Forschungspublikationen

2 Ergebnisse
18.10.2022

In-situ-Strukturüberwachung von Faserkunststoffverbunden unter Druckbeanspruchung

Garne Composites Sensorik Nachhaltigkeit Technische Textilien Tests

Zusammenfassung

Die kontinuierliche Strukturüberwachung von FKV-Bauteilen vor allem in komplexen, wechselnden Belastungsszenarien stellt einen effizienten Lösungsansatz dar, um frühzeitig potenziell auftretende Ermüdungserscheinungen oder Schäden zu detektieren. Gerade in FKV-Bauteilen sind textilbasierte Sensoren eine wirtschaftliche Lösung zur kontinuierlichen In-situ-Strukturüberwachung, aufgrund ihrer direkten textiltechnischen Integration während der Flächenbildung und hohen Strukturkompatibilität.    

Bericht

Einleitung

Faserverstärkte Verbundstrukturen (Composites) werden gegenwärtig u. a. in den Bereichen des Maschinen-, Flugzeug- und Automobilbaus aufgrund der ausgezeichneten mechanischen Eigenschaften bei gleichzeitig höchstem Leichtbaupotenzial eingesetzt [1]. Auch im Bausektor finden Hochleistungstextilien, substituierend zur Stahlbewehrung, zunehmend Anwendung im Carbonbeton [2], aufgrund ihrer mechanischen sowie chemischen Eigenschaften und der daraus resultierenden ressourcenschonenden, filigranen Leichtbauweise. Die langzeitstabile Funktionsfähigkeit und Sicherheit von faserverstärkten Verbundstrukturen ist durch den häufigen Einsatz in sicherheitskritischen Komponenten und Strukturen dringend erforderlich. Ein vielversprechender praxisorientierter Lösungsansatz stellt hierbei die kontinuierliche Strukturüberwachung dar, um die (Rest-)Tragfähigkeit zu quantifizieren und um ggf. erforderliche Maßnahmen zur Gewährleistung der Funktionsfähigkeit einzuleiten.  
Eine besonders wirtschaftliche und strukturkompatible Lösung sind textilbasierte Sensoren, die während der Herstellung der textilen Verstärkungshalbzeuge integriert und zur Erfassung komplexer Lastfälle sowie Riss- und Delaminationsvorgänge auf Verbundebene eingesetzt werden. [3 – 6]

Textilbasierte Dehnungssensoren werden prinzipbedingt vorwiegend zur Überwachung in zugbeanspruchten Verbundstrukturen eingesetzt. Um zuverlässige Aussagen über strukturelle Veränderungen und kritische Überlastzustände auch in komplex überlagerten Beanspruchungsszenarien (bspw. Zug- und Druckbeanspruchungen) ableiten zu können, wurden im IGF-Projekt 21169 BR textilbasierte druckmessfähige Sensorsysteme zur kontinuierlichen In-situ-Strukturüberwachung für FKV entwickelt.

Zielsetzung und Lösungsweg

Das Ziel des IGF-Forschungsprojekts war die Entwicklung, Charakterisierung und Erprobung textilbasierter druckmessfähiger Sensorsysteme und deren textiltechnische Integration im Multiaxialkettenwirken zur Herstellung sensorisch-funktionalisierter textiler Verstärkungshalbzeuge für den Einsatz in FKV. Das Anforderungsprofil an die textilen Sensoren wurde anhand eines Funktionsdemonstrators simulationsgestützt abgeleitet und gezielt darauf ausgelegt strukturelle Deformationen durch einwirkende Zug-, Biege- und vor allem Druckbeanspruchungen zu erfassen. Hierfür wurde der Ansatz verfolgt, die Drucksensitivität von textilen Sensoren durch die gezielte Einstellung und Aufrechterhaltung einer Vorspannung bzw. -dehnung zu erhöhen. Das Sensorverhalten wurde umfangreich in elektromechanischen Untersuchungen auf Faser- und Verbundebene analysiert und am Funktionsdemonstrator erprobt.

Danksagung

Das IGF-Vorhaben 21169 BR der Forschungsvereinigung Forschungskuratorium Textil e.V., Reinhardtstr. 12-14, 10117 Berlin wurde über die AiF im Rahmen des Programms zur Förderung der industriellen Gemeinschaftsforschung und -entwicklung (IGF) vom Bundesministerium für Wirtschaft und Klimaschutz aufgrund eines Beschlusses des Deutschen Bundestages gefördert.

AutorInnen: Le Xuan, Hung; Seidel, André; Hahn, Lars; Nocke, Andreas; Cherif, Chokri

Technische Universität Dresden
Fakultät Maschinenwesen
Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM)
01062 Dresden

More entries from TU Dresden, Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik ITM

29.09.2022

DigiPEP: Lastpfadgerecht-ausgelegte Bauteile

Composites Technische Textilien

Zusammenfassung

Bei Entwicklungen von Bauteilen aus faserverstärkten Kunststoffen steht häufig der Leichtbauaspekt im Vordergrund. Dazu werden die auftretenden Lastfälle anhand der Randbedingungen und Kräfte bestimmt und anschließend das Bauteil entsprechend ausgelegt. Wird dieser Ansatz noch weiter ausgereizt, so wird die Methode meist den Tailored Textiles zugeordnet. Tailored Textiles sind, wie es der Begriff bereits vermuten lässt, Textilien, die auf den Anwendungsfall abgestimmt hergestellt werden. Dazu gehört ebenfalls das Tailored Fibre Placement (TFP) Verfahren.

Bericht

Während des Produktentstehungsprozesses (PEP) von Faserverbundbauteilen aus TFP-Preforms ist eine Vielzahl von Iterationen notwendig um die gewünschten Eigenschaften im fertigen Bauteil zu gewährleisten. Vor allem das Zusammenspiel der verschiedenen Prozessschritte von der Roving-Ablage, der Drapierung bis hin zur Infusion und die auftretenden Wechselwirkungen erschweren die Bauteilauslegung. Um die benötigten Auslegungsprozesse zu verknüpfen und so die Anzahl der Iterationen möglichst zu reduzieren wird im Rahmen des DigiPEP-Projektes der Model Based Systems Engineering (MBSE) Ansatz verwendet (siehe Abb. 1). Dieser Ansatz ermöglicht eine Integration der verschiedenen Modelle und eine Zuordnung der Aufgaben zu einzelnen Verantwortlichen. Insgesamt soll somit ein Modell mit einem User Interface entstehen, das nur die wichtigsten Randbedingungen und Entscheidungen von dem jeweiligen Verantwortlichen erfordert. In das Modell sollen Modelle zur Strukturanalyse, Stickpfadauslegung, Topologie-Optimierung, Drapierung und Versagensanalyse des fertigen Bauteils integriert werden. Darüber hinaus soll eine Kosteneinschätzung sowie eine Form der Lebenszyklusanalyse ermöglicht werden. Um die verschiedenen Modelle zu erzeugen und eine Datenbasis aufzubauen, wird u.a. das Ablageverhalten verschiedener Materialien untersucht sowie mechanische Prüfungen an Probenkörper durchgeführt. Dabei werden die Produktionsparameter variiert, um deren Einfluss auf die mechanischen Eigenschaften zu untersuchen. Diese Variation wird ebenfalls zur Untersuchung des Drapierverhaltens verwendet. Zur Repräsentation des Drapierverhaltens im Modell soll eine Datenbasis aus qualitativen Versuchen erzeugt und mittels Künstlicher Intelligenz in das MBSE-Modell integriert werden.

Das erzeugte Modell wird anhand der Auslegung eines Demonstrator-Bauteils validiert. Dieses Demonstrator-Bauteil stammt aus dem Bereich des zukünftigen Transportes und der Produktion der Zukunft. Das erzeugte MBSE-Modell soll durch das erstellte Userinterface einfach bedienbar sein. Als Einsatzgebiet zielt das Projekt besonders auf KMU ab, um für diese den Einsatz der TFP-Technologie zu vereinfachen und die Auslegung neuer Bauteile zu beschleunigen. Darüber hinaus wird angestrebt durch die Software eine grobe Kosten- sowie Nachhaltigkeitsabschätzung zu ermöglichen. Damit kann der Anwender vor der genaueren Planung bereits erste Aussagen gegenüber dem Kunden treffen.

Das auf zwei Jahre ausgelegte Projekt wird vom Bundesministerium für Wirtschaft und Klimaschutz (BMWK) im Rahmen des Technologietransferprogramms Leichtbau unter der Fördernummer 03LB3063A gefördert. An der Bearbeitung sind die folgenden Partner beteiligt: EDAG Group, Digel Sticktech GmbH & Co. KG, ModuleWorks GmbH, Ph-MECHANIK GmbH & Co. KG, adesso SE.

AutorInnen: Rebecca Emmerich, Till Quadflieg

ITA Institut für Textiltechnik an der RWTH Aachen University, Otto-Blumenthal-Strasse 1, 52074 Aachen, Deutschland

Sporttech Mobiltech

More entries from ITA Institut für Textiltechnik der RWTH Aachen University