Forschungspublikationen

4 Ergebnisse
26.03.2024

Entwicklung endkonturgerechter Multiaxialgelege mit lokal einstellbarer, bauteilgerechter Verstärkungskettfadendichte

Gestricke & Gewirke Textilmaschinenbau Technische Textilien

Zusammenfassung

Im Rahmen dieses Forschungsprojekts wurde ein neuartiges Nachrüstmodul für Multiaxial-Kettenwirkmaschinen entwickelt, das die Herstellung von Multiaxialgelegen mit lokal angepassten Verstärkungskettfadendichten ermöglicht. Diese Innovation erlaubt eine materialsparende und kosteneffiziente Produktion von Bauteilen aus Faserkunststoffverbunden (FKV) mit Hochleistungsfasern wie Carbon. Hierbei können Kettfäden gezielt in den Bereichen, bspw. in denen sie nicht benötigt werden, aus dem Wirkprozess entfernt und bei Bedarf wieder eingefügt werden. Zudem wird es ermöglicht, eine definiert gradierte Kettfadendichte durch den gezielten Versatz von Kettfäden zu erreichen.

Das entwickelte modulare System wurde an einer Multiaxial-Kettenwirkmaschine vom Typ Malimo 14024 der Karl Mayer Textilmaschinenfabrik GmbH (Chemnitz, Deutschland) experimentell erprobt. Die Ergebnisse zeigen eine signifikante Verschnittreduktion auf bis zu 0 % in Kettrichtung sowie eine hohe Anpassungsfähigkeit an bauteilspezifische Anforderungen. Durch die Implementierung von Steuerungsalgorithmen für eine achsvariable Legung der Kettfäden konnte zudem eine simulationsgestützte Prozesskette zur Herstellung textiler Halbzeuge für FKV-Bauteile mit lokal variierenden Spannungsverteilungen erreicht werden.

Die erzielten Forschungsergebnisse unterstreichen das hohe Potential der Technologie zur wirtschaftlichen und gleichzeitig umweltfreundlichen Herstellung von FKV-Bauteilen. Besonderer Wert wurde auf die Übertragbarkeit der Ergebnisse auf die in den KMU vorhandenen Maschinen gelegt, um eine breite Anwendbarkeit der Forschungsergebnisse zu gewährleisten

Bericht

Ausgangssituation und Problemstellung

Der zunehmende Trend zum Leichtbau ist ein globales Phänomen in technischen Sektoren, verstärkt durch das Bewusstsein für einen materialeffizienten Umgang mit begrenzt verfügbaren natürlichen Ressourcen. Diese Entwicklung wird durch die Notwendigkeit ökologischer Nachhaltigkeit und die Reduktion von CO2-Emissionen vorangetrieben, wobei Faserkunststoffverbunde (FKV) aufgrund ihrer anisotropen strukturmechanischen Eigenschaften und ihres geringen spezifischen Gewichts eine Schlüsselrolle spielen. Sie bieten optimale Voraussetzungen für die ressourceneffiziente Auslegung von Leichtbaulösungen und treiben Innovationen in Branchen wie dem Maschinen-, Anlagen- und Automobilbau, insbesondere in der Elektromobilität, sowie in der Windkraftenergie und Luftfahrt voran. [1–11]

Die Herstellung von FKV-Bauteilen erfolgt derzeit hauptsächlich mit zweidimensionalen textilen Strukturen, die als Rollenware mit konstanter Breite und Fadendichte geliefert werden [12, 13]. Insbesondere mehraxiale Gelegestrukturen, gefertigt mittels der hochproduktiven Multiaxial-Kettenwirktechnik, sind für Großserienanwendungen und großflächige Bauteile relevant [14]. Eine wesentliche Herausforderung dieser Fertigungsprozesse ist der hohe Materialverschnitt in der bauteilspezifischen Halbzeugkonfektion, der wirtschaftlich und ökologisch nachteilig ist. Der Verschnitt kann je nach Bauteilgeometrie und -herstellungsverfahren bis zu 50 % betragen [15, 16].

In der Entwicklung endkonturgerechter textiler Halbzeuge mit lokal einstellbarer, d. h. achsvariabler, Verstärkungsfadendichte, um Verschnitt zu vermeiden und die textilen Halbzeuge an komplexe FKV-Geometrien anzupassen, liegt die entscheidende Aufgabe zur Steigerung der ökologischen und wirtschaftlichen Effizienz. Dies erfordert neue Lösungsansätze, da konventionelle Multiaxialgelege nicht die Anforderungen an eine bauteilgerechte gradierte Verstärkungsfadendichte erfüllen können. Sie sind in ihrer Verstärkungsfadendichte, sowie der Lagenanordnung im Preforming bisher für den maximalen lokalen Belastungsfall ausgelegt, was zu Überdimensionierung in weniger belasteten Bereichen oder zu hohem Verschnitt führt.

Die Entwicklung endkonturgerechter Multiaxialgelege mit lokal einstellbaren Verstärkungskettfadendichten adressiert diese Problematik. Vor Projektbeginn gab es keine Lösungen, die eine konturgerechte Fertigung von Multiaxialgelegen und eine Verringerung der Kettfadenanzahl in den nicht benötigten Bereichen oder eine Erhöhung in besonders beanspruchten Zonen ermöglichten. Die Motivation des Projekts leitet sich aus der Notwendigkeit ab, die Materialeffizienz in der textilen Fertigungskette zu steigern, indem Verschnitt und Überdimensionierung vermieden werden.

Technische Entwicklung und Umsetzung

Im Fokus der Forschungsarbeiten stand die Entwicklung einer innovativen Technologie zur effizienten Nutzung von kostenintensiven Hochleistungsfasern, speziell Carbonfasern, im Fokus. Ziel war es, die ökologische und ökonomische Nachhaltigkeit von Faserkunststoffverbunden (FKV) durch eine signifikante Reduktion des Materialverschnitts und die Vermeidung von Überdimensionierung zu steigern. Die technische Herausforderung bestand darin, eine Methode zu entwickeln, die eine gezielte Anpassung der Verstärkungskettfadendichte an die bauteilspezifischen Anforderungen ermöglicht, sodass die Verstärkungskettfäden nur dort angeordnet werden, wo sie mechanisch erforderlich sind. Zur Realisierung dieser Zielsetzung war die Entwicklung eines Verfahrens essenziell, das es erlaubt, Kettfäden gezielt aus dem Wirkprozess zu entfernen und bei Bedarf wieder hinzuzufügen, um so eine konstante Kettfadendichte im endkonturgerechten Gelege zu gewährleisten. Zudem sollte eine Möglichkeit, die Kettfadendichte seitlich achsvariabel zu versetzen und somit lokal zu verstärken, was in einer gradierten Kettfadendichte resultiert, geschaffen werden. Die praktische Umsetzung dieser Technologie erforderte die Integration einer Zusatzvorrichtung in den Multiaxial-Kettenwirkprozess. Das entwickelte kombinierte Kettfadenmanipulationsmodul ermöglicht es, die Kettfäden mit lokal unterschiedlichen Dichten und Ausrichtungen prozesssicher zuzuführen.

Im Rahmen der technischen Entwicklung und Umsetzung zur Herstellung endkonturgerechter Gelege mit angepasster Kettfadendichte wurden drei wesentliche Teilfunktionen identifiziert und entwickelt: das selektive Trennen, das gezielte Führen sowie das individuelle oder gruppenweise Anfügen der Kettfäden an das Gelege. Diese Funktionen sind essenziell für die Realisierung einer global konstanten Kettfadendichte, die präzise an die Bauteilkontur und die mechanischen Anforderungen angepasst ist.

Selektives Trennen

Für das Trennen der Kettfäden wurde ein mechanisches Verfahren auf Basis eines Schermesserpaars mit einer festen und einer beweglichen Klinge, die pneumatisch angetrieben und gesteuert wird, entwickelt. Der Messerblock (siehe Abbildung 1 links) wurde an einer Lineareinheit (quer zur Arbeitsrichtung) befestigt und kann über einen Schlitten bedarfsgerecht pneumatisch auf die Höhe der zu schneidenden Kettfäden abgesenkt werden (siehe Abbildung 1 rechts). Dies ermöglicht es, die Kettfäden entsprechend der Bauteilkontur temporär aus dem Fertigungsprozess zu entfernen.

Vorbringen der Kettfäden

Zur präzisen Führung werden die Kettfäden pneumatisch vorgebracht. Dafür werden die Führungsröhrchen (siehe Abbildung 2 links) der Versatzeinheit mit Druckluft angeblasen, wodurch der Kettfaden in die Wirkstelle transportiert wird. Dabei muss die Schnittstelle, die sonst offen und zugänglich für das Schermesser gehalten wird, temporär durch eine Verschlusskappe überbrückt werden, um einen Druckluftverlust während des Vorbringens zu vermeiden (siehe Abbildung 2 rechts). Dieses System sorgt dafür, dass die abgetrennten Kettfäden exakt an die vorgesehene Stelle im Gelege, synchronisiert mit dem Wirkprozess, geführt werden. Ein Druck von 4 bar wurde für ein reproduzierbares, schnelles und präzises Vorbringen der vorher abgetrennten Kettfäden in die Nadelgasse der Wirkstelle erörtert, als Grundlage für das anschließende Anfügen des Kettfadenendes an das endkonturgerechte Gelege.

Anfügen der Kettfadenenden

Für das Anfügen der Kettfäden an das Gelege wurden verschiedene Lösungsansätze untersucht, darunter stoffschlüssige Verbindungen mittels Klebstoffen und form- bzw. kraftschlüssige Verbindungen durch nähwirktechnische Integration. Als geeignete Lösung hinsichtlich des Erhalts des textilen Charakters des endkonturgerechten Geleges sowie der Dauer des Anfügevorgangs erwies sich die nähwirktechnische Fixierung, die eine zuverlässige und schädigungsarme, kraftschlussbasierte Integration der Kettfäden in die Gelegestruktur ermöglicht.

Auf Basis der abgeleiteten Vorzugslösungen für die Teilfunktionen erfolgte anschließend die Entwicklung des kombinierten Kettfadenmanipulationsmoduls, mit dem eine Kettfadenschar sowohl seitlich versetzt, als auch einzelne Kettfäden aus der Kettfadenschar selektiv abgetrennt und nach Bedarf wieder angefügt werden können. Das kombinierte Kettfadenmanipulationsmodul besteht aus zwei synchronisierten Lineareinheiten. Eine Lineareinheit setzt die Messerblockbewegung um, eine zweite Lineareinheit den seitlichen Versatz der Kettfäden (siehe Abbildung 3 und Abbildung 4). Das vollständige, entwickelten Nachrüstmodul, inklusive der pneumatischen und elektrotechnischen Steuerungstechnik wurden in eine Malimo 14024 (Karl Mayer Textilmaschinenfabrik GmbH, Deutschland) integriert und auf Basis iterativer Funktionsmusterfertigungen erprobt. Dieses Modul ermöglicht die Herstellung endkonturgerechter Gelege mit variabel einstellbaren Verstärkungskettfadendichten und achsvariablen Fadenanordnungen und erhöht somit signifikant die Materialeffizienz in der FKV-Produktion.

Materialcharakterisierung und Ergebnisse

Auf die erfolgreiche Umsetzung der Funktionsmuster folgte die textil- und verbundphysikalische Charakterisierung der Funktionsmuster. Die Charakterisierung der Funktionsmuster erfolgte in mehreren Stufen. Zunächst wurde eine computergestützte photogrammetrische Messung zur Überprüfung der Konturradien und der Konturtreue durchgeführt. Anschließend fokussierte sich die Untersuchung auf die Ermittlung der strukturmechanischen Eigenschaften der FKV-Prüfkörper auf Basis der textilen Funktionsmuster. Hierbei kamen modifizierte Stempeldurchdrückversuche zum Einsatz, die einen multiaxialen Belastungszustand in die Textil- bzw. FKV-Prüfkörper einleiteten (siehe Abbildung 5). Die Kraftübertragung während der Versuche wurde aufgezeichnet und ausgewertet.

Die Ergebnisse zeigten, dass die Einsatzmöglichkeiten des Kettfadenmanipulationsmoduls zur Herstellung endkonturgerechter Gelege mit bauteilgerechten Verstärkungskettfadendichten eine gleichbleibende mechanische Belastbarkeit wie vollverstärkte Bauteile ermöglichen, während gleichzeitig der Materialeinsatz signifikant reduziert wird. Anhand der Umsetzung eines PKW-Kotflügeldemonstrators (siehe Abbildung 6) konnte experimentell belegt werden, dass eine Materialreduktion von bis zu 50 % möglich ist, ohne die strukturelle Integrität und mechanische Belastbarkeit der FKV-Bauteile zu reduzieren. Die umfassenden Untersuchungen und die daraus resultierenden Erkenntnisse legen die Basis für die Fertigung und Handhabung praxisnaher endkonturgerechter Gelege. Damit wird ein wichtiger Beitrag zur Steigerung der Wettbewerbsfähigkeit und zur Förderung nachhaltiger Produktionsverfahren in der Industrie geleistet.

Zusammenfassung

Im Rahmen der Forschungsarbeiten wurde ein innovatives Nachrüstmodul für die hochproduktive Multiaxial-Kettenwirktechnologie entwickelt, dass es ermöglicht, die Dichte der Verstärkungskettfäden in Multiaxialgelegen lokal und gezielt an die Anforderungen spezifischer Bauteile anzupassen. Diese technologische Neuerung repräsentiert einen signifikanten Fortschritt in der Fertigung von Faserkunststoffverbunden (FKV), indem nunmehr eine effiziente und materialsparende Produktion, insbesondere unter Verwendung hochpreisiger Hochleistungsfasern wie Carbon, ermöglicht wird. Die entwickelte Lösung gestattet es, die Integration der Kettfäden ausschließlich in jenen Bereichen vorzunehmen, die für die mechanische und geometrische Verstärkung des späteren Bauteils erforderlich sind. Dies führt zur Reduzierung des Verschnitts auf nahezu 0 % (in Kettfadenrichtung) sowie zur weitestgehenden Vermeidung der Überdimensionierung.

Für die Umsetzung des entwickelten Verfahrens wurde eine passende Fertigungstechnologie erarbeitet und als Zusatzvorrichtung in eine Multiaxial-Kettenwirkmaschine (Malimo 14024) integriert. Diese Vorrichtung ermöglichte die prozesssichere Ablage der Kettfäden mit individuell unterschiedlichen Dichten und Ausrichtungen, wodurch erstmals endkonturgerechte Gelege mit variabel einstellbaren, bauteilgerechten Kettfadendichten hergestellt werden konnten.

Der Ausblick auf zukünftige Entwicklungen fokussiert sich auf die Weiterführung der Technologieübertragung in die industrielle Praxis, insbesondere in KMU. Die durchgeführten Forschungsarbeiten bieten eine solide Basis für die Implementierung der neuen Technologie in bestehende Produktionsprozesse. Dabei stehen die Steigerung der Materialeffizienz und die Reduktion des ökologischen Fußabdrucks von FKV-Bauteilen im Vordergrund, um den steigenden industriellen und gesetzlichen Anforderungen an Nachhaltigkeit und Wirtschaftlichkeit gerecht zu werden.

Danksagung

Das IGF-Vorhaben 21968 BR der Forschungsvereinigung Forschungskuratorium Textil e. V. wurde über die AiF im Rahmen des Programms zur Förderung der Industriellen Gemeinschaftsforschung (IGF) vom Bundesministerium für Wirtschaft und Klimaschutz aufgrund eines Beschlusses des Deutschen Bundestages gefördert. Der Schlussbericht und weiterführende Informationen sind am Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik der TU Dresden erhältlich.

AutorInnen: Konrad Zierold André Seidel Lars Hahn Chokri Cherif

Technische Universität Dresden
Fakultät Maschinenwesen
Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM)
01062 Dresden

https://tu-dresden.de/mw/itm

More entries from TU Dresden, Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik ITM

17.03.2023

Bionische 3D-Schale-Rippen-Strukturen mit komplex angeordneten Versteifungselementen

Gestricke & Gewirke Composites Textilmaschinenbau Technische Textilien

Zusammenfassung

Im abgeschlossenen IGF-Projekt 20793 BR erfolgte am ITM die simulationsgestützte Entwicklung, Umsetzung und Erprobung eines innovativen Verfahrens zur integralen Herstellung endlosfaserverstärkter 3D-Schale-Rippen-Textilstrukturen mit komplex angeordneten Versteifungselementen. Inspiriert von der Amazonas-Riesenseerose, deren gigantische Blätter extrem tragfähig sind, weisen diese bionischen Preformen komplex angeordnete, sich kreuzende Versteifungselemente in 0°-, 90°- sowie in ± 45°-Ausrichtung und insbesondere eine durch alle Preformteile durchgehende Faserverstärkung auf. Das ermöglicht perspektivisch einen Durchbruch topologie‑ und strukturoptimierter, endlosfaserverstärkter 3D-Schale-Rippen-Verbundbauteile in Serienanwendungen.

Bericht

Einleitung und Problemstellung

Faserverstärkte Kunststoffverbunde (FKV) weisen ein sehr hohes Potenzial zur maßgeblichen Reduktion bewegter Bauteilmassen und somit zur Steigerung der Energieeffizienz auf. Für einen Durchbruch von FKV in Serienanwendungen fehlen allerdings flexible Verfahren, die eine schnelle Umsetzung kostengünstiger, endkontur- und kraftflussgerechter 3D-Preformen bei hoher Materialeffizienz und Vermeidung von Nachbearbeitungsschritten erlauben.

Zur Erhöhung der Biege-, Beul- und Torsionssteifigkeit hochbelasteter schalenförmiger FKV-Bauteile kommen heute in vielfältigen Anwendungsfeldern Versteifungselemente wie Rippen, Spanten oder Stringer zum Einsatz. Die Bauteile werden jedoch bisher meist in Differenzialbauweise auf Preform- bzw. Bauteilebene durch nachträgliches Fügen von Schalen- und Versteifungsstruktur hergestellt. Dadurch ist die Fertigung derartiger FKV-Bauteile aktuell sehr kostenintensiv. Zusätzlich fehlt dabei prozessbedingt eine durchgehende Faserverstärkung zwischen Schale und Rippe. Das Leichtbaupotenzial von Hochleistungsfasern wird so nur teilweise ausgenutzt. Additive Verfahren, wie das 3D-Drucken [1] oder das Spritzgießen [2], erlauben zwar die integrale Fertigung von 3D-Schale-Rippen-Strukturen mit komplexer Versteifungsstruktur, verfahrensbedingt ist jedoch die Möglichkeit der Einbringung einer Endlosfaserverstärkung in der Rippenstruktur stark begrenzt.

Im Rahmen des IGF-Projektes 18806 BR wurden am ITM grundlegende Basislösungen zur integralen Fertigung von 3D-Schale-Rippen-Mehrlagengestricken mit durchgängiger Endlosfaserverstärkung zwischen Schale und Rippenstruktur erfolgreich entwickelt und umgesetzt [3]. Allerdings konzentrierten sich die Arbeiten auf die Schaffung der technologischen Grundlagen für eine flexible Herstellung endkonturgerechter 3D-Schale-Rippen-Preformen mit ausschließlich in 90° angeordneten Rippen.

Natürliche Vorbilder zeigen jedoch, dass für eine optimale Aufnahme der auf das Bauteil wirkenden Belastungen eine komplexere Orientierung der Rippen notwendig ist. Dieses Prinzip findet sich z. B. in der komplex verrippten Struktur der Erdnussschale sowie in den gigantischen und extrem tragfähigen Blättern der Amazonas-Riesenseerose (vgl. Abbildung 1) wieder, die längliche, diagonale bzw. sich kreuzende Rippen sowie ein sehr geringes Eigengewicht aufweisen.

Für eine wirtschaftliche Nutzung dieses bionischen Prinzips in FKV-Anwendungen fehlen jedoch aktuell flexible und serientaugliche Fertigungsverfahren, die eine kosteneffiziente Umsetzung topologieoptimierter Schale-Rippen-Preformen mit derartig komplex angeordneten Versteifungselementen in Integralbauweise ermöglichen [4]. Die besondere Herausforderung für derartige Verfahren ergibt sich aus der notwendigen hohen Flexibilität zur Einstellung der je nach Anwendungs- und Lastfall extrem variierenden geometrischen sowie strukturmechanischen Anforderungen und damit der Strukturparameter, wie Rippendicke, -höhe und -ausrichtung.

Zielsetzung

Das Ziel des IGF-Forschungsprojektes 20793 BR war die simulationsgestützte Entwicklung, Umsetzung und Erprobung eines innovativen Verfahrens auf Basis der hochflexiblen Mehrlagenflachstricktechnik zur vollautomatisierten, integralen Fertigung endlosfaserverstärkter 3D-Schale-Rippen-Strukturen mit komplex angeordneten Versteifungselementen sowie kontinuierlicher, durchgängiger Faserverstärkung zwischen Schale und Rippenstruktur.

Ergebnisse

Simulationsgestützte Preform‑ und Technologieentwicklung

Die besondere Herausforderung im Projekt war die Entwicklung geeigneter Bindungstechniken und neuartiger Maschinenelemente zur integralen und verzugsfreien Fertigung lastgerecht ausgelegter 3D-Preformen mit komplex angeordneten Versteifungselementen in 0°-, 90°- und ± 45°-Ausrichtung sowie von Simulationstools für eine optimale, CAD-gestützte Auslegung daraus herstellbarer FKV-Bauteile. Nach Festlegung der Anforderungen an relevante Schale-Rippen-FKV-Bauteile und die Präzisierung typischer Lastfälle (hauptsächlich Biege-, Druck- und Torsionsbelastungen) erfolgte zunächst eine FEM-basierte Struktursimulation (Finite Elemente Methode) mit einem makroskopischen Modell. Dabei wurden die Parameter Rippendicke, -höhe sowie Wandstärke der Schale systematisch variiert, mit dem Ziel, die Zusammenhänge und die Wechselwirkungen zwischen den geometrischen Parametern und die resultierenden mechanischen Verbundeigenschaften zu ermitteln und somit die bestmöglichen Kennwerte für die Auslegung von 3D-Schale-Rippen-Textilhalbzeugen mit komplex angeordneten Versteifungselementen festlegen zu können.

Die Ergebnisse zeigen, dass die Rippenhöhe eine nur geringe Auswirkung auf die resultierende Biegefestigkeit der daraus hergestellten Verbunde aufweist. Die Rippendicke und die Wandstärke der Schale weisen hingegen einen sehr hohen Einfluss auf. Als Hauptfaktor für ein frühzeitiges Bauteilversagen wurde sowohl bei dem entwickelten FEM-Modell als auch bei der durchgeführten mechanischen Charakterisierung von 3D-Verbundproben ein durch interlaminare Scherspannung ausgelöster Bruch, sog. Delamination, zwischen unterschiedlichen Verstärkungslagen identifiziert (vgl. Abbildung 2). Zur besseren Vorhersage der mechanischen Eigenschaften von FKV wurde daher ein mesoskopisches FEM-Modell entwickelt und eingesetzt [5], das in der Lage ist, 3D-Schale-Rippen-Strukturen mit einem komplexen Lagenaufbau sehr detailliert abzubilden. Anhand dieses Modelles konnte festgestellt werden, dass die Orientierung der Verstärkungsfäden im Bereich der Rippe eine untergeordnete Rolle spielt. Ausschlaggebend für die Gewährleistung guter strukturmechanischen Verbundeigenschaften ist die Sicherstellung einer durchgängigen Faserverstärkung zwischen unmittelbar benachbarten Strukturbereichen, insbesondere an den Verbindungsstellen zwischen Rippen mit unterschiedlicher Orientierung (z. B. 0°/90°), sowie der Fixierung mehrerer Verstärkungslagen mit einem einzigen Maschenfaden. Somit weist eine 2D-Verbundprobe aus vier integral gefertigten, miteinander verbundenen Verstärkungslagen mit 17,8 GPa ein um 12 % höheres Biegemodul im Vergleich zu einer aus vier Einzellagen zusammengesetzten Verbundprobe auf, die 15,9 GPa erreicht.

Integral gefertigte 3D-Schale-Rippen-Strukturen

Basierend auf der durchgeführten Struktursimulation wurden der dabei ermittelte ideale Verlauf der Verstärkungsfäden iterativ mit den stricktechnisch realisierbaren Verstärkungsfadenanordnungen unter Berücksichtigung der technologischen Umsetzbarkeit verglichen und anschließend aussichtsreiche Bindungsvarianten mit lastgerecht angeordneten Verstärkungsfäden abgeleitet und festgelegt. Darauf aufbauend wurden insbesondere für die direkte Ausbildung diagonal angeordneter Rippen notwendige technologische Anpassungen an der vorhandenen Maschinentechnik abgeleitet, konstruktiv entwickelt und umgesetzt. Nach Implementierung einer neuartigen, modular in konventionelle Flachstrickmaschinen nachrüstbaren Vorrichtung für das Aufspreizen der Kettfadenschar wurden 3D-Schale-Rippen-Strukturen mit in 0°, 90° und ± 45° angeordneten Rippen auf einer modifizierten Flachstrickmaschine ARIES.3D technology der Firma Steiger (Steiger Participations SA, Vionnaz/Schweiz) stricktechnisch umgesetzt (vgl. Abbildung 3).

Mit der Umsetzung der Strukturen wurde gezeigt, dass die entwickelten Bindungsvarianten als Programmiermodule bereitgestellt werden können und mit geringem Programmieraufwand in kommerzielle Softwarelösungen zur Erstellung der Maschinensteuerprogramme übertragbar sind. Diese Module können miteinander kombiniert werden und ermöglichen somit eine beträchtliche Struktur- bzw. Produktvielfalt. Im Ergebnis des abgeschlossenen Forschungsprojektes steht fortan ein robustes und erprobtes Verfahren zur integralen Fertigung endlosfaserverstärkter 3D-Schale-Rippen-Strukturen mit komplex angeordneten Versteifungselementen auf Flachstrickmaschinen zur Verfügung.

Bauteilherstellung und Charakterisierung

Aus den integral gefertigten Preformen wurden FKV-Bauteile im SCRIMP-Verfahren (Seaman Composite Resin Infusion Molding Process) hergestellt. Dafür wurde ein Formwerkzeug mit modular einsetzbaren Metallkernen entwickelt, das die flexible Herstellung von 3D-Schale-Rippen-Bauteilen mit unterschiedlichen Rippenausrichtungen ermöglicht (vgl. Abbildung 4). Zu Vergleichszwecken erfolgte auch die Realisierung eines in Differenzialbauweise gefertigten FKV-Bauteils. Dabei wurden Schalen und Rippenstruktur separat hergestellt und anschließen miteinander gefügt. Die Untersuchungen haben gezeigt, dass für die Bauteilherstellung in Integralbauweise im Vergleich zur Differenzialbauweise deutlich weniger Arbeitsschritte erforderlich sind.

Zur Validierung der entwickelten FEM-Modelle erfolgte schließlich eine umfangreiche Charakterisierung der mechanischen Eigenschaften von 2D-Verbundproben mittels Zug-, Druck-, CAI- (Compression-After-Impact), 4‑Punkt-Biege-, ILSS‑ (Interlaminare Scherfestigkeit) sowie Charpy-Schlagversuchen. Ergänzend dazu wurden in Anlehnung an DIN EN ISO 14125 auch 3-Punkt-Biegeversuche an 3D-FKV-Bauteilen durchgeführt (vgl. Abbildung 5), um die Biegefestigkeit der neuartigen 3D-Schale-Rippen-Bauteile mit komplex angeordneten Rippen zu ermitteln.

Insgesamt ist festzuhalten, dass die neuartigen 3D-Schale-Rippen-Preformen mit komplex angeordneten Versteifungselementen für die flexible Herstellung hochbeanspruchbarer FKV-Bauteile mit komplexer Versteifungsstruktur und vor allem mit einer durchgängigen Faserverstärkung zwischen Schale und Rippen sehr gut geeignet sind. Die dabei erreichbare Endlosfaserverstärkung in den Rippen stellt eine deutliche Verbesserung im Vergleich zum Stand der Technik dar. Insbesondere ermöglicht der Einsatz der neuartigen 3D-Textilhalbzeuge eine deutliche Vereinfachung des Preforming-Prozesses. Im Vergleich dazu erfordert eine Premformherstellung in Differenzialbauweise eine hohe Anzahl an 2D-Textilstrukturen, welche in aufwendigen Prozessschritten zugeschnitten, vorgeformt, gestapelt, kompaktiert und fixiert werden müssen. Bei Anwendung der Projektergebnisse ist dazu nur noch eine Positionierung der integral gefertigten 3D-Preform im Werkzeug erforderlich. Außerdem weisen die realisierten 3D-Preformen aufgrund der Fixierung einer hohen Anzahl an Verstärkungsfadenlagen durch nur einen einzigen Maschenfaden eine hervorragende Stabilität auf, was perspektivisch eine vollautomatisierte Preformherstellung mittels Robotertechnik ermöglicht. Somit sind die Voraussetzungen für eine wirtschaftliche, automatisierbare Fertigung endlosfaserverstärkter 3D-Schale-Rippen-FKV-Bauteile mit komplex angeordneten Versteifungselementen in reproduzierbare Qualität geschaffen.

Zusammenfassung und Ausblick

Im Rahmen des IGF-Projektes 20793 BR wurde ein innovatives Fertigungsverfahren auf Basis der Mehrlagenflachstricktechnik zur integralen Herstellung lastgerecht ausgelegter 3D-Schale-Rippen-Strukturen mit komplex angeordneten Versteifungselementen entwickelt, umgesetzt und erfolgreich erprobt. Wesentliche Vorteile der Integralbauweise gegenüber der Differenzialbauweise sind ein deutlich schnellerer Preformaufbau sowie eine deutlich höhere mechanische Belastbarkeit daraus herstellbarer FKV-Bauteile durch die durchgehende Faserverstärkung zwischen benachbarten Strukturbereichen, z. B. zwischen Schale und Rippe. Derartige Bauteile sind dadurch wesentlich materialeffizienter auslegbar. Künftig ermöglicht das entwickelte Verfahren einen Durchbruch topologie‑ und strukturoptimierter endlosfaserverstärkter 3D-Schale-Rippen-FKV-Bauteile in Serienanwendungen.

Potenzielle industrielle Anwendungen sind u. a. für hochbelastbare rippenverstärkte Schalen im Schienenfahrzeug‑, Automobil- und Apparatebau (z. B. Türen oder Maschinenabdeckungen), Rumpfstrukturen im Schiffbau oder lasttragende Strukturen der Luft- und Raumfahrt (z. B. Flugzeugrumpf oder Isogrid-Strukturen).

Weiteres Forschungspotenzial besteht u. a. in der Weiterentwicklung der Technologie zur integralen Fertigung endlosfaserverstärkter 3D-Schale-Rippen-Strukturen mit diagonal angeordneten Versteifungselementen abweichend von der ± 45°-Anordnung bzw. mit gekrümmten Rippen [6].

Danksagung

Das IGF-Vorhaben 20793 BR der Forschungsvereinigung Forschungskuratorium Textil e. V. wurde über die AiF im Rahmen des Programms zur Förderung der industriellen Gemeinschaftsforschung (IGF) vom Bundesministerium für Wirtschaft und Klimaschutz aufgrund eines Beschlusses des Deutschen Bundestages gefördert.

Die Autoren danken den genannten Institutionen für die Bereitstellung der finanziellen Mittel sowie den involvierten Unternehmen im projektbegleitenden Ausschuss für die fachliche Unterstützung und die Bereitstellung von Versuchsmaterial. Der Forschungsbericht und weiterführende Informationen sind am Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik der TU Dresden erhältlich.

AutorInnen: Quentin Bollengier, David Rabe, Minh Quang Pham, Eric Häntzsche, Chokri Cherif

Technische Universität Dresden
Fakultät Maschinenwesen
Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM)
01062 Dresden

https://tu-dresden.de/mw/itm

More entries from TU Dresden, Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik ITM

18.10.2022

In-situ-Strukturüberwachung von Faserkunststoffverbunden unter Druckbeanspruchung

Garne Composites Sensorik Nachhaltigkeit Technische Textilien Tests

Zusammenfassung

Die kontinuierliche Strukturüberwachung von FKV-Bauteilen vor allem in komplexen, wechselnden Belastungsszenarien stellt einen effizienten Lösungsansatz dar, um frühzeitig potenziell auftretende Ermüdungserscheinungen oder Schäden zu detektieren. Gerade in FKV-Bauteilen sind textilbasierte Sensoren eine wirtschaftliche Lösung zur kontinuierlichen In-situ-Strukturüberwachung, aufgrund ihrer direkten textiltechnischen Integration während der Flächenbildung und hohen Strukturkompatibilität.    

Das in diesem Forschungsprojekt entwickelte textilbasierte Sensorkonzept wurde auf der Garn- und Verbundebene elektromechanisch charakterisiert und wurde im Multiaxialkettenwirken zu funktionalisierten Gelegen und fortführend in etablierten Verbundbildungstechnologien zu CFK-Proben weiterverarbeitet sowie umfangreich in Zug-, Druck- und Biegeversuchen charakterisiert. Anhand eines CFK-Profil Demonstrators wurde die praktische Umsetzbarkeit und Funktionsfähigkeit erprobt und bewiesen. Diese „Smart-Composites“ ermöglichen nicht nur eine kontinuierliche In-situ-Strukturüberwachung von FKV-Bauteilen unter Zug-, Biege- und vor allem Druckbeanspruchung, sondern können auch für die Detektion von Riss- und Delaminationsvorgängen eingesetzt werden. Dadurch können sowohl das Verständnis des Materialverhaltens verbessert und für zukünftige Auslegungen berücksichtigt als auch erforderliche Maßnahmen zur Gewährleistung der Funktionsfähigkeit des Gesamtsystems eingeleitet werden.

Bericht

Einleitung

Faserverstärkte Verbundstrukturen (Composites) werden gegenwärtig u. a. in den Bereichen des Maschinen-, Flugzeug- und Automobilbaus aufgrund der ausgezeichneten mechanischen Eigenschaften bei gleichzeitig höchstem Leichtbaupotenzial eingesetzt [1]. Auch im Bausektor finden Hochleistungstextilien, substituierend zur Stahlbewehrung, zunehmend Anwendung im Carbonbeton [2], aufgrund ihrer mechanischen sowie chemischen Eigenschaften und der daraus resultierenden ressourcenschonenden, filigranen Leichtbauweise. Die langzeitstabile Funktionsfähigkeit und Sicherheit von faserverstärkten Verbundstrukturen ist durch den häufigen Einsatz in sicherheitskritischen Komponenten und Strukturen dringend erforderlich. Ein vielversprechender praxisorientierter Lösungsansatz stellt hierbei die kontinuierliche Strukturüberwachung dar, um die (Rest-)Tragfähigkeit zu quantifizieren und um ggf. erforderliche Maßnahmen zur Gewährleistung der Funktionsfähigkeit einzuleiten.  
Eine besonders wirtschaftliche und strukturkompatible Lösung sind textilbasierte Sensoren, die während der Herstellung der textilen Verstärkungshalbzeuge integriert und zur Erfassung komplexer Lastfälle sowie Riss- und Delaminationsvorgänge auf Verbundebene eingesetzt werden. [3 – 6]

Textilbasierte Dehnungssensoren werden prinzipbedingt vorwiegend zur Überwachung in zugbeanspruchten Verbundstrukturen eingesetzt. Um zuverlässige Aussagen über strukturelle Veränderungen und kritische Überlastzustände auch in komplex überlagerten Beanspruchungsszenarien (bspw. Zug- und Druckbeanspruchungen) ableiten zu können, wurden im IGF-Projekt 21169 BR textilbasierte druckmessfähige Sensorsysteme zur kontinuierlichen In-situ-Strukturüberwachung für FKV entwickelt.

Zielsetzung und Lösungsweg

Das Ziel des IGF-Forschungsprojekts war die Entwicklung, Charakterisierung und Erprobung textilbasierter druckmessfähiger Sensorsysteme und deren textiltechnische Integration im Multiaxialkettenwirken zur Herstellung sensorisch-funktionalisierter textiler Verstärkungshalbzeuge für den Einsatz in FKV. Das Anforderungsprofil an die textilen Sensoren wurde anhand eines Funktionsdemonstrators simulationsgestützt abgeleitet und gezielt darauf ausgelegt strukturelle Deformationen durch einwirkende Zug-, Biege- und vor allem Druckbeanspruchungen zu erfassen. Hierfür wurde der Ansatz verfolgt, die Drucksensitivität von textilen Sensoren durch die gezielte Einstellung und Aufrechterhaltung einer Vorspannung bzw. -dehnung zu erhöhen. Das Sensorverhalten wurde umfangreich in elektromechanischen Untersuchungen auf Faser- und Verbundebene analysiert und am Funktionsdemonstrator erprobt.

Danksagung

Das IGF-Vorhaben 21169 BR der Forschungsvereinigung Forschungskuratorium Textil e.V., Reinhardtstr. 12-14, 10117 Berlin wurde über die AiF im Rahmen des Programms zur Förderung der industriellen Gemeinschaftsforschung und -entwicklung (IGF) vom Bundesministerium für Wirtschaft und Klimaschutz aufgrund eines Beschlusses des Deutschen Bundestages gefördert.

AutorInnen: Le Xuan, Hung; Seidel, André; Hahn, Lars; Nocke, Andreas; Cherif, Chokri

Technische Universität Dresden
Fakultät Maschinenwesen
Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM)
01062 Dresden

More entries from TU Dresden, Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik ITM

05.09.2022

Entwicklung endkonturnah gewebter, gekrümmter Profilpreformen

Technische Textilien

Zusammenfassung

Am ITM erfolgte im IGF-Projekt 20903 BR (Gekrümmte Profilpreformen) die simulationsgestützte Entwicklung und webtechnische Umsetzung integral gefertigter gekrümmter Profilpreformen mit anforderungsgerechter Querschnittsänderung entlang der Profillänge zur Verstärkung schalenförmiger FKV-Bauteile.

Bericht

Am ITM erfolgte im IGF-Projekt 20903 BR (Gekrümmte Profilpreformen) die simulationsgestützte Entwicklung und webtechnische Umsetzung integral gefertigter gekrümmter Profilpreformen mit anforderungsgerechter Querschnittsänderung entlang der Profillänge zur Verstärkung schalenförmiger FKV-Bauteile.

AutorInnen: Nuss, Dominik Huỳnh, Thị Anh Mỹ Gereke, Thomas Hoffmann, Gerald Cherif, Chokri

Technische Universität Dresden
Fakultät Maschinenwesen
Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM)
01062 Dresden

https://tu-dresden.de/mw/itm

More entries from TU Dresden, Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik ITM