschinenparameter Kuliertiefe. Die Dicke der Reparaturpatches wurde gemäß DIN EN ISO 5084 und die Maschenlänge nach DIN EN 14970 bestimmt. Sowohl bei 2- als auch 4-lagigen Strukturen war über die gesteigerte Kuliertiefe ein leichter Anstieg in der Dicke und der Maschenlänge ersichtlich. Durch die gesteigerte Maschenlänge, ergab sich eine höhere Dicke des Reparaturpatches, wodurch aber aufgrund der geringen Feinheit und Dichte des Maschenfadens weder die Flächenmasse noch die weiteren zuvor bestimmten Parameter gesteigert werden konnten. Final wurden die anvisierten Reparaturpatches in verschiedenen Größen gemäß den Anforderungen und iterativen Entwicklungen umgesetzt und für die Reparatur des Bauteils eingesetzt.

5 Entwicklung und Umsetzung einer robotergestützten, automatisierten Reparaturprozesskette


Die Reparaturprozesskette wurde als roboterunterstütztes Verfahren an einem KUKA KR6 R900 6-Achs-Industrieroboter umgesetzt und erprobt. Für das FKV-Bauteil wurde dazu eine TCP (Tool-Center-Point)-Kalibrierung durchgeführt. Die exakte Position der Werkzeugspitze wurde hier erfasst und kann als Referenzpunkt für das Bewegungssteuerungssystem des Roboters verwendet werden. Die Bewegungsbahnen umfassen mehrere realisierte Segmente unter Verwendung unterschiedlicher Werkzeuge mit den folgenden Schritten:

  1. Dimensions- und ortsunabhängige robotergestützte Applikation der HLO-Formulierung auf die Schadstelle des FKV-Bauteils Für Schritt (1) wurde ein Applikationssystem für den präzisen robotergestützten Auftrag der HLO-Formulierung konzipiert und konstruktiv umgesetzt.
  2. Robotergestützte Führung des UV-Strahlers mit definiertem Abstand und orthogonaler Ausrichtung zur Bauteiloberfläche Der schichtweise Matrixabbau erfolgte in Schritt (2) an dem simulativ ermittelten Reparaturbereich mit der Strahlungsquelle und den abgeleiteten Parametern zum Matrixabbau. Die definierte 3D-Bahnführung des UV-Strahlers erfolgte robotergestützt und wurde softwarebasiert mit im Programm MATLAB erzeugten Algorithmen bauteilgerecht geplant.
  3. Nach der lagenweisen Entfernung der Matrix wurden die Fasern im simulationsgestützt ermittelten Reparaturbereich entfernt, sodass an den Rändern freigelegte freie Fadenenden für die Anbindung der Reparaturpatches erhalten blieben. Der Schneidprozess kann im Ult-raschall-Schneidverfahren präzise durchgeführt werden.
  4. Robotergestützte Neubeschlichtung des Reparaturbereichs durch initiale Oberflächenaktivierung mit einer Plasmafackel (plasmabrush PB3) und mit einem Präkursor (z. B. Hydrosize EP 871.
  5. Applikation Reparaturpatch
    Für die Applizierung des Patches wurde ein anforderungsgerechter Effektor für den Roboter entwickelt. Dieser bestand aus einer fünf Millimeter dicken Silikonmembran mit vorgesehenen Kanälen und Anschlüssen. Während der robotergestützen Patchapplikation wird der Patch über die zentrale Ansaugung mittels Unterdruck gehalten. Ist die exakte Position angefahren, wird der Unterdruck abgeschaltet und der Patch verbleibt an der entsprechenden Stelle am Reparaturbauteil. Die freiliegenden Fadenenden des Reparaturpatches lagen jeweils überlappt mit den freigelegten Fadenenden in der Reparaturstelle vor.
  6. Reinfiltration der Reparaturstelle
    Durch die anschließende Reinfiltration der Reparaturstelle mit dem Reparaturharzsystem im VAP-Verfahren wurde die Reparatur finalisiert, womit die gefertigten Reparaturpatches in die Reparaturstellen integriert wurden. In sind die entsprechenden Zustände von der Patcheinlage bis zum reinfiltrierten Zustand dargestellt. Für die Reinfiltration
    wurde der notwendige Vakuumaufbau (Fließhilfe, Lochfolie) hergestellt und durch den Effektor über den umlaufenden Ringkanal, durch das Anlegen eines Vakuums, auf der Bauteiloberfläche der Patchseite angesaugt. Der Effektor aus Schritt (5) dient somit zur einseitigen Abdichtung des Reparaturbereichs sowie zur Fixierung und exakten Ausformung der ursprünglichen 3D-Geometrie während der Konsolidierung des Reparaturbereichs auf der Patchseite. Die gegenseitige Abdichtung des Reparaturbereichs erforderte eine VAP-Membran und eine Vakuumfolie. Die Vakuumfolie kann bei ausreichend glatter Oberfläche auch durch einen weiteren wiederverwendbaren Patchapplikator ersetzt werden.

 

6 Tragfähigkeitsnachweis der Reparaturlösung


Zum Nachweis der Tragfähigkeit der reparierten im Vergleich zu ungeschädigten FKV-Proben erfolgte zunächst die Herstellung und die definierte Schädigung mittels Impact-Fall-turm. Eventuelle Fehlstellen im Reparaturbereich, z. B. Lunker, sowie die Übergangsbereiche zwischen Patch und ursprünglichem Verbund wurden durch die Anfertigung und Auswertung von Schliffbildern analysiert. Die reparierten Verbundproben wurden u. a. im Zugversuch nach DIN EN ISO 527-4 charakterisiert und jeweils gegenüber der Referenz (durchgängige Carbonfasern ohne Unterbrechung) verglichen. Die Ergebnisse zeigen, dass die reparierten Proben über 80 % der ursprünglichen Bruchkraft aufweisen.

7 Schlussfolgerungen


Im Ergebnis des Projektes steht eine flexible, industrietaugliche Technologie zur Umsetzung einer automatisierten Reparatur an mehrfach gekrümmten 3D-FKV-Bauteilen. Erreicht wurde dies durch den Einsatz von Oxidhalbleitern, die durch die thermisch weniger beanspruchende Anregung mit UV-Licht, einen faserschonenden Matrixabtrag als Repa-raturvorbereitung zulassen. Mit der Entwicklung einer selbstklebenden Halbleiteroxid-(HLO)-Formulierung können zukünftig auch dreidimensional, vertikale und über Kopf zu reparierende Bauteile bearbeitet werden. Durch die simulationsgestützte Auslegung und textiltechnologische Fertigung lastpfadgerechter textiler Patches zur Reparatur der Schadstelle im FKV-Bauteil mit Hilfe von insbesondere in den KMU der Textilindustrie bereits verfügbaren Textilmaschinen sind die erarbeiteten Projektergebnisse zeitnah in die industrielle Praxis übertragbar. Die Praxistauglichkeit des entwickelten Reparaturverfahrens wurde erfolgreich demonstriert.

 

Danksagung


Das IGF-Vorhaben 21985 BR der Forschungsvereinigung Forschungskuratorium Textil e. V., Reinhardtstr. 12-14, 10117 Ber-lin wurde über das DLR im Rahmen des Programms zur Förderung der industriellen Gemeinschaftsforschung (IGF) vom Bundesministerium für Wirtschaft und Klimaschutz aufgrund eines Beschlusses des Deutschen Bundestages gefördert.

Literaturverzeichnis


[1] LÄSSIG, R.; EISENHUT, M.; MATHIAS, A.; SCHULTE, R. T.; PETERS, F.; KÜHMANN, T.; WALDMANN. T.; BEGE-MANN, W.: Serienproduktion von hochfesten Faserverbundbauteilen - Perspektiven für den deutschen Maschinen- und Anlagenbau: Roland Berger Strategy Consultants, 2012

[2] STOFFELS, F.: Flugzeuge werden sicherer, aber anfälliger für Schäden. https://www.aerotele-graph.com/flugzeuge-werden-sicherer-aber-anfaelliger-fuer-schaeden, überprüft am: 03.12.2024

[3] BUND/LÄNDER-ARBEITSGEMEINSCHAFT ABFALL: Entsorgung faserhaltiger Abfälle. https://www.um-weltministerkonferenz.de/documents/top-40-be-bericht_1575889426.pdf, überprüft am: 03.12.2024

[4] HOLZHÜTER, D.; ROSSIAN, L.: Einfluss lagenvariabler Schäftwinkel auf die Verbindungsfestigkeit geklebter Faserverbundreparaturen. https://elib.dlr.de/99209/1/__Bsfait00_fa_Ar-chive_IB_2015_IB_2015_053_MA_Rossian.pdf, überprüft am: 05.05.2020

[5] THUM, C.; WACHINGER, G.; WEHLAN, H.: Reparaturfähigkeit und Reparaturkonzepte bei Struktu-ren aus faserverstärkten Kunststoffen. In: Henning, F., Moeller, E. (Hrsg.). Handbuch Leicht-bau. 2. Aufl., München: Carl Hanser Verlag GmbH & Co. KG, 2020

[6] CHERIF, C.; HUND, R.-D.; KÜCHLER, K.; STAIGER, E.: Verfahren zum Reparieren von Faser-Kunststoff-Verbünden, Deutschland. 30.07.2015. Veröffentlichungsnr. DE102013112933B4

[7] CHERIF, C.; HUND, R.-D.; KÜCHLER, K.; STAIGER, E.: Verfahren zur Reparaturvorbereitung von Faser-Kunststoff-Verbünden. 18.10.2018. Veröffentlichungsnr. DE102015121067B4

[8] BÖHNKE, P. R. C.; KRUPPKE, I.; HOFFMANN, D.; RICHTER, M.; HÄNTZSCHE, E.; GEREKE, T.; KRUPPKE, B.; CHERIF, C.: Matrix Decomposition of Carbon-Fiber-Reinforced Plastics via the Activation of Semiconductors. Materials, 13(15): 3267, 2020

[9] HÜBNER, M.; STAIGER, E.; KÜCHLER, K.; GEREKE, T.; CHERIF, C.: Simulation of Patched Woven Fabric Composite Structures Under Tensile Load. Tekstilec, 59(2): 175–181, 2016

[10] HOFFMANN, D.; BÖHNKE, P.; HUYNH, M.; KRUPPKE, I.; GEREKE, T.; HÄNTZSCHE, E.; CHERIF, C.: Tailored repair procedure for (impact-damaged) thermoset CFRP components by UV-initialized (radi-cally-oxidic) matrix removal. In: Sampe Europe, Amsterdam, 2020

[11] GRÜNDER, M.: Neues Reparaturverfahren: Reparatur von CFK-Bauteilen bei Lufthansa Tech-nik. https://www.flugrevue.de/flugzeugbau/neues-reparaturverfahren-reparatur-von-cfk-bauteilen-bei-lufthansa-technik/, überprüft am: 02.04.2020

[12] HOPMANN, C.; BÖTTCHER, A.; WAGNER, P. N.: REISGEN, U.; SCHIEBAHN, A.; SCHOFT, J.; HIRT, G.; BAILLY, D.; SCHMITZ, R.; SCHMITT, R.; NIENHEYSEN, P.; EKANAYAKE, S.; ECKSTEIN, L.; BETHLEHEM-EICHLER, K.; MA-THEIS, R.; ROßMANN, J.; LOSCH, D.: Interaktive Reparaturwerkstatt der Zukunft für Elektromobile in CFK-Bauweise - EFB-Forschungsbericht Nr. 511

[13] FAAS, S.: Kamerabasierte Diagnostik der Prozessemissionen beim Laserabtrag von CFK. Ham-burg: Diplomica Verlag GmbH, 2018

[14] SCHMUTZLER, H.: Upside down: Robot for inspection and repairs. https://www.lufthansa-tech-nik.com/caire-repair-robot, überprüft am: 03.12.2024

[15] PANTELAKIS, S.; TSERPES, K. (Hrsg.): Revolutionizing Aircraft Materials and Processes. Cham: Springer International Publishing AG, 2020

[16] SCHMUTZLER, H.: How we introduced the MRO industry’s first automatic scarfing system into service (Part 1/4). https://www.linkedin.com/pulse/how-we-introduced-mro-industrys-first-automatic-part-14-schmutzler/, überprüft am: 03.12.2024

[17] HOPMAN, C.; WAGNER, P. N.; BERGMANN, N.; BÖTTCHER, A.: Entwicklung eines innovativen Repara-turkonzepts für Automobile in CFK-Bauweise. ATZ - Automobiltechnische Zeitschrift, 118(3): 54–59, 2016

[18] MIZUGUCHI, J.; TSUKADA, Y.; TAKAHASHI, H.: Recovery and characterization of reinforcing fibers from fiber reinforced plastics by thermal activation of oxide semiconductors. Materials Trans-actions, 54(3): 384–391, 2013

[19] CIOBANU, L.: Development of 3D Knitted Fabrics for Advanced Composite Materials. In: ATTAF, B. (Hrsg.). Advances in Composite Materials - Ecodesign and Analysis, 2011: 163–192

[20] HASANI, H.; HASSANZADEH, S.; ABGHARY, M. J.; OMRANI, E.: Biaxial weft-knitted fabrics as compo-site reinforcements: A review. Journal of Industrial Textiles, 46(7): 1439–1473, 2017

[21] KÜMPERS, R.; BOLLENGIER, Q.; TRÜMPER, W.; CHERIF, C.: Advances in multi-layer weft knitting tech-nology for the one-step manufacturing of customized net-shaped 3D preforms for compo-site applications. In: 8th World Conference in 3D Fabrics and Their Applications, Manchester/ UK, 2018

[22] DÖBRICH, O.; GEREKE, T.; DIESTEL, O.; KRZYWINSKI, S.; CHERIF, C.: Decoupling the bending behavior and the membrane properties of finite shell elements for a correct description of the me-chanical behavior of textiles with a laminate formulation. Journal of Industrial Textiles, 44(1): 70–84, 2014

[23] BOISSE, P.; BAI, R.; COLMARS, J.; HAMILA, N.; LIANG, B.; MADEO, A.: The need to use generalized continuum mechanics to model 3D textile composite forming. Applied Composite Materials, 25(4): 761–771, 2018

[24] KÄRGER, L.; GALKIN, S.; DÖRR, D.; POPPE, C.: Capabilities of macroscopic forming simulation for large- scale forming processes of dry and impregnated textiles. Procedia Manufacturing, 47: 140–147, 2020

[25] DÖBRICH, O.; GEREKE, T.; CHERIF, C.: Modeling the mechanical properties of textile-reinforced composites with a near micro-scale approach. Composite Structures, 135: 1–7, 2016

[26] NAOUAR, N.; VIDAL-SALLÉ, E.; SCHNEIDER, J.; MAIRE, E.; BOISSE, P.: 3D composite reinforcement meso F. E. analyses based on X-ray computed tomography. Composite Structures, 132: 1094–1104, 2015

[27] DAELEMANS, L.; FAES, J.; ALLAOUI, S.; HIVET, G.; DIERICK, M.: Finite element simulation of the wo-ven geometry and mechanical behaviour of a 3D woven dry fabric under tensile and shear loading using the digital element method. Composites Science and Technology, 137: 177–187, 2016

[28] ABGHARY, M. J.; HASANI, H.; NEDOUSHAN, R. J.: Numerical simulating the tensile behavior of 1×1 rib knitted fabrics using a novel geometrical model. Fibers and Polymers, 17(5): 795–800, 2016

[29] DINH, T. D.; WEEGER, O.; KAIJIMA, S.; YEUNG, S. K.: Prediction of mechanical properties of knitted fabrics under tensile and shear loading: Mesoscale analysis using representative unit cells and its validation. Composites Part B: Engineering, 148: 81–92, 2018

[30] HAASEMANN, G.; ULBRICHT, V.; BRUMMUND, J.: Modelling the mechanical properties of biaxial weft- knitted fabric reinforced composites. PAMM, 4(1): 193–194, 2004

[31] PHAM, M. Q.; DÖBRICH, O.; TRÜMPER, W.; GEREKE, T.; CHERIF, C.: Numerical modelling of the me-chanical behaviour of biaxial weft-knitted fabrics on different length scales. Materials, 12: 3693, 2019

[32] HESSAMI, R.; ALAMDAR YAZDI, A.; MAZIDI, A.: The effect of loop density on the tensile behavior of biaxial weft knitted composites using both experimental tests and numerical method. Jour-nal of Industrial Textiles, 51(1): 48–67, 2021

 

Authors: Sabrina Scheele Ti Anh My Huynh Sven Hellmann Thomas Gereke Philippa Ruth Chris-tine Kopelmann Irina Kuznik, Iris Kruppke Chokri Cherif

Technische Universität Dresden
Fakultät Maschinenwesen
Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM)
01062 Dresden

https://tu-dresden.de/mw/itm

More entries from TU Dresden, Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik ITM

30.09.2024

Hybride Strick-Wirk-Technologie zur Umsetzung von Strukturen mit definiert einstellbarem bimodularen Verformungs- und Beanspruchungsverhalten

Knittings Textile machinery Technical Textiles

Abstract

Das abgeschlossene Forschungsprojekt „GeDeKe“ der Industriellen Gemeinschaftsforschung hat eine völlig neue und hochproduktive Technologie zur Integration von Kettmaschenfäden in Flachgestricke hervorgebracht. Die Forschungsergebnisse verdeutlichen, dass das Zugverhalten durch die zusätzliche Bindung der aus dem Kettwirkverfahren bekannten Kettfäden und durch die Wahl der Bindungselemente ab 10 % Dehnung bedarfsgerecht eingestellt werden kann. Die entwickelte Technologie nutzt die nadelgenaue Maschenbildung, um Kettfäden Nadel für Nadel präzise als Masche oder Henkel in ein Standardgestrick einzubinden. Dadurch wird nicht nur eine hohe Produktivität erreicht, sondern auch eine solide Methode zur Herstellung neuer Flachstrickprodukte geschaffen.

Report

Einleitung und Problemstellung

Die Flachstricktechnik eignet sich für die Herstellung von individuellen, atmungsaktiven und perfekt sitzenden Produkten. Ständig neue Trends in der Sport- und Freizeitbekleidung werden geschaffen. Die maschinen- und bindungsseitig zugrundeliegenden Technologien müssen jedoch kontinuierlich weiterentwickelt werden, um die Innovationskraft weiterhin zu steigern. Im wachstumsorientierten Markt der technischen Textilien haben sich Flachgestricke in sehr unterschiedlichen Anwendungen etabliert, unter vielen anderen als Kompressionstextilien mit einem sehr hohen Marktanteil. Kompressionsstrümpfe müssen bspw. ein angepasstes Kraft-Dehnungsverhalten in Umfangsrichtung des Beins und damit ein spezifiziertes Kompressionsverhalten dauerhaft gewährleisten. Beispielsweise muss die Kompression aus medizinischen Gründen, klassenabhängig vom Fuß aufwärts zum Oberschenkel hin abnehmen. Mit zunehmender Kompression nimmt jedoch auch die zum Anziehen erforderliche Zugkraft zu, so dass sich das Gestrick während des Anziehens in Längsrichtung lokal und global dehnt. Dies führt zunehmend zur Überdehnung der Garne in den nicht-reversiblen Bereich. Nach der Entlastung verbleibt ein nicht-reversibler Dehnungsanteil in der Gestrickstruktur, was u. a. die Passform, die Dauerhaltbarkeit und damit die therapeutische Wirksamkeit über der Nutzungsdauer beeinträchtigt. Die Überdehnung führt auch dazu, dass die Maschen reißen und folglich Löcher und Laufmaschen entstehen. Mit der bisherigen Flachstricktechnologie und den etablierten Bindungen kann allerdings nur eine minimale Einstellbarkeit der Dehnung in Maschenstäbchenrichtung erreicht werden.

Zielsetzung

Ziel war es, eine fortschrittliche Flachstricktechnologie zu entwickeln, die es ermöglicht, Kettmaschenfäden nach dem Prinzip des Kettwirkens gezielt in konventionelle Gestricke einzubinden. Damit sollen die Dehnungseigenschaften in Maschenstäbchenrichtung präzise steuerbar werden, um z. B. die Dauergebrauchseigenschaften von Kompressionstextilien u.v.m. zu verbessern. Der daraus abgeleitete Forschungsbedarf umfasst die Entwicklung eines stricktechnischen Verfahrens zur Einbindung der Kettfäden, die simulationsgestützte Beanspruchungsanalyse der Gestricke mit und ohne Kettfäden, die exemplarische Umsetzung der Maschinentechnik zur Herstellung der neuen Gestricke sowie deren umfassende textilphysikalische Charakterisierung, insbesondere des damit erzielbaren Kraft-Dehnungsverhaltens.

Projektdurchführung und Ergebnisse

Mit Unterstützung von Experten aus der Industrie wurden systematisch Anforderungen und Lösungsansätze für die Bindungstechnik von Flachgestricken mit zusätzlich eingearbeiteten Kettmaschenfäden und ein daraus abgeleitetes Lastenheft entwickelt. Dieses umfasst u. a. die Definition von drei Funktionsmustern und einem repräsentativen Demonstrator. Den Ausgangspunkt bildete eine Grundstruktur, ein Rechts/Links-Standardgestrick ohne Kettfäden. Die Grundstruktur dient als Referenz für die vergleichende Charakterisierung der Kraft-Dehnungsverhaltens. Das erste Funktionsmuster entsteht durch die Integration der Kettmaschenfäden in die Grundstruktur, wobei zunächst die Integration von fünf Kettmaschenfäden vorgesehen wurde. Die weiteren Funktionsmuster resultieren aus der Integration der Kettmaschenfäden in eine bzw. in beide Deckflächen eines Abstandsflachgestricks. Aus den Funktionsmustern wurde ein repräsentativer Demonstrator abgeleitet. Angestrebt wurde ein endkonturgerechtes, kniehohes Flachgestrick, das bspw. als komplex geformtes Kompressionstextil für medizinische oder sportliche Zwecke fungiert.

Für eine umfassende Bewertung der anvisierten Einstellbarkeit der Dehnungseigenschaften wurden u. a. die Bindungselemente „Fanghenkel“ und „Plattiermasche“ untersucht. Die Abbildung 1 zeigt die daraus konzipierten Bindungen und den Fadenlauf der Grundstruktur sowie der Kettmaschenfäden. Insbesondere kombiniert die Abbildung gleichzeitig die traditionellen Darstellungsweisen von Gestrick- und Kettengewirkebindungen. Die Abbildung 1a) illustriert den Fadenlauf einer Fanghenkel-Bindung, wobei sich die untersuchten Varianten darin unterscheiden, dass der Kettfaden entweder in jeder oder in jeder dritten Maschenreihe eingebunden ist. Die dargestellten Varianten 1b) folgen demselben Konzept, nutzen jedoch das Bindungselement Plattiermasche.

Die Strickvorgänge zur Fertigung solcher Bindungen können je nach eingesetzter Maschinentechnik unterschiedlich sein. Unter Verwendung kommerzieller Flachstrickmaschinen sind immer mehrere Strickoperationen über mehrere Maschenreihen (vgl. lateinische und römische Ziffern) notwendig. Die experimentellen Arbeiten ergaben mindestens den zeitlichen Faktor 2 gegenüber der Bildung der Grundstruktur. Damit verbunden sind erhebliche Produktivitätseinschränkungen je nach Anzahl der einzubindenden Kettfäden. Im Rahmen der Anwendung von VDI-Richtlinien wurden demgegenüber Anforderungen definiert, die sicherstellen, dass die zu entwickelten Konzepte sowohl technisch als auch wirtschaftlich tragfähig sind. Eine wesentliche Forderung ist daher die Bevorzugung von Konzepten, die keine Produktivitätseinbußen mit sich bringen.

Angesichts dieser Herausforderung mussten im Rahmen der geplanten Verfahrensentwicklung Konzepte entwickelt werden, die weit über den derzeitigen Stand der Technik hinausgehen. Nach einer eingehenden Bewertung und der Berücksichtigung zusätzlicher Anforderungsspezifikationen und technischer Kriterien wurde eine technologische Vorzugslösung für die hochproduktive Integration der Kettmaschenfäden erarbeitet. Die Vorzugslösung sieht vor, dass die Kettfäden entsprechend der stricküblichen Maschenbildung Nadel für Nadel parallel zur Bildung der Grundstruktur in die jeweilige Stricknadel eingelegt und abgebunden werden. Die dazu notwendigen Bewegungen müssen somit synchron zur Bewegung jeder einzelnen Stricknadel, definiert vor- und nacheilend entsprechend der Kulierkurve des Strickschlittens und der umzusetzenden Bindungselemente erfolgen.

Die technische Umsetzung der Vorzugslösung bedarf einer komplexen technischen Einrichtung bspw. in Form eines mechanischen oder elektromechanischen Getriebes zur Bewegungsrealisierung jedes Einlegeelementes sowie synchronisierte Bewegungsabläufe zum gewöhnlichen Maschenbildungsprozess und aller damit verbundenen Funktionen u.a. Strickschlittenbewegung, Musterung, Nadelauswahl, Bindung. Die weiteren Arbeiten fokussierten die konstruktive Entwicklung und Umsetzung der Vorzugslösung vgl. Abbildung 2a) sowie deren Komplettierung zu einer modularen Einrichtung bestehend aus einem Hauptfunktionsträger (1) und der funktionalen Einrichtung (2). Eine am ITM vorhandene Handflachstrickmaschine vgl. Abbildung 2b) wurde exemplarisch damit ausgerüstet. Alle Funktionen wurden im Forschungsumfeld durch mechanische Getriebe und bindungsabhängige Steuerkurven umgesetzt.

Auf der exemplarisch realisierten Maschinentechnik erfolgte die funktionelle Erprobung u.a. die Einstellung technologischer und bindungsabhängiger Parameter. Dies betrifft die Anordnung der Bindungselemente Plattiermasche, Fanghenkel, Flottung, Flottlänge und Bindungsrapport.

Die Abbildung 3a) zeigt eine Aufnahme während der Maschenbildung von Grundstruktur und der zu bindenden Kettfäden. Die Innovation besteht darin, dass die Maschenbildung der Grundstruktur und der Kettmaschenfäden mit nur einer Strickschlittenbewegung parallel zur Bildung der Grundstruktur erfolgt. Dadurch entstehen große Produktivitätsvorteile, da Strickoperationen über mehrere Maschenreihen vermieden werden. Final wurden die geplanten Funktionsmuster mit verschiedenen Bindungskombinationen gemäß der in Abbildung 1 dargestellten Bindungen und Flottierungen umgesetzt und für weitere Arbeiten, insbesondere die wichtige Kennwertermittlung bereitgestellt. Die Abbildungen 3b) zeigen gefertigte Gestricke mit eingebundenen, teilweise flottierenden Kettfäden, die als Plattiermaschen und Fangmaschen eingebunden sind.

Die praxistaugliche Übertragbarkeit der Vorzugslösung in vollautomatische Flachstrickmaschinen z. B. unter Verwendung leistungsfähiger mechatronischer Antriebe und deren bindungsabhängige Steuerung für die erforderlichen Bewegungsabläufe wurde während der Entwicklungsarbeiten sichergestellt. Zudem wurde eine hohe Prozesssicherheit nachgewiesen. Schlittengeschwindigkeiten bis zu 3 m/s sind auf Basis der durchgeführten Berechnungen möglich, sodass beste Voraussetzungen für die industrielle Realisierung der neuen Technologie bestehen.

Um die Beanspruchung der Funktionsmuster zu charakterisieren, wurden die realisierten Varianten in Anlehnung an die Norm DIN 53835-13 statischen und dynamischen Streifenzugversuchen unterzogen. Die Abbildung 4 zeigt das statistisch abgesicherte Kraft-Dehnungsverhalten der neuen Flachgestricke mit eingebundenen Kettfäden in jeder Maschenreihe mit den Bindungselementen Fanghenkel a) und Plattiermasche b) im Vergleich zur Grundstruktur. Die Variante Fanghenkel a) zeigt einen stark progressiven Steifigkeitsanstieg mit Beginn der aufgebrachten Kraft ab 5 % Dehnung. Die zunehmende Steifigkeit wirkt der Dehnung in Längsrichtung entgegen. Die notwendige Kraft nimmt bei 25 % Dehnung um etwa den Faktor 3 gegenüber der Grundstruktur zu und wirkt damit stark dehnungsbegrenzend. Die als Plattiermasche gebundenen Kettfäden, zeigen ein anderes signifikantes Verhalten, das bis ca. 25 % Dehnung mit der Grundstruktur übereinstimmt und ab 40 % Dehnung ansteigt. Die als Fanghenkel eingebundenen Fäden ermöglichen eine hohe Versteifung der Grundstruktur, da die Fäden gestreckter liegen als die als Plattiermasche eingebundenen Fäden. Insgesamt ist die gezielte Beeinflussbarkeit der Dehnung in Maschenstäbchenrichtung festzustellen. Die integrierten Kettfäden können die Kräfte z.B. bei lokaler oder globaler Überbeanspruchung so aufnehmen, dass die Grundstruktur intakt bleibt, was die Dauerhaltbarkeit von Flachgestricken gegenüber dem Stand der Technik deutlich verlängern kann.

Der Vergleich aller Ergebnisse zeigt unverkennbar, dass das Dehnungsverhalten mittels der als Fanghenkel oder Plattiermasche eingebundenen Kettfäden durch:

  • die Nutzung steiferer Garne für die Kettfäden z.B. Umwinde- oder Flechtgarne,
  • die Erhöhung der Garnmenge bzw. Feinheit pro Kettfaden und/oder
  • die Einbeziehung von Mehrfachanordnungen der Kettfäden

breit modifizierbar ist.

Insgesamt wird der Forschungsansatz durch die umfangreiche Bereitstellung der Versuchsergebnisse bestätigt.

Lastenheftbasierend wurde im letzten Schritt der Projektdurchführung eine konventionelle Konstruktion eines Kompressionstextils für den Demonstrator zugrunde gelegt u. a. eingearbeitete elastische Umwindegarne zur Kompressionserzeugung sowie die angestrebte Mehrfachanordnung der neuen Kettmaschenfäden. Die Dehnbarkeit wurde unter Anwendung aller im Rahmen der Projektdurchführung eruierten Ergebnisse auf 50 % begrenzt, sodass eine Überbelastung des Gestricks vermieden wird und die Dauerhaltbarkeit deutlich besser gewährleistet werden kann, als durch bisherige Flachgestricke. Die Abbildung 5a) zeigt diesen Demonstrator als maschinenfallendes Flachgestrick mit 14 integrierten Kettmaschenfäden. Die Abbildung 5b) verdeutlicht das Textil nach nähtechnischer Verarbeitung passgenau auf einem zugrunde gelegten Beinmodell.

 

Damit konnte nachgewiesen werden, dass ein neues Verfahren zum gleichzeitigen Stricken und Wirken erfolgreich entwickelt wurde. Neue textile Strukturen mit definieren Eigenschaften für diverse Anwendungen können anforderungsgerecht realisiert werden.

 

Zusammenfassung

Die neu entwickelten Flachgestricke mit integrierten Kettmaschenfäden erlauben eine präzise Anpassung der Dehnungs- und Zugeigenschaften in Maschenstäbchenrichtung. Eine Möglichkeit, die zuvor nicht gegeben war, ohne gleichzeitig die Dehnungseigenschaften in der senkrechten Richtung zu beeinträchtigen. Diese Innovation ist besonders bedeutsam für die Entwicklung und Herstellung von Gestricken, da sie es Herstellern ermöglicht, ihre Produktvielfalt zu erweitern. Die Gesamttechnologie bestehend aus Vorzugskonzept und Bindung hat nicht nur in Kompressionstextilien Anwendungspotenzial, sondern in allen Maschenwaren, bei denen ein einstellbares Dehnungsverhalten in Maschenstäbchenrichtung erwünscht wird. Dies ist besonders vorteilhaft für Flachgestricke, wie z.B. Kniestrümpfe, Strumpfhosen und Leggings, die normalerweise aufgrund ihrer i.d.R. großen Dehnbarkeit in Maschenstäbchenrichtung stufenweise angezogen werden müssen. Weiterhin eröffnet das Verfahren Möglichkeiten für neue, ästhetisch ansprechende Designs in der Modeindustrie. Die Ergebnisse demonstrieren, dass das Zugverhalten so präzise eingestellt werden kann, dass Eigenschaften wie bi-modulares Kraft-Dehnungsverhalten erzeugt werden können. Intelligente Materialien, die durch die Kombination von Bimodul-Flachgestricken bspw. mit elastomeren Matrizes entstehen, könnten ebenfalls zukünftige Märkte erschließen.

 

Danksagung

Das IGF-Vorhaben 21967 BR der Forschungsvereinigung Forschungskuratorium Textil e. V. wurde über die AiF im Rahmen des Programms zur Förderung der industriellen Gemeinschaftsforschung (IGF) vom Bundesministerium für Wirtschaft und Klimaschutz aufgrund eines Beschlusses des Deutschen Bundestages gefördert. Die Autoren danken den genannten Institutionen für die Bereitstellung der finanziellen Mittel. Weiterhin danken wir den Firmen des projektbegleitenden Ausschusses für die fachliche Unterstützung sowie allen weiteren Partnern, die in der Forschungsarbeit zu diesem Themenkreis unterstützten. Der Schlussbericht ist über den Gesamtverband der deutschen Textil- und Modeindustrie e. V., Berlin beziehbar. Weiterführende Informationen sind am Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM) erhältlich.

Autor: Sven Hellmann

Kontakt: sven.hellmann@tu-dresden.de

Technische Universität Dresden
Fakultät Maschinenwesen
Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM)
01062 Dresden

https://tu-dresden.de/mw/itm

Authors: Sven Hellmann

Technische Universität Dresden
Fakultät Maschinenwesen
Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM)
01062 Dresden

https://tu-dresden.de/mw/itm

More entries from TU Dresden, Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik ITM

21.05.2024

Aktiv verformbare Gelenke für Smart Composite Anwendungen

Knittings Composites Sensor Technology Technical Textiles Smart Textiles

Abstract

Funktionsintegrierte aktiv verformbare Faserkunststoffverbunde, auch Smart Composites genannt, gewinnen stetig an Bedeutung und finden zunehmend Anwendung in allen volkswirtschaftlichen und technologischen Leitbranchen, wie dem Fahrzeug‑, Maschinen‑ und Anlagenbau sowie in der Medizin‑, Umwelt‑ und Luftfahrttechnik.

Im IGF-Projekt 21969 BR erfolgte am ITM die simulationsgestützte Entwicklung gestrickter 3D-Preformen zur Realisierung aktiv verformbarer 3D-Faserkunststoffverbunde mit mehrachsigem Festkörpergelenk. Dabei werden als Aktoren Drähte aus Formgedächtnislegierung eingesetzt und textiltechnisch direkt in die textilen Verstärkungsstrukturen integriert, die einmal in der Matrix eingebettet die spätere Beweglichkeit des Bauteils sicherstellen. Dadurch sind erstmalig das Leichtbaupotenzial von Hochleistungsfasern und das Leistungspotenzial textilbasierter Aktoren zur Erzielung komplexer 3D-Bewegungen in hohem Maße ausnutzbar, was langfristig zu einer deutlichen Steigerung der Energieeffizienz von Systemen und Komponenten beiträgt.

Report

Einleitung und Problemstellung

Im Zuge der notwendigen Etablierung nachhaltiger Lösungen besteht derzeit ein hoher Bedarf an hochbelastbaren und zugleich extrem leichten Bauteilen aus faserverstärkten Kunststoffverbunden (FKV) mit zusätzlichen Funktionalitäten. Insbesondere aktiv verformbare FKV mit strukturintegrierten Aktoren und Festkörpergelenken haben ein hohes Innovationspotenzial zur Realisierung komplexer 3D-Bewegungsaufgaben, für die herkömmliche Bewegungsmechanismen in Differentialbauweise meist eine lineare Kopplung mehrerer konventioneller Gelenke und dezentraler Antriebe erfordern, die eine hohe Massenträgheit und demzufolge einen hohen Energieverbrauch bedingen.

Zur Ausnutzung des Leichtbaupotenzials von FKV besteht daher ein hoher Bedarf an funktionsintegrierten textilen Verstärkungsstrukturen, die gleichzeitig als bedarfsgerechte Funktions- und Festigkeitsträger fungieren. Daraus herstellbare, aktiv verformbare FKV-Bauteile kommen zunehmend in industriellen Anwendungen zum Einsatz, u. a. im Maschinen‑ und Anlagenbau (z. B. Soft Robotik [1], Leichtbauroboterarme), der Medizintechnik (z. B. aktive Orthesen und Prothesen, Endoskopie-Endeffektoren), im Schiff‑ und Automobilbau (z. B. adaptive Spoiler, aktiv verformbare Hydrofoils) sowie in der Luftfahrt (z. B. morphing wings [2 – 4]). Sie weisen eine aktiv geometrisch-veränderbare äußere Form auf, die i. d. R. über eine steuerbare Modulation der inneren Morphologie des Werkstoffes oder durch strukturintegrierte Aktoren, z. B. nach thermischer Aktivierung kontrahierende Drähte aus Formgedächtnislegierung (FGL) [5], einstellbar ist. Derzeit verfügen diese Lösungen allerdings nur über Festkörpergelenke mit einem Freiheitsgrad und können damit lediglich einfache Verformungen ausführen [6 – 8]. Komplexere 3D-Bewegungen sind deshalb nur durch eine kinematische Kopplung erreichbar, d. h. durch die in Bauteillängsrichtung versetzte Anordnung mehrerer einachsiger Festkörpergelenke. Bisher sind keine geeigneten Auslegungsstrategien zur Umsetzung komplexer, mehrachsiger Bewegungen von duroplastischen 3D-FKV-Bauteilen durch textilintegrierte, mehrachsige Festkörpergelenke vorhanden.

Zielsetzung

Das Ziel des IGF-Forschungsprojektes 21969 BR war die simulationsgestützte Entwicklung, Umsetzung und Erprobung gestrickter schlauchförmiger Verstärkungshalbzeuge mit mehrachsigem Festkörpergelenk sowie strukturintegrierten Aktor- und Energieversorgungsnetzwerken zur Herstellung definiert und aktiv verformbarer 3D-FKV-Integralbauteile mit Duromermatrix, die mindestens zwei Freiheitsgraden aufweisen.

Derartige 3D-FKV-Bauteile mit biegeweichem Festkörpergelenk besitzen, analog zu biologischen Vorbildern, eine segmentierte Struktur mit zwei durch das Gelenk elastisch miteinander gekoppelten starren Segmenten (vgl. Abbildung 1). Die bei Aktivierung der FGL-Aktoren infolge der Kontraktion verrichtete Verformungsarbeit generiert ein Biegemoment um die jeweilige Gelenkachse und induziert somit entsprechende Relativbewegungen der starren FKV-Segmente.

Die wesentlichen Herausforderungen im Projekt sind die bedarfsgerechte Auslegung geeigneter Deformationsbereiche des Festkörpergelenks sowie die integrale Fertigung von funktionalisierten 3D-Verstärkungshalbzeugen als schlauchförmige Mehrlagengestricke. In diese sollen im Strickprozess sowohl FGL-Drähte als auch ein für deren elektrisch induzierte Aktivierung erforderliches Energieversorgungsnetzwerk aus leitfähigem Garnmaterial simultan integriert werden. Die FGL-Aktoren sind dabei so anzuordnen, dass das mehrachsige Festkörpergelenk mindestens zwei im Deformationsbereich konzentrierte Freiheitsgrade aufweist, die Biegeverformungen um zwei Hauptgelenkachsen zulassen. Zudem sind sie direkt während des Strickprozesses so zu verarbeiten, dass sie form‑ und kraftschlüssig in der Struktur eingebunden sind und somit eine maximale, reproduzierbare Auslenkung der aktiv verformbaren FKV-Bauteile ermöglichen.

Ergebnisse

Simulationsgestützte Strukturauslegung

Im Projekt erfolgte zunächst die Präzisierung der zu erfüllenden Anforderungen an relevante aktiv verformbare FKV-Integralbauteile ohne externe Motoren in den anvisierten Anwendungsbereichen. Nach Ableitung der Anforderungen an integral gefertigte, funktionalisierte 3D-Textilhalbzeuge mit strukturintegrierten FGL-Aktoren erfolgte eine simulationsgestützte Analyse der maximal erreichbaren Verformungen von aktiv verformbaren FKV-Bauteilen an festgelegten Funktionsmustern mittels Finiter Element Methode (FEM). Dazu wurde das Woodworth-Kaliske-FGL-Materialmodell verwendet [9], das in der Lage ist, den Formgedächtniseffekt der eingesetzten FGL-Aktoren durch direkte Vordehnung abzubilden. Aufbauend auf den Ergebnissen der FEM-Analyse wurden bindungstechnische Ansätze zur integralen Realisierung der Funktionsmuster und insbesondere zur Lösung folgender Aufgaben entwickelt:

  1. Gestaltung von biegeweichen Gelenk‑ bzw. Deformationsbereichen für eine höchstmögliche Verformung der FKV-Bauteile.
  2. Stricktechnische Einbindung der FGL-Aktoren für eine hinreichende form- und kraftschlüssige Fixierung und somit maximale Auslenkung der FKV-Bauteile.
  3. Stricktechnische Einbindung der elektrisch leitfähigen Garne für eine in-situ Kontaktierung, d. h. zuverlässige, stoffschlüssige elektrische Verbindung der FGL-Aktoren mit dem Energienetzwerk im FKV-Bauteil.

Die Ergebnisse zeigen (vgl. Abbildung 2), dass im Vergleich zu den starren Segmenten (Section#1 mit 8 Verstärkungslagen à jeweils 1.200 tex in Kett- und Schussrichtung) die entwickelten 2D-Gelenkbereiche mit nur 2 Verstärkungslagen à 1.200 tex in Kett- und Schussrichtung (Section#2) bzw. à 1.200 tex in Kettrichtung und 410 tex in Schussrichtung (Section#3) um ca. 50 % geringere Biegemodule aufweisen (Section#1: ca. 12 GPa; Section#2 und Section#3: ca. 6 GPa in Bauteillängsrichtung) und daher als Deformationsbereiche prinzipiell geeignet sind [10].

Nach Konsolidierung von 3D-FKV-Bauteilen mit Epoxidharz (EP) wurde jedoch festgestellt, dass die Biegesteifigkeit der Deformationsbereiche zu hoch ist, um eine Verformung des 3D-Bauteils zu erlauben. Das ist auf die hohe Drucksteifigkeit des EPs in Verbindung mit der gekrümmten Rohrwandung zurückzuführen, die einen hohen Verformungswiderstand bedingen, was auch die durchgeführte FEM-Analyse bestätigt. Daher wurde im Projekt ein Multi-Matrix-Ansatz verfolgt, um die Gelenk‑ bzw. Deformationsbereiche mit einem viel biegeweicheren Matrixmaterial als das EP zu versehen. Hierfür wurden während der Infiltration im VARI-Verfahren zugleich die starren Segmente mit EP konsolidiert, die Deformationsbereiche hingegen mit einem fließfähigen Polyurethan-Matrixsystem (PUR) Biresin®-407 der Firma Sika Deutschland GmbH. Dieses gießfähige Elastomer mit einer Viskosität von ca. 600 mPa·s und einer Shore-Härte A 85 weist insbesondere ein niedriges Biegemodul von ca. 2 GPa auf (vgl. PUR-Section in Abbildung 2), was eine Verformung auch von rohrförmigen 3D-FKV-Bauteilen begünstigt.

Die Ergebnisse zeigen weiterhin, dass durch Maschenbildung über Plattieren direkt während des Strickprozesses FGL-Aktoren und elektrisch leitfähige Garne gezielt lokal vermaschbar sind (vgl. Abbildung 3). Somit sind zugleich eine form‑ und kraftschlüssige Fixierung der FGL-Aktoren in den Textilhalbzeugen mit ca. 100 N Auszugskraft im Verbund als auch eine zuverlässige elektrische in-situ Kontaktierung (stoffschlüssige Verbindung) mit niedrigen Übergangswiderständen von ca. 5 Ω realisierbar. Grund dafür ist die im Vergleich zu gestreckten Fäden ohne Verschlingungen (z. B. Kettfaden oder Teilschuss) über die Maschenbildung deutlich größere Kontaktfläche zwischen den Funktionsgarnen. Die elektrische Leitfähigkeit wird zudem durch lokales Applizieren eines Leitklebers (Silberlack Leitsilber der Firma Kemo-Electronic GmbH) im Kontaktierungsbereich verbessert.

Damit lassen sich anhand des Multi-Matrix-Ansatzes aktiv verformbare 2D-FKV-Integralbauteile mit mehreren Deformationsbereichen sowie strukturintegrierten Aktor- und Energienetzwerken realisieren (vgl. Abbildung 4). Thermographische Untersuchungen zeigen, dass die verschiedenen Deformationsbereiche über einen einzigen FGL-Aktor durch das Energienetzwerk separat ansteuerbar sind. Die Aktivierung des FGL-Aktors über die gesamte Bauteillänge, d. h. über die zwei PUR-Deformationsbereiche, führt zu erreichbaren Verformungen von ca. 50 mm, was mittels Lasertriangulation nachgewiesen wurde.

Aktiv verformbare 3D-FKV-Integralbauteile

Das entwickelte FEM-Modell wurde anhand der Ergebnisse mechanischer Charakterisierung von 2D- und 3D-Verbundproben validiert, insb. Zug-, 4-Punkt- und 3-Punkt-Biegeversuche sowie Aktivierungsversuche, und darauf aufbauend für die Auslegung und Optimierung von aktiv verformbaren 3D-FKV-Bauteilen mit mehrachsigen Festkörpergelenken, die jeweils zwei Freiheitsgrade aufweisen, herangezogen. Dabei wurden verschiedene 3D-Gelenktopologien entworfen und mit der Realisierung aktiv verformbarer 3D-FKV-Bauteile schrittweise optimiert. Somit konnte eine Vorzugslösung für die Umsetzung eines generischen Technologiedemonstrators abgeleitet werden (vgl. Abbildung 5). Diese weist einen faltenbalgartigen PUR-Gelenkbereich auf und ermöglicht Verformungen von max. 44,8 mm, was einer Auslenkung von ca. 11° entspricht. Zur Sicherstellung einer maximalen Auslenkung des Bauteils sind dabei die FGL-Aktoren im Gelenkbereich innerhalb des FKV-Rohres freiliegend zugeführt und erst an den Extremitäten der starren FKV-Segmenten lokal fixiert. Zudem sind sie im Gelenkbereich gezielt umgelenkt, um eine exzentrische Krafteinleitung bei Kontraktion der FGL-Aktoren hervorzurufen und somit hohe Biegeverformungen zu bewirken.

Die Umsetzung und Prüfung des Technologiedemonstrators (vgl. Abbildung 6) in Form eines mehrgliedrigen, aktiv verformbaren 3D-Gelenkarms, z. B. für den Anwendungsbereich Robotik, bestätigt, dass die neuartigen, gestrickten 3D-Verstärkungshalbzeuge mit mehrachsigen Festkörpergelenken sowie strukturintegrierten FGL-Aktor- und Energienetzwerken für die flexible Herstellung aktiv verformbarer 3D-FKV-Integralbauteile sehr gut geeignet sind. Die entwickelten Gelenktopologien ermöglichen erstmalig die Realisierung mehrachsiger Festkörpergelenke mit zwei Freiheitsgraden, die komplexe 3D-Bewegungsaufgaben mit erreichbaren Bauteilverformungen von ca. 50 mm ausführen können. Dabei sind im Vergleich zu herkömmlichen Bewegungsmechanismen, die eine lineare Kopplung mehrerer Gelenke und dezentraler Antriebe mit hoher Massenträgheit und demzufolge hohem Energiebedarf erfordern, wesentliche Vorteile erreichbar, insbesondere hinsichtlich des geringeren Montageaufwandes, der Reibungs- bzw. Verschleißfreiheit und der damit weitestgehend dauerhaften Wartungsfreiheit sowie des niedrigen Energieverbrauchs der FGL-Aktoren.

Damit sind die Voraussetzungen für eine wirtschaftliche und flexible Fertigung neuartiger, funktionalisierter 3D-Textilhalbzeuge für die Realisierung aktiv verformbarer 3D-FKV-Integralbauteile in reproduzierbarer Qualität geschaffen.

Zusammenfassung

Im abgeschlossenen IGF-Forschungsprojekt 21969 BR wurde erfolgreich eine auf der Flachstricktechnik basierende, flexible und industrietaugliche Fertigungstechnologie zur integralen Herstellung funktionalisierter 3D-Textilverstärkungshalbzeuge mit mehrachsigen Festkörpergelenken, strukturintegrierten Aktoren sowie für deren Aktivierung erforderlichen elektrisch leitfähigen Zuleitungen entwickelt, umgesetzt und erprobt.

Damit sind aktiv verformbare FKV-Bauteile realisierbar, die durch definiert angesteuerte Aktoren aus Formgedächtnislegierung (FGL) komplexe 3D-Bewegungen ausführen können. Dabei ermöglichen speziell gestaltete, topologisch optimierte Gelenkbereiche mit mehreren Freiheitsgraden innerhalb der textilen Verstärkungsstruktur die spätere 3D-Bewegungsaufgaben. Der geringere Montageaufwand, die Reibungs- bzw. Verschleißfreiheit und die damit weitestgehend dauerhafte Wartungsfreiheit sind erhebliche Vorteile gegenüber herkömmlichen Bewegungsmechanismen, die dazu mehrere konventionelle Drehgelenke erfordern. Dadurch sind zugleich das Leichtbaupotenzial von Hochleistungsfasern und das Leistungspotenzial textilbasierter FGL-Aktoren zur Erzielung komplexer 3D-Bewegungen in hohem Maße ausnutzbar.

Potenzielle industrielle Anwendungen sind aktiv verformbare 3D-FKV-Integralbauteile, die erstmals mit intrinsischen 3D-Gelenkmechanismen ausgestattet werden können, u. a. im Maschinen- und Anlagenbau (z. B. mehrgliedrige Roboterarme), im Schiff- und Fahrzeugbau (z. B. aktiv verformbare Tragfläche oder adaptive Verstellmechanismen für Spoiler) sowie in der Medizintechnik (z. B. aktive Orthesen und Prothesen, Endoskopie-Endeffektoren). Insbesondere die KMU der Textil- und FKV-Industrie beziehen aus den Projektergebnissen den konkreten Nutzen, dass ihnen technologisches Wissen zur simulationsgestützten Konzeptionierung, Auslegung und Fertigung maßgeschneiderter Textilverstärkungshalbzeuge für aktiv verformbare 3D-FKV-Bauteile mit strukturintegrierten Festkörpergelenken bereitgestellt wird, die in den genannten Marktbereichen eine steigende Nachfrage erfahren.

Danksagung

Das IGF-Vorhaben 21969 BR der Forschungsvereinigung Forschungskuratorium Textil e. V. wurde über die AiF im Rahmen des Programms zur Förderung der industriellen Gemeinschaftsforschung (IGF) vom Bundesministerium für Wirtschaft und Klimaschutz aufgrund eines Beschlusses des Deutschen Bundestages gefördert.

Die Autoren danken den genannten Institutionen für die Bereitstellung der finanziellen Mittel sowie den involvierten Unternehmen im projektbegleitenden Ausschuss für die fachliche Unterstützung und die Bereitstellung von Versuchsmaterial. Der Forschungsbericht und weiterführende Informationen sind am Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik der TU Dresden erhältlich.

 

Literaturverzeichnis

[1]           Lee, J.-H.; Chung, Y.S.; Rodrigue, H.: Long Shape Memory Alloy Tendon-based Soft Robotic Actuators and Implementation as a Soft Gripper. In: Scientific Reports 9 (2019) 1, S. 11251.

[2]           Wan A Hamid, W.L.H.: Design of a Composite Morphing Wing. London: Imperial College of Science, Technology and Medicine, Department of Aeronautics. PhD Thesis, 2019.

[3]           Hajarian, A.; Zakerzadeh, M.R.; Baghani, M.: Design, analysis and testing of a smart morphing airfoil actuated by SMA wires. In: Smart Materials and Structures 28 (2019) 115043, S. 1–12.

[4]           Ashir, M.; Hindahl, J.; Nocke, A.; Cherif, C.: Development of an adaptive morphing wing based on fiber-reinforced plastics and shape memory alloys. In: Journal of Industrial Textiles 50 (2020) 1, S. 114–

129.

[5]           Suman, A.; Fabbri, E.; Fortini, A.; Merlin, M.; Pinelli, M.: On the design strategies for SMA-based morphing actuators: state of the art and common practices applied to a fascinating case study. In: Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering (2020), S. 1–17.

[6]           Ashir, M.; Nocke, A.; Cherif, C.: Maximum deformation of shape memory alloy based adaptive fiber-reinforced plastics. In: Composites Science and Technology 184 (2019) 107860, S. 1–15.

[7]           Ashir, M.; Nocke, A.; Cherif, C.: Adaptive fiber-reinforced plastics based on open reed weaving and tailored fiber placement technology. In: Textile Research Journal 90 (2020) 9-10, S. 981–990.

[8]           Lohse, F.; Wende, C.; Klass, K.-D.; Hickmann, R.; Häntzsche, E.; Bollengier, Q.; Ashir, M.; Pöschel, R.; Bolk, N.; Trümper, W.; Cherif, C.: Bio-inspired semi-flexible joint based on fibre-reinforced composites with shape memory alloys. In: Journal of Intelligent Material Systems and Structures (2020), S. 1–11.

[9]           Woodworth, L.A.; Lohse, F.; Kopelmann, K.; Cherif, C.; Kaliske, M.: Development of a constitutive model considering functional fatigue and pre-stretch in shape memory alloy wires. In: International Journal of Solids and Structures 234-235 (2022), S. 111242.

[10]        Bollengier, Q.; Rabe, D.; Mersch, J.; Häntzsche, E.; Nocke, A.; Cherif, C.: Development of integrated in-situ actuator networks for the realization of flexure hinges for highly deformable fiber-reinforced plastic composites. In: Passion for Innovation. 21st World Textile Conference AUTEX 2022, Online (Lodz, Poland) (2022) - ISBN 978-83-66741-75-1, S. 440–444.

Authors: Bollengier, Quentin Rabe, David Mersch, Johannes Annadata, Achyuth Ram Gereke, Thomas Häntzsche, Eric Cherif, Chokri

Technische Universität Dresden
Fakultät Maschinenwesen
Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM)
01062 Dresden

https://tu-dresden.de/mw/itm

More entries from TU Dresden, Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik ITM

29.04.2024

Thermoplastische Schale/Rippen-Bauteile mit durchgängiger Faserverstärkung

Fibres Yarns Knittings Composites Technical Textiles

Abstract

Im Bereich des Automobil- und Maschinenbaus wird kontinuierlich nach Innovationen gesucht, um den wachsenden Anforderungen gerecht zu werden. Ein Bereich, der zunehmend an Bedeutung gewinnt, sind Schale/Rippen-Bauteile aus endlosfaserverstärktem Thermoplast. Bisherige Herstellungsverfahren sind jedoch komplex und führen zu unzureichender Faserverstärkung in den Rippen, was deren potenzielle Einsatz in hochbelastbaren Bauteil verhindert. Der Übergangsbereich zwischen der Schale und den Rippen ist besonders anfällig für strukturelle Defizite, die eine Überdimensionierung der Bauteile erfordern, um das Versagensrisiko, einschließlich Delamination, zu minimieren. Im abgeschlossenen Forschungsprojekt der Industriellen Gemeinschaftsforschung wurden daher Verstärkungstextilien entwickelt, die diese Problematik lösen, indem Fasern während der Verbundbildung in anspruchsvolle 3D-Bauteilgeometrie bedarfsgerecht fließen können. Das Ergebnis ist eine gleichmäßige Endlosfaserverstärkung der Schale sowie eine durchgängige stapelfaserbasierte Verstärkung von der Schale in die Rippe sowie der Rippe selbst. Diese Technologie ermöglicht anordnungsabhängig eine Steigerung der Steifigkeit und Festigkeit thermoplastischer Bauteile um mindestens 50 % und kann unerwünschte Delaminationen verhindern.

Report

Einleitung und Problemstellung

Leichtbaugerechte schalenförmige Bauteile werden aus mechanischen Gründen mit Funktionsstrukturen in Form von Rippen versehen. Die Natur zeigt Vorbildlösungen z.B. die Erdnuss, die durch Schale/Rippen-Anordnungen eine anforderungsgerechte Versteifung bei gleichzeitig extrem geringer Masse ermöglicht. In allen Bereichen des Automobil- und Maschinenbaus besteht ein hoher Bedarf an lasttragenden Bauteilen aus Faser-Kunststoff-Verbunden (FKV). Die Halbschalenbauweise des Flugzeug- und Schiffbaus zeigen rippenverstärkte Strukturen nach bionischem Vorbild mit überaus lasttragenden Eigenschaften, deren Herstellung unter Verwendung arbeitsintensiver Preforming-, Komplettierungs- und Verbundbildungsprozesse unter Verwendung duroplastischer Matrix allerding kostenintensiv ist. Besonders der Einsatz von kurzfaserverstärkten Thermoplasten für mittlere und große Serien ist sehr wirtschaftlich [1 – 3], die mechanische Eigenschaften insbesondere Steifigkeit und Festigkeit sind aber stark begrenzt. Derzeit verbraucht der Bereich Fahrzeuge 7 % der gesamten Kunststoffmenge in Deutschland [4]. Zur Überwindung der werkstoffbedingten Schwachstellen werden im Schalenbereich endlosfaserbasierte Faser-Matrix-Halbzeuge wie Organobleche und UD-Tapes verarbeitet. Die damit erreichbare gerichtete Faserverstärkung in der Schale führt zu deutlich besseren mechanischen Eigenschaften, erfordert allerdings weiterhin das Anspritzen von verstärkenden Rippen [1, 2]. Weiterhin werden langfaserverstärkte Thermoplaste (LFT) industriell eingesetzt, bei denen unidirektional Faserbündel in die thermoplastische Schmelze eingebracht werden, um Schalenbereich und Rippen in Rippenrichtung zu verstärken [5]. Die Bauteilumsetzung erfordert i.d.R. kostenintensive, mehrstufige Anlagen- und Werkzeugtechnik [6]. Um die Prozesskette zu verkürzen bzw. die Komplexität der Technik zu reduzieren, werden auch glasmattenverstärkte Thermoplaste (GMT) in Direktverfahren wie das einstufige Thermoformpressen zu Schale/Rippen-Bauteile verarbeitet, was insbesondere für klein- und mittelständische Unternehmen wichtig ist.

Eine gerichtete Faserverstärkung zwischen Schale und Rippe sowie im Übergangsbereich ist verfahrensbedingt mit keinem der bisherigen Ansätze realisierbar, sodass die resultierenden Bauteile für lasttragende Anwendungen nur eingeschränkt geeignet sind. Bei Biegebeanspruchung können u.a. die Rippen von der Schale delaminieren oder die Rippen weisen einen geringen Faseranteil und eine ungerichtetete Faserorientierung auf und sind damit weniger steif.

Zielsetzung

Ziel war es, anforderungsgerecht ausgelegte Hybridgarne, die sowohl aus Endlosfilamenten für den Schalenbereich als auch aus Stapelfasern für den Rippenbereich bestehen, mit definierten Fließeigenschaften zu entwickeln und zu textilen Flächengebilden mit neuen Eigenschaften zu verarbeiten. Während einem einstufigen Thermopressprozess sollen die Fasern nach dem Aufschmelzen der matrixbildenden Hybridgarnkomponente gezielt in die Kavität der Rippe fließen. Die gewünschte Faserverstärkung soll somit während der Verbundbildung von selbst entstehen.

Ergebnisse

Zu Beginn des Projektes wurden zunächst die industriellen Anwendungsfelder für rippenverstärkte thermoplastische Schalenbauteile recherchiert. Vielfältige Anwendungsmöglichkeiten ergeben sich u.a. bei der Realisierung von lasttragenden Bauteilen und Modulsystemen in der Automobilindustrie, z.B. Batteriegehäuse bzw. -wannen, Abdeckungen, Interieur- und Exterieurbauteile (z.B. Querträger), Front- und Heckbauteile (z.B. Stoßfänger). Hauptanwendungsgebiete sind alle Bauteile, die im Spritzgieß- oder Pressverfahren hergestellt werden und gegenüber dem Stand der Technik erhöhte Anforderungen an Steifigkeit, Festigkeit oder Zähigkeit bei gleichzeitiger Minimierung der Bauteilmasse erfüllen sollen. Darauf basierend wurden repräsentative Funktionsmuster und ein Demonstrator mit komplexer werdender Rippenstruktur definiert vgl. Abbildung 1.

Die Auswahl der zu verwendenden Ausgangsmaterialien, deren Anteile, Feinheit und Geometrie erfolgte nach physikalischen und verfahrenstechnischen Eigenschaften wie Schmelzverhalten und Viskosität, Transluzenz, Festigkeit und Steifigkeit. Die in Frage kommenden Kohlenstofffasern (CF) finden aufgrund ihrer hervorragenden mechanischen und chemischen Eigenschaften zunehmend Anwendung als Verstärkungsmaterialien im Bereich der FVK. Aufgrund der z.B. nicht realisierbaren energetischen Verwertung und des hohen Energiebedarfs bei der Herstellung von CF besteht derzeit ein großes Engagement für das Recycling dieser Fasern [7]. Letztendlich wurden mehrere Materialsysteme auf Basis von Glasfasern (GF) und recycelten Kohlefasern (rCF) ausgewählt, um die Fließbewegung bzw. die Fließwege anhand der optischen Eigenschaften (rCF-schwarz, GF-weiß transparent) im konsolidierten Bauteil überdurchschnittlich gut charakterisieren zu können. Als Verstärkungsfaserwerkstoff wurde für den Schalenbereich GF 50 Vol.% und für den Rippenbereich rCF 30 bis 50 Vol.% Typ I (Trockenfasern aus Spulenresten, Produktionsresten bzw. Verschnitt) eingesetzt. Als matrixbildende Hybridgarnkomponente wurde beispielhaft und aufgrund der etablierten Verwendung Polypropylen (PP) eingesetzt.

Unter Nutzung vorhandener Friktionsspinn- und Umwindespinntechnologien wurden im Folgenden fließfähige stapelfaserbasierte Hybridgarne aus rCF mit dem Ziel einer weitgehend parallelen Kernfaserstruktur entwickelt, umgesetzt und charakterisiert sowie Vorzugslösungen für weiterführende Arbeiten bereitgestellt. Die Hybridgarne wurden anschließend in UD-Wickelstrukturen vgl. Abbildung 2 (li.) überführt und unter zielführenden Prozessbedingungen experimentell zu ersten Schale/Rippen-Funktionsmustern mit unterschiedlichen Rippenhöhen H verarbeitet bzw. konsolidiert. Hierzu und zur Untersuchung der Fließeigenschaften der Hybridgarne war es im Vorfeld notwendig, ein modular aufgebautes Werkzeug für die Verbundbildung im Thermopressverfahren zu realisieren und alle dafür notwendigen Prozesseinstellungen zu ermitteln.

Die Hybridgarne füllen während des Pressvorgangs bei vergleichsweise geringem Druck von ca. 2 MPa die gesamte Werkzeugkavität der Rippe vollständig bis zu einem Faservolumengehalt rCF/PP von derzeit 70/30 Vol.%. Die Abbildung 2 (re.) zeigt ein Ergebnis anhand Funktionsmuster FM1, bei dem die Rippe durch die anvisierten Fließeigenschaften während des Pressvorgangs mit Fasern gefüllt wurden. Die Fasern liegen überwiegend entlang der Rippe. Bestandteil der Arbeiten war auch die Untersuchung des Fließverhaltens der rCF u.a. mittels bildanalytischer Charakterisierung von Schnitt- und Schliffproben [8].

Generell ist die Belastbarkeit von UD-Faserlagen richtungsabhängig begrenzt, so dass biaxiale Faseranordnungen unter Verwendung der Mehrlagen-Flachstricktechnologie in den Fokus gerückt sind. Gestricke, bei denen Verstärkungsfäden in die Maschen integriert sind, werden als Mehrlagengestricke (MLG) bezeichnet. MLG können monoaxial, biaxial oder multiaxial angeordnete Verstärkungsfäden aufweisen. Zur Steuerung der Fließbewegung wurden partielle Variationen von – in der Matrix nicht thermisch auflösbaren (GF/PP) sowie thermisch auflösbaren (PP) Maschenfadenmaterialien untersucht. Systematisch wurden dazu Bindungen von endlosfilament- und stapelfaserbasierten Hybridgarnen in der 2D-Textilstruktur zur Einstellung einer orientierten, verzugsfreien Verstärkungsfaseranordnung entwickelt. Basierend auf dem Funktionsmuster FM1 und den Voruntersuchungen wurden Varianten abgeleitet, die sich u.a. hinsichtlich der Hybridgarnanordnung, deren lokaler Menge und hinsichtlich des lokal eingesetzten Maschenfadenmaterials unterscheiden. Die Varianten wurden mittels modularer Werkzeugeinsätze zu Schale/Rippe-Funktionsmustern mit unterschiedlichen Rippenhöhen H verarbeitet. Eine Stapelung von bis zu 10 gleichzeitig zu verarbeitenden biaxialen MLG vgl. Abbildung 3 (li.) wurde detailliert untersucht. Abbildung 3 (re.) zeigt ein Ergebnis der Entwicklungen.

Während des Verarbeitungsprozesses im Thermopressverfahren wird die ursprünglich leere Rippengeometrie mit einem hohen rCF-Faseranteil von bis zu 70 % gefüllt und damit die beabsichtigte Faserverstärkung von der Schale in die Rippe sowie in der Rippe realisiert. Die Länge der Stapelfasern im Hybridgarn beträgt derzeit bis zu 80 mm.

Nach der Verbundbildung erfolgten umfassende Versuchsreihen zur Ermittlung der Festigkeits- und Steifigkeitskennwerte mittels 3-Punkt-Biegeversuch. Insgesamt lässt sich aus den Ergebnissen ableiten, dass die Endlosfaserverstärkung in der Schale die ermittelten Werte und Verläufe deutlich dominiert und somit das Verhältnis von Schalendicke zu Rippenhöhe minimiert werden kann, so dass die versteifende Wirkung der Rippe deutlicher hervortritt. Dadurch erhöht sich der Leichtbaugrad, da die i.d.R. großflächigen Schalenbereiche dünner dimensioniert werden können und somit eine annähernd gleiche mechanische Leistungsfähigkeit bei geringerer Bauteilmasse erreicht werden kann.

Die ermittelten Materialkennwerte wurden kontinuierlich zur Verbesserung und Validierung eines im Rahmen der Projektdurchführung entwickelten Simulationsmodells herangezogen, um zukünftig das Verbundmaterialverhalten durch die Kombination von Endlosfilamenten und Stapelfasern im Übergangsbereich zwischen Schale und Rippe realitätsnah vorhersagen zu können. Zur Verifizierung wurden Referenzbauteile hergestellt und mit den entwickelten Varianten verglichen. Die Ergebnisse zeigen eine 4-fach höhere Festigkeit und eine 2-fach höhere Steifigkeit gegenüber der Referenz. Damit konnte der Nachweis der Tragfähigkeitssteigerung von min. 50% erbracht werden. Delamination trat nicht auf.

Das hohe Potenzial der partiell fließfähiger 2D-Textilhalbzeugen wurde abschließend durch die praxisnahe Herstellung eines generischen Demonstrators (vgl. Abbildung 4) unter Anwendung der Vorzugslösungen für Hybridgarne und 2D-Textilstrukturen aufgezeigt.

Die Prozesskette, beginnend mit der Definition der Bauteilanforderungen, simulationsgestützten Dimensionierung, anforderungsgerechten Hybridgarnherstellung, Entwicklung der partiell fließfähigen 2D-Textilstrukturen mit biaxialer Verstärkungsfaseranordnung, Umsetzung der textilen Strukturen und abschließenden Verbundbildung durch das Thermo-Fließpressverfahren wurde mit Projektabschluss validiert. Der damit realisierte Demonstrator wurde anhand von Biegeversuchen geprüft und weist im Ergebnis die vordimensionierte, hohe Biegesteifigkeit auf. Aktuell erfolgen Gespräche zum industriellen Einsatz des neuen Verfahrens.

Zusammenfassung

Im Ergebnis konnten unter Verwendung der entwickelten partiell fließfähigen 2D-Textilstrukturen exemplarisch thermoplastische Schale/Rippen-Bauteile mit hohem Faservolumenanteil im Übergangsbereich zwischen Schale und Rippe und mit einer Festigkeits- und Steifigkeitssteigerung von mindestens 50 % gegenüber dem Stand der Technik hergestellt werden. Während der Verarbeitung fließen die Stapelfasern gezielt aus einer textilen Flächenstruktur in nahezu beliebige dreidimensionale Rippengeometrien. Die endlosfaserbasierte Verstärkung im Rippenbereich bleibt weitgehend unverzerrt und wie gewünscht in gestreckter Anordnung. Die resultierenden Bauteile können kostengünstig in einem einzigen Verbundbildungsschritt hergestellt werden, was zu einer erheblichen Effizienzsteigerung und potenziell zur Erhöhung der einsetzbaren Kunststoff- und Fasermenge u.a. im Bereich Fahrzeuge führen kann.

Danksagung

Das IGF-Vorhaben 21372 BR der Forschungsvereinigung Forschungskuratorium Textil e. V. wurde über die AiF im Rahmen des Programms zur Förderung der industriellen Gemeinschaftsforschung (IGF) vom Bundesministerium für Wirtschaft und Klimaschutz aufgrund eines Beschlusses des Deutschen Bundestages gefördert. Die Autoren danken den genannten Institutionen für die Bereitstellung der finanziellen Mittel. Weiterhin danken wir den Firmen des projektbegleitenden Ausschusses für die fachliche Unterstützung sowie allen weiteren Partnern, die in der Forschungsarbeit zu diesem Themenkreis unterstützten. Der Schlussbericht ist über den Gesamtverband der deutschen Textil- und Modeindustrie e. V., Berlin beziehbar. Weiterführende Informationen sind am Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM) erhältlich.

Authors: Sven Hellman

Technische Universität Dresden
Fakultät Maschinenwesen
Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM)
01062 Dresden

https://tu-dresden.de/mw/itm

More entries from TU Dresden, Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik ITM

26.03.2024

Entwicklung endkonturgerechter Multiaxialgelege mit lokal einstellbarer, bauteilgerechter Verstärkungskettfadendichte

Knittings Textile machinery Technical Textiles

Abstract

Im Rahmen dieses Forschungsprojekts wurde ein neuartiges Nachrüstmodul für Multiaxial-Kettenwirkmaschinen entwickelt, das die Herstellung von Multiaxialgelegen mit lokal angepassten Verstärkungskettfadendichten ermöglicht. Diese Innovation erlaubt eine materialsparende und kosteneffiziente Produktion von Bauteilen aus Faserkunststoffverbunden (FKV) mit Hochleistungsfasern wie Carbon. Hierbei können Kettfäden gezielt in den Bereichen, bspw. in denen sie nicht benötigt werden, aus dem Wirkprozess entfernt und bei Bedarf wieder eingefügt werden. Zudem wird es ermöglicht, eine definiert gradierte Kettfadendichte durch den gezielten Versatz von Kettfäden zu erreichen.

Das entwickelte modulare System wurde an einer Multiaxial-Kettenwirkmaschine vom Typ Malimo 14024 der Karl Mayer Textilmaschinenfabrik GmbH (Chemnitz, Deutschland) experimentell erprobt. Die Ergebnisse zeigen eine signifikante Verschnittreduktion auf bis zu 0 % in Kettrichtung sowie eine hohe Anpassungsfähigkeit an bauteilspezifische Anforderungen. Durch die Implementierung von Steuerungsalgorithmen für eine achsvariable Legung der Kettfäden konnte zudem eine simulationsgestützte Prozesskette zur Herstellung textiler Halbzeuge für FKV-Bauteile mit lokal variierenden Spannungsverteilungen erreicht werden.

Die erzielten Forschungsergebnisse unterstreichen das hohe Potential der Technologie zur wirtschaftlichen und gleichzeitig umweltfreundlichen Herstellung von FKV-Bauteilen. Besonderer Wert wurde auf die Übertragbarkeit der Ergebnisse auf die in den KMU vorhandenen Maschinen gelegt, um eine breite Anwendbarkeit der Forschungsergebnisse zu gewährleisten

Report

Ausgangssituation und Problemstellung

Der zunehmende Trend zum Leichtbau ist ein globales Phänomen in technischen Sektoren, verstärkt durch das Bewusstsein für einen materialeffizienten Umgang mit begrenzt verfügbaren natürlichen Ressourcen. Diese Entwicklung wird durch die Notwendigkeit ökologischer Nachhaltigkeit und die Reduktion von CO2-Emissionen vorangetrieben, wobei Faserkunststoffverbunde (FKV) aufgrund ihrer anisotropen strukturmechanischen Eigenschaften und ihres geringen spezifischen Gewichts eine Schlüsselrolle spielen. Sie bieten optimale Voraussetzungen für die ressourceneffiziente Auslegung von Leichtbaulösungen und treiben Innovationen in Branchen wie dem Maschinen-, Anlagen- und Automobilbau, insbesondere in der Elektromobilität, sowie in der Windkraftenergie und Luftfahrt voran. [1–11]

Die Herstellung von FKV-Bauteilen erfolgt derzeit hauptsächlich mit zweidimensionalen textilen Strukturen, die als Rollenware mit konstanter Breite und Fadendichte geliefert werden [12, 13]. Insbesondere mehraxiale Gelegestrukturen, gefertigt mittels der hochproduktiven Multiaxial-Kettenwirktechnik, sind für Großserienanwendungen und großflächige Bauteile relevant [14]. Eine wesentliche Herausforderung dieser Fertigungsprozesse ist der hohe Materialverschnitt in der bauteilspezifischen Halbzeugkonfektion, der wirtschaftlich und ökologisch nachteilig ist. Der Verschnitt kann je nach Bauteilgeometrie und -herstellungsverfahren bis zu 50 % betragen [15, 16].

In der Entwicklung endkonturgerechter textiler Halbzeuge mit lokal einstellbarer, d. h. achsvariabler, Verstärkungsfadendichte, um Verschnitt zu vermeiden und die textilen Halbzeuge an komplexe FKV-Geometrien anzupassen, liegt die entscheidende Aufgabe zur Steigerung der ökologischen und wirtschaftlichen Effizienz. Dies erfordert neue Lösungsansätze, da konventionelle Multiaxialgelege nicht die Anforderungen an eine bauteilgerechte gradierte Verstärkungsfadendichte erfüllen können. Sie sind in ihrer Verstärkungsfadendichte, sowie der Lagenanordnung im Preforming bisher für den maximalen lokalen Belastungsfall ausgelegt, was zu Überdimensionierung in weniger belasteten Bereichen oder zu hohem Verschnitt führt.

Die Entwicklung endkonturgerechter Multiaxialgelege mit lokal einstellbaren Verstärkungskettfadendichten adressiert diese Problematik. Vor Projektbeginn gab es keine Lösungen, die eine konturgerechte Fertigung von Multiaxialgelegen und eine Verringerung der Kettfadenanzahl in den nicht benötigten Bereichen oder eine Erhöhung in besonders beanspruchten Zonen ermöglichten. Die Motivation des Projekts leitet sich aus der Notwendigkeit ab, die Materialeffizienz in der textilen Fertigungskette zu steigern, indem Verschnitt und Überdimensionierung vermieden werden.

Technische Entwicklung und Umsetzung

Im Fokus der Forschungsarbeiten stand die Entwicklung einer innovativen Technologie zur effizienten Nutzung von kostenintensiven Hochleistungsfasern, speziell Carbonfasern, im Fokus. Ziel war es, die ökologische und ökonomische Nachhaltigkeit von Faserkunststoffverbunden (FKV) durch eine signifikante Reduktion des Materialverschnitts und die Vermeidung von Überdimensionierung zu steigern. Die technische Herausforderung bestand darin, eine Methode zu entwickeln, die eine gezielte Anpassung der Verstärkungskettfadendichte an die bauteilspezifischen Anforderungen ermöglicht, sodass die Verstärkungskettfäden nur dort angeordnet werden, wo sie mechanisch erforderlich sind. Zur Realisierung dieser Zielsetzung war die Entwicklung eines Verfahrens essenziell, das es erlaubt, Kettfäden gezielt aus dem Wirkprozess zu entfernen und bei Bedarf wieder hinzuzufügen, um so eine konstante Kettfadendichte im endkonturgerechten Gelege zu gewährleisten. Zudem sollte eine Möglichkeit, die Kettfadendichte seitlich achsvariabel zu versetzen und somit lokal zu verstärken, was in einer gradierten Kettfadendichte resultiert, geschaffen werden. Die praktische Umsetzung dieser Technologie erforderte die Integration einer Zusatzvorrichtung in den Multiaxial-Kettenwirkprozess. Das entwickelte kombinierte Kettfadenmanipulationsmodul ermöglicht es, die Kettfäden mit lokal unterschiedlichen Dichten und Ausrichtungen prozesssicher zuzuführen.

Im Rahmen der technischen Entwicklung und Umsetzung zur Herstellung endkonturgerechter Gelege mit angepasster Kettfadendichte wurden drei wesentliche Teilfunktionen identifiziert und entwickelt: das selektive Trennen, das gezielte Führen sowie das individuelle oder gruppenweise Anfügen der Kettfäden an das Gelege. Diese Funktionen sind essenziell für die Realisierung einer global konstanten Kettfadendichte, die präzise an die Bauteilkontur und die mechanischen Anforderungen angepasst ist.

Selektives Trennen

Für das Trennen der Kettfäden wurde ein mechanisches Verfahren auf Basis eines Schermesserpaars mit einer festen und einer beweglichen Klinge, die pneumatisch angetrieben und gesteuert wird, entwickelt. Der Messerblock (siehe Abbildung 1 links) wurde an einer Lineareinheit (quer zur Arbeitsrichtung) befestigt und kann über einen Schlitten bedarfsgerecht pneumatisch auf die Höhe der zu schneidenden Kettfäden abgesenkt werden (siehe Abbildung 1 rechts). Dies ermöglicht es, die Kettfäden entsprechend der Bauteilkontur temporär aus dem Fertigungsprozess zu entfernen.

Vorbringen der Kettfäden

Zur präzisen Führung werden die Kettfäden pneumatisch vorgebracht. Dafür werden die Führungsröhrchen (siehe Abbildung 2 links) der Versatzeinheit mit Druckluft angeblasen, wodurch der Kettfaden in die Wirkstelle transportiert wird. Dabei muss die Schnittstelle, die sonst offen und zugänglich für das Schermesser gehalten wird, temporär durch eine Verschlusskappe überbrückt werden, um einen Druckluftverlust während des Vorbringens zu vermeiden (siehe Abbildung 2 rechts). Dieses System sorgt dafür, dass die abgetrennten Kettfäden exakt an die vorgesehene Stelle im Gelege, synchronisiert mit dem Wirkprozess, geführt werden. Ein Druck von 4 bar wurde für ein reproduzierbares, schnelles und präzises Vorbringen der vorher abgetrennten Kettfäden in die Nadelgasse der Wirkstelle erörtert, als Grundlage für das anschließende Anfügen des Kettfadenendes an das endkonturgerechte Gelege.

Anfügen der Kettfadenenden

Für das Anfügen der Kettfäden an das Gelege wurden verschiedene Lösungsansätze untersucht, darunter stoffschlüssige Verbindungen mittels Klebstoffen und form- bzw. kraftschlüssige Verbindungen durch nähwirktechnische Integration. Als geeignete Lösung hinsichtlich des Erhalts des textilen Charakters des endkonturgerechten Geleges sowie der Dauer des Anfügevorgangs erwies sich die nähwirktechnische Fixierung, die eine zuverlässige und schädigungsarme, kraftschlussbasierte Integration der Kettfäden in die Gelegestruktur ermöglicht.

Auf Basis der abgeleiteten Vorzugslösungen für die Teilfunktionen erfolgte anschließend die Entwicklung des kombinierten Kettfadenmanipulationsmoduls, mit dem eine Kettfadenschar sowohl seitlich versetzt, als auch einzelne Kettfäden aus der Kettfadenschar selektiv abgetrennt und nach Bedarf wieder angefügt werden können. Das kombinierte Kettfadenmanipulationsmodul besteht aus zwei synchronisierten Lineareinheiten. Eine Lineareinheit setzt die Messerblockbewegung um, eine zweite Lineareinheit den seitlichen Versatz der Kettfäden (siehe Abbildung 3 und Abbildung 4). Das vollständige, entwickelten Nachrüstmodul, inklusive der pneumatischen und elektrotechnischen Steuerungstechnik wurden in eine Malimo 14024 (Karl Mayer Textilmaschinenfabrik GmbH, Deutschland) integriert und auf Basis iterativer Funktionsmusterfertigungen erprobt. Dieses Modul ermöglicht die Herstellung endkonturgerechter Gelege mit variabel einstellbaren Verstärkungskettfadendichten und achsvariablen Fadenanordnungen und erhöht somit signifikant die Materialeffizienz in der FKV-Produktion.

Materialcharakterisierung und Ergebnisse

Auf die erfolgreiche Umsetzung der Funktionsmuster folgte die textil- und verbundphysikalische Charakterisierung der Funktionsmuster. Die Charakterisierung der Funktionsmuster erfolgte in mehreren Stufen. Zunächst wurde eine computergestützte photogrammetrische Messung zur Überprüfung der Konturradien und der Konturtreue durchgeführt. Anschließend fokussierte sich die Untersuchung auf die Ermittlung der strukturmechanischen Eigenschaften der FKV-Prüfkörper auf Basis der textilen Funktionsmuster. Hierbei kamen modifizierte Stempeldurchdrückversuche zum Einsatz, die einen multiaxialen Belastungszustand in die Textil- bzw. FKV-Prüfkörper einleiteten (siehe Abbildung 5). Die Kraftübertragung während der Versuche wurde aufgezeichnet und ausgewertet.

Die Ergebnisse zeigten, dass die Einsatzmöglichkeiten des Kettfadenmanipulationsmoduls zur Herstellung endkonturgerechter Gelege mit bauteilgerechten Verstärkungskettfadendichten eine gleichbleibende mechanische Belastbarkeit wie vollverstärkte Bauteile ermöglichen, während gleichzeitig der Materialeinsatz signifikant reduziert wird. Anhand der Umsetzung eines PKW-Kotflügeldemonstrators (siehe Abbildung 6) konnte experimentell belegt werden, dass eine Materialreduktion von bis zu 50 % möglich ist, ohne die strukturelle Integrität und mechanische Belastbarkeit der FKV-Bauteile zu reduzieren. Die umfassenden Untersuchungen und die daraus resultierenden Erkenntnisse legen die Basis für die Fertigung und Handhabung praxisnaher endkonturgerechter Gelege. Damit wird ein wichtiger Beitrag zur Steigerung der Wettbewerbsfähigkeit und zur Förderung nachhaltiger Produktionsverfahren in der Industrie geleistet.

Zusammenfassung

Im Rahmen der Forschungsarbeiten wurde ein innovatives Nachrüstmodul für die hochproduktive Multiaxial-Kettenwirktechnologie entwickelt, dass es ermöglicht, die Dichte der Verstärkungskettfäden in Multiaxialgelegen lokal und gezielt an die Anforderungen spezifischer Bauteile anzupassen. Diese technologische Neuerung repräsentiert einen signifikanten Fortschritt in der Fertigung von Faserkunststoffverbunden (FKV), indem nunmehr eine effiziente und materialsparende Produktion, insbesondere unter Verwendung hochpreisiger Hochleistungsfasern wie Carbon, ermöglicht wird. Die entwickelte Lösung gestattet es, die Integration der Kettfäden ausschließlich in jenen Bereichen vorzunehmen, die für die mechanische und geometrische Verstärkung des späteren Bauteils erforderlich sind. Dies führt zur Reduzierung des Verschnitts auf nahezu 0 % (in Kettfadenrichtung) sowie zur weitestgehenden Vermeidung der Überdimensionierung.

Für die Umsetzung des entwickelten Verfahrens wurde eine passende Fertigungstechnologie erarbeitet und als Zusatzvorrichtung in eine Multiaxial-Kettenwirkmaschine (Malimo 14024) integriert. Diese Vorrichtung ermöglichte die prozesssichere Ablage der Kettfäden mit individuell unterschiedlichen Dichten und Ausrichtungen, wodurch erstmals endkonturgerechte Gelege mit variabel einstellbaren, bauteilgerechten Kettfadendichten hergestellt werden konnten.

Der Ausblick auf zukünftige Entwicklungen fokussiert sich auf die Weiterführung der Technologieübertragung in die industrielle Praxis, insbesondere in KMU. Die durchgeführten Forschungsarbeiten bieten eine solide Basis für die Implementierung der neuen Technologie in bestehende Produktionsprozesse. Dabei stehen die Steigerung der Materialeffizienz und die Reduktion des ökologischen Fußabdrucks von FKV-Bauteilen im Vordergrund, um den steigenden industriellen und gesetzlichen Anforderungen an Nachhaltigkeit und Wirtschaftlichkeit gerecht zu werden.

Danksagung

Das IGF-Vorhaben 21968 BR der Forschungsvereinigung Forschungskuratorium Textil e. V. wurde über die AiF im Rahmen des Programms zur Förderung der Industriellen Gemeinschaftsforschung (IGF) vom Bundesministerium für Wirtschaft und Klimaschutz aufgrund eines Beschlusses des Deutschen Bundestages gefördert. Der Schlussbericht und weiterführende Informationen sind am Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik der TU Dresden erhältlich.

Authors: Konrad Zierold André Seidel Lars Hahn Chokri Cherif

Technische Universität Dresden
Fakultät Maschinenwesen
Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM)
01062 Dresden

https://tu-dresden.de/mw/itm

More entries from TU Dresden, Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik ITM

28.11.2023

Entwicklung einer neuartigen Spinntechnologie zur Realisierung skalierbarer nano-, submikro- und mikrostrukturierter Faseroberflächen für technische und medizinische Anwendungen

Fibres Yarns Technical Textiles Medicine

Abstract

Das Hauptziel des IGF Projektes 21411 BR war die gezielte und reproduzierbare Oberflächenstrukturierung von Fasern während der Herstellung von Multifilamentgarnen. Dazu erfolgte die Entwicklung eines Verfahrens zur Herstellung von Bikomponentengarnen aus einem Grundpolymer und einer wasserlöslichen, strukturbildenden PVOH-Mantelkomponente. Durch das Herauslösen der Mantelkomponente in einem weiteren Prozessschritt werden dann nano-, submikro- und mikrostrukturierte Oberflächen erzeugt. Durch diese Verfahrensentwicklung sind nun erstmalig oberflächenstrukturierte Fasern herstellbar, die mit konventionellen Verfahren zur Oberflächenfunktionalisierung bisher nicht möglich waren. Der dazu notwendige Spinnprozess inkl. grundlegende Prozessparameter wurden im Projekt im Technikumsmaßstab erarbeitet. Die Nutzbarkeit der Ergebnisse wurde durch die erfolgreiche Erspinnung von Multifilamentgarnen mit strukturierten Faseroberflächen auf einer Pilot-Biko-Schmelzspinnanlage gezeigt. Die textiltechnische Verarbeitbarkeit der erzeugten Biko-Multifilamentgarnen erfolgte mit der erfolgreichen Umsetzung textiltechnischer Demonstratoren in Webversuchen.

Report

Einleitung, Problemstellung und Zielsetzung
Die kontinuierliche Entwicklung innovativer Technologien im Bereich der chemischen Faserproduktion ist entscheidend für die Fortentwicklung der gesamten Textilwirtschaft. Die gegenwärtige Fokussierung auf technische Textilien und medizintechnische Textilprodukte eröffnet vielversprechende Perspektiven für die deutsche Textil- und Faserindustrie. Diese aufstrebenden Märkte umfassen innovative Anwendungen, wie textiles Bauen, einschließlich komplex strukturierter architektonischer Membranen oder die Biomedizin mit Produkten, wie textile Implantate und Gewebsregenerationslösungen.

Ein neuartiger und vielversprechender Lösungsansatz ist die zielgerichtete Oberflächenstrukturierung der Fasern bereits während der Faserherstellung, um zum einen die Faseroberfläche zu erhöhen und zum anderen eine formschlüssige Anbindung der Matrix an die Faser zu erreichen. Diese Strukturierung auf der Einzelfilamentebene zeichnet sich durch regelmäßig oder stochastisch verteilte Nano- und Mikrostrukturen aus, darunter fibrillenartige Formationen. Dies führt zu einer definierten Oberflächenmorphologie und -topografie mit Kavitäten (Vertiefungen) und einer Oberflächenrauheit.

Für eine umfassende Nutzbarkeit dieser bisher unbekannten oberflächenstrukturierte Filamente, wurden im IGF Projektes 21411 BR „Nano, submikro- und mikrostrukturierte Fasern“ verschiedene Materialsysteme untersucht: das am Markt in großen Mengen verfügbare technische Polyester (PET - aromatischer Polyester), das im medizinischen Bereich häufig verwendete Polylactid Acid (PLA - aliphatischer Polyester) und ein High Density-Polyethylen (HDPE – Polyolefin). Basis für die Herstellung der strukturierten Fasern war eine Verfahrensentwicklung des Bikomponenten (Biko)-Schmelzspinnens. Kernpunkt dieser Entwicklung ist der temporäre Einsatz von wasserlöslichem Polyvinylalkohol (PVOH) als strukturformende Mantelkomponente im Fadenbildungsprozess. Eine anschließende Entfernung der strukturformenden Mantelkomponente entweder auf Garnebene oder auf Textilebene erzeugt dann die strukturierten Faseroberflächen im nano- (bis 0,1 μm), submikro- (0,1 ̶ 1 μm) und mikroskaligen (1 ̶ 2 μm) Bereich. Jeder dazu notwendige Entwicklungsschritt wurde von methodischen Material- und Prozesscharakterisierungen sowie gängigen physikalischen und chemischen Analysen begleitet, z.B. Untersuchungen der thermischen Eigenschaften des PVOH, der rheologischen Eigenschaften der Blend/PVOH-Mischungen sowie des Löslichkeitsverhaltens des PVOH aus dem Mantel der Biko-Fasern.

Erzielte Ergebnisse
Untersuchung der Schmelzspinnbarkeit von Polymer-PVOH-blends

Besondere Kernaufgaben der gesamten Verfahrensentwicklung war die Identifizierung prozesstechnisch geeigneter Materialpaarungen zur Herstellung von Blend-Formulierungen für die Vorlage im Schmelzspinnprozess. Die Ableitung von Vorzugsformulierungen für das Schmelzspinnen erfolgte im Projekt anhand der physikalischen und rheologischen Eigenschaften der jeweiligen Polymer-PVOH-Blend-Formulierungen. Zur Darstellung der Schmelzspinnbarkeit wurden weiterhin die thermische Stabilität und das Degradationsverhalten verschiedener wasserlöslicher PVOH sowie der Compoundpolymere (PET, PLA bzw. PE) mittels thermogravimetrischer Analyse (TGA) bestimmt. Die ausgewählten Compoundpolymere zeigen eine Zersetzung unter Schutzgasatmosphäre erst bei Temperaturen von weit über 300 °C, wobei es eine zentrale Abbaustufe gibt (VGL: Abbildung 1, links). Die untersuchten PVOH-Typen weisen dagegen verschiedene Abbaustufen und Zersetzungsbereiche mit ersten auftretenden Abbaureaktionen ab 100 °C auf (vgl. Abbildung 1, links). Die Kristallisations- und Schmelztemperaturen sowie das Fenster der Verarbeitungstemperaturen wurden mittels dynamischer Differenzkalorimetrie (DSC) bestimmt. Besonderes Augenmerk bei der rheologischen Charakterisierung der PVOH-Materialien war die Identifikation zum jeweiligen Compoundpolymer sowie zu prozesstypischen Anforderungen (z.B. Extrusionsverhalten, Spinndüsendynamik) passender Viskositäten.

Abbildung 1

Abbildung 1: Ergebnisse der TGA Untersuchungen - Massenänderung in Abhängigkeit von Temperatur und Zeit unter Schutzgasatmosphäre (N2)

 

Erspinnung der nano-, submikro- und mikrostrukturierter Fasern
Die Erspinnung der grundlegend untersuchten Polymer (PET, PLA und PE-PVOH)-Blends zu Biko-Multifilamentgarnen erfolgte mittels der am ITM vorhandenen Biko-Schmelzspinnanlage. Die dafür notwendigen experimentellen Arbeiten zur Herstellung von Biko-Fasern durch Evaluierung verschiedener Spinnprozessparameter wurde systematisch umgesetzt, um ein tiefgründiges Verständnis für die Wechselwirkungen zwischen Garneigenschaften und Prozessparametern aufzubauen. Bei der Erspinnung wurden die Anordnungen Kern-Mantel- bzw. orange pie-Geometrie untersucht (Abbildung 2). Die prozessbegleitenden systematischen Untersuchungen umfassten die Charakterisierung der mechanischen und textil-physikalischen Eigenschaften. Aus den analytischen Untersuchungen und der Spinnprozessentwicklung wurde ein Spinnkonzept für die Erspinnung der Biko-Präkursorfasern für neuartige nano-, submikro- und mikroskalige strukturierte Fasermaterialien erstellt.

 

Abbildung 2

Abbildung 2: Ausgewählte Düsengeometrien a) core-shell aus PET und PET/PVOH, b) orange-pie aus PET und PET/PVOH, c) core-shell aus PLA und PLA/PVOH, b) orange-pie aus PLA und PLA/PVOH

 

Verfahrensentwicklung zum Herauslösen der strukturbildenden Stützkomponente (PVOH)
Zur Erzeugung der Oberflächenstrukturierung erfolgte die Entwicklung eines industrienahen Verfahrens zum Herauslösen der strukturbildenden Stützkomponente (PVOH) aus dem Fasermantel. Erforscht wurde das Herauslösen der Stützkomponenten aus den Biko-Fasern nach dem Verstrecken bzw. nach der textilen Flächenbildung. Ein kontinuierliches Lösen des PVOH im Spinnprozess war aufgrund des Unterschieds zwischen Fadenlaufgeschwindigkeit (≥ 100 m/min) notwendiger Lösezeit von PVOH (≥ 180 s, vgl. Abbildung 1) nicht umsetzbar.

Abbildung 3

Abbildung 3: Löseeigenschaften der PVOH-Typen in Wasser unter Raumtemperatur und leichter Strömung

 

Besondere Aufmerksamkeit galt der Ermittlung relevanter Prozessparameter, wie Lösezeit und -temperatur, sowie der Auswahl des Lösungsmittels auf das Löseverhalten von PVOH, was in in zwei Entwicklungsstufen erfolgte: 1. Stufe - diskontinuierliches Herauslösen im Labormaßstab und 2. Stufe diskontinuierliche Löseversuche in einem Rolle-zu-Rolle-Prozess. Die Bewertung der Oberflächenstrukturierung erfolgte anhand von Lichtmikroskopie- und Rasterelektronenmikroskopie-(REM)Aufnahmen (Abbildung 4). Das entwickelte Verfahren zum gezielten Herauslösen von PVOH aus einem Multifilamentgarn ermöglichte die Erzeugung einer strukturierten Oberfläche. Die Optimierung der Prozessparameter sowie die praktische Umsetzbarkeit in einem kontinuierlichen Produktionsprozess sind die entscheidenden nächsten Schritte für die industrielle Anwendbarkeit dieser vielversprechenden Technologie.

Abbildung 4

Abbildung 4: REM-Aufnahmen  Einzelfilamenten der Biko-Filamentgarne: (links) vor dem Herauslösen des PVOH aus der Mantelkomponente, (rechts) nach dem Herauslösen des PVOH aus der Mantelkomponente

 

Textiltechnische Verarbeitung der nano-, submikro- und mikrostrukturierten Fasern
Die Beurteilung des Webverhaltens der ersponnenen Biko-Fasern erfolgte mittels Webversuchen auf einer Spulenschützen-Bandwebmaschine SL 150 (MAGEBA TEXTILMASCHINEN GMBH & CO. KG). Dabei wurde ein Standard-Polyestergarn als Kettfaden (16 Fäden/cm/Lage) eingesetzt. Das Biko-Garn wurde mittels eines Spulenschützen in Schussrichtung (7 Fäden/cm/Lage) eingebracht (vgl. Abbildung 5, links). Erfolgreich umgesetzt wurde in einem störungsfreien Webprozess ein zweilagiges, schlauchförmiges Gewebe mit Köperbindung in der oberen und Atlasbindung in der unteren Lage. Die Flächengebilde wurden mikroskopisch auf Filamentbrüche oder Fadenschädigung untersucht.

Abbildung 5

Abbildung 5: Textiltechnische Verarbeitung der Biko-Garne im Webprozess auf einer Spulenschützen-Bandwebmaschine (links); Zweilagiges, schlauchförmiges Gewebe aus Biko-Garn im Schussfaden und einem Polyestergarn in Kettfadenrichtung (rechts)

 

Zusammenfassung
Das Hauptziel des IGF Projektes 21411 BR war die gezielte und reproduzierbare Oberflächenstrukturierung von Fasern während der Herstellung von Multifilamentgarnen. Dazu erfolgte die Entwicklung eines Verfahrens zur Herstellung von Bikomponentengarnen aus einem Grundpolymer und einer wasserlöslichen, strukturbildenden PVOH-Mantelkomponente. Durch das Herauslösen der Mantelkomponente in einem weiteren Prozessschritt werden dann nano-, submikro- und mikrostrukturierte Oberflächen erzeugt. Durch diese Verfahrensentwicklung sind nun erstmalig oberflächenstrukturierte Fasern herstellbar, die mit konventionellen Verfahren zur Oberflächenfunktionalisierung bisher nicht möglich waren. Der dazu notwendige Spinnprozess inkl. grundlegende Prozessparameter wurden im Projekt im Technikumsmaßstab erarbeitet. Die Nutzbarkeit der Ergebnisse wurde durch die erfolgreiche Erspinnung von Multifilamentgarnen mit strukturierten Faseroberflächen auf einer Pilot-Biko-Schmelzspinnanlage gezeigt. Die textiltechnische Verarbeitbarkeit der erzeugten Biko-Multifilamentgarnen erfolgte mit der erfolgreichen Umsetzung textiltechnischer Demonstratoren in Webversuchen.

 

Danksagung
Das IGF-Vorhaben 21411 BR der Forschungsvereinigung Forschungskuratorium Textil e.V. wurde über die AiF im Rahmen des Programms zur Förderung der industriellen Gemeinschaftsforschung (IGF) vom Bundesministerium für Wirtschaft und Klimaschutz aufgrund eines Beschlusses des Deutschen Bundestages gefördert. Wir danken den genannten Institutionen für die Bereitstellung der finanziellen Mittel. Darüber hinaus möchten wir den Mitgliedern des Projektbegleitenden Ausschusses für ihre Unterstützung während der Projektbearbeitung danken.

 

Authors: Frankenbach, Leopold Alexander Lukoschek, Stephanie Kruppke, Iris Cherif, Chokri

Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik, TU Dresden

More entries from TU Dresden, Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik ITM

27.10.2023

Leichtigkeit durch Hohlkörper-Platten: Entwicklung leichter Carbonbetonfertigteile auf Basis textiler 3D-Netzgitterträger

Knittings Composites Textile machinery Sustainability Technical Textiles

Abstract

In branchenübergreifender Kooperation wurde am Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM) und dem Institut für Massivbau (IMB) der TU Dresden leichte Carbonbetonfertigteile für materialeffiziente Decken- und Wandelemente auf Basis einer neuartigen 3D-Netzgitterträgerstruktur entwickelt.

Im Bauwesen sind Fertigteile eine etablierte Lösung für die Unterstützung eines schnellen Bauforschritts von Decken- und Wandelementen. Jedoch stoßen konventionelle Elemente aus Stahlbeton aufgrund ihres massiven Aufbaus und der Korrosionsanfälligkeit des Bewehrungsstahls immer öfter an ihre Einsatzgrenzen. Daher sollen perspektivisch auch im Filigranfertigteilbau textile Bewehrungen für Gitterträger eingesetzt werden, die zusätzliche Hohlräume, bspw. zur Führung von Medien, etc. ermöglichen.

Report

Carbon statt Stahl

Tragendes Element der neuen Fertigteilgeneration sind textile Gitterträger, deren Netzstruktur auf überlagernden, diagonal versetzenden Carbonrovings basiert. Der lastgerechte und korrosionsresistente textile Netzgitterträger ermöglicht eine deutliche Reduzierung der Betondeckung und der damit verbundenen CO2-Emmission und eröffnet innovative Design- und Funktionalisierungsmöglichkeiten durch die Integration von großvolumigen Hohlräumen. (Abbildung 1)

Carbonfaserbasierter 3D-Netzgitterträger

Das ITM der TU Dresden hat die textile Fertigungstechnologie auf Grundlage mehrerer Kettfadenversatzsysteme in Kombination mit einem nachgelagerten Umformprozess für die Herstellung der 3D-Netzgittertäger entwickelt. Hierbei erfolgt die Fertigung der netzartigen 2D-Textilstruktur auf Basis der weiterentwickelten Kettfadenversatztechnologie der Multiaxial-Kettenwirktechnik. Die Umformung und Strukturfixierung erfolgt auf Basis zweier entwickelter technologischer Ansätze als Nass- und Warmumformung durch die modulare Erweiterung konventioneller Beschichtungsanlagen. (Abbildung 2)

Leichtbau-Hohlkörperdecke aus Carbonbeton

Das im Bereich Carbonbeton renommierte IMB der TU Dresden führte eine numerisch gestützte baustatische Auslegung sowie die bautechnische Erprobung der Verstärkungsstruktur mit einer anschließenden simulationsgestützen Topologieoptimierung der 3D-Netzgitterträger aus. Hierzu wurden modifizierte Biegezugversuche nach RILEM RC5 sowie Auszugversuche an umgelenkt einbetonierten Garnen zur Ermittlung der Zug- und Verbundeigenschaften durchgeführt. Die Ergebnisse hierzu sind in Abbildung 3 auszugsweise dargestellt.

Weiterführend wurden neue Designmöglichkeiten, bspw. die Integration von Hohlräumen, Dämmungen und Leitungsschächten in Deckenelementen entwickelt und erprobt. Ergebnis ist eine innovative Produktfamilie für die Anwendung in Sandwichstrukturen, Doppelwänden und im allgemeinen „Filigran“-Fertigteilbau. Hierbei können komplexe geometrische Formen durch neuartige Schalungsmethoden umgesetzt werden.

Um das Potenzial eines leichten, mit 3D-Netzgitterträger bewehrten Hohlkörperplattensystems aufzuzeigen wurde eine umfassende vergleichende Analyse von Plattensystemen mit identischem Querschnitt durchgeführt (siehe Abbildung 5, pdf-Version). Die drei untersuchten Plattensysteme für Decken waren die stahlbewehrte Vollplatte (SVP), die stahlbewehrte Hohlplatte (SHP) und die mit Netzgitterträgern bewehrte Hohlplatte (NHP).

Die vergleichende analytische Untersuchung zeigt, dass aufgrund der höheren Leistungsfähigkeit der mit Netzgitterträgern bewehrten Hohlplatte signifikante Material- und Masseeinsparungen hinsichtlich Beton und Bewehrung in Form von großvolumigen Hohlräumen (36 %) möglich ist. Ein Vergleich der drei unterschiedlichen Plattenarten verdeutlicht eindrucksvoll am Beispiel einer 7,2 m x 1,0 m x 0,155 m großen Deckenplatte (L x B x H), dass bei gleichbleibender Belastung mit einer Nutzlast von 1,5 kN/m² die mit Netzgitterträgern bewehrte Hohlplatte (NHP) 36 % leichter als die stahlbewehrte Vollplatte (SVP) und 27,6 % leichter als die stahlbewehrte Hohlplatte (SHP) ausgeführt werden kann. Dies liegt darin begründet, dass aufgrund der korrosionsresistenten Netzgitterträger-Bewehrung die Betondeckung deutlich reduziert und somit der Hohlraumanteil im Vergleich zur stahlbewehrten Hohlplatte von 11 % auf 36 % gesteigert werden kann. Daraus resultiert eine signifikante Betoneinsparung der mit Netzgitterträgern bewehrten Hohlplatte von 28 % im Vergleich zu Hohlplatten mit korrosionsanfälliger Stahlbewehrung.

Die enorme Material- und Masseeinsparung von Beton und Bewehrung durch Integration von Hohlräumen (ca. 36 %) und Verwendung leichter Carbonbewehrungen der mit Netzgitterträgern bewehrten Hohlplatte im Vergleich zu konventionellen Plattensystemen für Deckenanwendungen bei gleichbleibender Leistungsfähigkeit zeigt das hohe wirtschaftliche und ökologische Potential der textilbewehrten Filigran-Fertigteile für die Bauindustrie auf.

Als Ergebnis des Forschungsprojektes wurde die Carbonbetontechnologie auf das enorm große Marktsegment der Filigranfertigteile übertragen und neue Lösungen für das ressourcenschonende Bauen der Zukunft bereitgestellt.

Das IGF-Vorhaben 21556 BR der Forschungsvereinigung Forschungskuratorium Textil e. V. wurde über die AiF im Rahmen des Programms zur Förderung der Industriellen Gemeinschaftsforschung (IGF) vom Bundesministerium für Wirtschaft und Klimaschutz aufgrund eines Beschlusses des Deutschen Bundestages gefördert.

Authors: Penzel, P.; Ur Rehman, N.; Hahn, L.; Michler, H.; Cherif, C.; Curbach, M.

Technische Universität Dresden, Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM) und Institut für Massivbau (IMB)

Dipl.-Ing. Paul Penzel, M. Sc. Nazaib Ur Rehman, Wiss. Mitarbeiter

+49 351 463-422 45 // +49 351 463-404 73

http://tu-dresden.de/mw/itm // https://tu-dresden.de/bu/bauingenieurwesen/imb

More entries from TU Dresden, Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik ITM

20.06.2023

Development of heavy tows from recycled carbon fibers for low-cost and high performance thermoset composites (rCF heavy tows)

Raw materials Fibres Yarns Composites Textile machinery Recycling Sustainability Circular economy Technical Textiles

Abstract

Within the framework of the IGF research project (21612 BR), the entire process chain for the industrial production of novel twist-free rCF heavy tows was developed at ITM. In particular, a novel technology for the production of rCF heavy tows based on recycled carbon (rCF ≥ 90 vol.%) and hot melt adhesive fibers (< 10 vol.%) was designed, constructed and successfully implemented. This includes fiber preparation, the carding process for card sliver formation, the stretching process for drawn sliver formation, and the final fabrication of the rCF heavy tows from rCF and hot melt adhesive fibers in a newly developed test set-up. The suitability of the developed technology is demonstrated by the implementation of rCF heavy tows with different rCF types, fiber lengths and fiber volume contents and a demonstrator. The developed rCF heavy tows with finenesses between 3000-7000 tex and their further processability into textile semi-finished products were successfully demonstrated. The developed rCF Heavy Tows and composites based on them exhibit a maximum composite tensile strength and a maximum Young’s modulus of 1158±72 MPa and 80±5.7 GPa, respectively. The rCF Heavy Tows are thus applicable for low-cost thermoset composites with high performance and complex geometry. Thus, the developed rCF Heavy Tows offer a very high innovation and market potential in the fields of materials and materials, lightweight construction, environmental and sustainability research, and resource efficiency. This opens up the opportunity for SMEs in the textile industry to develop new products and technologies for the fiber composite market and to establish themselves as suppliers for the automotive, mechanical engineering and aerospace, medical and sports equipment industries.

Report

Introduction, problem definition and aim of the project

Carbon fiber-reinforced plastics (CFRP) are increasingly used in lightweight applications due to their high stiffness and strength as well as low density, especially in aerospace, transportation, wind energy, sports equipment or construction. Global demand of CFRP is predicted to increase to 197,000 t/a by 2024, almost tripling compared to 2011. This shows an urgent need for solutions to recycle the high quality carbon fiber (rCF) in terms of the circular economy. This is necessary not only due to strict legal regulations, but also for ecological and economic reasons. In recent years, numerous research institutes and companies developed solutions for the reuse of rCF in the fields of nonwovens, injection molding or as hybrid yarns. However, the majority of these works involve the use of rCF in combination with thermoplastic fibers for thermoplastic composites. In the field of rCF-based thermoset CFRP, mainly rCF nonwovens made of 100% rCF have been so far developed. Since the fibers in the nonwovens mostly have a limited length and a low orientation and process-related additional high fiber damage occurs, with these materials only maximum 30% of the composite characteristic values of CFRP components made of carbon filament yarns can be so far achieved.

Currently, the matrix systems used in the field of high mechanical loaded CFRPs are predominantly thermoset. Such components exhibit high dimensional stability, high stiffness and strength as well as are suitable for the implementation of complex component geometries due to low-viscosity matrix systems. However, primary carbon filament yarns are particularly used for these components due to the insufficient properties of rCF. In addition to low sustainability, the utilization of these filament yarns result in at least 200 % higher cost. The production of primary carbon filament yarn requires a high-energy demand of about 230 MJ/kg with a CO2 emission equivalent to 20 kg CO2/kg CF. Here, a significant improvement of the CO2 balance is required to make a substantial contribution to the envisaged climate protection goals of the Federal Republic of Germany and the EU. For this reason, the focus of the project work is the development of novel, sustainable rCF heavy tows made of recycled carbon fibers (rCF) and associated manufacturing technologies for the implementation of cost-effective thermoset composites with high mechanical performance.

Acknowledgments

The IGF project 21612 BR of the Research Association Forschungskuratorium Textil e.V. was funded by the Federal Ministry of Economics and Climate Protection (BMWK) via the AiF within the framework of the program for the promotion of joint industrial research and development (IGF) on the basis of a resolution of the German Bundestag. We would like to thank the above-mentioned institutions for providing the financial resources.

Authors: Mahmud Hossain, Anwar Abdkader und Chokri Cherif

Technische Universität Dresden
Fakultät Maschinenwesen
Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM)
01062 Dresden

https://tu-dresden.de/mw/itm

More entries from TU Dresden, Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik ITM

20.06.2023

Entwicklung von Heavy Tows aus recycelten Carbonfasern für kostengünstige duroplastische Composites mit hohem Leistungsvermögen (rCF-Heavy Tows)

Raw materials Fibres Yarns Composites Textile machinery Recycling Sustainability Circular economy Technical Textiles

Abstract

Im Rahmen des IGF-Forschungsvorhabens (21612 BR) wurde am ITM die gesamte Prozesskette zur industriellen Herstellung neuartiger drehungsfreier rCF-Heavy Tows entwickelt. Insbesondere wurde eine neuartige Technologie zur Herstellung von rCF-Heavy Tows auf Basis recycelter Carbon- (rCF, ≥ 90 Vol.-%) und Schmelzklebefasern (< 10 Vol.-%) konzipiert, konstruiert und erfolgreich umgesetzt. Diese umfasst die Faseraufbereitung, den Krempelprozess zur Krempelbandbildung, den Streckprozess zur Streckenbandbildung sowie die abschließende Fertigung der rCF-Heavy Tows aus rCF und Schmelzklebefasern in einem neuen entwickelten Versuchsstand. Der Nachweis der Eignung der entwickelten Technologie erfolgt mit der Umsetzung von rCF-Heavy Tows mit unterschiedlichen rCF Typen, Faserlängen und Faservolumengehalten und eines Demonstrators. Die entwickelten rCF-Heavy Tows mit Feinheiten zwischen 3000-7000 tex und deren Weiterverarbeitbarkeit zu textilen Halbzeugen wurden erfolgreich nachgewiesen. Die entwickelten rCF-Heavy Tows und darauf basierende Verbunde weisen eine maximale Verbundzugfestigkeit bzw ein maximales Zug-Modul von 1158±72 MPa bzw. 80±5,7 GPa auf. Die rCF Heavy Tows sind somit für kostengünstige duroplastische Composites mit hohem Leistungsvermögen und komplexer Geometrie einsetzbar. Damit bieten die entwickelten rCF-Heavy Tows ein sehr hohes Innovations- und Marktpotential in den Bereichen Werkstoffe und Materialien, Leichtbau, Umwelt- und Nachhaltigkeitsforschung sowie Ressourceneffizienz. Damit eröffnet sich die Gelegenheit für KMU der Textilindustrie neue Produkte und Technologien für den Faserverbundwerkstoffmarkt und sich als Lieferant für die Automobil-, Maschinenbau- sowie Luftfahrt-, Medizin- und Sportgeräteindustrie zu etablieren.

Report

Einleitung, Problemstellung und Zielsetzung

Carbonfaserverstärkte Verbundwerkstoffe (CFK) werden aufgrund ihrer hohen Steifigkeit und Festigkeit sowie der geringen Dichte zunehmend in Leichtbauanwendungen eingesetzt, insbesondere in den Bereichen Luft- und Raumfahrt, Transport, Windenergie, Sport oder Bau. Der globale CFK Bedarf wird sich Prognosen zufolge bis 2024 auf 197.000 t/a erhöhen und damit im Vergleich zu 2011 fast verdreifachen. Das zeigt den dringenden Bedarf an Lösungen zur Wiederverwertung der hochwertigen CF (rCF) im Sinne der Circular Economy. Das ist nicht nur aufgrund strenger rechtlicher Bestimmungen, sondern auch aus ökologischen sowie ökonomischen Gründen eine Notwendigkeit. Zahlreiche Forschungsinstitute und Unternehmen entwickelten in den letzten Jahren Lösungen zur Wiederverwendung von rCF in den Bereichen Vliesstoffe, Spritzgießen oder als Hybridgarne. Diese Arbeiten umfassen allerdings mehrheitlich den Einsatz von rCF in Kombination mit thermoplastischen Fasern für thermoplastische Composites. Für den Bereich rCF basierter duroplastischer CFK wurden bisher vorwiegend rCF-Vliesstoffe aus 100% rCF entwickelt. Da die Fasern in den Vliesstoffen prinzipbedingt nur eine begrenzte Länge und eine geringe Orientierung aufweisen und zusätzlich prozessbedingt hohen Faserschädigung auftreten, sind damit bisher nur max. 30% der Verbundkennwerte von CFK-Bauteilen aus Carbonfilamentgarnen erreichbar.

Aktuell sind die im Bereich hochbelastbarer CFK verwendeten Matrixsysteme überwiegend duroplastisch. Derartige Bauteile weisen eine hohe Formstabilität und hohe Steifigkeiten sowie Festigkeiten auf und eignen sich aufgrund niedrigviskoser Matrixsysteme zur Umsetzung komplexer Bauteilgeometrien. Jedoch werden aufgrund der bisher für diese Bauteile nur ungenügend in rCF abbildbaren, notwendigen Eigenschaften vorrangig Primärcarbonfilamentgarne eingesetzt. Neben einer geringen Nachhaltigkeit verursacht das auch um mind. 200 % höhere Kosten. Die Herstellung primäres Carbonfilamentgarnes erfordert einen hohen Energiebedarf von ca. 230 MJ/kg mit einem CO2-Emissionsäquivalent von 20 kg CO2/kg CF. Hier ist eine deutliche Verbesserung der CO2-Bilanz notwendig, um einen wesentlichen Beitrag zu den anvisierten Klimaschutzzielen der BRD bzw. der EU leisten zu können. Aus diesem Grund ist der Fokus der Projektarbeit die Entwicklung neuartiger, nachhaltiger rCF-Heavy Tows aus recycelten Carbonfasern (rCF) und dazugehöriger Fertigungstechnologien zur Umsetzung kostengünstiger duroplastischer Composites mit hohem Leistungsvermögen.

Danksagung

Das IGF-Vorhaben 21612 BR der Forschungsvereinigung Forschungskuratorium Textil e.V. wurde über die AiF im Rahmen des Programms zur Förderung der industriellen Gemeinschaftsforschung und -entwicklung (IGF) vom Bundesministerium für Wirtschaft und Klimaschutz (BMWK) aufgrund eines Beschlusses des Deutschen Bundestages gefördert. Wir danken den genannten Institutionen für die Bereitstellung der finanziellen Mittel.

Authors: Mahmud Hossain, Anwar Abdkader und Chokri Cherif

Technische Universität Dresden
Fakultät Maschinenwesen
Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM)
01062 Dresden

https://tu-dresden.de/mw/itm

More entries from TU Dresden, Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik ITM

19.04.2023

Forschung am ITM der TU Dresden für eine Webtechnologie zur Fertigung neuer Thermogewebe

Fabrics Textile machinery Sustainability Smart Textiles Fashion

Abstract

Im Frühjahr des Jahres 2023 ist mit branchenübergreifender Beteiligung der Industrie das IGF-Projekt „Entwicklung einer Webtechnologie zur integralen Fertigung von Vlies-Thermogeweben mit Heizfunktion“ (IGF 22817 BR) am ITM angelaufen. Projektziel ist die Entwicklung eines einstufigen Webverfahrens zur Herstellung gekammerter Mehrlagengewebe mit integriertem Dämmmaterial.

Report

Sport- und Outdoorbekleidung sind heutzutage beliebter denn je, da immer mehr Menschen ihre Freizeitaktivitäten in der Natur verbringen möchten. Mit steigendem Interesse an Wandern, Skifahren und anderen Outdoor-Aktivitäten wächst auch die Nachfrage nach hochwertiger Ausrüstung, wie zum Beispiel Thermojacken und Schlafsäcken.

Solche isolierenden Thermostrukturen werden auch im Automobilbau zur Dachisolation verwendet. Diese mehrschichtigen Strukturen umfassen einen Ober- und Unterstoff sowie den dazwischenliegenden Dämmstoff. Zur Verbindung der Lagen werden Steppnähte eingesetzt, die die Lagen zueinander in Position halten. Durch das eingeschlossene Luftvolumen kann ein hoher Isolationsgrad erreicht werden, der jedoch im Bereich der Steppnähte durch die Komprimierung des Dämmstoffes und den in Wärmedurchgangsrichtung verlaufenden Steppfaden stark abnimmt. Die so entstehenden Kältebrücken reduzieren die Funktionalität der Produkte und begrenzen das Potenzial der Dämmstoffe stark. Darüber hinaus umfasst die Fertigung der Thermostrukturen mehrere teils komplexe zeit- und materialintensive Teilschritte. Zur Vermeidung beschriebener Kältebrücken und Vereinfachung des Herstellverfahrens wird in diesem Projekt die Entwicklung eines Webverfahrens angestrebt, dass die integrale Fertigung von Thermostrukturen erlaubt. Durch die Substitution des Ober- und Unterstoffs durch ein gekammertes Mehrlagengewebe mit Bindekette wird die Verbindung der Lagen ohne Steppnähte gewährleistet.

Eingebrachte Heizstrukturen sollen die Wärmewirkung zusätzlich erhöhen. Die Verwendung einer Jacquardmaschine bietet außerdem die Möglichkeit einer freien Musterung der Deckflächen, deren Designmöglichkeiten zurzeit durch den Steppnahtverlauf begrenzt werden.

Schwerpunkt des Projektes ist die Entwicklung einer industriell verwendbaren und KMU-gerechten Auslegungsmethodik für beschriebene Thermogewebe, wodurch bei individuellen Kundenanfragen schnell strukturelle, geometrische und materialseitige Vorgaben bereitgestellt werden. Ein weiterer Schwerpunkt ist die konstruktiv-technologische Entwicklung eines Webverfahrens inklusive Trenn-, Vorlage- und Verarbeitungsprozess des Dämmmaterials, die Entwicklung geeigneter Gewebebindungen und einem Konzept für einen produktspezifischen Warenabzug. Die integrale Fertigung der Thermostruktur an Funktionsmustern wird darauf aufbauend beispielhaft erprobt und bewertet.

Die Anwendungsfelder für integral gewebte Thermostrukturen reichen vom Funktionsbekleidungsbereich über den Tierbedarf in Form von z. B. Pferdedecken bis hin zu Isolationsanwendungen im Fahrzeugbau. Die Beteiligung der Industrie mit Vertretern verschiedener Branchen wie Smart Textiles, Vliesstoff-, Gewebe- und Garnherstellung, Softwareentwicklung, Fahrzeugbau und Textilhersteller zeigt den deutlichen Bedarf an solchen Innovationen.

Ziel des Projektes ist es, den Wärmedurchgangskoeffizienten von Thermostrukturen um ca. 20 % im Vergleich zu gesteppten Konstruktionen zu reduzieren. Damit soll ein deutlicher Wettbewerbsvorteil durch die stark verbesserte Performance von Outdoorbekleidung und Thermotextilien in verschiedene Branchen geschaffen werden. Die einstufige Fertigung ermöglicht zusätzlich die Einsparung von Herstellkosten. Mit den Projektergebnissen soll ein Beitrag zur Nachhaltigkeit und kosteneffizienten Fertigung von Thermostrukturen geleistet werden. Darüber hinaus wird eine Verbesserung in den Technologiesektoren Textilmaschinenbau und Weberei erreicht.

Das IGF-Vorhaben 2817 BR (Entwicklung einer Webtechnologie zur integralen Fertigung von Vlies-Thermogeweben mit Heizfunktion) der Forschungsvereinigung Forschungskuratorium Textil e.V. wird über die AiF im Rahmen des Programms zur Förderung der Industriellen Gemeinschaftsforschung (IGF) vom Bundesministerium für Wirtschaft und Klimaschutz aufgrund eines Beschlusses des Deutschen Bundestages gefördert.

Technische Universität Dresden
Fakultät Maschinenwesen
Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM)
01062 Dresden

https://tu-dresden.de/mw/itm

More entries from TU Dresden, Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik ITM

05.04.2023

High-efficiency electrodes with ultralight fabric-based current collectors for lithium-ion batteries

Fabrics Sustainability Technical Textiles

Abstract

Lithium-ion batteries (LIB) are indispensable key components for electro mobility and the success of the energy transition. They offer high energy density and high cycle stability. Eight partners from industry and science are developing technologies and components in the funded project "revoLect" (funding code: 03ETE041) in order to be able to produce resource-saving and more efficient LIBs. The project is pursuing two key innovations: the replacement of the usual metal foils with a metallized fabric structure and the use of silicon as anode material.

Report

Batteries are one of the key components for the success of the global energy transition. They are indispensable as stationary energy storage devices in combination with electricity from renewable energies and are a basic prerequisite for electro mobility. The demand for batteries is currently increasing enormously. Already, about 16% of newly registered passenger cars in Germany have an electric drive [1]. In addition to this increasing demand for electro mobility, there is also an increasing demand for batteries for smartphones, laptops, electric bicycles and stationary energy storage

The most important current battery type is lithium-ion batteries (LIB). Their high energy density and high cycle stability offer a long range for electric vehicles at marketable costs. The task now is to exploit the potential of the batteries by further developing all their components and their production technologies. This is the goal pursued by the eight project partners of the revoLect project funded by the German Federal Ministry of Economics and Climate Protection BMWK. The project partners are pooling their expertise along the entire process chain of battery production. In the project, novel electrodes with lightweight fabric-based current collectors are being developed for lithium-ion batteries using a resource-saving technology. This technology requires less use of primary raw materials such as copper and aluminum compared to previous lithium-ion batteries. At the same time, this technology enables higher energy densities and thus further material savings from the cell to the system level. Another development focus is the use of pure silicon as anode material in combination with the lightweight fabric structure of the electrodes.

Project partner PORCHER INDUSTRIES GERMANY GmbH is a specialist in the production of glass fabrics from glass filament yarns. In the revoLect project, PORCHER INDUSTRIES is developing ultralight glass fabrics as the basis for electricity collectors. The aim here is to produce ultralight fabrics from the finest glass filament yarns. In parallel, the Dresden University of Technology, Institute of Textile Machinery and High Performance Material Technology (ITM), is developing ultralight carbon fabrics based on a carbon spreading technology for the highly efficient electrodes.

The developed carbon and glass fabrics are metallized by elfolion GmbH by vacuum processes for use as current collectors. The current collector strip material is provided for the production of composite electrodes. elfolion itself is aiming at the realization of a cell cathode, consisting of fractal porous solid structures, which are the active component of the electrode. Compared to the state of the art, the open-mesh and lightweight structure of the fabrics and the porous coating lead to significantly reduced material usage and larger active surfaces. This increases the energy density of battery cells significantly in terms of both mass and volume.

The RWTH Aachen University, Chair of Production Engineering of E-Mobility Components (PEM), is developing processes for coating the fabric-based current collectors with slurry-based electrode materials. Among other things, the pilot plant for cell production is being adapted to process the novel materials. In addition, it is investigating the design and production of the battery cells based on the components provided by the project partners.

Fraunhofer FEP's goal in the revoLect project is to develop a process for depositing silicon on the fabric structures. Claus Luber explains: "We have to match the silicon layer and the fabric structures in such a way that an optimum is achieved with regard to the gravimetric energy density of the anode. Fraunhofer FEP has decades of experience in the development of roll-to-roll technologies. Based on this, we will develop a suitable and economically attractive roll-to-roll vapor deposition process."

The partner CUSTOMCELLS ® coats the novel substrates with electrode paste under industry-standard conditions. Subsequently, the performance of the batteries is tested by electrochemical measurements.

The Institute for Experimental Physics at the Technical University of Freiberg is involved in the characterization of the processed individual components and button and pouch cells. From this, microstructure-property correlations as well as design proposals and processing parameters will be derived for the cooperation partners.

ROMONTA GmbH interconnects the manufactured cells to battery systems and carries out final practice-related application tests. In the evaluation, cell parameters such as aging and current/voltage resistance are to be analyzed and transferred to the mobile application. This will ensure the powerful performance of the LIB.

Lithium-ion batteries with significantly increased energy density and lower material consumption compared to the state of the art: this is the ambition of the project consortium. All partners in the revoLect project will be working at full speed over the next 3 years on application-oriented development along the entire process chain for the production of highly efficient lithium-ion batteries.

[1] source: ADAC- new car registrations in November 2022, www.adac.de/news/neuzulassungen-kba/

About the project

revoLect - High-efficiency electrodes with ultralight fabric-based current collectors for lithium-ion batteries. Subproject: Development of vacuum technologies for the productive deposition of columnar silicon layers on fabric.

Funding reference: 03ETE041                   

Duration: 01.09.2022 – 31.08.2025

Project partner:

  • Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP
  • Technische University of Technology – Faculty of Chemistry and Physics - Institute for Experimental Physics
  • Rheinisch-Westfälische Technische Hochschule Aachen - Faculty 4 – Mechanical Engineering – Chair of Production Engineering of E-Mobility Components (PEM)
  • Dresden University of Technology – Faculty of Mechanical Engineering – Institute for Textile Machinery and Textile High Performance Materials
  • Porcher Industries Germany GmbH
  • elfolion GmbH
  • ROMONTA GmbH
  • CUSTOMCELLS®

 

Technische Universität Dresden
Fakultät Maschinenwesen
Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM)
01062 Dresden

https://tu-dresden.de/mw/itm

Downloads:

More entries from TU Dresden, Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik ITM

05.04.2023

Hocheffiziente Elektroden mit ultraleichten Stromsammlern auf Gewebebasis für Lithium-Ionen-Batterien

Fabrics Sustainability Technical Textiles

Abstract

Lithium-Ionen-Batterien (LIB) sind unverzichtbare Schlüsselkomponenten für die Elektromobilität und das Gelingen der Energiewende. Sie bieten eine hohe Energiedichte und hohe Zyklenfestigkeit. Acht Partner aus Industrie und Wissenschaft entwickeln im Förderprojekt „revoLect“ (Förderkennzeichen: 03ETE041) Technologien und Komponenten, um ressourcenschonende und effizientere LIBs produzieren zu können. Das Projekt verfolgt zwei wesentliche Innovationen: der Ersatz der üblichen Metallfolien durch eine metallisierte Gewebestruktur als Stromsammler und der Einsatz von Silizium als Anodenmaterial.

Report

Batterien sind eine der Schlüsselkomponenten für den Erfolg der globalen Energiewende. Sie sind unverzichtbar als stationäre Energiespeicher im Zusammenspiel mit Strom aus erneuerbaren Energien und stellen eine Grundvoraussetzung der Elektromobilität dar. Der Bedarf an Batterien steigt gegenwärtig enorm. Bereits jetzt haben etwa 16% der neuzugelassenen PKW in Deutschland einen Elektroantrieb [1]. Zu diesem steigenden Bedarf bei der Elektromobilität kommt der steigende Bedarf an Batterien für Smartphones, Laptops, Elektrofahrrädern und die stationäre Energiespeicherung.

Der wichtigste gegenwärtige Batterietyp sind Lithium-Ionen-Batterien (LIB). Ihre hohe Energiedichte und hohe Zyklenfestigkeit bieten eine hohe Reichweite für Elektrofahrzeuge zu marktfähigen Kosten. Nun gilt es, das Potenzial der Batterien durch eine Weiterentwicklung all ihrer Komponenten und deren Produktionstechnologien auszuschöpfen. Dieses Ziel verfolgen die acht Projektpartner des vom Bundesministerium für Wirtschaft und Klimaschutz BMWK geförderten Projektes revoLect. Die Projektpartner bündeln ihre Kompetenzen entlang der gesamten Prozesskette der Batterieproduktion. Im Projekt werden neuartige Elektroden mit leichtgewichtigen Stromsammlern auf Gewebebasis für LIB mit einer ressourcenschonenden Technologie entwickelt. Diese Technologie erfordert einen geringeren Einsatz von Primärrohstoffen wie zum Beispiel Kupfer und Aluminium, verglichen mit etablierten Verfahren. Gleichzeitig ermöglicht diese Technologie höhere Energiedichten und dadurch weitere Materialeinsparungen von der Zell- bis zur Systemebene. Ein weiterer Entwicklungsschwerpunkt ist der Einsatz von reinem Silizium als Anodenmaterial in Kombination mit der leichten Gewebestruktur der Elektroden.

Der Projektpartner PORCHER INDUSTRIES GERMANY GmbH ist ein Spezialist für die Fertigung von Glasgeweben aus Glasfilamentgarnen. Im Projekt revoLect entwickelt PORCHER INDUSTRIES ultraleichte Glas-Gewebe als Basis für die Stromkollektoren. Ziel ist hier ultraleichte Gewebe aus feinsten Glasfilamentgarnen herzustellen. Parallel dazu erarbeitet die Technische Universität Dresden, Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM), ultraleichte Carbongewebe auf Basis einer Carbonspreiztechnologie für die hocheffizienten Elektroden.

Die entwickelten Carbon- und Glasgewebe werden von der elfolion GmbH durch vakuumtechnische Verfahren für den Einsatz als Stromkollektoren metallisiert. Das Stromkollektor-Bandmaterial wird zur Herstellung von Elektroden im Verbund bereitgestellt. Die elfolion selbst strebt die Realisierung einer Zell-Kathode, bestehend aus fraktalen porösen Festkörperstrukturen, die die Aktivkomponente der Elektrode darstellen, an. Die offenmaschige und leichte Struktur der Gewebe und die poröse Beschichtung führt gegenüber dem Stand der Technik zu deutlich reduziertem Materialeinsatz und größeren aktiven Oberflächen. Damit wird sowohl masse- als auch volumenbezogen die Energiedichte von Batteriezellen deutlich gesteigert.

Die Rheinisch-Westfälische Technische Hochschule Aachen, Lehrstuhl Production Engineering of E-Mobility Components (PEM), erarbeitet Prozesse zur Beschichtung der gewebebasierten Stromkollektoren mit Elektrodenmaterialien auf Slurrybasis. Dazu wird u.a. die Pilotanlage zur Zellproduktion auf die Verarbeitung der neuartigen Materialien adaptiert. Darüber hinaus untersucht sie die Auslegung und Produktion der Batteriezellen beruhend auf den, durch die Projektpartner, zur Verfügung gestellten Komponenten.

Das Ziel des Fraunhofer FEP im Projekt revoLect besteht in der Entwicklung eines Verfahrens zur Abscheidung von Silizium auf den Gewebestrukturen. Claus Luber erläutert: „Die Siliziumschicht und die Gewebestrukturen müssen wir so aufeinander abstimmen, dass hinsichtlich der gravimetrischen Energiedichte der Anode ein Optimum erzielt wird. Das Fraunhofer FEP hat jahrzehntelange Erfahrung in der Entwicklung von Rolle-zu-Rolle-Technologien. Darauf aufbauend werden wir einen passenden und ökonomisch attraktiven Rolle-zu-Rolle Bedampfungsprozess entwickeln.“

Der Partner CUSTOMCELLS® beschichtet die neuartigen Substrate mit Elektrodenpaste unter industrieüblichen Bedingungen. Anschließend wird durch elektrochemische Messungen die Leistungsfähigkeit der Batterien geprüft.

Das Institut für Experimentelle Physik der Technischen Universität Bergakademie Freiberg beschäftigt sich projektbegleitend mit der Charakterisierung der prozessierten Einzelkomponenten sowie Knopf- und Pouch-Zellen. Daraus werden Mikrostruktur-Eigenschaft-Korrelationen sowie Designvorschläge und Prozessierungsparameter für die Kooperationspartner abgeleitet.

Die ROMONTA GmbH schaltet die hergestellten Zellen zu Batteriesystemen zusammen und führt abschließende praxisbezogene Anwendungstests durch. In der Auswertung sollen Zellparameter wie z.B. Alterung und Strom-/Spannungsfestigkeit analysiert und auf die Anwendung im mobilen Bereich übertragen werden. Dadurch wird die leistungsstarke Performance der LIB sichergestellt.

LIB mit einer deutlich erhöhten Energiedichte und einem geringeren Materialverbrauch gegenüber dem Stand der Technik: das ist die Ambition des Projektkonsortiums. Alle Partner des Projektes revoLect arbeiten in den nächsten 3 Jahren mit Hochdruck an der anwendungsnahen Entwicklung entlang der gesamten Prozesskette zur Herstellung hocheffizienter LIB.

[1] Quelle: ADAC- Neuzulassungen im November 2022, www.adac.de/news/neuzulassungen-kba/

Über das Projekt

revoLect - Hocheffiziente Elektroden mit ultraleichten Stromsammlern auf Gewebebasis für Lithium-Ionen-Batterien

Förderkennzeichen: 03ETE041                  

Förderzeitraum: 01.09.2022 – 31.08.2025

Projektpartner:

  • Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP
  • Technische Universität Freiberg – Fakultät für Chemie und Physik – Institut für Experimentelle Physik
  • Rheinisch-Westfälische Technische Hochschule Aachen - Fakultät 4 - Maschinenwesen - Lehrstuhl für Production Engineering of E-Mobility Components (PEM)
  • Technische Universität Dresden - Fakultät Maschinenwesen - Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik
  • Porcher Industries Germany GmbH
  • elfolion GmbH
  • ROMONTA GmbH
  • CUSTOMCELLS®

Technische Universität Dresden
Fakultät Maschinenwesen
Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM)
01062 Dresden

https://tu-dresden.de/mw/itm

Downloads:

More entries from TU Dresden, Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik ITM