Forschungspublikationen

16.01.2023

Increased performance and sustainability through the use of profiled textile reinforcements for concrete applications

Fasern Garne Gestricke & Gewirke Textilmaschinenbau Nachhaltigkeit Technische Textilien

Zusammenfassung

At the ITM of the TU Dresden, new, bond optimized reinforcement yarns were developed on the basis of braiding and forming technology, which can transmit up to 500 % higher bond forces in concrete than yarns without profile. The profiled rovings and braided yarns show at a bond length of only 50 mm a full anchoring. With the forming technology developed at the ITM, profiled rovings could be manufactured which, due to the patented tetrahedral geometry, can almost completely exploit the tensile potential of the carbon fibers.

Bericht

Abstract
Building in a resource-saving way and still exploiting a high performance potential, is that even possible? At the Institute for Textile Machinery and High Performance Material Technology (ITM) at the TU Dresden, such composite optimized profiled textile reinforcements for concrete applications and the related manufacturing technology were developed as part of the research project IGF 21375 BR. On the basis of braiding and forming technology, a new generation of profiled reinforcement yarns was developed with the help of simulation-based investigations. Like ribbed steel reinforcements, these profiled yarns have a very high bond with the concrete matrix, but despite the profiling they almost fully exploit the performance potential of the carbon fibers in terms of tensile properties. In this way, the bond length required for complete force transmission between the textile reinforcement and the concrete can be reduced to just a few centimeters, and up to 80 % of the component-dependent oversizing of the textile reinforcement can be saved. The further development of the multiaxial warp knitting technology for the requirement-based and fiber-friendly processing of the profiled yarns into grid-like reinforcement structures enables the production of profiled textile reinforcement structures with the highest bond properties for use in carbon-reinforced concrete components with maximum material and resource efficiency.

Initial situation and problem definition
As is generally known, climate change is the greatest challenge of the 21st century, which can only be successfully overcome by consistently saving resources and CO2 emissions. Since the construction industry, with a share of approx. 38 % of global CO2 emissions, has made a significant contribution to global warming to date, in particular due to the enormous cement consumption [1], a change to more energy and resource efficiency as well as a growing awareness of sustainability is absolutely necessary. In the course of this, a resource-efficient carbon concrete, consisting of a corrosion-resistant textile reinforcement in combination with a significantly reduced concrete cover, is established in the construction industry as a convincing alternative to conventional steel reinforced concrete [2,3].

Due to the high load-bearing capacity of the textile reinforcement with the smaller concrete cross-sections required, the bond between the textile and the concrete is extremely important. So far, R&D has focused on the development of impregnations and impregnation systems for improved material bond with the concrete matrix [4]. However, only small forces with a shear flow of about 5 - 40 N/mm can be transferred, an efficient utilization of the textile reinforcement is not possible. Solutions with profiling of the yarn surface promise significant improvements in the transmission of bond forces [5]. Therefore, new technologies for the continuous and reproducible production of profiled textile high-performance fiber yarns and their further processing into reinforcement structures were developed within a research project at the ITM of the TU Dresden. These innovative, profiled reinforcements are characterized by their ability to transmit significantly higher bond forces in concrete [6,7]. In particular, this was realized by a form-fitting effect between the textile and the concrete, that meets the specific requirements of a stiff and symmetrical surface profile of the reinforcement yarns in order to guarantee a constant and high force transmission. To generate the yarn profiling, solutions based on braiding technology and forming processes were developed and implemented with the help of simulation-supported studies. The premises were a permanently stable textile structure and a profile with a symmetrical structure. The realization of grid-like reinforcement structures, consisting of the profiled reinforcement yarns, was carried out using the multiaxial warp knitting technology. This was developed further on a modular basis with regard to the existing processes (yarn feeding, weft yarn insertion, knitting process, impregnation and winding) in accordance with the necessary adaptation measures for the fiber-friendly and requirement-based further processing of the profiled reinforcement yarns into grid-like structures.

Development of the innovative profiled reinforcement yarns
For the development of bond optimized profiled reinforcement yarns for concrete applications, a simulation-supported yarn development was carried out on the basis of braiding and forming technology. In particular, the main challenge was to realize profiled yarns with minimal structural elongation, so that, an initial force transmission of the textile reinforcement is possible and the concrete crack widths are minimized [3] if the concrete matrix fails at approx. 0.2 % elongation. For this purpose, a new type of varying braiding structure was developed. Moreover the braiding technology was further developed to enable a low-undulation and pre-stabilization of the braiding yarn structure during the braiding process, yet still ensuring further textile processing. As a result, it is now possible to implement novel vario braiding yarns as well as conventional packing braided yarns, consisting of carbon fibers with nearly eliminated structural elongation, minimal fiber damage and the required pre-stabilization of the yarn structure (see Table 1).

...

Performance potential of the new profiled reinforcement yarns
The newly developed profiled reinforcement yarns are characterized by nearly unchanged tensile properties, yet up to 500 % higher bond properties compared to carbon rovings without profile or rovings extracted from reference textiles (see Figure 1). In addition, they do not show any noticeable structural elongation, so that an initial force transmission is possible without additional crack opening after the failure of the concrete matrix. However, an increase in bond strength of more than 500 % from approx. 20 N/mm of the carbon rovings without a profile to over 100 N/mm of the profiled reinforcement yarns was achieved, which is accompanied by a significant increase in material efficiency (see Figure 1). The vario braiding yarns in particular are characterized by very high bond stiffness, which is of particular interest for an initial force transmission. The packing braiding yarns and the profiled rovings with tetrahedral geometry have almost the same bond properties. The bond stiffness is marginally lower compared to the vario braiding yarns, whereas their production is more productive than the vario braiding yarns.

Development of the multiaxial-warp knitting process
To process the newly profiled reinforcement yarns into a grid-like reinforcement structure, a biaxial warp knitting machine Malimo 14022 at the ITM and the corresponding sub-processes (yarn feeding, weft yarn insertion, knitting process, impregnation and winding) were adapted and further developed so that on the one hand the pre-stabilized braiding yarns and the consolidated tetrahedral-shaped profiled rovings can be processed further. For this purpose, the weft thread laying process in particular was modified by developing a new type of weft thread guide for the laying of the pre-stabilized braiding yarns. Since the rigid profiled rovings could not be processed with the conventional weft laying process, a new type stick placement system consisting of a stick magazine and a shaft with profile rollers was developed (see Figure 2). The pre-cut sticks were individually inserted via the stick placement system into a transport chain modified with new fixing elements.

In order to guarantee textile processing, the pre-stabilized braiding yarns were impregnated and consolidated after the warp knitting process, contrary to the rigid profiled rovings, which do not require any further impregnation.. On the basis of extensive production tests, a new type of impregnation system was developed based on the kiss coater process with an additional coating roller for applying an impregnation agent to both sides of the pre-stabilized braiding yarns. Various reinforcement structures were manufactured and characterized with the implemented system technology. Figure 3 shows a new type of profiled textile reinforcement consisting of prefabricated profiled rovings with tetrahedral shape.

Acknowledgments
The IGF research project 21375 BR of the Forschungsvereinigung Forschungskuratorium Textil e. V. is funded through the AiF within the program for supporting the „Industriellen Gemeinschaftsforschung (IGF)“ from funds of the Federal Ministry for Economic Affairs and Climate Action on the basis of a decision by the German Bundestag.

The complete publication is available as download.

AutorInnen: Penzel, Paul; Hahn, Lars; Abdkader, Anwar; Cherif, Chokri

Technische Universität Dresden
Fakultät Maschinenwesen
Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM)
01062 Dresden

https://tu-dresden.de/mw/itm

More entries from TU Dresden, Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik ITM

16.01.2023

Leistungsfähigkeit und Nachhaltigkeit steigern durch den Einsatz von verbundgerecht profilierten Textilbetonbewehrungen

Fasern Garne Gestricke & Gewirke Textilmaschinenbau Nachhaltigkeit Technische Textilien

Zusammenfassung

Am ITM der TU Dresden wurden neuartige, verbundoptimierte Bewehrungsgarne auf Basis der Flecht- und Tränkumformtechnik simulationsgestützt entwickelt, die bis zu 500 % höhere Verbundkräfte im Beton als Garne ohne Profilierung übertragen können. Die Profil- und Flechtgarne weisen bereits bei einer Verbundlänge von nur 50 mm eine vollständige Verankerung auf.

Bericht

Abstract
Ressourcenschonend Bauen und dennoch ein hohes Leistungspotential ausschöpfen, ist das überhaupt möglich? Am Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM) der TU Dresden wurden im Rahmen des Forschungsprojektes IGF 21375 BR verbundgerecht profilierte Textilbetonbewehrungen sowie die dazugehörigen Fertigungstechnologien entwickelt, die genau dies ermöglichen. Auf Basis der Flecht- und Tränkumformtechnik wurden neuartig profilierte Bewehrungsgarne simulationsgestützt entwickelt, die analog zu gerippten Stahlbewehrungen einen sehr hohen Verbund mit der Betonmatrix aufweisen und das hohe Leistungspotential der Carbonfasern hinsichtlich der zugmechanischen Eigenschaften ausnutzen. Damit kann die notwendige Verbundlänge für eine vollständige Kraftübertragung zwischen Textilbewehrung und Beton auf wenige Zentimeter reduziert, und somit bis zu 80 % der bauteilabhängigen Überdimensionierung der Textilbewehrung eingespart werden. Die Weiterentwicklung der Multiaxial-Kettenwirktechnik zur anforderungsgerechten und faserschonenden Verarbeitung der profilierten, konsolidierten Garne zu gitterförmigen Bewehrungsstrukturen ermöglicht die Fertigung von profilierten Textilbetonbewehrungen mit höchsten Verbundeigenschaften für den Einsatz in Carbonbeton-Bauteilen mit maximaler Material- und Ressourceneffizienz.

Ausgangssituation und Problemstellung
Bekannterweise ist der Klimawandel die größte Herausforderung des 21. Jahrhunderts, welcher nur durch eine konsequente Einsparung von Ressourcen und CO2-Emmision erfolgreich bewältigt werden kann. Da die Baubranche mit einem Anteil von ca. 38 % der weltweiten CO2-Emission, insbesondere aufgrund des enormen Zementverbrauchs, einen erheblichen Beitrag zur bisherigen Klimaerwärmung hat [1], ist ein Wandel zu mehr Energie- und Ressourceneffizienz sowie einem wachsenden Nachhaltigkeitsbewusstsein zwingend erforderlich. Im Zuge dessen etabliert sich insbesondere der ressourceneffiziente Carbonbeton, bestehend aus einer korrosionsbeständigen Textilbewehrung in Kombination mit einer deutlich reduzierten Betondeckung, im Bauwesen als überzeugende Alternative zum konventionellen Stahlbeton zunehmend [2,3].  

Aufgrund der hohen Tragfähigkeiten der textilen Bewehrung bei kleineren notwendigen Betonquerschnitten kommt jedoch dem Verbund zwischen Textil und Beton eine außerordentlich große Bedeutung zu. Bisher lag der Fokus der F&E auf der Entwicklung von Tränkungsmitteln und zugehöriger Tränkungssysteme zur Verbesserung des stoffschlüssigen Haftverbundes mit der Betonmatrix [4]. Damit lassen sich jedoch nur geringe Kräfte mit einem Schubfluss von etwa 5-40 N/mm übertragen, eine effiziente Ausnutzung der textilen Bewehrung ist nicht möglich. Signifikante Verbesserungen zur Übertragung der Verbundkräfte versprechen Lösungen mit einer Profilierung der Garnoberfläche [5]. Daher wurden im Rahmen des IGF-Forschungsprojektes 21375 am ITM der TU Dresden neuartige Technologie zur kontinuierlichen und reproduzierbaren Herstellung profilierter textiler Hochleistungsgarne und deren Weiterverarbeitung zu Bewehrungsstrukturen entwickelt. Diese neuartigen, profilierten Bewehrungen zeichnen sich dadurch aus, dass diese im Betonverbund deutlich höhere Kräfte übertragen können [6,7]. Zur Generierung einer Profilierung auf Garnebene wurden Lösungen auf Basis der Flechttechnik und mittels tränkumformtechnischer Verfahren simulationsgestützt entwickelt und umgesetzt. Die Prämissen waren eine unnachgiebige Profilgebung mit garnaxial symmetrischem Aufbau, damit eine gleichmäßige und hohe Lastübertragung gewährleistet ist. Die Herstellung gitterartiger Bewehrungsstrukturen, bestehend aus den profilierten Bewehrungsgarnen, erfolgte durch die Weiterentwicklung der Multiaxial-Kettenwirktechnik. Diese wurde entsprechend der notwendigen Anpassungsmaßnahmen zur schädigungsarmen und anforderungsgerechten Weiterverarbeitung der profilierten Bewehrungsgarne zu Gitterstrukturen hinsichtlich der bestehenden Teilprozesse (Garnzuführung, Schusslegung, Maschenbildung, Tränkung und Aufwicklung) modular weiterentwickelt.

Entwicklung der neuartig profilierten Bewehrungsgarne
Für die anforderungsgerechte Entwicklung von profilierten Bewehrungsgarnen für Betonanwendungen erfolgte eine simulationsgestützte Garnentwicklung auf Basis der Flecht- und Tränkumformtechnik. Die wesentliche Herausforderung bestand insbesondere darin, profilierte Garne mit minimaler Strukturdehnung zu realisieren, sodass beim Versagen der Betonmatrix bei ca. 0,2 % Dehnung eine initiale Kraftübertragung der Textilbewehrung ermöglicht wird und die Rissbreiten minimiert werden [3]. Hierzu wurde eine neuartige Flechtstruktur mit einem Varioflechter entwickelt. Darüber hinaus wurde der Flechtprozess derart weiterentwickelt, dass eine ondulationsarme Vorstabilisierung der Flechtgarnstruktur während des Flechtprozesses ermöglicht wird und dennoch eine textile Weiterverarbeitbarkeit gewährleistet ist. Im Ergebnis wurden neuartige Varioflechtgarne sowie konventionelle Packungsflechtgarne bestehend aus Carbonfasern mit nahezu eliminierter Strukturdehnung, minimaler Faserschädigung und anforderungsgerechter Vorstabilisierung der Garnstruktur realisiert (siehe Tabelle 1).

...

Leistungspotential der neuartigen profilierten Bewehrungsgarne
Die neuentwickelten profilierten Bewehrungsgarne zeichnen sich durch nahezu unveränderte zugmechanische Eigenschaften, jedoch bis zu 500 % höhere Verbundeigenschaften im Vergleich zu Carbonrovings ohne Profilierung bzw. aus Referenztextilien extrahierten Rovings aus (siehe Abbildung 1). Zudem weisen sie keine erkenntliche Strukturdehnung auf, sodass eine initiale Kraftübertragung ohne zusätzliche Rissöffnung nach dem Versagen der Betonmatrix möglich ist. Jedoch konnte eine Verbundsteigerung um über 500 % von ca. 20 N/mm der Carbonrovings ohne Profil auf über 100 N/mm der profilierten Bewehrungsgarne erzielt werden, womit eine signifikante Steigerung der Materialeffizienz einhergeht (siehe Abbildung 1). Hierbei zeichnen sich insbesondere die Varioflechtgarne durch sehr hohe Verbundsteifigkeiten aus, die für eine initiale Kraftübertragung von besonderem Interesse sind. Die Packungsflechtgarne sowie die Profilgarne mit Tetraeder-Geometrie haben annähernd gleiche Verbundeigenschaften. Die Verbundsteifigkeit ist im Vergleich zu den Varioflechtgarnen etwas geringer, jedoch ist deren Fertigung produktiver.

...

Weiterentwicklung des Flächenbildungsprozesses
Zur Verarbeitung der neuartig profilierten Bewehrungsgarne zu einer gitterförmigen Bewehrungsstruktur wurde eine am ITM vorhandene Biaxial-Kettenwirkmaschine des Typs Malimo 14022 sowie die entsprechenden Teilprozesse (Garnzuführung, Schusslegung, Maschenbildung, Tränkung und Aufwicklung) angepasst und weiterentwickelt, sodass einerseits die vorstabilisierten Flechtgarne sowie die konsolidierten tetraederförmigen Profilgarne weiterverarbeitbar sind. Hierzu wurde insbesondere der Schusslegungsprozess dahingegen modifiziert, dass ein neuartiger Schussfadenführer für die Schusslegung der vorstabilisierten Flechtgarne entwickelt wurde. Die biegesteifen Profilgarne können nicht mit dem konventionellen Schusslegungsverfahren verarbeitet werden, sodass ein neuartiges Stabablagesystem bestehend aus eine Schussstab-Magazin-Speicher und einer Welle mit Profilwalzen entwickelt wurde (siehe Abbildung 2). Die vorkonfektionierten Schussstäbe wurden über das Stabablagesystem vereinzelt in eine mit neuen Halteelemente modifizierte Transportkette eingelegt.

...

Zusammenfassung
Am ITM der TU Dresden wurden neuartige, verbundoptimierte Bewehrungsgarne auf Basis der Flecht- und Tränkumformtechnik simulationsgestützt entwickelt, die bis zu 500 % höhere Verbundkräfte im Beton als Garne ohne Profilierung übertragen können. Die Profil- und Flechtgarne weisen bereits bei einer Verbundlänge von nur 50 mm eine vollständige Verankerung auf. Mit der am ITM entwickelten Tränkumformtechnik konnten tetraederförmige Profilgarne gefertigt werden, die aufgrund der patentierten Tetraedergeometrie das zugmechanische Leistungpotential der Carbonfasern nahezu vollständig ausnutzen können. Weiterhin wurde im Zuge der Flechtgarnentwicklung eine neue Flechtstruktur entwickelt, welche die nahezu vollständige Eliminierung der Strukturdehnung unter Last ermöglichte. Somit war die Fertigung von profilierten Bewehrungsgarnen mit sehr hohen zugmechanischen Eigenschaften möglich. Darüber hinaus wurde die Multiaxial-Kettenwirktechnik derart weiterentwickelt, dass die neuartigen Bewehrungsgarne (Profil- und Flechtgarne) schädigungsfrei zu gitterförmigen Textilbetonbewehrungen mit verbundoptimierter Profilierung verarbeitet werden können. Daraus ergibt sich eine deutlich höhere Materialeffizienz der Textilbewehrung, sodass bisher notwendige unverhältnismäßige Überdimensionierungen und große Überlappungslängen deutlich reduziert werden können. Dies ist insbesondere in Anbetracht der energieintensiven Herstellung von Carbonfasern und damit für den Nachhaltigkeitsanspruch der zukunftsweisenden Carbonbetontechnologie von enormer Bedeutung, um das Bauen der Zukunft ressourcenschonend und nachhaltig zu gestalten.

Die erzielten Projektergebnisse stellen zudem einen wesentlichen Beitrag zur Herstellung von extrem belastbaren Textilbetonstrukturen mit deutlich besseren Verbundeigenschaften dar, sodass für die Bauindustrie perspektivisch neue Möglichkeiten zur Bauteilfertigung im Bereich der Sanierung und des Neubaus entstehen.

Danksagung
Das IGF-Vorhaben 21375 BR der Forschungsvereinigung Forschungskuratorium Textil e. V. wurde über die AiF im Rahmen des Programms zur Förderung der Industriellen Gemeinschaftsforschung (IGF) vom Bundesministerium für Wirtschaft und Klimaschutz aufgrund eines Beschlusses des Deutschen Bundestages gefördert. Der Schlussbericht und weiterführende Informationen sind am Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik der TU Dresden erhältlich.

Die vollständige Veröffentlichung steht zum Download zur Verfügung.

AutorInnen: Penzel, Paul; Hahn, Lars; Abdkader, Anwar; Cherif, Chokri

Technische Universität Dresden
Fakultät Maschinenwesen
Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM)
01062 Dresden

https://tu-dresden.de/mw/itm

More entries from TU Dresden, Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik ITM

24.11.2022

Oberflächenprofilierte Carbongitter für Carbonbetonanwendungen

Gestricke & Gewirke Composites Textilmaschinenbau Nachhaltigkeit Technische Textilien

Zusammenfassung

Am ITM der TU Dresden wurden Verfahren entwickelt, die es ermöglichen, auf einer Multiaxial-Kettenwirkmaschine mit integrierter Tränkungs- und Aushärtemodul kontinuierlich oberflächenprofilierte Gitter in reproduzierbarer hoher Qualität für Carbonbetonanwendungen herzustellen. Im Lösungsansatz 1, der Profilierung durch Prägen der Verstärkungsfäden, kann der Schubfluss um mehr als 400 % gegenüber einem Glattgarn gesteigert werden. Die Skalierung und Steigerung der Produktivität dieser Technologie auf Industrieniveau wird Gegenstand zukünftiger Forschungsarbeiten sein.

Bericht

Abstract

Die volle Substanzfestigkeit des Hochleistungsmaterials Carbon kann im Betonverbund immer noch nicht ausgenutzt werden kann. Das liegt in der geringen Festigkeit der stoffschlüssigen Verbindung zwischen Carbonfaden und Betonmatrix begründet. Hier setzte das erfolgreich abgeschlossene Forschungsprojekt IGF 21153 BR des ITM an. Der Fokus lag auf der Entwicklung und Umsetzung von Verfahren zur Integration von Formschlusselementen im Herstellungsprozess von textilen Bewehrungen zur Steigerung der Verbundfestigkeit zwischen Bewehrung und Beton. Es wurde nachgewiesen, dass der dadurch erreichte zusätzliche Formschluss auf Basis einer Oberflächenprofilierung, ähnlich dem gerippten Bewehrungsstahl, den Schubfluss vervierfacht, die erforderliche Überlappungslänge folglich viertelt und damit den Materialeinsatz erheblich reduziert. Zwei Vorzugsvarianten wurden herausgearbeitet, für deren erfolgreiche Umsetzung die Entwicklung von Inline-Temperatur- und Feuchtigkeitsmesssystem erforderlich war.

Ausgangssituation und Problemstellung

Beton ist weltweit der wichtigste und am häufigsten eingesetzte Baustoff und wird in nahezu allen Anwendungsbereichen in Kombination mit einer Bewehrung zur Aufnahme der Zugkräfte eingesetzt [1]. Durch die Kombination von Beton mit einem Bewehrungsmaterial wie Stahl, können Bauwerke errichtet werden, die höchsten Beanspruchungen standhalten können. Da Stahl jedoch ein korrosionsanfälliges Material ist, muss eine signifikante Deckschicht stark basischen Betons aufgewendet werden, um einen Verlust der Tragleistung durch Korrosion der Bewehrung zu verlangsamen [2]. Zur Abtragung der im Bauwerk wirkenden Drucklasten ist die Dicke der Deckschicht nicht erforderlich. Daher erfolgte in den letzten beiden Dekaden die Entwicklung und sukzessive Praxiseinführung von Textilbewehrungen, die aus hochleistungsfähigen Multifilamentgarnen aus Carbon oder alkaliresistentem Glas bestehen, die mit textilen Verfahren zu mehraxialen Gitterstrukturen verarbeitet und, um den inneren und äußeren Verbund sicherzustellen, getränkt werden [3–5]. Derartige Textilbewehrungen können bei einer Betonersparnis von bis zu 70 % (durch dünnwandige Bauweise) die gleichen Kräfte übertragen wie konventionelle Stahlbewehrungen. Textilbewehrungen sind korrosionsunempfindlich und ermöglichen eine sehr effiziente, betonsparende und dauerhafte Armierung von Betonbauwerken bzw. ‑bauteilen in den vielfältigsten Anwendungsgebieten [6, 7].

....

Technische Entwicklung und Umsetzung

Zur Lösung der beschriebenen Problemstellung wurden Verfahren zur prozessintegrierten Profilierung der Textilbewehrung entwickelt. Hierfür wurden zwei Lösungskonzepte entwickelt, erprobt und evaluiert, die durch unterschiedliche Prinzipien (Prägen und Profilwirkfaden) gezielt Profilierungen ausbilden und die zudem in die textile Fertigung integrierbar sind.

Zur Steigerung der Warenqualität und um den Trocknungs- und Aushärteprozess gezielt hinsichtlich der erreichbaren Zugfestigkeit mit geringer Streuung steuern zu können, wurde eine Inline-Temperaturüberwachung auf Basis taktiler, mitlaufender Temperatursensoren entwickelt. Die Überwachung der Gelegefeuchtigkeit erfolgte mit der NIR-Sensorik (Near Infrared). Die Streuung der Zugfestigkeit der Textilbewehrung in der Warenausgangskontrolle konnte aufgrund der Prozessüberwachung halbiert werden. Es konnte zudem gezeigt werden, dass bestimmte Parameter des Multiaxial-Kettenwirkprozesses einen moderaten Einfluss auf die Eigenschaften der Bewehrung und deren Verbund zum Beton haben, z. B. die Stichlänge und die Bindungsart.

...

Materialcharakterisierung und Ergebnisse

Im Anschluss an die konstruktive Entwicklung und Umsetzung der Lösungskonzepte zur prozessintegrierten Herstellung eines profilierten Multiaxialgitters erfolgte sowohl die Fertigung von textilen Musterstrukturen als auch von Betonverbundprüfkörpern. Zur Charakterisierung der Musterstrukturen wurde das Auszugverhalten der profilierten Multiaxialgitter untersucht. Die für die Fertigung der Bewehrungsstrukturen gewählten Material- und Prozessparameter sind in Tabelle 1 zusammengefasst. Während der Musterfertigung wurde zudem die Oberflächentemperatur mittels eines eigens dafür entwickelten mitlaufenden kontaktbasierten Temperaturmesssystems sowie die Feuchtigkeit der Musterstrukturen mittels Nah-Infrarotsensorik überwacht und die Temperatur in der Trocknungs- und Aushärtestrecke entsprechend angepasst.

...

Danksagung

Das IGF-Vorhaben 21153 BR der Forschungsvereinigung Forschungskuratorium Textil e. V. wurde über die AiF im Rahmen des Programms zur Förderung der Industriellen Gemeinschaftsforschung (IGF) vom Bundesministerium für Wirtschaft und Klimaschutz aufgrund eines Beschlusses des Deutschen Bundestages gefördert. Der Schlussbericht und weiterführende Informationen sind am Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik der TU Dresden erhältlich.

Die vollständige Veröffentlichung steht zum Download zur Verfügung.

AutorInnen: Zierold, Konrad; Hahn, Lars; Cherif, Chokri

Technische Universität Dresden
Fakultät Maschinenwesen
Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM)
01062 Dresden

More entries from TU Dresden, Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik ITM

18.10.2022

In-situ structural monitoring of fibre-reinforced plastic composites under compressive loading

Garne Composites Sensorik Nachhaltigkeit Technische Textilien Tests

Zusammenfassung

Continuous structural monitoring of FRP components, especially in complex, changing load scenarios, represents an efficient solution approach to detect potentially occurring fatigue or damage at an early stage. Especially in FRP components, textile-based sensors are an economical solution for continuous in-situ structure monitoring, due to their high structural compatibility and direct textile integration during textile production.       

Bericht

Introduction

Fibre-reinforced composite structures are currently used in the fields of mechanical engineering, aircraft construction and automotive engineering, among others, due to their excellent mechanical properties combined with a high lightweight construction potential [1]. In the construction sector, high-performance textiles are increasingly being used as a substitute for steel reinforcement in textile reinforced concrete [2], due to their mechanical and chemical properties and the resulting resource-saving, filigree, lightweight construction potential. The long-term stable functionality and safety of fibre-reinforced composite structures is urgently required due to their frequent use in safety-critical components and structures. A promising practice-oriented approach is the continuous structural monitoring in order to quantify the (residual) load-bearing capacity and to initiate any necessary measures to ensure functional capability. A particularly economical and structurally compatible solution are textile-based sensors that are integrated during the manufacture of the textile reinforcement and used to detect complex load scenarios as well as cracking and delamination processes at the composite scale. [3 – 6]

Due to their operating principle, textile-based strain sensors are mainly used for monitoring composite structures subjected to tensile stress. In order to be able to derive reliable statements about structural changes and critical overload conditions even in complex overlapping stress scenarios (e.g. tensile and compressive stresses), textile-based pressure sensitive sensor systems for continuous in-situ structural monitoring for FRP were developed in IGF project 21169 BR.

Objective and solution

The aim of the IGF research project was the development, characterisation and testing of textile-based pressure sensitive sensor systems and their textile-technical integration in multi-axial warp knitting for the production of sensor-functionalised textile reinforcements for use in FRP. The requirements for the textile sensors were derived simulation-based by analysing a functional demonstrator. The textile sensors were specifically designed to detect structural deformations induced by tensile, bending and especially compressive stresses. Therefore, the approach of increasing the pressure sensitivity of textile sensors by pre-tension was investigated. The sensor behaviour was extensively analysed in electromechanical investigations at fibre and composite scale and tested on the functional demonstrator.

Acknowledgement

The IGF project 21169 BR of the Research Association Forschungskuratorium Textil e.V., Reinhardtstr. 12-14, 10117 Berlin was funded by the Federal Ministry of Economics and Climate Protection via the AiF within the framework of the programme for the promotion of joint industrial research and development (IGF) on the basis of a resolution of the German Bundestag.

The authors would like to thank the above-mentioned institutions for providing the financial resources. The research report and further information are available from the Institute of Textile Machinery and High Performance Textile Materials Technology at TU Dresden.

AutorInnen: Le Xuan, Hung; Seidel, André; Hahn, Lars; Nocke, Andreas; Cherif, Chokri

Technische Universität Dresden
Fakultät Maschinenwesen
Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM)
01062 Dresden

More entries from TU Dresden, Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik ITM

18.10.2022

In-situ-Strukturüberwachung von Faserkunststoffverbunden unter Druckbeanspruchung

Garne Composites Sensorik Nachhaltigkeit Technische Textilien Tests

Zusammenfassung

Die kontinuierliche Strukturüberwachung von FKV-Bauteilen vor allem in komplexen, wechselnden Belastungsszenarien stellt einen effizienten Lösungsansatz dar, um frühzeitig potenziell auftretende Ermüdungserscheinungen oder Schäden zu detektieren. Gerade in FKV-Bauteilen sind textilbasierte Sensoren eine wirtschaftliche Lösung zur kontinuierlichen In-situ-Strukturüberwachung, aufgrund ihrer direkten textiltechnischen Integration während der Flächenbildung und hohen Strukturkompatibilität.    

Bericht

Einleitung

Faserverstärkte Verbundstrukturen (Composites) werden gegenwärtig u. a. in den Bereichen des Maschinen-, Flugzeug- und Automobilbaus aufgrund der ausgezeichneten mechanischen Eigenschaften bei gleichzeitig höchstem Leichtbaupotenzial eingesetzt [1]. Auch im Bausektor finden Hochleistungstextilien, substituierend zur Stahlbewehrung, zunehmend Anwendung im Carbonbeton [2], aufgrund ihrer mechanischen sowie chemischen Eigenschaften und der daraus resultierenden ressourcenschonenden, filigranen Leichtbauweise. Die langzeitstabile Funktionsfähigkeit und Sicherheit von faserverstärkten Verbundstrukturen ist durch den häufigen Einsatz in sicherheitskritischen Komponenten und Strukturen dringend erforderlich. Ein vielversprechender praxisorientierter Lösungsansatz stellt hierbei die kontinuierliche Strukturüberwachung dar, um die (Rest-)Tragfähigkeit zu quantifizieren und um ggf. erforderliche Maßnahmen zur Gewährleistung der Funktionsfähigkeit einzuleiten.  
Eine besonders wirtschaftliche und strukturkompatible Lösung sind textilbasierte Sensoren, die während der Herstellung der textilen Verstärkungshalbzeuge integriert und zur Erfassung komplexer Lastfälle sowie Riss- und Delaminationsvorgänge auf Verbundebene eingesetzt werden. [3 – 6]

Textilbasierte Dehnungssensoren werden prinzipbedingt vorwiegend zur Überwachung in zugbeanspruchten Verbundstrukturen eingesetzt. Um zuverlässige Aussagen über strukturelle Veränderungen und kritische Überlastzustände auch in komplex überlagerten Beanspruchungsszenarien (bspw. Zug- und Druckbeanspruchungen) ableiten zu können, wurden im IGF-Projekt 21169 BR textilbasierte druckmessfähige Sensorsysteme zur kontinuierlichen In-situ-Strukturüberwachung für FKV entwickelt.

Zielsetzung und Lösungsweg

Das Ziel des IGF-Forschungsprojekts war die Entwicklung, Charakterisierung und Erprobung textilbasierter druckmessfähiger Sensorsysteme und deren textiltechnische Integration im Multiaxialkettenwirken zur Herstellung sensorisch-funktionalisierter textiler Verstärkungshalbzeuge für den Einsatz in FKV. Das Anforderungsprofil an die textilen Sensoren wurde anhand eines Funktionsdemonstrators simulationsgestützt abgeleitet und gezielt darauf ausgelegt strukturelle Deformationen durch einwirkende Zug-, Biege- und vor allem Druckbeanspruchungen zu erfassen. Hierfür wurde der Ansatz verfolgt, die Drucksensitivität von textilen Sensoren durch die gezielte Einstellung und Aufrechterhaltung einer Vorspannung bzw. -dehnung zu erhöhen. Das Sensorverhalten wurde umfangreich in elektromechanischen Untersuchungen auf Faser- und Verbundebene analysiert und am Funktionsdemonstrator erprobt.

Danksagung

Das IGF-Vorhaben 21169 BR der Forschungsvereinigung Forschungskuratorium Textil e.V., Reinhardtstr. 12-14, 10117 Berlin wurde über die AiF im Rahmen des Programms zur Förderung der industriellen Gemeinschaftsforschung und -entwicklung (IGF) vom Bundesministerium für Wirtschaft und Klimaschutz aufgrund eines Beschlusses des Deutschen Bundestages gefördert.

AutorInnen: Le Xuan, Hung; Seidel, André; Hahn, Lars; Nocke, Andreas; Cherif, Chokri

Technische Universität Dresden
Fakultät Maschinenwesen
Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM)
01062 Dresden

More entries from TU Dresden, Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik ITM

18.10.2022

Development of Textile Structures with Material-Intrinsic Shape Changing Capabilities for Regenerative Medicine (TexMedActor)

Garne Gewebe Nachhaltigkeit Technische Textilien Medizin

Zusammenfassung

In the IGF project 21022 BR/1 "TexMedActor", fabrics based on shape memory or electroactive yarns were developed which are capable of enclosing defects in hollow organs on the one hand and stimulating cells by micro-movements on the other.

Bericht

Introduction and Objective

In Germany, both demographic changes in society and injuries resulting from trauma are leading to a high proportion of people with cardiovascular diseases or injuries to vessels and internal organs requiring treatment. Treatment of injuries to internal organs, vessels, or nerves usually requires complex procedures (anastomoses) that involve elaborate fixation and suturing. These complicated and elaborate procedures are often associated with long procedure times, which in turn directly correlate with increased complication rates [1-3]. Tubular plastic implants are increasingly being developed to bridge such defects. These single material structures do not allow tissue/ cell ingrowth. Therefore, they run counter to the concept of regenerative medicine, which aims to restore body tissues and cells. In addition, when the defects are filled, regeneration is often disturbed due to the structural-mechanical properties that are not adapted to biomechanics. Furthermore, the lack of interconnectivity of the pore spaces of the replacement structures prevents the cell ingrowth, cell growth, nutrient supply and the removal of metabolic products.

In the context of in vitro tissue engineering, in addition to static cell culture systems, dynamic systems are also being developed. These are based, for example, on continuous or pulsating fluid flows or on a cyclic stretching of a clamped cell support system or substrate [4]. However, a replication of natural mechanical growth stimuli is not possible with such bioreactor systems because, especially in larger structures, there is a locally increased flow velocity along the largest pores or only an overflow of the entire cell support system. Additionally, undesirable stress peaks and undefined distortions occur in the region of the clamps and supports in mechanically stimulated systems.

Since the native structure of the four most important tissue types (connective and supporting tissue, nervous, muscular and epithelial tissue) from which organs, such as bones, blood vessels, muscles, tendons and ligaments, are formed, consists of fiber-like constructs, these can be particularly well biomimicked with textile structures. With the help of pre-designed fiber arrangements, three-dimensional, complex geometries with interconnecting pore spaces can be built up. The cells can use these structures to orient themselves in their growth direction [5]. Therefore, fiber-based high-tech structures are particularly predestined to overcome the limitations of currently available implants.

Therefore, within the framework of the IGF research project TexMedActor (21022 BR/1) novel textile structures with material-intrinsic shape changing capabilities were developed for regenerative medicine with a variety of different application fields, especially anastomosis. The concept pursued envisages the textile-technological realization of structures with a shape memory effect. The textiles should be able to assume predetermined geometries in order to adapt interactively to defects and to simplify complex interventions to bridge or support defects in internal organs like vessel and nerves. Furthermore, these textiles are intended to enable electromechanical stimulation for the actively targeted stimulating of cell growth. In this way, regeneration is accelerated or even made possible in the first place, since the necessary stimuli for tissue- and cell-adapted growth stimulation are lacking, especially in the case of body tissues with weak or no blood supply, such as cartilage, tendons, ligaments, or in the case of wound healing disorders or chronic wounds. Furthermore, novel bioreactors based on the intrinsic properties of the textile structures will be developed, which use the mechanism of action for electromechanical stimulation to uniformly stimulate the cells at each site even in highly complex and large-scale cell carrier structures. Here, the mechanical stimuli originate from the material itself. This material-intrinsic stimulation represent a new method for optimal cell cultivation, by stimulating cell on the textile cell carrier structures without externally applied fluid flows or mechanical deformation. This is intended to overcome two recognized medical technology problems: 1) complicated, costly operations on internal organs, vessels or nerves that are difficult or impossible to perform with minimally invasive procedures, and 2) lack of tissue- and cell-adapted stimuli for promotion of growth in previously used replacement structures and materials as well as currently available dynamic cell culture systems.

Acknowledgement

The IGF project 21022 BR/1 of the Research Association Forschungskuratorium Textil e.V. was funded by the Federal Ministry of Economics and Climate Protection via the AiF within the framework of the program for the promotion of joint industrial research (IGF) on the basis of a resolution of the German Bundestag. We would like to thank the above-mentioned institutions for providing the financial resources. Furthermore, we want to thank the member of the “Projektbegleitender Ausschuss” (project accompanying committee) for their support during the project.

AutorInnen: Benecke, Lukas; Aibibu, Dilbar; Cherif, Chokri

Technische Universität Dresden
Fakultät Maschinenwesen
Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM)
01062 Dresden

More entries from TU Dresden, Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik ITM

18.10.2022

Entwicklung von Textilstrukturen mit materialintrinsischem Formänderungsvermögen für die regenerative Medizin (TexMedActor)

Garne Gewebe Nachhaltigkeit Technische Textilien Medizin

Zusammenfassung

Im IGF-Projekt 21022 BR/1 „TexMedActor“ wurden Gewebe auf Basis von Formgedächtnis- bzw. Elektroaktiven-Garnen entwickelt, die in der Lage sind, einerseits Defekte an Hohlorganen zu umschließen und andererseits durch Mikrobewegungen Zellen stimulieren zu können.

Bericht

Einleitung, Problemstellung und Zielsetzung

In Deutschland führt sowohl der demografische Wandel der Gesellschaft als auch Verletzungen infolge von Traumata zu einem hohen Anteil von Personen mit behandlungsbedürftigen Erkrankungen des Herz-Kreislauf-Systems oder Verletzungen an Gefäßen und inneren Organen. Zur Behandlung von Verletzungen an inneren Organen, Gefäßen oder Nerven sind meist komplexe Eingriffe (Anastomosen) erforderlich, bei denen aufwändige Fixierungen und Nahtführungen erforderlich sind. Diese komplizierten und aufwändigen Prozeduren sind häufig mit langen Eingriffszeiten verbunden, die wiederum direkt mit erhöhten Komplikationsraten korrelieren [1‑3]. Zur Überbrückung solcher Defekte werden zunehmend tubuläre Kunststoffimplantate entwickelt, die jedoch kein Einwachsen von Gewebezellen ermöglichen und damit dem Konzept der regenerativen Medizin entgegenstehen, das die Wiederherstellung von Körpergeweben und ‑zellen anstrebt. Darüber hinaus kommt es bei der Auffüllung der Defekte häufig zu Störungen der Regeneration durch die nicht an die Biomechanik angepassten strukturmechanischen Eigenschaften. Ferner verhindern die fehlende Interkonnektivität der Porenräume der Ersatzstrukturen das Einwachsen von Zellen, das Zellwachstum, die Nährstoffversorgung und den Abtransport der Stoffwechselprodukte.

Im Rahmen des in vitro Tissue Engineerings werden neben statischen Zellkultursystemen auch dynami­sche Systeme entwickelt. Diese basieren beispielsweise auf kontinuierlichen oder pulsierenden Flüssigkeitsströmungen oder auf einer zyklischen Dehnung des eingespannten Zellträgersystems bzw. der Unterlage [4]. Eine Nachbildung der natürlichen mechanischen Wachstumsstimuli ist mit solchen Bio­reaktorsystemen jedoch nicht möglich, da sich insbesondere in größeren Strukturen eine lokal erhöhte Strömungsgeschwindigkeit entlang der größten Durchgangsporen bzw. lediglich eine Überströmung des gesamten Zellträgersystems einstellt und in mechanisch stimulierten Systemen unerwünschte Spannungsspitzen und undefinierte Verzerrungen im Bereich der Klemmen und Auflagen auftreten.

Da der native Aufbau der vier wichtigsten Gewebetypen (Binde- und Stützgewebe, Nerven-, Muskel- und Epithelgewebe) aus denen Organe, wie Knochen, Blutgefäße, Muskeln, Sehnen und Bänder, gebildet sind, aus faserartigen Konstrukten besteht, lassen sich diese mit textilen Strukturen besonders gut biomimetisch nachbilden. Mithilfe vorbedachter Faseranordnungen können dreidimensionale, kom­plexe Geometrien mit interkonnektierenden Porenräumen aufgebaut werden, an der sich Zellen in ihrer Wachstumsrichtung orientieren können [5]. Deshalb sind faserbasierte High‑Tech Strukturen zur Überwindung der Limitationen aktuell verfügbarer Implantate besonders prädestiniert.

Daher wurden im Rahmen des IGF-Forschungsvorhabens TexMedActor (21022 BR/1) neuartige Textilstrukturen mit materialintrinsischem Formänderungsvermögen für die regenerative Medizin mit einer Vielzahl von unterschiedlichen Anwendungsfeldern, insbesondere der Anastomose, entwickelt. Das verfolgte Konzept sieht hierbei die textiltechnologische Realisierung von Strukturen mit einem Formgedächtniseffekt vor. Die Textilien sollen gezielt vorbestimmte Geometrien annehmen können, um sich an Defekte interaktiv anzupassen und um komplexe Eingriffe zum Überbrücken bzw. zum Stützen von Defekten an inneren Organen wie Gefäßen und Nerven zu vereinfachen. Ein weiterer Wirkmechanismus soll darüber hinaus die elektromechanische Stimulation mit dem Ziel der aktiven, gezielten Anregung des Zellwachstums ermöglichen. Somit soll die Regeneration beschleunigt bzw. überhaupt erst ermöglicht werden, da die erforderlichen Stimuli zur gewebe- und zellangepassten Wachstumsanregung insbesondere bei schwach bzw. nicht durchbluteten Körpergeweben, wie Knorpeln, Sehnen, Bändern, oder bei Wundheilungsstörungen oder chronischen Wunden fehlen. Es sollen weiterhin neuartige Bioreaktoren mittels intrinsischen Eigenschaften der textilen Strukturen entwickelt werden, die den Wirkmechanismus zur elektromechanischen Stimulation nutzen, um selbst in hochkomplexen und großskaligen Zellträgerstrukturen die Zellen an jeder Stelle gleichmäßig zu stimulieren. Die mechanischen Reize gehen hierbei vom Material selbst aus. Diese materialintrinsische Stimulation stellt eine neue Methode für die optimale Zellkultivierung dar, sodass die Zellen auf den textilen Zellträgerstrukturen unter Verzicht auf extern angelegte Flüssigkeitsströmungen oder mechanische Verformungen stimuliert werden können. Damit sollen zwei anerkannte medizintechnische Probleme behoben werden: 1) Komplizierte, aufwändige und mit minimalinvasiven Verfahren schwer oder nicht zu realisierende Operationen an innenliegenden Organen, Gefäßen oder Nerven sowie 2) fehlende gewebe- und zellangepassten Stimuli zur Anregung des Wachstums seitens der bisher verwendeten Ersatzstrukturen und ‑materialien sowie derzeit verfügbarer dynamischer Zellkultursysteme.

Danksagung

Das IGF-Vorhaben 21022 BR/1 der Forschungsvereinigung Forschungskuratorium Textil e.V. wurde über die AiF im Rahmen des Programms zur Förderung der industriellen Gemeinschaftsforschung (IGF) vom Bundesministerium für Wirtschaft und Klimaschutz aufgrund eines Beschlusses des Deutschen Bundestages gefördert. Wir danken den genannten Institutionen für die Bereitstellung der finanziellen Mittel. Darüber hinaus möchten wir den Mitgliedern des Projektbegleitenden Ausschusses für ihre Unterstützung während der Projektbearbeitung danken.

AutorInnen: Benecke, Lukas; Aibibu, Dilbar; Cherif, Chokri

Technische Universität Dresden
Fakultät Maschinenwesen
Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM)
01062 Dresden

More entries from TU Dresden, Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik ITM

30.09.2022

CF/AR/thermoplastic hybrid yarns for requirement-based thermoplastic composites with outstanding, scalable stiffness, strength, crash and impact property combinations

Fasern Garne Composites Textilmaschinenbau

Zusammenfassung

Within the framework of the IGF research project (21004 BR/1), material concepts based on two yarn formation technologies were realized at the ITM and CF/AR/PA6 and rCF/rAR/PA6 hybrid yarns for thermoplastic composites meeting requirements with outstanding, scalable stiffness, strength, crash and impact property combinations were produced.

Bericht

Introduction, problem definition and aim

Fiber-reinforced plastic composites are designed according to required stiffness and strength or impact and crash properties. Complex, overlapping load scenarios are only taken into account to a very limited extent. There are first practical approaches for realizing composite components, e.g. the B-pillar of an automobile [1]. In which composites (e.g., carbon fiber prepregs) are combined with metallic components (e.g. steel sheets) in order to achieve the necessary damage tolerance along with high weight-specific stiffness and strength. In such concepts, hybridization takes place at the macro (structural level) or meso (yarn level) level and requires extremely complex and cost-intensive manufacturing processes [2-4]. Furthermore, these components also have highly pronounced interlaminar interfaces, where complex stresses generate high shear stresses. As a result, premature structural failures occurs due to delamination [5-8]. In order to overcome these disadvantages and for use in future developments, a concept is developed and implemented in the project presented here. The approach provides the design of the combination of various fiber components by hybridization at the micro-level (within a yarn/fiber level), thus maximizing their property potentials. The use of recycled high-performance fibers also results in significant advantages over conventional composites in terms of sustainability, resource efficiency and cost-effectiveness.

The project aims to create a new three-component class of materials hybridized at the micro level for thermoplastic lightweight applications. By combining the reinforcing fibers such as carbon and aramid, it is possible to combine high stiffness and strength with high crash and impact properties by varying the reinforcing fiber proportions and fiber makeup in a way appropriate to the load case. Fig. 1a schematically shows the properties of state-of-the-art CF/AR hybrid composites (Fig. 1a bottom, highlighted by an ellipse) according to state of the art, from engineered yarns to be developed (top, area within the dashed lines) and the theoretical material potentials (top, colored lines), each depending on the fiber volume fractions. The systematic investigation of the influence of the material-specific fiber volume fractions for a scalable composites design was carried out in five stages (CF/AR or rCF/rAR: 50/0 %; 40/10 %; 25/25 %; 10/40 %; 0/50 %).

The development work focused on three main areas. The first focus was the further development of the process technology so that the composites based on engineered yarns exhibit high strength and stiffness due to low fiber damage, high uniformity and high fiber orientation. The second focus was the first-time implementation of the homogeneous blending of three fiber materials at the micro-level. The third focus was designing the engineered yarns so that outstanding, scalable stiffness, strength, crash and impact property combinations can be set explicitly for a wide range of requirements (Fig. 1a).

For the concrete realization of the desired goal, CF/AR/PA6 or rCF/rAR/PA6 hybrid yarns were developed using two material concepts (Fig. 1b) based on two yarn formation technologies (Fig. 1a) for the production of thermoplastic composites with outstanding, scalable stiffness, strength, crash and impact property combinations. The interrelationships between process parameters and material-yarn composite properties were analysed. A sound knowledge for the material-dependent design of the engineered yarns could be achieved. Furthermore, the best possible material and process parameters for specific applications was derived and a process guide was prepared for the control of the manufacturing processes for the SMEs. A detailed description of the development work can be taken from the final report.

Acknowledgement

The IGF project 21004 BR/1 of the Forschungsvereinigung Forschungskuratorium Textil e. V. is funded through the AiF within the program for supporting the „Industriellen Gemeinschaftsforschung (IGF)“ from funds of the Federal Ministry for Economic Affairs and Climate Action on the basis of a decision by the German Bundestag.

AutorInnen: Matthias Overberg, Anwar Abdkader, Chokri Cherif

Technische Universität Dresden
Fakultät Maschinenwesen
Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM)
01062 Dresden

More entries from TU Dresden, Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik ITM

30.09.2022

CF/AR/Thermoplast Hybridgarne für anforderungsgerechte thermoplastische Composites mit herausragenden, skalierbaren Steifigkeits-, Festigkeits-, Crash- und Impacteigenschaftskombinationen

Fasern Garne Composites Textilmaschinenbau

Zusammenfassung

Im Rahmen des IGF-Forschungsvorhabens (21004 BR/1) wurden am ITM Materialkonzepte auf Basis von zwei, in der Industrie etablierten Garnbildungstechnologien realisiert und damit CF/AR/PA 6- bzw. rCF/rAR/PA 6-Hybridgarne für anforderungsgerechte thermoplastische Composites mit herausragenden, skalierbaren Steifigkeits-, Festigkeits-, Crash- und Impacteigenschaftskombinationen hergestellt.

Bericht

Einleitung, Problemstellung und Zielsetzung

Aktuelle faserverstärkte Kunststoffverbunde (Composites) werden entweder nach Steifigkeits- und Festigkeits- oder Impact- bzw. Crasheigenschaften ausgelegt. Komplexe, sich überlagernde Lastszenarien werden dabei nur sehr beschränkt berücksichtigt. Zwar gibt es erste realisierte Verbundbauteile, bspw. die B-Säule eines Automobils [1], bei denen Composites (bspw. Carbonfaserprepregs) zur Realisierung hoher gewichtsspezifischer Steifigkeiten und Festigkeiten mit metallischen Komponenten (bspw. Stahlbleche) zur Erreichung der notwendigen Schadenstoleranz kombiniert werden. Bei derartigen Konzepten erfolgt die Hybridisierung auf Makro- (Strukturebene) oder Mesoebene (Garnebene) und erfordert extrem aufwendige und kostenintensive Fertigungsprozesse [2–4]. Konzeptbedingt weisen diese Bauteilen zudem stark ausgeprägte interlaminare Grenzflächen auf, an denen durch komplexe Beanspruchungen hohe Scherspannungen entstehen, die dann zu frühzeitigen Delaminationen mit entsprechenden Strukturversagen führen [5–8]. Im Rahmen des hier vorgestellten Projekts wurden ein Konzept zur Überwindung der Nachteile und für den Einsatz bei zukünftigen Entwicklungen erarbeitet und umgesetzt. Der Ansatz besteht dabei darin, die Kombination der verschiedenen Komponenten durch Hybridisierung auf Mikroebene (innerhalb eines Garnes/Faserebene) zu gestalten und damit deren Eigenschaftspotentiale maximal auszuschöpfen. Durch den Einsatz recycelter Hochleistungsfasern ergeben sich zudem deutliche Vorteile hinsichtlich Nachhaltigkeit, Ressourceneffizienz und Wirtschaftlichkeit gegenüber konventionellen Composites.

Ziel des Projekts ist die Kreierung einer neuen auf Mikroebene hybridisierten dreikomponentigen Werkstoffklasse für thermoplastische Leichtbauanwendungen. Durch die gezielte Kombination der Verstärkungsfasern Carbon und Aramid sind über Variation der Verstärkungsfaseranteile und Faseraufmachung lastfallgerecht hohe Steifigkeiten und Festigkeiten mit hohen Crash- bzw. Impacteigenschaften kombinierbar. Abb. 1a zeigt schematisch die Eigenschaften von CF/AR Hybridcomposites nach dem Stand der Technik (Abb. 1a unten durch Ellipse hervorgehoben), aus zu entwickelnden Engineered Garnen (oben, Bereich innerhalb der gestrichelten Linien) und die theoretischen Materialpotentiale (oben, farbige Linien) jeweils in Abhängigkeit der Faservolumenanteile. Die systematische Untersuchung des Einflusses der materialspezifischen Faservolumenanteile für eine skalierbare Auslegung der Composites, erfolgte beispielhaft in fünf Stufen (CF/AR bzw. rCF/rAR: 50/0 %; 40/10 %; 25/25 %; 10/40 %; 0/50 %).

Die Entwicklungsarbeiten konzentrierten sich auf drei wesentliche Schwerpunkte. Der erste Schwerpunkt war die Weiterentwicklung der Prozesstechnik, sodass die auf Engineered Garnen basierenden Composites aufgrund geringer Faserschädigungen, einer hohe Gleichmäßigkeit und hohen Faserorientierung hohe Festigkeiten und Steifigkeiten aufweisen. Der zweite Schwerpunkt war die erstmalige Umsetzung der homogenen Durchmischung von drei Fasermaterialien auf Mikroebene, sodass gleichzeitig Steifigkeiten, Festigkeiten und ebenfalls Impact- und Crasheigenschaften signifikant erhöht werden können. Der dritte Schwerpunkt lag in der Auslegung der Engineered Garne, um so herausragende, skalierbare Steifigkeits-, Festigkeits-, Crash- und Impacteigenschaftskombinationen für verschiedenste Anforderungen gezielt einstellen zu können (Abb. 1a).

Die konkrete Umsetzung des angestrebten Ziels, Realisierung von CF/AR/PA6 bzw. rCF/rAR/PA6 Hybridgarnen zur Herstellung anforderungsgerechter thermoplastischer Composites mit herausragenden, skalierbaren Steifigkeits-, Festigkeits-, Crash- und Impacteigenschaftskombinationen, erfolgte unter Verwendung von zwei Materialkonzepten (Abb. 1b) auf Basis von zwei, in der Industrie etablierten Garnbildungstechnologien (Abb. 1a). Dabei wurden die komplexen Zusammenhänge zwischen Prozessparametern und Material-Garn-Verbundeigenschaften analysiert und für die KMU fundiertes Wissen für die Entwicklung, materialabhängige Auslegung der Engineered-Garne, die Ableitung der bestmöglichen Material- und Prozessparameter für konkrete Anwendungen sowie für die Steuerung der Fertigungsprozesse erarbeitet und in Form eines Verfahrensleitfadens aufbereitet. Die detaillierte Beschreibung der Entwicklungsarbeiten kann aus dem Abschlussbericht entnommen werden.

Danksagung

Das IGF-Vorhaben 21004 BR/1 der Forschungsvereinigung Forschungskuratorium Textil e.V. wurde über die AiF im Rahmen des Programms zur Förderung der industriellen Gemeinschaftsforschung (IGF) vom Bundesministerium für Wirtschaft und Klimaschutz aufgrund eines Beschlusses des Deutschen Bundestages gefördert. Wir danken den genannten Institutionen für die Bereitstellung der finanziellen Mittel.

 

 

 

AutorInnen: Matthias Overberg, Anwar Abdkader, Chokri Cherif

Technische Universität Dresden
Fakultät Maschinenwesen
Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM)
01062 Dresden

https://tu-dresden.de/mw/itm

More entries from TU Dresden, Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik ITM

05.09.2022

Development of near-net-shape woven, curved profile preforms

Technische Textilien

Zusammenfassung

At the ITM, the simulation-supported development and weaving implementation of integrally manufactured curved profile preforms with requirement-oriented cross-sectional changes along the profile length for the reinforcement of shell-shaped FRP components was carried out in the IGF project 20903 BR (Curved Profile Preforms).

Bericht

At the ITM, the simulation-supported development and weaving implementation of integrally manufactured curved profile preforms with requirement-oriented cross-sectional changes along the profile length for the reinforcement of shell-shaped FRP components was carried out in the IGF project 20903 BR (Curved Profile Preforms).

AutorInnen: Nuss, Dominik Huỳnh, Thị Anh Mỹ Gereke, Thomas Hoffmann, Gerald Cherif, Chokri

Technische Universität Dresden
Fakultät Maschinenwesen
Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM)
01062 Dresden

https://tu-dresden.de/mw/itm

More entries from TU Dresden, Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik ITM

05.09.2022

Entwicklung endkonturnah gewebter, gekrümmter Profilpreformen

Technische Textilien

Zusammenfassung

Am ITM erfolgte im IGF-Projekt 20903 BR (Gekrümmte Profilpreformen) die simulationsgestützte Entwicklung und webtechnische Umsetzung integral gefertigter gekrümmter Profilpreformen mit anforderungsgerechter Querschnittsänderung entlang der Profillänge zur Verstärkung schalenförmiger FKV-Bauteile.

Bericht

Am ITM erfolgte im IGF-Projekt 20903 BR (Gekrümmte Profilpreformen) die simulationsgestützte Entwicklung und webtechnische Umsetzung integral gefertigter gekrümmter Profilpreformen mit anforderungsgerechter Querschnittsänderung entlang der Profillänge zur Verstärkung schalenförmiger FKV-Bauteile.

AutorInnen: Nuss, Dominik Huỳnh, Thị Anh Mỹ Gereke, Thomas Hoffmann, Gerald Cherif, Chokri

Technische Universität Dresden
Fakultät Maschinenwesen
Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM)
01062 Dresden

https://tu-dresden.de/mw/itm

More entries from TU Dresden, Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik ITM