Forschungspublikationen

9 Ergebnisse
31.07.2025

Entwicklung von Hybridgarnstrukturen aus Carbon-, Edelstahl- und Elastomerfasern für Compositeanwendungen

Fasern Garne Composites Recycling Nachhaltigkeit

Zusammenfassung

Im Rahmen des IGF-Forschungsvorhabens 01IF22916N wurde am Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM) der TU Dresden eine durchgängige Prozesskette zur industriellen Herstellung von dreikomponentigen Hybridgarnen aus recycelten Carbonfasern (rCF), Metallfasern (MF) und Elastomerfasern (EF) erfolgreich entwickelt und umgesetzt. Die entwickelte Prozesskette umfasst die Faseraufbereitung und Charakterisierung, Krempel- und Verstreckungsprozess zur Bildung eines Faserbandes und die modifizierte Garnbildung im Flyer zur Herstellung der Hybridgarne. Der Eignungsnachweis der Technologie erfolgte durch die Herstellung dreikomponentiger Hybridgarne mit definierten Faservolumengehalten sowie durch die Fertigung eines Demonstrators. Abb. 3 zeigt die vollständige Prozesskette von der Faseraufbereitung bis zur Demonstratorherstellung aus rCF, MF und EF am ITM. Die realisierten Hybridgarne weisen Feinheiten zwischen 1500 tex und 3500 tex auf und konnten erfolgreich zu textilen Halbzeugen weiterverarbeitet werden. Die daraus hergestellten Composites zeigen hervorragende mechanische Eigenschaften: eine maximale Biegefestigkeit von 806 ± 18 MPa sowie ein maximales Biegemodul von 83 ± 4 GPa. Die maximale Schlagzähigkeit liegt bei 117±17 kJ/m². Die Untersuchungsergebnisse zeigen, dass die Garndrehung einen signifikanten Einfluss auf die mechanischen Eigenschaften des Verbundmaterials ausübt. Eine moderate Garndrehung kann positiv auf die Verbundbiegeeigenschaften auswirken, während eine höhere Garndrehung vorteilhaft auf die Verbundschlagfestigkeit auswirken. Insgesamt zeigt sich, dass durch die gezielte Einstellung der Garndrehung das mechanische Verhalten der Hybridverbunde erheblich beeinflusst und optimiert werden kann.

Die neuartigen Hybridgarne eignen sich besonders für die Herstellung kosteneffizienter duroplastischer Hochleistungsverbunde mit komplexer Geometrie. Durch ihre anwendungsbezogene Leistungsfähigkeit und die zugrunde liegende prozessintegrierte Technologie verfügen sie über ein hohes Innovations- und Marktpotenzial – insbesondere in den Bereichen Werkstofftechnik, Leichtbau, Nachhaltigkeit und Ressourceneffizienz. Für kleine und mittlere Unternehmen (KMU) der Textilindustrie eröffnet sich damit die Möglichkeit, innovative Produkte und Technologien für den Faserverbundmarkt zu entwickeln und sich als leistungsfähige Zulieferer für Branchen wie Automobilbau, Maschinenbau, Luftfahrt, Medizintechnik und Sportgeräteindustrie zu positionieren.

Bericht

Einleitung

Die Größe des CF-CFK-Marktes wurde im Jahr 2023 auf 21,12 Milliarden US-Dollar geschätzt. Die Branche des CF-CFK-Markets wird voraussichtlich von 22,57 Milliarden US-Dollar im Jahr 2024 auf 38,4 Milliarden US-Dollar im Jahr 2032 wachsen. Die Markt-CAGR (Wachstumsrate) wird im Prognosezeitraum 2024–2032 voraussichtlich bei etwa 6,86% liegen [1]. Dank ihrer hohen gewichtsspezifischen Steifigkeiten und Festigkeiten finden CFK breite Anwendung in der Automobil-, Sport-, Freizeit- sowie Luft- und Raumfahrtindustrie [2]. Jedoch sind CFK-Bauteile bei Schlagbelastung sehr spröde, was zu katastrophalen Schäden und starker Splitterbildung führen kann [3]. Deshalb ist der Einsatz von duroplastischen CFK-Strukturen in sicherheitsrelevanten Komponenten, wie Rotorblättern von Windkraftanlagen und PKW-B-Säulen, kritisch zu betrachten. Aktuelle Hybridisierungskonzepte zielen darauf ab, Materialien mit hoher Steifigkeit, Festigkeit und Duktilität zu vereinen [4]. Bestehende Ansätze kombinieren Carbonfasern (CF) mit Edelstahlfasern (MF) oder Elastomerfasern (EF) in Schichten aus Metallfolien und CFK als Faserverbund-Metall-Laminate (FML), bspw. CARALL [5-8], oder Elastomerfolien und CFK als Faserverbundlaminate, bspw. KRAIBON [9-14]. Metallfolien bieten aufgrund ihrer plastischen Verformbarkeit mit Bruchdehnungen von bis zu 20 % eine höhere Energieabsorption als CFK und Carbon/Aramid-Hybridcomposites [15-17]. Elastomerfolien reduzieren durch ihre elastische Verformbarkeit die gefährliche Splitterbildung unter dynamischer Belastung [9]. Diese Schichtsysteme verbessern das Impact- und Splitterverhalten zwar, bergen jedoch ein hohes Delaminationsrisiko [18]. Darüber hinaus fehlen kostengünstige und nachhaltige Composites mit geeigneten Impact- und Splittereigenschaften, die die Vorteile der Einzelkomponenten voll ausschöpfen und kostengünstig sowie nachhaltig sind.

Zielsetzung

Das Ziel des Forschungsvorhabens war die simulationsgestützte Entwicklung neuartiger Dreikomponenten-Hybridgarne, die auf Mikroebene hybridisierter sind, auf Basis dreier unterschiedlicher Materialkonzepte sowie deren Umsetzung in funktionale Compositestrukturen für nachhaltige Leichtbauanwendungen. Durch die gezielte Kombination duktiler Metallfasern (MF), hochelastischer Elastomerfasern (EF) sowie hochsteifer und hochfester recycelter Carbonfasern (rCF) sollten Verbundwerkstoffe mit skalierbaren mechanischen Eigenschaften entstehen.

Diese entwickelten Hybridgarne bildeten die Grundlage für die maßgeschneiderte Entwicklung von Composites für anwendungsorientierte Leichtbaulösungen mit hohem Energieabsorptionspotenzial und erhöhter Schadensresistenz.

 

Hybridgarnstrukturen und Composites: Entwicklung und Charakterisierung

Entwicklung und Fertigung von Hybridgarnen mittels Flyerspinntechnologie

Ausgehend von den ausgewählten und charakterisierten Fasermaterialien rCF und EF mit einer mittleren Faserausgangslänge von 80 mm und mit einem definierten Mischungsverhältnis wurden die Fasern mithilfe mechanischer Voröffnungs- und Vormischvorrichtungen aufbereitet. Anschließend wurden die vorgeöffneten und vorgemischten Fasern eine Speziallaborkrempel zugeführt, um Krempelbänder aus rCF und EF zu entwickeln. Die Charakterisierung der Krempelbänder zeigte, dass der Schädigungsgrad der Carbonfasern (CF) zwischen 10 und 25 % lag und die EF keine Fasereinkürzung aufweist.

Zum Schutz der Edelstahlfasern wurde zunächst ein Faserband aus 100 % rCF oder aus rCF und EF mit definierten Mischungsverhältnissen hergestellt. Anschließend wurden aus diesen und 100 % MF-Bändern Sandwichbandstrukturen (rCF/MF-Band oder rCF/EF/MF-Band) hergestellt, die als Ausgangsmaterial für die Strecke dienten. Zur Verbesserung der Gleichmäßigkeit des Faserbandes und zur besseren Durchmischung von rCF, EF und MF in der Faserstruktur wurde das Band mehrfach verstreckt. Die hergestellten Streckenbänder stehen für die weitere Entwicklung von Hybridgarnen zur Verfügung.

Zur Entwicklung von Hybridgarnen wurde der ITM-Spezialflyer hinsichtlich des verzugsstörungsfreien Streckwerks, der Bandzuführelemente und der Maschineneinstellparameter modifiziert. Anschließend wurden experimentelle Untersuchungen durchgeführt. Aus den ermittelten optimalen Einstellungen des ITM-Spezialflyers wurden Hybridgarne mit einer Feinheit von 1500 tex und verschiedenen Garndrehungen von 40-150 T/m hergestellt. Die entwickelten Hybridgarne wurden in Anlehnung an DIN EN ISO 13934-1 hinsichtlich Ungleichmäßigkeit, Garnstruktur und Kraft-Dehnungsverhalten charakterisiert und stehen für die Herstellung von Verbundplatten zur Verfügung.

Fertigung von recycelten carbonfaserverstärkten Verbundplatten

Auf Basis der entwickelten Hybridgarne wurden unidirektionale (UD) Verbundplatten mittels des RTM-Verfahrens (Resin Transfer Molding) hergestellt und charakterisiert. Hierzu wurden die Hybridgarne zunächst unter konstanter Spannung gleichmäßig auf einen Wickelrahmen gewickelt und anschließend mit optimierten Parametern konsolidiert. Als Harzsystem kam das Injektionsharz Hexion RIMH 135 in Kombination mit dem Härter Hexion RIMH 137 zum Einsatz.

Im Rahmen der Verbundcharakterisierung kamen mehrere genormte Prüfverfahren zur Anwendung. Die Probekörper für den Verbundzugversuch wurden in Anlehnung an DIN EN ISO 527-5/A/2 hergestellt und die Zugprüfung erfolgte gemäß DIN EN ISO 527-4. Zur Bestimmung der Biegeeigenschaften faserverstärkter Kunststoffe wurde die Norm DIN EN ISO 14125 herangezogen und die instrumentierte Schlagprüfung erfolgte nach DIN EN ISO 179-2, welche die Charpy-Schlageigenschaften beschreibt. Zur Bewertung der Restdruckfestigkeit nach Schlagbeanspruchung kam das CAI-Verfahren gemäß DIN ISO 18352 zum Einsatz. Ergänzend wurde ein Prüfstand zur optischen Analyse des Splitterverhaltens entwickelt, wobei die Hochgeschwindigkeitsprüfmaschine HTM 5020 von ZwickRoell zum Einsatz kam. Die Durchstoßversuche orientierten sich an der Norm DIN EN ISO 6603-2.

 

Ergebnisse und Diskussion (Auswahl)

Das in Abb. 1 dargestellte Diagramm zeigt den Zusammenhang zwischen der Verbundbiegefestigkeit und dem Biegemodul bei verschiedenen Garndrehungen eines Faserverbundmaterials mit einem konstanten Faservolumenanteil von 50 Vol.- %. Es wurden sowohl ein Referenzverbund aus CF-Filamentgarnen als auch drei Varianten eines unidirektionalen (UD) Verbunds untersucht, die aus entwickelten rCF/MF-Hybridgarnen bestehen. Diese Hybridgarne setzen sich aus 90 Masse- % recycelten Carbonfasern (rCF) und 10 Masse-% Metallfasern (MF) zusammen. Sie unterscheiden sich ausschließlich in der Garndrehung (40, 80 und 120 T/m). Der Referenzverbund erreicht mit einer Biegefestigkeit von etwa 725 ± 35 MPa und einem Biegemodul von ca. 74 ± 8 GPa bereits ein gutes mechanisches Eigenschaftsprofil. Bemerkenswert ist jedoch, dass die Variante mit moderater Garndrehung (T40) diese Werte übertrifft: Sie erreicht eine Biegefestigkeit von 806 ± 18 MPa und ein Biegemodul von 83 ± 4 GPa und erzielt damit die höchsten Werte innerhalb der untersuchten Proben. Mit zunehmender Garndrehung (T80 und T120) nehmen hingegen die Verbundbiegefestigkeit und das Biegemodul stetig ab. Die verstärkte Helixstruktur führt zu einer weniger effektiven Ausrichtung der Fasern in Längsrichtung. Dadurch wird die tragende Wirkung in Faserrichtung reduziert und die Verbundwirkung unter Biegebelastung geschwächt.

Die Abb. 2 zeigt die Schlagfestigkeit von Verbundwerkstoffen, die auf Basis neu entwickelter Hybridgarne aus recycelten Carbonfasern (rCF) und gehobelten Metallfasern (MF) hergestellt wurden. Dabei wurde die Schlagzähigkeit in Abhängigkeit von der Garndrehung untersucht. Es wurden drei Verbundplatten mit unterschiedlichen Garndrehungen (T40, T80 und T120) analysiert. Die Ergebnisse verdeutlichen, dass die Schlagfestigkeit tendenziell mit steigender Garndrehung (T40 → T120) zunimmt. Bei einer niedrigen Drehung (T40) beträgt die Schlagfestigkeit etwa 90 kJ/m² und bei der höchsten Drehung (T120) eine deutliche Steigerung der Schlagzähigkeit auf etwa 117±17 kJ/m². Dies legt nahe, dass eine höhere Drehung zu einer verbesserten Mikrostruktur und somit zu einer effizienteren Energieaufnahme bei Schlagbelastung führt. Dadurch erhöht sich die Kohäsion zwischen den Fasern, was die Energieaufnahmefähigkeit beim Schlag verbessert. Zudem bewirkt die engere Verspannung der Fasern eine bessere Lastübertragung im Verbund. Eine höhere Garndrehung reduziert auch die Anzahl loser Faserenden, was die strukturelle Integrität steigert. Insgesamt resultiert daraus ein widerstandsfähigeres Material gegenüber schlagartiger Beanspruchung.

Zusammenfassung

Im Rahmen des IGF-Forschungsvorhabens 01IF22916N wurde am Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM) der TU Dresden eine durchgängige Prozesskette zur industriellen Herstellung von dreikomponentigen Hybridgarnen aus recycelten Carbonfasern (rCF), Metallfasern (MF) und Elastomerfasern (EF) erfolgreich entwickelt und umgesetzt. Die entwickelte Prozesskette umfasst die Faseraufbereitung und Charakterisierung, Krempel- und Verstreckungsprozess zur Bildung eines Faserbandes und die modifizierte Garnbildung im Flyer zur Herstellung der Hybridgarne. Der Eignungsnachweis der Technologie erfolgte durch die Herstellung dreikomponentiger Hybridgarne mit definierten Faservolumengehalten sowie durch die Fertigung eines Demonstrators. Abb. 3 zeigt die vollständige Prozesskette von der Faseraufbereitung bis zur Demonstratorherstellung aus rCF, MF und EF am ITM. Die realisierten Hybridgarne weisen Feinheiten zwischen 1500 tex und 3500 tex auf und konnten erfolgreich zu textilen Halbzeugen weiterverarbeitet werden. Die daraus hergestellten Composites zeigen hervorragende mechanische Eigenschaften: eine maximale Biegefestigkeit von 806 ± 18 MPa sowie ein maximales Biegemodul von 83 ± 4 GPa. Die maximale Schlagzähigkeit liegt bei 117±17 kJ/m². Die Untersuchungsergebnisse zeigen, dass die Garndrehung einen signifikanten Einfluss auf die mechanischen Eigenschaften des Verbundmaterials ausübt. Eine moderate Garndrehung kann positiv auf die Verbundbiegeeigenschaften auswirken, während eine höhere Garndrehung vorteilhaft auf die Verbundschlagfestigkeit auswirken. Insgesamt zeigt sich, dass durch die gezielte Einstellung der Garndrehung das mechanische Verhalten der Hybridverbunde erheblich beeinflusst und optimiert werden kann.

Die neuartigen Hybridgarne eignen sich besonders für die Herstellung kosteneffizienter duroplastischer Hochleistungsverbunde mit komplexer Geometrie. Durch ihre anwendungsbezogene Leistungsfähigkeit und die zugrunde liegende prozessintegrierte Technologie verfügen sie über ein hohes Innovations- und Marktpotenzial – insbesondere in den Bereichen Werkstofftechnik, Leichtbau, Nachhaltigkeit und Ressourceneffizienz. Für kleine und mittlere Unternehmen (KMU) der Textilindustrie eröffnet sich damit die Möglichkeit, innovative Produkte und Technologien für den Faserverbundmarkt zu entwickeln und sich als leistungsfähige Zulieferer für Branchen wie Automobilbau, Maschinenbau, Luftfahrt, Medizintechnik und Sportgeräteindustrie zu positionieren.

 

Danksagung

Das IGF-Vorhaben 01IF22916N der Forschungsvereinigung Forschungskuratorium Textil e.V. wurde über das DLR im Rahmen des Programms zur Förderung der industriellen Gemeinschaftsforschung und -entwicklung (IGF) vom Bundesministerium für Wirtschaft und Klimaschutz aufgrund eines Beschlusses des Deutschen Bundestages gefördert. Wir danken den genannten Institutionen für die Bereitstellung der finanziellen Mittel.

 

Literaturangaben

  1. WiseGuyReports. (n.d.). CF & CFRP Market Report. Abgerufen am [29.07.2025], von https://www.wiseguyreports.com/de/reports/cf-cfrp-market
  2. E. Witten; V. Mathes; M. Sauer; M. Kühnel: Composites-Marktbericht 2023 - Marktentwicklun-gen, Trends, Ausblicke und Herausforderungen. Deutsche Fachverband für Faserverbundkunststoffe/Composites - AVK, 2023
  3. J. Striewe; C. Reuter; K.-H. Sauerland; T. Tröster: Manufacturing and crashworthiness of fabric-reinforced thermoplastic composites. Thin-Walled Structures 123(2018), S. 501-508. https://doi.org/10.1016/j.tws.2017.11.011
  4. D. Nestler: Beitrag zum Thema Verbundwerkstoffe - Werkstoffverbunde: Status quo und For-schungsansätze. Chemnitz: Univ.-Verl., 2014. – ISBN 9783944640129
  5. ZHU, W.; XIAO, H.; WANG, J.; LI, X.: Effect of Different Coupling Agents on Interfacial Properties of Fibre-Reinforced Aluminum Laminates. Materials (Basel, Switzerland) 14(2021)4. https://doi.org/10.3390/ma14041019
  6. GUPTA, R. K.; MAHATO, A.; BHATTACHARYA, A.: Notch Shape Influence on Damage Evolution of Al/CFRP Laminates Under Tensile Loading: Experimental and Numerical Analysis. Appl Compos Mater (2022). https://doi.org/10.1007/s10443-022-10051-2
  7. TRZEPIECIŃSKI, T.; NAJM, S. M.; SBAYTI, M.; BELHADJSALAH, H.; SZPUNAR, M.; LEMU, H. G.: New Advances and Future Possibilities in Forming Technology of Hybrid Metal–Polymer Composites Used in Aerospace Applications. J. Compos. Sci. 5(2021)8, S. 217 f. https://doi.org/10.3390/jcs5080217
  8. PONNARENGAN, H.; KAMARAJ, L.; BALACHANDRAN, S. R.; KATHAR BASHA, S.: Evaluation of me-chanical properties of novel GLARE laminates filled with nanoclay. Polym. Compos. 42(2021)8, S. 4015-4028. https://doi.org/10.1002/pc.26113
  9. KRAIBON®: https://www.kraiburg-rubber-compounds.com/kraibon (31.07.2025)
  10. D. Düring; L. Weiß; D. Stefaniak; N. Jordan; C. Hühne: Low-velocity impact response of composi-te laminates with steel and elastomer protective layer. Composite Structures 134(2015), S. 18-26. https://doi.org/10.1016/j.compstruct.2015.08.001
  11. E. Stelldinger; A. Kühhorn; M. Kober: Experimental evaluation of the low-velocity impact dama-ge resistance of CFRP tubes with integrated rubber layer. Composite Structures 139(2016), S. 30-35. https://doi.org/10.1016/j.compstruct.2015.11.069
  12. E. Sarlin; M. Apostol; M. Lindroos; V.-T. Kuokkala; J. Vuorinen; T. Lepistö; M. Vippola: Impact properties of novel corrosion resistant hybrid structures. Composite Structures 108(2014), S. 886-893. https://doi.org/10.1016/j.compstruct.2013.10.023
  13. LI, Z.; ZHANG, J.; JACKSTADT, A.; KÄRGER, L.: Low-velocity impact behavior of hybrid CFRP-elastomer-metal laminates in comparison with conventional fiber-metal laminates. 02638223 287(2022), S. 115340 f. https://doi.org/10.1016/j.compstruct.2022.115340
  14. FLEISCHER, J. (HRSG.): Intrinsische Hybridverbunde für Leichtbautragstrukturen – Grundlagen der Fertigung, Charakterisierung und Auslegung. Berlin, Heidelberg: Springer Vieweg, 2021. – ISBN 978-3-662-62832-4
  15. Y. Swolfs; P. De Cuyper; M.G. Callens; I. Verpoest; L. Gorbatikh: Hybridisation of two ductile materials Steel fibre and self-reinforced polypropylene composites. Composites Part A: Applied Science and Manufacturing 100(2017), S. 48-54. https://doi.org/10.1016/j.compositesa.2017.05.001
  16. H.J. Koslowski: Chemiefaser-Lexikon. Deutscher Fachverlag, 2008. – ISBN 3871508764
  17. H. Schürmann: Konstruieren mit Faser-Kunststoff-Verbunden. Springer-Verlag GmbH, 2007. – ISBN 3540721894
  18. N. Montinaro; D. Cerniglia; G. Pitarresi: Evaluation of interlaminar delaminations in titanium-graphite fibre metal laminates by infrared NDT techniques. NDT & E International 98(2018), S. 134-146. https://doi.org/10.1016/j.ndteint.2018.05.004

AutorInnen: Mahmud Hossain Anwar Abdkader Tobias Lang Thomas Gereke Chokri Cherif

Technische Universität Dresden
Fakultät Maschinenwesen
Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM)
01062 Dresden

https://tu-dresden.de/mw/itm

More entries from TU Dresden, Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik ITM

18.06.2025

Entwicklung von kettengewirkten Tapes für das kurvenbahngerechte Tapele-gen als Basis für die materialeffiziente Fertigung lastpfadgerechter, bionischer FKV-Bauteile

Gestricke & Gewirke Composites Technische Textilien

Zusammenfassung

Im IGF-Vorhaben 22653 BR wurde ein neuartiges textilbasiertes Halbzeug zur ressourcenschonenden Fertigung lastpfadgerechter, bionischer Faserverbundbauteile entwickelt: das Curvy Tape. Ziel war die Herstellung kettengewirkter Tapes als Endlosfaserband, die sich auch auf komplex gekrümmten Geometrien faltenfrei und lagegenau ablegen lassen. Zentrale Innovation ist das Prinzip der Fadenreserve: Die Curvy Tapes verfügen über segmentierte, gegeneinander verschiebbare Faserbändchen, deren Scherbarkeit gezielt durch Wirkparameter wie Stichlänge, Bindung und Wirkfadenspannung einstellbar ist.

Ein simulationsgestütztes Auslegungstool erlaubt die präzise Vorhersage geeigneter Tapeparameter in Abhängigkeit von Bauteilgeometrie, Faserart und Ablagepfad. Die entwickelten Fertigungs- und Ablagekonzepte wurden prototypisch umgesetzt, u. a. durch nachrüstbare Zusatzmodule für Multiaxial-Kettenwirkmaschinen. Anhand eines Kotflügel-Demonstrators konnte die technische Machbarkeit und wirtschaftliche Vorteilhaftigkeit validiert werden. Der Materialverschnitt wurde im Vergleich zu herkömmlichen sequenziellen Preformverfahren bei gleicher Leistungsfähigkeit halbiert, die strukturelle Überdimensionierung um bis zu 30 % reduziert. Die Technologie ist insbesondere für KMU attraktiv, da sie eine hohe Produktqualität mit niedrigen Investitionskosten kombiniert. Curvy Tapes eröffnen neue Perspektiven für den FKV-Leichtbau in Mobilität, Energie und Maschinenbau.

Bericht

Ausgangssituation und Problemstellung

Der Trend zum ressourcenschonenden Leichtbau hat sich in nahezu allen Technikbereichen etabliert und wird durch die Notwendigkeit zur CO₂-Reduktion sowie zur Steigerung der Materialeffizienz weiter verstärkt [1–3]. Insbesondere Faserkunstoffverbunde (FKV) gelten dank ihres geringen spezifischen Gewichts und ihrer richtungsabhängigen mechanischen Eigenschaften als Schlüsselelemente für eine nachhaltige Auslegung von Leichtbaustrukturen [4–7]. Der Markt für glas- und carbonfaserverstärkte FKV wächst stetig, mit Anwendungen in der Luftfahrt, Automobilindustrie, Energiebranche und Medizintechnik [8–10]. Dabei gewinnen sogenannte unidirektionale Tapes (UD-Tapes) zunehmend an Bedeutung, da sie eine präzise Faserorientierung ermöglichen und in hochautomatisierten Fertigungsprozessen eingesetzt werden können [11–14].

Trotz dieser Vorteile stoßen die am Markt verfügbaren UD-Tapes an ihre Grenzen, wenn es um die wirtschaftliche und materialsparende Herstellung komplexer, mehrfach gekrümmter Bauteile geht [11, 15]. Eine kurvenbahngerechte Tapeablage ist mit bestehenden Technologien nur stark eingeschränkt möglich. Insbesondere bei kleinen Kurvenradien treten Strukturdefekte wie Falten, Verzerrungen oder Gassen auf. Diese verfahrensbedingten Fehler resultieren aus dem Umstand, dass die Faserlängen an der Innen- und Außenbahn eines Kurvenverlaufs unterschiedlich sind, mit herkömmlichen Tapes jedoch nicht innerhalb eines durchgehenden Faserbandes ausgeglichen werden können. Bisherige Lösungen erfordern daher aufwändige, diskontinuierliche, segmentierte Ablageprozesse mit Überlappungsbereichen und folglich hohem Materialverschnitt und strukturellen Überdimensionierungen (siehe Abbildung 1) [16]. Das ist ein signifikanter Nachteil im Hinblick auf Ressourceneffizienz und Bauteilperformance.

Gerade kleine und mittelständische Unternehmen (KMU), die einen Großteil der textilen Wertschöpfungskette in Deutschland abbilden, sehen sich mit der Herausforderung konfrontiert, zunehmend komplexere, bionisch ausgelegte FKV-Bauteile wirtschaftlich und prozesssicher fertigen zu müssen. Der steigende Bedarf an maßgeschneiderten, lastpfadgerechten Strukturen erfordert neue textile Halbzeuge und Fertigungsmethoden, die eine bauteilunabhängige, verzugsfreie Ablage auch auf komplexen 3D-Konturen ermöglichen. Das mit etablierten UD-Tapes nicht umsetzbare Intra-Ply-Gleiten, also das gezielte Scheren von Tapesegmenten innerhalb eines Faserbandes, stellt dabei eine zentrale Technologiekomponente dar, die bislang nicht verfügbar ist. Hinzu kommt, dass bestehende Tapelegeanlagen in ihrer Funktionalität begrenzt sind und die für eine kurvenbahngerechte Ablage notwendigen Klemm-, Abzugs- und Fixiermechanismen nicht bereitstellen können. Die Problemstellung lässt sich daher in zwei Hauptbereiche gliedern: Zum einen fehlt ein textiltechnisch realisierbares Halbzeug, das eine mechanisch belastbare, faltenfreie sowie kurvenbahngerechte Tapeablage erlaubt: das sogenannte Curvy Tape. Zum anderen existieren bislang keine wirtschaftlich skalierbaren Ablageverfahren, die die Vorteile der UD-Tape-Technologie mit der Flexibilität einer individuell lenkbaren Faserbandführung vereinen. Die Entwicklung solcher Tapes und der zugehörigen Ablagetechnologien stellt somit einen dringenden, industriegetragenen Forschungsbedarf dar. Ziel muss es sein, durch neue Material- und Prozessansätze lastpfadgerechte Verstärkungsstrukturen effizient, materialsparend und automatisiert fertigen zu können, insbesondere für die hohe Variantenvielfalt und Kleinserienfertigung im KMU-Umfeld.

Ergebnisse

Im Rahmen des IGF-Projekts „Curvy Tapes“ wurden umfassende Forschungs- und Entwicklungsarbeiten zur Realisierung kurvenbahngerecht ablegbarer Tapes für die Fertigung bionisch ausgelegter FKV-Bauteile durchgeführt. Ausgangspunkt war die Erarbeitung eines technischen Anforderungskatalogs zur Spezifikation geometrischer, mechanischer und verfahrenstechnischer Zielgrößen. In enger Abstimmung mit dem projektbegleitenden Ausschuss wurden Materialien, Tapestrukturen und relevante Maschinenkomponenten definiert. Unter anderem wurde die Verarbeitung von Carbonfasern mit 1600 tex auf vorhandenen Kettenwirkmaschinen der Baureihe Malimo festgelegt. Die zentralen Anforderungen umfassten u. a. eine Tapebreite von bis zu 300 mm sowie eine Gassenfreiheit < 1 mm.

Ein wesentlicher Arbeitsschwerpunkt lag auf der simulationsgestützten Entwicklung eines Auslegungsmodells zur Beschreibung der mechanischen Eigenschaften der Tapestrukturen und ihrer Verformung bei der Ablage. Dabei wurde unter Verwendung von LS-Dyna (LSTC, USA) ein FEM-basiertes Mesoskalenmodell erstellt, das die Interaktion zwischen den strukturbildenden Parametern (z. B. Stichlänge, Wirkfadenspannung, Bindung) und der resultierenden Scherbarkeit der Tapesegmente abbildet. Die Validierung erfolgte durch experimentelle Versuche an textilphysikalisch charakterisierten Funktionsmustern (siehe Abbildung 2). Zur Ermittlung der Fadenlängen entlang kurvenförmiger Ablagepfade wurde ergänzend ein algorithmisches Tool auf Basis von CAD-Modellen entwickelt, das eine automatisierte Berechnung der notwendigen Fadenreserven erlaubt.

Zur Herstellung der Curvy Tapes wurde ein neuartiges Fertigungsverfahren auf Basis der Multiaxial-Kettenwirktechnik konzipiert. Hierzu wurde ein modular nachrüstbarer Teilschussleger entwickelt, der das Einbringen von wirkfadenbasierten Scherstellen innerhalb der Tapeebene ermöglicht. Verschiedene Wirkbindungen, insbesondere Varianten der Franse-Teilschuss- und Trikot-Bindung, sowie gleitoptimierte Monofilfäden (PET 22 dtex, KSO Textil GmbH, Deutschland) wurden auf ihre Eignung hin untersucht. Die Tapes wurden dabei so gestaltet, dass sie entweder während der Ablage (Post-Fadenreserve) oder bereits bei der Herstellung (Pre-Fadenreserve) über segmentweise integrierte Fadenlängenreserven verfügen. Zusätzlich wurde ein kombinierter Ansatz verfolgt, um die geometrischen Freiheitsgrade bei der Tapeablage weiter zu erhöhen.

Die hergestellten Tapestrukturen wurden systematisch charakterisiert. Es kamen modifizierte Fadenauszugs- und Scherrahmenversuche (siehe Abbildung 3) zum Einsatz, um das Intra-Ply-Gleiten und die Scherfähigkeit der neuartigen Tapesegmente zu quantifizieren.

Dabei zeigte sich, dass die Auslegung der Bindung, insbesondere die Stichlänge und die Wirkfadenspannung, maßgeblich die mechanische Kopplung der Segmente beeinflussen. Curvy Tapes mit einer Franse-Teilschuss-Bindung und einer Stichlänge von 3,6 mm erwiesen sich als besonders vorteilhaft. Gegenüber herkömmlichen Biaxialgelegen wurde die erforderliche Scherkraft um bis zu 56 % reduziert, die Drapierbarkeit deutlich verbessert und kritische Faltenbildung signifikant verzögert (Einsetzen kritischer Scherung der Curvy Tapes bei 50 mm gegenüber 25 mm bei Biaxial-Gelegen, siehe Abbildung 4). Zudem wurde die Parallelität der Verstärkungsfasern auch bei hohen Scherwinkeln zuverlässig aufrechterhalten.

Parallel zur Materialentwicklung wurden Ablagekonzepte für die Preformherstellung erarbeitet. Ziel war die prozesssichere Ablegung der Tapes auf 2D- und 3D-Oberflächen mit definierter Fadenorientierung. Hierzu wurde ein roboterkompatibles Bereitstellungsmodul für das Handling, den Abzug und das Nachführen der neuartigen Curvy Tapes entwickelt. Die Fixierung während des Ablegevorgangs erfolgte bevorzugt durch den Auftrag eines aerosolförmigen duromerbasierten Sprühklebers, der eine sichere Positionierung der Tapesegmente ermöglichte, ohne die nachträgliche Ausformung der Fadenreserven zu beeinträchtigen.

Im weiteren Projektverlauf wurde eine vollständige Prozesskette von der Tapeherstellung über die Preformfertigung bis hin zur Konsolidierung in einem Harzsystem aufgebaut. Die auf dieser Grundlage gefertigten Demonstratoren, insbesondere ein PKW-Kotflügel mit komplexer Kontur, dienten der praxisnahen Funktionsvalidierung. Dabei konnte gezeigt werden, dass mit den neuartigen Curvy Tapes eine signifikant höhere Faserorientierungstreue im Vergleich zu herkömmlichen Flächengebilden (bspw. Gewebe oder Biaxial-Gelege) erreicht wird. Die Faserabweichung innerhalb der Preform lag bei unter einem Grad, Gassen traten nur in Einzelfällen auf und blieben unterhalb kritischer Schwellen. Die erzielten mechanischen Eigenschaften wurden durch standardisierte Biegeversuche quantifiziert und die verbesserte Leistungsfähigkeit validiert. Curvy Tapes wiesen im Vergleich zu Biaxialgelegen gleicher Fadendichte eine wesentlich geringere Streuung der Durchbiegung auf und erzielten damit eine homogenere Bauteilperformance.

Die Ergebnisse belegen die hohe Eignung der Curvy Tapes für den industriellen Einsatz. Eine wirtschaftliche Bewertung anhand eines realitätsnahen Szenarios (PKW-Kotflügel, siehe Abbildung 5) zeigte eine Reduktion der Materialkosten um 30 % und eine Gesamtkosteneinsparung von knapp 24 % gegenüber konventionellen UD-Tapes. Unter Berücksichtigung moderater Investitionskosten für die Nachrüstung bestehender Kettenwirkmaschinen (< 30.000 €) amortisiert sich die Technologie bei einer Tape-Fertigungsmenge von 10.000 m²/a bereits innerhalb eines Jahres. Die entwickelten Verfahren und Materialien können damit unmittelbar von KMU adaptiert werden und tragen zur signifikanten Steigerung der Ressourcen- und Energieeffizienz entlang der gesamten Wertschöpfungskette bei.

Zusammenfassung

Mit dem Projekt „Curvy Tapes“ wurde eine technologische Grundlage geschaffen, um Hochleistungsfasern wie Carbon oder Glas deutlich materialeffizienter und gezielter in Faserverbundbauteilen einzusetzen. Die im Vorhaben entwickelten neuartigen Tapestrukturen ermöglichen erstmals eine durchgängig falten- und gassenfreie sowie lastpfadgerechte Ablage entlang beliebiger Kurvenverläufe. Dadurch lassen sich nicht nur mechanisch leistungsfähigere sowie bionisch ausgelegte Bauteile fertigen, sondern auch Materialverluste und Überdimensionierungen signifikant verringern. Das Projekt leistet somit einen direkten Beitrag zur Ressourcenschonung, zur Reduktion industrieller CO₂-Emissionen und zur Nachhaltigkeit in der Produktion.

Insbesondere kleine und mittelständische Unternehmen (KMU) profitieren von den Ergebnissen: Die modular konzipierten Fertigungs- und Ablagekonzepte sind gezielt auf bestehende Produktionsumgebungen und Maschinenparks in KMU zugeschnitten. Investitionen bleiben gering, der Umsetzungshorizont kurz. Gleichzeitig eröffnen die Curvy Tapes vielfältige neue Geschäftsfelder, etwa in der Herstellung von hochbeanspruchten Leichtbauteilen für Automobil, Luftfahrt oder erneuerbare Energien. Für den Textilmaschinenbau und die FKV-verarbeitende Industrie entsteht ein substantieller Innovationsimpuls mit hohem Marktpotenzial.

Darüber hinaus fördert die Technologie die Verbreitung bionischer, funktional optimierter Konstruktionsprinzipien in der industriellen Praxis. Der gesellschaftliche Nutzen liegt damit nicht nur in einer effizienteren Ressourcennutzung, sondern auch in der Stärkung der Wettbewerbsfähigkeit des Innovationsstandorts Deutschland und der langfristigen Sicherung qualifizierter industrieller Arbeitsplätze.

Danksagung

Das IGF-Vorhaben 22653 BR der Forschungsvereinigung Forschungskuratorium Textil e. V. wurde über das DLR im Rahmen des Programms zur Förderung der Industriellen Gemeinschaftsforschung (IGF) vom Bundesministerium für Wirtschaft und Energie aufgrund eines Beschlusses des Deutschen Bundestages gefördert. Der Schlussbericht und weiterführende Informationen sind am Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik der TU Dresden erhältlich.

Literaturverzeichnis

Literaturverzeichnis

[1]    Bundesministerium für Wirtschaft und Energie: Fachprogramm Neue Fahrzeug- und Systemtechnologien. URL www.bmwi.de/Redaktion/DE/Artikel/Technologie/fahrzeug-und-systemtechnologien.html – Überprüfungsdatum 2025-05-09

[2]    Ehlerding, S.: Leichtbaustrategie für mehr Klimaschutz. In: Tagesspiegel (2021-01-20)

[3]    Bundesministeriums für Wirtschaft und Energie: „Leichtbau-Perspektiven für Deutschland“ - Ergebnisse aus dem Strategieprozess der Initiative Leichtbau des Bundesministeriums für Wirtschaft und Energie (BMWi) : Erscheinungsdatum: 19.01.2021. URL www.bmwi.de/Redaktion/DE/Downloads/E/eckpunkte-f%C3%BCr-eine-leichtbau-strategie.pdf?__blob=publicationFile&v=8 – Überprüfungsdatum 2025-05-09

[4]    Kroll, L. (Hrsg.): Technologiefusion für multifunktionale Leichtbaustrukturen : Ressourceneffizienz durch die Schlüsseltechnologie "Leichtbau". Berlin, Germany : Springer Vieweg, 2019

[5]    Cherif, C. (Hrsg.): Leichtbau mit Textilverstärkung für Serienanwendungen : Bindematerialien - Textile Preforms - Verbundbauteile ; Buch zum DFG-AiF-Clustervorhaben - Leichtbau und Textilien. Dresden : Verl. Wissenschaftliche Skripten, 2013

[6]    Cherif, C.: Textile Werkstoffe für den Leichtbau : Techniken - Verfahren - Materialien - Eigenschaften. Berlin, Heidelberg : Springer-Verlag Berlin Heidelberg, 2011

[7]    Flemming, M. ; Ziegmann, G. ; Roth, S.: Faserverbundbauweisen : Halbzeuge und Bauweisen. Berlin, Heidelberg : Springer Berlin Heidelberg, 1996

[8]    Pfeiffer, J.: Leichtbau-Batteriepack verringert Gewicht und erhöht Reichweite von E-Autos. URL www.konstruktionspraxis.vogel.de/leichtbau-batteriepack-verringert-gewicht-und-erhoeht-reichweite-von-e-autos-a-974846/ – Überprüfungsdatum 2022-01-26

[9]    Howell, E. ; Geyer, C.: Interview with Christoph Geyer. In: Reinforced Plastics 63 (2019), Nr. 2, S. 76–78

[10]  Günnel, T.: Leichtbau: Wie der Staat die Technologien fördert. In: Automobil Industrie (2020-09-11)

[11]  Brasington, Alex ; Sacco, Christopher ; Halbritter, Joshua ; Wehbe, Roudy ; Harik, Ramy: Automated fiber placement: A review of history, current technologies, and future paths forward. In: Composites Part C: Open Access 6 (2021), S. 100182

[12]  Hofbauer, Daniel: Herstellung endlosfaserverstärkter, thermoplastischer Halbzeuge für Karosseriestrukturbauteile in Großserie. In: Technologies for Lightweight Structures (TLS) 1 (2017), Nr. 1

[13]  Kuroda, Yoshito: Kunststoffe mit unidirektionaler Verstärkung für die Serie. In: Lightweight Design 11 (2018), Nr. 5, S. 82–85

[14]  Altstädt, Volker ; Spörrer, Andreas ; Mühlbacher, Mathias ; Michel, Peter ; Seidel, Sonja: Großserientauglicher Hochleistungsleichtbau mit UD-Tapes. In: Lightweight Design 5 (2012), Nr. 2, S. 18–25

[15]  Ufer, J. ; Göttinger, M. ; Hersbeck, L.: Preform Technology for High Volume Manufacturing of Long Fiber Reinforced Structures (LCC Symposium). München, 2014

[16]  YouTube: We are COMPOSITES: Fiber Placement Center. URL https://www.youtube.com/watch?v=zZhTDG2GoEU. – Aktualisierungsdatum: 2021-11-30 – Überprüfungsdatum 2025-05-09

AutorInnen: Konrad Zierold Paul Penzel Chokri Cherif

Technische Universität Dresden
Fakultät Maschinenwesen
Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM)
01062 Dresden

https://tu-dresden.de/mw/itm

More entries from TU Dresden, Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik ITM

21.05.2024

Aktiv verformbare Gelenke für Smart Composite Anwendungen

Gestricke & Gewirke Composites Sensorik Technische Textilien Smart Textiles

Zusammenfassung

Funktionsintegrierte aktiv verformbare Faserkunststoffverbunde, auch Smart Composites genannt, gewinnen stetig an Bedeutung und finden zunehmend Anwendung in allen volkswirtschaftlichen und technologischen Leitbranchen, wie dem Fahrzeug‑, Maschinen‑ und Anlagenbau sowie in der Medizin‑, Umwelt‑ und Luftfahrttechnik.

Im IGF-Projekt 21969 BR erfolgte am ITM die simulationsgestützte Entwicklung gestrickter 3D-Preformen zur Realisierung aktiv verformbarer 3D-Faserkunststoffverbunde mit mehrachsigem Festkörpergelenk. Dabei werden als Aktoren Drähte aus Formgedächtnislegierung eingesetzt und textiltechnisch direkt in die textilen Verstärkungsstrukturen integriert, die einmal in der Matrix eingebettet die spätere Beweglichkeit des Bauteils sicherstellen. Dadurch sind erstmalig das Leichtbaupotenzial von Hochleistungsfasern und das Leistungspotenzial textilbasierter Aktoren zur Erzielung komplexer 3D-Bewegungen in hohem Maße ausnutzbar, was langfristig zu einer deutlichen Steigerung der Energieeffizienz von Systemen und Komponenten beiträgt.

Bericht

Einleitung und Problemstellung

Im Zuge der notwendigen Etablierung nachhaltiger Lösungen besteht derzeit ein hoher Bedarf an hochbelastbaren und zugleich extrem leichten Bauteilen aus faserverstärkten Kunststoffverbunden (FKV) mit zusätzlichen Funktionalitäten. Insbesondere aktiv verformbare FKV mit strukturintegrierten Aktoren und Festkörpergelenken haben ein hohes Innovationspotenzial zur Realisierung komplexer 3D-Bewegungsaufgaben, für die herkömmliche Bewegungsmechanismen in Differentialbauweise meist eine lineare Kopplung mehrerer konventioneller Gelenke und dezentraler Antriebe erfordern, die eine hohe Massenträgheit und demzufolge einen hohen Energieverbrauch bedingen.

Zur Ausnutzung des Leichtbaupotenzials von FKV besteht daher ein hoher Bedarf an funktionsintegrierten textilen Verstärkungsstrukturen, die gleichzeitig als bedarfsgerechte Funktions- und Festigkeitsträger fungieren. Daraus herstellbare, aktiv verformbare FKV-Bauteile kommen zunehmend in industriellen Anwendungen zum Einsatz, u. a. im Maschinen‑ und Anlagenbau (z. B. Soft Robotik [1], Leichtbauroboterarme), der Medizintechnik (z. B. aktive Orthesen und Prothesen, Endoskopie-Endeffektoren), im Schiff‑ und Automobilbau (z. B. adaptive Spoiler, aktiv verformbare Hydrofoils) sowie in der Luftfahrt (z. B. morphing wings [2 – 4]). Sie weisen eine aktiv geometrisch-veränderbare äußere Form auf, die i. d. R. über eine steuerbare Modulation der inneren Morphologie des Werkstoffes oder durch strukturintegrierte Aktoren, z. B. nach thermischer Aktivierung kontrahierende Drähte aus Formgedächtnislegierung (FGL) [5], einstellbar ist. Derzeit verfügen diese Lösungen allerdings nur über Festkörpergelenke mit einem Freiheitsgrad und können damit lediglich einfache Verformungen ausführen [6 – 8]. Komplexere 3D-Bewegungen sind deshalb nur durch eine kinematische Kopplung erreichbar, d. h. durch die in Bauteillängsrichtung versetzte Anordnung mehrerer einachsiger Festkörpergelenke. Bisher sind keine geeigneten Auslegungsstrategien zur Umsetzung komplexer, mehrachsiger Bewegungen von duroplastischen 3D-FKV-Bauteilen durch textilintegrierte, mehrachsige Festkörpergelenke vorhanden.

Zielsetzung

Das Ziel des IGF-Forschungsprojektes 21969 BR war die simulationsgestützte Entwicklung, Umsetzung und Erprobung gestrickter schlauchförmiger Verstärkungshalbzeuge mit mehrachsigem Festkörpergelenk sowie strukturintegrierten Aktor- und Energieversorgungsnetzwerken zur Herstellung definiert und aktiv verformbarer 3D-FKV-Integralbauteile mit Duromermatrix, die mindestens zwei Freiheitsgraden aufweisen.

Derartige 3D-FKV-Bauteile mit biegeweichem Festkörpergelenk besitzen, analog zu biologischen Vorbildern, eine segmentierte Struktur mit zwei durch das Gelenk elastisch miteinander gekoppelten starren Segmenten (vgl. Abbildung 1). Die bei Aktivierung der FGL-Aktoren infolge der Kontraktion verrichtete Verformungsarbeit generiert ein Biegemoment um die jeweilige Gelenkachse und induziert somit entsprechende Relativbewegungen der starren FKV-Segmente.

Die wesentlichen Herausforderungen im Projekt sind die bedarfsgerechte Auslegung geeigneter Deformationsbereiche des Festkörpergelenks sowie die integrale Fertigung von funktionalisierten 3D-Verstärkungshalbzeugen als schlauchförmige Mehrlagengestricke. In diese sollen im Strickprozess sowohl FGL-Drähte als auch ein für deren elektrisch induzierte Aktivierung erforderliches Energieversorgungsnetzwerk aus leitfähigem Garnmaterial simultan integriert werden. Die FGL-Aktoren sind dabei so anzuordnen, dass das mehrachsige Festkörpergelenk mindestens zwei im Deformationsbereich konzentrierte Freiheitsgrade aufweist, die Biegeverformungen um zwei Hauptgelenkachsen zulassen. Zudem sind sie direkt während des Strickprozesses so zu verarbeiten, dass sie form‑ und kraftschlüssig in der Struktur eingebunden sind und somit eine maximale, reproduzierbare Auslenkung der aktiv verformbaren FKV-Bauteile ermöglichen.

Ergebnisse

Simulationsgestützte Strukturauslegung

Im Projekt erfolgte zunächst die Präzisierung der zu erfüllenden Anforderungen an relevante aktiv verformbare FKV-Integralbauteile ohne externe Motoren in den anvisierten Anwendungsbereichen. Nach Ableitung der Anforderungen an integral gefertigte, funktionalisierte 3D-Textilhalbzeuge mit strukturintegrierten FGL-Aktoren erfolgte eine simulationsgestützte Analyse der maximal erreichbaren Verformungen von aktiv verformbaren FKV-Bauteilen an festgelegten Funktionsmustern mittels Finiter Element Methode (FEM). Dazu wurde das Woodworth-Kaliske-FGL-Materialmodell verwendet [9], das in der Lage ist, den Formgedächtniseffekt der eingesetzten FGL-Aktoren durch direkte Vordehnung abzubilden. Aufbauend auf den Ergebnissen der FEM-Analyse wurden bindungstechnische Ansätze zur integralen Realisierung der Funktionsmuster und insbesondere zur Lösung folgender Aufgaben entwickelt:

  1. Gestaltung von biegeweichen Gelenk‑ bzw. Deformationsbereichen für eine höchstmögliche Verformung der FKV-Bauteile.
  2. Stricktechnische Einbindung der FGL-Aktoren für eine hinreichende form- und kraftschlüssige Fixierung und somit maximale Auslenkung der FKV-Bauteile.
  3. Stricktechnische Einbindung der elektrisch leitfähigen Garne für eine in-situ Kontaktierung, d. h. zuverlässige, stoffschlüssige elektrische Verbindung der FGL-Aktoren mit dem Energienetzwerk im FKV-Bauteil.

Die Ergebnisse zeigen (vgl. Abbildung 2), dass im Vergleich zu den starren Segmenten (Section#1 mit 8 Verstärkungslagen à jeweils 1.200 tex in Kett- und Schussrichtung) die entwickelten 2D-Gelenkbereiche mit nur 2 Verstärkungslagen à 1.200 tex in Kett- und Schussrichtung (Section#2) bzw. à 1.200 tex in Kettrichtung und 410 tex in Schussrichtung (Section#3) um ca. 50 % geringere Biegemodule aufweisen (Section#1: ca. 12 GPa; Section#2 und Section#3: ca. 6 GPa in Bauteillängsrichtung) und daher als Deformationsbereiche prinzipiell geeignet sind [10].

Nach Konsolidierung von 3D-FKV-Bauteilen mit Epoxidharz (EP) wurde jedoch festgestellt, dass die Biegesteifigkeit der Deformationsbereiche zu hoch ist, um eine Verformung des 3D-Bauteils zu erlauben. Das ist auf die hohe Drucksteifigkeit des EPs in Verbindung mit der gekrümmten Rohrwandung zurückzuführen, die einen hohen Verformungswiderstand bedingen, was auch die durchgeführte FEM-Analyse bestätigt. Daher wurde im Projekt ein Multi-Matrix-Ansatz verfolgt, um die Gelenk‑ bzw. Deformationsbereiche mit einem viel biegeweicheren Matrixmaterial als das EP zu versehen. Hierfür wurden während der Infiltration im VARI-Verfahren zugleich die starren Segmente mit EP konsolidiert, die Deformationsbereiche hingegen mit einem fließfähigen Polyurethan-Matrixsystem (PUR) Biresin®-407 der Firma Sika Deutschland GmbH. Dieses gießfähige Elastomer mit einer Viskosität von ca. 600 mPa·s und einer Shore-Härte A 85 weist insbesondere ein niedriges Biegemodul von ca. 2 GPa auf (vgl. PUR-Section in Abbildung 2), was eine Verformung auch von rohrförmigen 3D-FKV-Bauteilen begünstigt.

Die Ergebnisse zeigen weiterhin, dass durch Maschenbildung über Plattieren direkt während des Strickprozesses FGL-Aktoren und elektrisch leitfähige Garne gezielt lokal vermaschbar sind (vgl. Abbildung 3). Somit sind zugleich eine form‑ und kraftschlüssige Fixierung der FGL-Aktoren in den Textilhalbzeugen mit ca. 100 N Auszugskraft im Verbund als auch eine zuverlässige elektrische in-situ Kontaktierung (stoffschlüssige Verbindung) mit niedrigen Übergangswiderständen von ca. 5 Ω realisierbar. Grund dafür ist die im Vergleich zu gestreckten Fäden ohne Verschlingungen (z. B. Kettfaden oder Teilschuss) über die Maschenbildung deutlich größere Kontaktfläche zwischen den Funktionsgarnen. Die elektrische Leitfähigkeit wird zudem durch lokales Applizieren eines Leitklebers (Silberlack Leitsilber der Firma Kemo-Electronic GmbH) im Kontaktierungsbereich verbessert.

Damit lassen sich anhand des Multi-Matrix-Ansatzes aktiv verformbare 2D-FKV-Integralbauteile mit mehreren Deformationsbereichen sowie strukturintegrierten Aktor- und Energienetzwerken realisieren (vgl. Abbildung 4). Thermographische Untersuchungen zeigen, dass die verschiedenen Deformationsbereiche über einen einzigen FGL-Aktor durch das Energienetzwerk separat ansteuerbar sind. Die Aktivierung des FGL-Aktors über die gesamte Bauteillänge, d. h. über die zwei PUR-Deformationsbereiche, führt zu erreichbaren Verformungen von ca. 50 mm, was mittels Lasertriangulation nachgewiesen wurde.

Aktiv verformbare 3D-FKV-Integralbauteile

Das entwickelte FEM-Modell wurde anhand der Ergebnisse mechanischer Charakterisierung von 2D- und 3D-Verbundproben validiert, insb. Zug-, 4-Punkt- und 3-Punkt-Biegeversuche sowie Aktivierungsversuche, und darauf aufbauend für die Auslegung und Optimierung von aktiv verformbaren 3D-FKV-Bauteilen mit mehrachsigen Festkörpergelenken, die jeweils zwei Freiheitsgrade aufweisen, herangezogen. Dabei wurden verschiedene 3D-Gelenktopologien entworfen und mit der Realisierung aktiv verformbarer 3D-FKV-Bauteile schrittweise optimiert. Somit konnte eine Vorzugslösung für die Umsetzung eines generischen Technologiedemonstrators abgeleitet werden (vgl. Abbildung 5). Diese weist einen faltenbalgartigen PUR-Gelenkbereich auf und ermöglicht Verformungen von max. 44,8 mm, was einer Auslenkung von ca. 11° entspricht. Zur Sicherstellung einer maximalen Auslenkung des Bauteils sind dabei die FGL-Aktoren im Gelenkbereich innerhalb des FKV-Rohres freiliegend zugeführt und erst an den Extremitäten der starren FKV-Segmenten lokal fixiert. Zudem sind sie im Gelenkbereich gezielt umgelenkt, um eine exzentrische Krafteinleitung bei Kontraktion der FGL-Aktoren hervorzurufen und somit hohe Biegeverformungen zu bewirken.

Die Umsetzung und Prüfung des Technologiedemonstrators (vgl. Abbildung 6) in Form eines mehrgliedrigen, aktiv verformbaren 3D-Gelenkarms, z. B. für den Anwendungsbereich Robotik, bestätigt, dass die neuartigen, gestrickten 3D-Verstärkungshalbzeuge mit mehrachsigen Festkörpergelenken sowie strukturintegrierten FGL-Aktor- und Energienetzwerken für die flexible Herstellung aktiv verformbarer 3D-FKV-Integralbauteile sehr gut geeignet sind. Die entwickelten Gelenktopologien ermöglichen erstmalig die Realisierung mehrachsiger Festkörpergelenke mit zwei Freiheitsgraden, die komplexe 3D-Bewegungsaufgaben mit erreichbaren Bauteilverformungen von ca. 50 mm ausführen können. Dabei sind im Vergleich zu herkömmlichen Bewegungsmechanismen, die eine lineare Kopplung mehrerer Gelenke und dezentraler Antriebe mit hoher Massenträgheit und demzufolge hohem Energiebedarf erfordern, wesentliche Vorteile erreichbar, insbesondere hinsichtlich des geringeren Montageaufwandes, der Reibungs- bzw. Verschleißfreiheit und der damit weitestgehend dauerhaften Wartungsfreiheit sowie des niedrigen Energieverbrauchs der FGL-Aktoren.

Damit sind die Voraussetzungen für eine wirtschaftliche und flexible Fertigung neuartiger, funktionalisierter 3D-Textilhalbzeuge für die Realisierung aktiv verformbarer 3D-FKV-Integralbauteile in reproduzierbarer Qualität geschaffen.

Zusammenfassung

Im abgeschlossenen IGF-Forschungsprojekt 21969 BR wurde erfolgreich eine auf der Flachstricktechnik basierende, flexible und industrietaugliche Fertigungstechnologie zur integralen Herstellung funktionalisierter 3D-Textilverstärkungshalbzeuge mit mehrachsigen Festkörpergelenken, strukturintegrierten Aktoren sowie für deren Aktivierung erforderlichen elektrisch leitfähigen Zuleitungen entwickelt, umgesetzt und erprobt.

Damit sind aktiv verformbare FKV-Bauteile realisierbar, die durch definiert angesteuerte Aktoren aus Formgedächtnislegierung (FGL) komplexe 3D-Bewegungen ausführen können. Dabei ermöglichen speziell gestaltete, topologisch optimierte Gelenkbereiche mit mehreren Freiheitsgraden innerhalb der textilen Verstärkungsstruktur die spätere 3D-Bewegungsaufgaben. Der geringere Montageaufwand, die Reibungs- bzw. Verschleißfreiheit und die damit weitestgehend dauerhafte Wartungsfreiheit sind erhebliche Vorteile gegenüber herkömmlichen Bewegungsmechanismen, die dazu mehrere konventionelle Drehgelenke erfordern. Dadurch sind zugleich das Leichtbaupotenzial von Hochleistungsfasern und das Leistungspotenzial textilbasierter FGL-Aktoren zur Erzielung komplexer 3D-Bewegungen in hohem Maße ausnutzbar.

Potenzielle industrielle Anwendungen sind aktiv verformbare 3D-FKV-Integralbauteile, die erstmals mit intrinsischen 3D-Gelenkmechanismen ausgestattet werden können, u. a. im Maschinen- und Anlagenbau (z. B. mehrgliedrige Roboterarme), im Schiff- und Fahrzeugbau (z. B. aktiv verformbare Tragfläche oder adaptive Verstellmechanismen für Spoiler) sowie in der Medizintechnik (z. B. aktive Orthesen und Prothesen, Endoskopie-Endeffektoren). Insbesondere die KMU der Textil- und FKV-Industrie beziehen aus den Projektergebnissen den konkreten Nutzen, dass ihnen technologisches Wissen zur simulationsgestützten Konzeptionierung, Auslegung und Fertigung maßgeschneiderter Textilverstärkungshalbzeuge für aktiv verformbare 3D-FKV-Bauteile mit strukturintegrierten Festkörpergelenken bereitgestellt wird, die in den genannten Marktbereichen eine steigende Nachfrage erfahren.

Danksagung

Das IGF-Vorhaben 21969 BR der Forschungsvereinigung Forschungskuratorium Textil e. V. wurde über die AiF im Rahmen des Programms zur Förderung der industriellen Gemeinschaftsforschung (IGF) vom Bundesministerium für Wirtschaft und Klimaschutz aufgrund eines Beschlusses des Deutschen Bundestages gefördert.

Die Autoren danken den genannten Institutionen für die Bereitstellung der finanziellen Mittel sowie den involvierten Unternehmen im projektbegleitenden Ausschuss für die fachliche Unterstützung und die Bereitstellung von Versuchsmaterial. Der Forschungsbericht und weiterführende Informationen sind am Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik der TU Dresden erhältlich.

 

Literaturverzeichnis

[1]           Lee, J.-H.; Chung, Y.S.; Rodrigue, H.: Long Shape Memory Alloy Tendon-based Soft Robotic Actuators and Implementation as a Soft Gripper. In: Scientific Reports 9 (2019) 1, S. 11251.

[2]           Wan A Hamid, W.L.H.: Design of a Composite Morphing Wing. London: Imperial College of Science, Technology and Medicine, Department of Aeronautics. PhD Thesis, 2019.

[3]           Hajarian, A.; Zakerzadeh, M.R.; Baghani, M.: Design, analysis and testing of a smart morphing airfoil actuated by SMA wires. In: Smart Materials and Structures 28 (2019) 115043, S. 1–12.

[4]           Ashir, M.; Hindahl, J.; Nocke, A.; Cherif, C.: Development of an adaptive morphing wing based on fiber-reinforced plastics and shape memory alloys. In: Journal of Industrial Textiles 50 (2020) 1, S. 114–

129.

[5]           Suman, A.; Fabbri, E.; Fortini, A.; Merlin, M.; Pinelli, M.: On the design strategies for SMA-based morphing actuators: state of the art and common practices applied to a fascinating case study. In: Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering (2020), S. 1–17.

[6]           Ashir, M.; Nocke, A.; Cherif, C.: Maximum deformation of shape memory alloy based adaptive fiber-reinforced plastics. In: Composites Science and Technology 184 (2019) 107860, S. 1–15.

[7]           Ashir, M.; Nocke, A.; Cherif, C.: Adaptive fiber-reinforced plastics based on open reed weaving and tailored fiber placement technology. In: Textile Research Journal 90 (2020) 9-10, S. 981–990.

[8]           Lohse, F.; Wende, C.; Klass, K.-D.; Hickmann, R.; Häntzsche, E.; Bollengier, Q.; Ashir, M.; Pöschel, R.; Bolk, N.; Trümper, W.; Cherif, C.: Bio-inspired semi-flexible joint based on fibre-reinforced composites with shape memory alloys. In: Journal of Intelligent Material Systems and Structures (2020), S. 1–11.

[9]           Woodworth, L.A.; Lohse, F.; Kopelmann, K.; Cherif, C.; Kaliske, M.: Development of a constitutive model considering functional fatigue and pre-stretch in shape memory alloy wires. In: International Journal of Solids and Structures 234-235 (2022), S. 111242.

[10]        Bollengier, Q.; Rabe, D.; Mersch, J.; Häntzsche, E.; Nocke, A.; Cherif, C.: Development of integrated in-situ actuator networks for the realization of flexure hinges for highly deformable fiber-reinforced plastic composites. In: Passion for Innovation. 21st World Textile Conference AUTEX 2022, Online (Lodz, Poland) (2022) - ISBN 978-83-66741-75-1, S. 440–444.

AutorInnen: Bollengier, Quentin Rabe, David Mersch, Johannes Annadata, Achyuth Ram Gereke, Thomas Häntzsche, Eric Cherif, Chokri

Technische Universität Dresden
Fakultät Maschinenwesen
Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM)
01062 Dresden

https://tu-dresden.de/mw/itm

More entries from TU Dresden, Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik ITM

26.03.2024

Entwicklung endkonturgerechter Multiaxialgelege mit lokal einstellbarer, bauteilgerechter Verstärkungskettfadendichte

Gestricke & Gewirke Textilmaschinenbau Technische Textilien

Zusammenfassung

Im Rahmen dieses Forschungsprojekts wurde ein neuartiges Nachrüstmodul für Multiaxial-Kettenwirkmaschinen entwickelt, das die Herstellung von Multiaxialgelegen mit lokal angepassten Verstärkungskettfadendichten ermöglicht. Diese Innovation erlaubt eine materialsparende und kosteneffiziente Produktion von Bauteilen aus Faserkunststoffverbunden (FKV) mit Hochleistungsfasern wie Carbon. Hierbei können Kettfäden gezielt in den Bereichen, bspw. in denen sie nicht benötigt werden, aus dem Wirkprozess entfernt und bei Bedarf wieder eingefügt werden. Zudem wird es ermöglicht, eine definiert gradierte Kettfadendichte durch den gezielten Versatz von Kettfäden zu erreichen.

Das entwickelte modulare System wurde an einer Multiaxial-Kettenwirkmaschine vom Typ Malimo 14024 der Karl Mayer Textilmaschinenfabrik GmbH (Chemnitz, Deutschland) experimentell erprobt. Die Ergebnisse zeigen eine signifikante Verschnittreduktion auf bis zu 0 % in Kettrichtung sowie eine hohe Anpassungsfähigkeit an bauteilspezifische Anforderungen. Durch die Implementierung von Steuerungsalgorithmen für eine achsvariable Legung der Kettfäden konnte zudem eine simulationsgestützte Prozesskette zur Herstellung textiler Halbzeuge für FKV-Bauteile mit lokal variierenden Spannungsverteilungen erreicht werden.

Die erzielten Forschungsergebnisse unterstreichen das hohe Potential der Technologie zur wirtschaftlichen und gleichzeitig umweltfreundlichen Herstellung von FKV-Bauteilen. Besonderer Wert wurde auf die Übertragbarkeit der Ergebnisse auf die in den KMU vorhandenen Maschinen gelegt, um eine breite Anwendbarkeit der Forschungsergebnisse zu gewährleisten

Bericht

Ausgangssituation und Problemstellung

Der zunehmende Trend zum Leichtbau ist ein globales Phänomen in technischen Sektoren, verstärkt durch das Bewusstsein für einen materialeffizienten Umgang mit begrenzt verfügbaren natürlichen Ressourcen. Diese Entwicklung wird durch die Notwendigkeit ökologischer Nachhaltigkeit und die Reduktion von CO2-Emissionen vorangetrieben, wobei Faserkunststoffverbunde (FKV) aufgrund ihrer anisotropen strukturmechanischen Eigenschaften und ihres geringen spezifischen Gewichts eine Schlüsselrolle spielen. Sie bieten optimale Voraussetzungen für die ressourceneffiziente Auslegung von Leichtbaulösungen und treiben Innovationen in Branchen wie dem Maschinen-, Anlagen- und Automobilbau, insbesondere in der Elektromobilität, sowie in der Windkraftenergie und Luftfahrt voran. [1–11]

Die Herstellung von FKV-Bauteilen erfolgt derzeit hauptsächlich mit zweidimensionalen textilen Strukturen, die als Rollenware mit konstanter Breite und Fadendichte geliefert werden [12, 13]. Insbesondere mehraxiale Gelegestrukturen, gefertigt mittels der hochproduktiven Multiaxial-Kettenwirktechnik, sind für Großserienanwendungen und großflächige Bauteile relevant [14]. Eine wesentliche Herausforderung dieser Fertigungsprozesse ist der hohe Materialverschnitt in der bauteilspezifischen Halbzeugkonfektion, der wirtschaftlich und ökologisch nachteilig ist. Der Verschnitt kann je nach Bauteilgeometrie und -herstellungsverfahren bis zu 50 % betragen [15, 16].

In der Entwicklung endkonturgerechter textiler Halbzeuge mit lokal einstellbarer, d. h. achsvariabler, Verstärkungsfadendichte, um Verschnitt zu vermeiden und die textilen Halbzeuge an komplexe FKV-Geometrien anzupassen, liegt die entscheidende Aufgabe zur Steigerung der ökologischen und wirtschaftlichen Effizienz. Dies erfordert neue Lösungsansätze, da konventionelle Multiaxialgelege nicht die Anforderungen an eine bauteilgerechte gradierte Verstärkungsfadendichte erfüllen können. Sie sind in ihrer Verstärkungsfadendichte, sowie der Lagenanordnung im Preforming bisher für den maximalen lokalen Belastungsfall ausgelegt, was zu Überdimensionierung in weniger belasteten Bereichen oder zu hohem Verschnitt führt.

Die Entwicklung endkonturgerechter Multiaxialgelege mit lokal einstellbaren Verstärkungskettfadendichten adressiert diese Problematik. Vor Projektbeginn gab es keine Lösungen, die eine konturgerechte Fertigung von Multiaxialgelegen und eine Verringerung der Kettfadenanzahl in den nicht benötigten Bereichen oder eine Erhöhung in besonders beanspruchten Zonen ermöglichten. Die Motivation des Projekts leitet sich aus der Notwendigkeit ab, die Materialeffizienz in der textilen Fertigungskette zu steigern, indem Verschnitt und Überdimensionierung vermieden werden.

Technische Entwicklung und Umsetzung

Im Fokus der Forschungsarbeiten stand die Entwicklung einer innovativen Technologie zur effizienten Nutzung von kostenintensiven Hochleistungsfasern, speziell Carbonfasern, im Fokus. Ziel war es, die ökologische und ökonomische Nachhaltigkeit von Faserkunststoffverbunden (FKV) durch eine signifikante Reduktion des Materialverschnitts und die Vermeidung von Überdimensionierung zu steigern. Die technische Herausforderung bestand darin, eine Methode zu entwickeln, die eine gezielte Anpassung der Verstärkungskettfadendichte an die bauteilspezifischen Anforderungen ermöglicht, sodass die Verstärkungskettfäden nur dort angeordnet werden, wo sie mechanisch erforderlich sind. Zur Realisierung dieser Zielsetzung war die Entwicklung eines Verfahrens essenziell, das es erlaubt, Kettfäden gezielt aus dem Wirkprozess zu entfernen und bei Bedarf wieder hinzuzufügen, um so eine konstante Kettfadendichte im endkonturgerechten Gelege zu gewährleisten. Zudem sollte eine Möglichkeit, die Kettfadendichte seitlich achsvariabel zu versetzen und somit lokal zu verstärken, was in einer gradierten Kettfadendichte resultiert, geschaffen werden. Die praktische Umsetzung dieser Technologie erforderte die Integration einer Zusatzvorrichtung in den Multiaxial-Kettenwirkprozess. Das entwickelte kombinierte Kettfadenmanipulationsmodul ermöglicht es, die Kettfäden mit lokal unterschiedlichen Dichten und Ausrichtungen prozesssicher zuzuführen.

Im Rahmen der technischen Entwicklung und Umsetzung zur Herstellung endkonturgerechter Gelege mit angepasster Kettfadendichte wurden drei wesentliche Teilfunktionen identifiziert und entwickelt: das selektive Trennen, das gezielte Führen sowie das individuelle oder gruppenweise Anfügen der Kettfäden an das Gelege. Diese Funktionen sind essenziell für die Realisierung einer global konstanten Kettfadendichte, die präzise an die Bauteilkontur und die mechanischen Anforderungen angepasst ist.

Selektives Trennen

Für das Trennen der Kettfäden wurde ein mechanisches Verfahren auf Basis eines Schermesserpaars mit einer festen und einer beweglichen Klinge, die pneumatisch angetrieben und gesteuert wird, entwickelt. Der Messerblock (siehe Abbildung 1 links) wurde an einer Lineareinheit (quer zur Arbeitsrichtung) befestigt und kann über einen Schlitten bedarfsgerecht pneumatisch auf die Höhe der zu schneidenden Kettfäden abgesenkt werden (siehe Abbildung 1 rechts). Dies ermöglicht es, die Kettfäden entsprechend der Bauteilkontur temporär aus dem Fertigungsprozess zu entfernen.

Vorbringen der Kettfäden

Zur präzisen Führung werden die Kettfäden pneumatisch vorgebracht. Dafür werden die Führungsröhrchen (siehe Abbildung 2 links) der Versatzeinheit mit Druckluft angeblasen, wodurch der Kettfaden in die Wirkstelle transportiert wird. Dabei muss die Schnittstelle, die sonst offen und zugänglich für das Schermesser gehalten wird, temporär durch eine Verschlusskappe überbrückt werden, um einen Druckluftverlust während des Vorbringens zu vermeiden (siehe Abbildung 2 rechts). Dieses System sorgt dafür, dass die abgetrennten Kettfäden exakt an die vorgesehene Stelle im Gelege, synchronisiert mit dem Wirkprozess, geführt werden. Ein Druck von 4 bar wurde für ein reproduzierbares, schnelles und präzises Vorbringen der vorher abgetrennten Kettfäden in die Nadelgasse der Wirkstelle erörtert, als Grundlage für das anschließende Anfügen des Kettfadenendes an das endkonturgerechte Gelege.

Anfügen der Kettfadenenden

Für das Anfügen der Kettfäden an das Gelege wurden verschiedene Lösungsansätze untersucht, darunter stoffschlüssige Verbindungen mittels Klebstoffen und form- bzw. kraftschlüssige Verbindungen durch nähwirktechnische Integration. Als geeignete Lösung hinsichtlich des Erhalts des textilen Charakters des endkonturgerechten Geleges sowie der Dauer des Anfügevorgangs erwies sich die nähwirktechnische Fixierung, die eine zuverlässige und schädigungsarme, kraftschlussbasierte Integration der Kettfäden in die Gelegestruktur ermöglicht.

Auf Basis der abgeleiteten Vorzugslösungen für die Teilfunktionen erfolgte anschließend die Entwicklung des kombinierten Kettfadenmanipulationsmoduls, mit dem eine Kettfadenschar sowohl seitlich versetzt, als auch einzelne Kettfäden aus der Kettfadenschar selektiv abgetrennt und nach Bedarf wieder angefügt werden können. Das kombinierte Kettfadenmanipulationsmodul besteht aus zwei synchronisierten Lineareinheiten. Eine Lineareinheit setzt die Messerblockbewegung um, eine zweite Lineareinheit den seitlichen Versatz der Kettfäden (siehe Abbildung 3 und Abbildung 4). Das vollständige, entwickelten Nachrüstmodul, inklusive der pneumatischen und elektrotechnischen Steuerungstechnik wurden in eine Malimo 14024 (Karl Mayer Textilmaschinenfabrik GmbH, Deutschland) integriert und auf Basis iterativer Funktionsmusterfertigungen erprobt. Dieses Modul ermöglicht die Herstellung endkonturgerechter Gelege mit variabel einstellbaren Verstärkungskettfadendichten und achsvariablen Fadenanordnungen und erhöht somit signifikant die Materialeffizienz in der FKV-Produktion.

Materialcharakterisierung und Ergebnisse

Auf die erfolgreiche Umsetzung der Funktionsmuster folgte die textil- und verbundphysikalische Charakterisierung der Funktionsmuster. Die Charakterisierung der Funktionsmuster erfolgte in mehreren Stufen. Zunächst wurde eine computergestützte photogrammetrische Messung zur Überprüfung der Konturradien und der Konturtreue durchgeführt. Anschließend fokussierte sich die Untersuchung auf die Ermittlung der strukturmechanischen Eigenschaften der FKV-Prüfkörper auf Basis der textilen Funktionsmuster. Hierbei kamen modifizierte Stempeldurchdrückversuche zum Einsatz, die einen multiaxialen Belastungszustand in die Textil- bzw. FKV-Prüfkörper einleiteten (siehe Abbildung 5). Die Kraftübertragung während der Versuche wurde aufgezeichnet und ausgewertet.

Die Ergebnisse zeigten, dass die Einsatzmöglichkeiten des Kettfadenmanipulationsmoduls zur Herstellung endkonturgerechter Gelege mit bauteilgerechten Verstärkungskettfadendichten eine gleichbleibende mechanische Belastbarkeit wie vollverstärkte Bauteile ermöglichen, während gleichzeitig der Materialeinsatz signifikant reduziert wird. Anhand der Umsetzung eines PKW-Kotflügeldemonstrators (siehe Abbildung 6) konnte experimentell belegt werden, dass eine Materialreduktion von bis zu 50 % möglich ist, ohne die strukturelle Integrität und mechanische Belastbarkeit der FKV-Bauteile zu reduzieren. Die umfassenden Untersuchungen und die daraus resultierenden Erkenntnisse legen die Basis für die Fertigung und Handhabung praxisnaher endkonturgerechter Gelege. Damit wird ein wichtiger Beitrag zur Steigerung der Wettbewerbsfähigkeit und zur Förderung nachhaltiger Produktionsverfahren in der Industrie geleistet.

Zusammenfassung

Im Rahmen der Forschungsarbeiten wurde ein innovatives Nachrüstmodul für die hochproduktive Multiaxial-Kettenwirktechnologie entwickelt, dass es ermöglicht, die Dichte der Verstärkungskettfäden in Multiaxialgelegen lokal und gezielt an die Anforderungen spezifischer Bauteile anzupassen. Diese technologische Neuerung repräsentiert einen signifikanten Fortschritt in der Fertigung von Faserkunststoffverbunden (FKV), indem nunmehr eine effiziente und materialsparende Produktion, insbesondere unter Verwendung hochpreisiger Hochleistungsfasern wie Carbon, ermöglicht wird. Die entwickelte Lösung gestattet es, die Integration der Kettfäden ausschließlich in jenen Bereichen vorzunehmen, die für die mechanische und geometrische Verstärkung des späteren Bauteils erforderlich sind. Dies führt zur Reduzierung des Verschnitts auf nahezu 0 % (in Kettfadenrichtung) sowie zur weitestgehenden Vermeidung der Überdimensionierung.

Für die Umsetzung des entwickelten Verfahrens wurde eine passende Fertigungstechnologie erarbeitet und als Zusatzvorrichtung in eine Multiaxial-Kettenwirkmaschine (Malimo 14024) integriert. Diese Vorrichtung ermöglichte die prozesssichere Ablage der Kettfäden mit individuell unterschiedlichen Dichten und Ausrichtungen, wodurch erstmals endkonturgerechte Gelege mit variabel einstellbaren, bauteilgerechten Kettfadendichten hergestellt werden konnten.

Der Ausblick auf zukünftige Entwicklungen fokussiert sich auf die Weiterführung der Technologieübertragung in die industrielle Praxis, insbesondere in KMU. Die durchgeführten Forschungsarbeiten bieten eine solide Basis für die Implementierung der neuen Technologie in bestehende Produktionsprozesse. Dabei stehen die Steigerung der Materialeffizienz und die Reduktion des ökologischen Fußabdrucks von FKV-Bauteilen im Vordergrund, um den steigenden industriellen und gesetzlichen Anforderungen an Nachhaltigkeit und Wirtschaftlichkeit gerecht zu werden.

Danksagung

Das IGF-Vorhaben 21968 BR der Forschungsvereinigung Forschungskuratorium Textil e. V. wurde über die AiF im Rahmen des Programms zur Förderung der Industriellen Gemeinschaftsforschung (IGF) vom Bundesministerium für Wirtschaft und Klimaschutz aufgrund eines Beschlusses des Deutschen Bundestages gefördert. Der Schlussbericht und weiterführende Informationen sind am Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik der TU Dresden erhältlich.

AutorInnen: Konrad Zierold André Seidel Lars Hahn Chokri Cherif

Technische Universität Dresden
Fakultät Maschinenwesen
Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM)
01062 Dresden

https://tu-dresden.de/mw/itm

More entries from TU Dresden, Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik ITM

20.06.2023

Entwicklung von Heavy Tows aus recycelten Carbonfasern für kostengünstige duroplastische Composites mit hohem Leistungsvermögen (rCF-Heavy Tows)

Rohstoffe Fasern Garne Composites Textilmaschinenbau Recycling Nachhaltigkeit Kreislaufwirtschaft Technische Textilien

Zusammenfassung

Im Rahmen des IGF-Forschungsvorhabens (21612 BR) wurde am ITM die gesamte Prozesskette zur industriellen Herstellung neuartiger drehungsfreier rCF-Heavy Tows entwickelt. Insbesondere wurde eine neuartige Technologie zur Herstellung von rCF-Heavy Tows auf Basis recycelter Carbon- (rCF, ≥ 90 Vol.-%) und Schmelzklebefasern (< 10 Vol.-%) konzipiert, konstruiert und erfolgreich umgesetzt. Diese umfasst die Faseraufbereitung, den Krempelprozess zur Krempelbandbildung, den Streckprozess zur Streckenbandbildung sowie die abschließende Fertigung der rCF-Heavy Tows aus rCF und Schmelzklebefasern in einem neuen entwickelten Versuchsstand. Der Nachweis der Eignung der entwickelten Technologie erfolgt mit der Umsetzung von rCF-Heavy Tows mit unterschiedlichen rCF Typen, Faserlängen und Faservolumengehalten und eines Demonstrators. Die entwickelten rCF-Heavy Tows mit Feinheiten zwischen 3000-7000 tex und deren Weiterverarbeitbarkeit zu textilen Halbzeugen wurden erfolgreich nachgewiesen. Die entwickelten rCF-Heavy Tows und darauf basierende Verbunde weisen eine maximale Verbundzugfestigkeit bzw ein maximales Zug-Modul von 1158±72 MPa bzw. 80±5,7 GPa auf. Die rCF Heavy Tows sind somit für kostengünstige duroplastische Composites mit hohem Leistungsvermögen und komplexer Geometrie einsetzbar. Damit bieten die entwickelten rCF-Heavy Tows ein sehr hohes Innovations- und Marktpotential in den Bereichen Werkstoffe und Materialien, Leichtbau, Umwelt- und Nachhaltigkeitsforschung sowie Ressourceneffizienz. Damit eröffnet sich die Gelegenheit für KMU der Textilindustrie neue Produkte und Technologien für den Faserverbundwerkstoffmarkt und sich als Lieferant für die Automobil-, Maschinenbau- sowie Luftfahrt-, Medizin- und Sportgeräteindustrie zu etablieren.

Bericht

Einleitung, Problemstellung und Zielsetzung

Carbonfaserverstärkte Verbundwerkstoffe (CFK) werden aufgrund ihrer hohen Steifigkeit und Festigkeit sowie der geringen Dichte zunehmend in Leichtbauanwendungen eingesetzt, insbesondere in den Bereichen Luft- und Raumfahrt, Transport, Windenergie, Sport oder Bau. Der globale CFK Bedarf wird sich Prognosen zufolge bis 2024 auf 197.000 t/a erhöhen und damit im Vergleich zu 2011 fast verdreifachen. Das zeigt den dringenden Bedarf an Lösungen zur Wiederverwertung der hochwertigen CF (rCF) im Sinne der Circular Economy. Das ist nicht nur aufgrund strenger rechtlicher Bestimmungen, sondern auch aus ökologischen sowie ökonomischen Gründen eine Notwendigkeit. Zahlreiche Forschungsinstitute und Unternehmen entwickelten in den letzten Jahren Lösungen zur Wiederverwendung von rCF in den Bereichen Vliesstoffe, Spritzgießen oder als Hybridgarne. Diese Arbeiten umfassen allerdings mehrheitlich den Einsatz von rCF in Kombination mit thermoplastischen Fasern für thermoplastische Composites. Für den Bereich rCF basierter duroplastischer CFK wurden bisher vorwiegend rCF-Vliesstoffe aus 100% rCF entwickelt. Da die Fasern in den Vliesstoffen prinzipbedingt nur eine begrenzte Länge und eine geringe Orientierung aufweisen und zusätzlich prozessbedingt hohen Faserschädigung auftreten, sind damit bisher nur max. 30% der Verbundkennwerte von CFK-Bauteilen aus Carbonfilamentgarnen erreichbar.

Aktuell sind die im Bereich hochbelastbarer CFK verwendeten Matrixsysteme überwiegend duroplastisch. Derartige Bauteile weisen eine hohe Formstabilität und hohe Steifigkeiten sowie Festigkeiten auf und eignen sich aufgrund niedrigviskoser Matrixsysteme zur Umsetzung komplexer Bauteilgeometrien. Jedoch werden aufgrund der bisher für diese Bauteile nur ungenügend in rCF abbildbaren, notwendigen Eigenschaften vorrangig Primärcarbonfilamentgarne eingesetzt. Neben einer geringen Nachhaltigkeit verursacht das auch um mind. 200 % höhere Kosten. Die Herstellung primäres Carbonfilamentgarnes erfordert einen hohen Energiebedarf von ca. 230 MJ/kg mit einem CO2-Emissionsäquivalent von 20 kg CO2/kg CF. Hier ist eine deutliche Verbesserung der CO2-Bilanz notwendig, um einen wesentlichen Beitrag zu den anvisierten Klimaschutzzielen der BRD bzw. der EU leisten zu können. Aus diesem Grund ist der Fokus der Projektarbeit die Entwicklung neuartiger, nachhaltiger rCF-Heavy Tows aus recycelten Carbonfasern (rCF) und dazugehöriger Fertigungstechnologien zur Umsetzung kostengünstiger duroplastischer Composites mit hohem Leistungsvermögen.

Danksagung

Das IGF-Vorhaben 21612 BR der Forschungsvereinigung Forschungskuratorium Textil e.V. wurde über die AiF im Rahmen des Programms zur Förderung der industriellen Gemeinschaftsforschung und -entwicklung (IGF) vom Bundesministerium für Wirtschaft und Klimaschutz (BMWK) aufgrund eines Beschlusses des Deutschen Bundestages gefördert. Wir danken den genannten Institutionen für die Bereitstellung der finanziellen Mittel.

AutorInnen: Mahmud Hossain, Anwar Abdkader und Chokri Cherif

Technische Universität Dresden
Fakultät Maschinenwesen
Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM)
01062 Dresden

https://tu-dresden.de/mw/itm

rCF Faser Garn Composite Textilmaschinenbau

More entries from TU Dresden, Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik ITM

29.03.2023

Thermogeneratorpaneele basierend auf multifunktionalen Abstandsgewirken

Gestricke & Gewirke Composites Textilmaschinenbau Sensorik Nachhaltigkeit Technische Textilien

Zusammenfassung

Thermoelektrische Generatoren (TEG) bieten das Potenzial Abwärme verschleiß- und wartungsfrei in elektrischen Strom umzuwandeln und damit zur Einsparung von CO2-Emissionen beizutragen. Die Funktionsweise der TEG beruht auf dem materialinhärenten Seebeck-Effekt. Im Rahmen des IGF- Projektes 21144 BR wurden Thermogeneratorpaneele basierend auf abstandsgewirkten glasfaserverstärkten Paneelen entwickelt. Im Wirkprozess wurde die Integration von Glasfasern und thermoelektrischen Drähte umgesetzt. Dadurch wurden Leichtbaupaneele mit guten strukturmechanischen Eigenschaften (Druck-, Biegefestigkeit) und zusätzlicher Thermogenerator- und Wärmeisolationsfunktion realisiert. Diese sogenannten Multithermogeneratorpaneele (MTP) können mit ihrer autarken elektrischen Leistung für den Betrieb von Sensoren oder Kleingeräten genutzt werden.

Bericht

Einleitung

Der globale Energiebedarf steigt mit den laufenden industriellen Fortschritten und dem Bevölkerungswachstum stetig an. Die Energieversorgung nachhaltig zu gestalten, ist mit der aktuellen Dringlichkeit des Klimaschutzes, zwingend notwendig, um die Wirtschaft und auch die Zukunft nachfolgender Generationen zu sichern. Im Zuge der rasanten Entwicklung des Internet of Things (IoT) und der Digitalisierung besteht außerdem große Nachfrage nach autarken mobilen Stromquellen, mit denen selbstständig und zuverlässig elektronische Sensoren und Kommunikationsgeräte betrieben werden können. Die meisten technischen Prozesse nutzen nur 25 % bis 40 % der eingesetzten Energie zur Umwandlung in mechanische Energie. Der Rest wird in thermische Energie umgewandelt, die in der Regel verloren geht. Ein vielversprechender Ansatz zur Nutzung dieser thermischen Energie ist der Einsatz von thermoelektrischen Generatoren (TEG).

Die Stromerzeugung mittels TEG wird durch den Seebeck-Effekt beschrieben. Dabei entsteht zwischen der warmen (Th) und der kalten Kontaktstelle (Tk) der thermoelektrischen Funktionsmaterialpaare A und B, auch Thermoelemente (TE) genannt, eine elektrische Spannung (U). Die erreichbare Leistungsausbeute eines TEG ist neben der Umgebungstemperaturdifferenz (ΔT) von den materialspezifischen Parametern der eingesetzten TE abhängig. Diese Parameter werden durch die Gütezahl (ZT) beschrieben und umfassen die Seebeck-Koeffizienten (α in µV/K), die elektrische (σ, möglichst hoch) und die thermische Leitfähigkeit (λ, möglichst gering). Für eine hohe Leistungsausbeute sind Materialien mit einer hohen Differenz im Seebeck-Koeffizienten notwendig. Außerdem ist die Leistungsausbeute eines TEG-Moduls maßgeblich von der Anzahl in Reihe geschalteter TE in einem Modul abhängig. Werkstoffe für einen hohen thermoelektrischen Nutzeffekt basieren auf seltenen Rohstoffen, wie Bismut, Antimon und Tellur, die eine gute elektrische Leitfähigkeit, kombiniert mit einer geringen Wärmeleitfähigkeit aufweisen. Das Vorkommen und die Lebensdauer der Halbleiterelemente ist jedoch begrenzt und das Recycling aufwändig. Sie sind außerdem kostenintensiv und teilweise toxisch.

Daher werden von der Wirtschaft und der Forschung Entwicklungen neuer Materialien oder die Steigerung der Leistung der TEG sowie kostengünstigere Herstellverfahren vorangetrieben. Allerdings bestehen diese entwickelten Verfahren zumeist aus aufwändigen kombinierten Gieß- und Sinterprozessen sowie einer kostenintensiven notwendigen Nachbearbeitung. Zur Schaffung eines effizienten Herstellverfahrens für TEG mit einer produktiven Integrationsmöglichkeit einer hohen Anzahl an TE bietet die Abstandswirktechnik großes Potenzial. Mit dem Einsatz von Funktionsmaterialien und Hochleistungsgarnen in den Abstandsgewirken, wie Glasfasergarne, und einer späteren Infiltrierung und Konsolidierung mit Harzsystemen lassen sich großflächige Faserverbundstrukturen (z. B. Leichtbaupaneele) mit geschlossenen Deckschichten generieren, die neben der TEG-Funktion sehr gute strukturmechanische Eigenschaften aufweisen und auch als tragende Strukturen im Fahrzeug- oder Anlagenbau mit Wärmeisolation einsetzbar sind [1] .

Im Rahmen des Forschungsprojektes IGF 21144 BR wurden Leichtbaupaneele als tragende Bauteile mit multifunktionalen Eigenschaften, Multifunktionsthermogeneratorpaneele (MTP), realisiert, die durch die Umwandlung industrieller Abwärme in elektrischen Strom mit gleichzeitigem Kühleffekt zur Effizienzsteigerung von Batterien oder Elektromotoren in der Elektromobilität und von Hybridsystemen beitragen.


Entwicklung der Multithermogeneratorpaneele (MTP)

Der Grundaufbau der MTP besteht aus einem glasfaserverstärkten Abstandsgewirke, welches schlussendlich verharzt das Substrat des TEG darstellt. Die Thermoelemente (TE) werden in Form von Funktionsdrähten aus Eisen und Konstantan als Polfadensystem in der RR-Raschelwirkmaschine in den Abstand integriert, wie in Abbildung 2 veranschaulicht. Weiterhin gewährleisten Polfäden aus Monofilamenten, sowie Glasfasern (EC9-68x2) die Stabilität gegenüber mechanischer Beanspruchung. In den Deckflächen stellen je zwei Maschenfadensysteme aus PES (100/40 dtex) die Fixierung der Schuss- und Stehfäden sowie der TE sicher. Die Kontaktierung und Verschaltung der TE erfolgt durch die übereinanderliegende Anordnung und Verbindung der Funktionsdrähte in den Maschen der Gewirkebindung.

Zur Entwicklung und Auslegung der thermoelektrischen Struktur der MTP wurde ein elektrisches Modell entwickelt, in welchem die Anzahl und Geometrie der TE, ihre elektrische Kontaktierung, sowie die Art der Verschaltung der TE (Reihen-, Parallel- oder Mischschaltung) variabel ist. Für das Modell wurden gekoppelte multiphysikalische Ersatzschaltungsmodelle unter Ausnutzung der mathematischen Analogien der elektrischen/thermischen/mechanischen Domäne angewendet, in LT-Spice implementiert und im Hinblick auf die zuvor beschriebenen Parameter untersucht (Abbildung 1). Mittels des Modells kann die Schaltung der TE an den Lastwiderstand des Anwendungsfalls angepasst werden, sodass die maximale Leistung des TEG erreicht wird. Das vorhandene Modell wurde weiterhin durch das thermische Verhalten hinsichtlich Wärmeleitung und Wärmekapazität der Struktur erweitert.

Um die angestrebte thermoelektrische Struktur in eine Gewirkebindung für die RR-Rascheltechnologie zu überführen, wurden mehrere Bindungsvarianten für die Funktionsdrähte im Abstand des Paneels erarbeitet, umgesetzt und analysiert [2]. Weiterhin wurden unterschiedliche elektrische Verschaltungen der Funktionsdrähte entwickelt. Dabei ermöglicht eine kombinierte Reihen- und Parallelschaltung die maximale Einbindung von TE pro Fläche von bis zu 150.000 TE/m² und eine bessere Ausfallsicherheit im Vergleich zur Reihenschaltung. Der Innenwiderstand und die elektrische Leistung kann direkt über die Abmaße des Paneels angepasst werden. Die Struktur des Abstandsgewirkes mit dieser Verschaltung ist im Modell in Abbildung 2 dargestellt.

Zur Herstellung des thermoelektrischen Abstandsgewirkes als Halbzeug für die MTP wurde eine RR-Raschelwirkmaschine MiniTronic 808 von RIUS Comatex S.A. eingesetzt. Mit dem Ziel die Funktions- und Hochleistungsmaterialien schädigungsarm zu verarbeiten, wurde eine Nadelbestückung mit der Feinheit E12 verwendet. Für die Maschineneinstellung und die technologisch-konstruktive Weiterentwicklung der Abstandswirktechnik wurde zunächst der Bauraum der RR-Raschelmaschine und der Einzug der Drähte in den vorhandenen Garnlauf analysiert. Der Fadenlängenausgleich für die Maschenbildung, die Fadenwippe, ist kommerziell als Fadenwippe mit Stahlfedern umgesetzt. Dadurch wird die für die Fadensysteme benötigte Fadenzugkraft erreicht. Bei ebendieser Fadenzugkraft entstehen für die Funktionsdrähte aus Eisen- und Konstantan jedoch irreversible Knicke an den Umkehrpunkten der Lochnadeln. Diese Knicke verhindern das Gleiten der Drähte durch die Lochnadeln, sodass ein Drahtbruch entsteht. Die Drähte benötigen eine sehr niedrige Fadenzugkraft sowie einen Längenausgleich mit niedriger Federkonstante, da materialbedingt nur eine geringe elastische Dehnung (0,1 %) vorhanden ist.

Weiterhin waren technologische Modifikationen zur Verarbeitung von Glasfasergarnen als Schuss-, Steh- und Polfaden auf der RR-Raschelwirkmaschine erforderlich. Die Glasfaserrovings (350 tex) wurden bei der Verarbeitung als Polfadensystem aufgrund der Querkräftanfälligkeit bereits vor der Maschenbildung durch die kleinen Umlenkradien in der Lochnadel abgeschert. Daher wurden verzwirnte Glasfaserrovings als Verstärkungsfaser eingesetzt. Zur Verarbeitung dieser Glasfaserzwirne wurde ein Fadenliefersystem mit einer passiven Fadenzufuhr und einer konstanten Fadenzugkraft von 20 cN entwickelt und umgesetzt. Mittels angetriebener Spulenaufnahme für Glasfasern und Tänzerwalze zur Zugkraftregelung lässt sich dieses Prinzip automatisieren und auf ein System für hohe Produktionsgeschwindigkeiten übertragen.

In einem mehrstufigen Handlaminierverfahren wurden die hergestellten MTP-Halbzeuge mit hochtemperaturbeständigem Harz infiltriert und als MTP Demonstrator verarbeitet (Abbildung 3).


Elektrische Leistung der MTP

Zur Auswertung der thermoelektrischen Leistung der MTP wurde ein gekoppelter elektrisch-thermischer Versuchsstand entwickelt, der durch jeweils ein Peltier-Element an der Ober- und Unterseite eine aktive Erwärmung bzw. Kühlung realisiert. Damit sind Temperaturdifferenzen von bis zu 80 K erreichbar. Zwischen den Peltierelementen und der Probe sind Platten aus Aluminium eingeschraubt. Diese erfüllen zwei Funktionen. Erstens homogenisieren sie die Wärmeverteilung. Zweitens sind in den Platten jeweils Pt100-Temperaturfühler (Präzisionsklasse A) eingebracht. Die Temperaturfühler wurden dabei in Bohrungen platziert und mit Wärmeleitpaste verklebt, sodass eine gute Wärmeleitung zwischen Peltierelement, Probe und Temperatursensoren gewährleistet ist und die Temperaturabweichung zwischen Sensor und TEG-Oberfläche minimal ist. Die Widerstände der Pt100-Fühler wurden mit einem Keithley DAQ 6500 Präzisionsmultimeter aufgenommen. Die Ansteuerung des Multimeters erfolgte durch Matlab-Simulink. Anhand der gemessenen Temperaturen wurde die Spannungsquelle über SCPI-Befehle und einen PID-Regler geregelt, um eine präzise und stabile Kontrolle der Temperaturdifferenz zu erreichen. Gleichzeitig ermöglichte das Präzisionsmultimeter die Messung der vom TEG erzeugten Spannung, des durch den Lastwiderstand fließenden Stroms sowie des Innenwiderstands des TEGs. In Abbildung 4 sind der Prüfstand mit dem das Temperaturprofil während eines Versuchs mit 60 K Temperaturdifferenz und die aufgenommene Strom-Spannungs-Kennlinie abgebildet.

Mittels Präzisionsmultimeter wurden außerdem die Kontaktpunkte der Funktionsgarne in der gewirkten TEG-Struktur auf ihre Übergangswiderstände hin überprüft sowie der Gesamtwiderstand der TEG-Module ermittelt. Die Kontaktwiderstände zwischen den Funktionsdrähten lagen konstant unter 0,1 Ω. Entgegen der Erwartungen war dies auch nach der Faserverbundbildung der Fall, sodass der Innenwiderstand des finalen Demonstrators 0,9 Ω beträgt. Auch der thermoelektrische Effekt des MTP wurde durch das Harz nicht nachteilig beeinträchtigt. Dies wurde durch Vergleichsmessungen der MTP am Leibniz Institut für photonische Technologien (ipht) und bei der itp GmbH ebenfalls bestätigt.

Die Projektergebnisse zur Herstellung und zu den Eigenschaften von abstandsgewirkten MTP aus Eisen und Konstantan bilden eine Basis für die zielgerichtete Weiterentwicklung einer effizienten Fertigung von vertriebsreifen TEG. Die Ausnutzung der Produktivität der RR-Raschelwirkmaschine trägt dazu bei, die sonst kostenintensiven alternativen Energiekonzepte für Bevölkerung und Wirtschaft zugänglich und profitabel zu gestalten, sodass zum Erhalt der Umwelt beigetragen wird.


Danksagung

Das IGF-Vorhaben 21144 BR der Forschungsvereinigung Forschungskuratorium Textil e.V. wurde über die AiF im Rahmen des Programms zur Förderung der Industriellen Gemeinschaftsforschung (IGF) vom Bundesministerium für Wirtschaft und Klimaschutz aufgrund eines Beschlusses des Deutschen Bundestages gefördert. Das Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik der TU Dresden (ITM) dankt den genannten Institutionen für die Bereitstellung der finanziellen Mittel.

Der Abschlussbericht und weiterführende Informationen sind am Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik der TU Dresden vorhanden [3].

Die vollständige Veröffentlichung steht zum Download zur Verfügung.

AutorInnen: Anke Golla, Johannes Mersch, Gerald Hoffmann, Chokri Cherif

Technische Universität Dresden
Fakultät Maschinenwesen
Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM)
01062 Dresden

https://tu-dresden.de/mw/itm

More entries from TU Dresden, Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik ITM

06.03.2023

Gewebte Papier-Textil-Strukturen für einen nachhaltigen Leichtbau

Gewebe Composites Textilmaschinenbau Nachhaltigkeit Technische Textilien

Zusammenfassung

Mit dem technologischen Nachweis des neuartigen HyPerWeave-Ansatzes steht somit in der Zukunft eine nachhaltige Material- und Leichtbaulösung für eine Vielzahl an Branchen bereit, deren Eigenschaften (Stabilität, Brandschutz) auf den jeweiligen Anwendungsfall maßgeschneidert angepasst werden kann. Darüber ermöglicht die Kopplung von Papier- und Textiltechnik geschlossene Stoffkreisläufe, in denen das betreffende Bauteil gegen Ende der Produktlebenszeit und abhängig von seiner Zusammensetzung getrennt und zu neuen Leichtbaustrukturen recycelt werden kann.

Bericht

Mit dem konsequenten Einsatz von Leichtbau-Technologien können in vielen industriellen Bereichen sowie in der Mobilitäts- und Baubranche erhebliche Mengen an CO2-Emissionen eingespart werden. Jedoch erfordert die Herstellung entsprechender faserverstärkter Leichtbaustrukturen einen hohen Energie- und Ressourcenaufwand, wodurch eine tatsächliche CO2-Ersparnis erst sehr spät und am Ende der Nutzungsdauer erreicht wird. Zum Beispiel basieren Carbon- oder Aramidfaser in der Regel auf petrochemischen Ausgangsmaterialien und erfordern bei der Herstellung einen immensen Energieeinsatz. Im Gegensatz dazu bieten naturbasierte Verstärkungsfasern ein großes Potenzial zur Senkung von CO2-Emissionen und zur stofflichen Bindung von CO2 bei der Herstellung von Leichtbaustrukturen. Dennoch sind diese Technologien noch nicht weit verbreitet, da die Eigenschaften der Ausgangsmaterialien großen Schwankungen unterliegen und die Kompatibilität mit gebräuchlichen Matrixsystemen nicht immer gegeben ist.

Das branchenübergreifende Projekt "HyPerWeave" erforscht Wege zur Umsetzung eines CO2-armen und damit nachhaltigen Leichtbaus. Wissenschaftler:innen der Papiertechnischen Stiftung Heidenau (PTS) und des Instituts für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM) der TU Dresden entwickeln im Rahmen der Industriellen Gemeinschaftsforschung gewebte Verstärkungsstrukturen auf Basis von Papier (siehe Abbildung 1) für neuartige, hochstabile Leichtbaupaneele, wie sie in vielen Bereichen der Mobilität, der Gebäudeausrüstung oder dem Anlagenbau benötigt werden. Neben den Anforderungen an eine hohe spezifische Tragfähigkeit solcher Paneele, sind es daher insbesondere die Brandschutzeigenschaften bis DIN 4102 B1, die in der Materialentwicklung von HyPerWeave adressiert werden.

Die papier- und textiltechnologischen Arbeiten der Forschungseinrichtungen sind eng miteinander verzahnt. So konnten in der ersten Projektphase neue Papiere entwickelt werden, die ein vielversprechendes Eigenschaftsprofil hinsichtlich Mechanik, Brandschutz und textiltechnologischer Verarbeitbarkeit aufweisen und nun im Rahmen der zweiten Projektphase schrittweise auf praxisähnliche Versuchsanlagen der PTS hergestellt werden. Für die weitere Verarbeitung der Papiere zu integral verstärkten Leichtbaustrukturen wird am ITM eine neues Webverfahren entwickelt und konstruktiv-technologisch umgesetzt. Dies betrifft insbesondere die Materialführung, bei der das Papier in anforderungsgerechte Streifen geschnitten und in Form von Kettfäden bindungstechnisch in eine Abstandsgewebestruktur eingebracht werden. Die textilbasierte Kopplung zwischen der so aus dem Papier ausgeprägten Kernlage und den gleichzeitig gewebten Decklagen (siehe Abbildung) verspricht dabei gegenüber dem Stand der Technik eine deutlich verbessertes Delaminationsverhalten, gesteigerte Schubstabilität und Schadenstoleranz gegenüber geklebten Waben-Sandwichstrukturen. Die gewebten Papierhalbzeuge können anschließend mit Fixiermitteln und Matrixmaterialien auf Basis nachwachsender Rohstoffe zu hochwertigen Paneelen weiterverarbeitet werden.

Danksagung

Das IGF-Vorhaben 21856 BR (Entwicklung von integral gewebten Papier-Textil-Sandwichstrukturen für Leichtbaupaneele (Hybrid High Performance Paper Weaves – HyPerWeave) wird über die AiF im Rahmen des Programms zur Förderung der Industriellen Gemeinschaftsforschung (IGF) vom Bundesministerium für Wirtschaft und Klimaschutz aufgrund eines Beschlusses des Deutschen Bundestages gefördert.

AutorInnen: Vorhof, Michael (1); Wüstner, Cornell (2); Sennewald, Cornelia (1); Cherif, Chokri (1) (1) Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM) (2) Papiertechnische Stiftung Heidenau

Technische Universität Dresden
Fakultät Maschinenwesen
Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM)
01062 Dresden
cornelia.sennewald@tu-dresden.de

Papiertechnische Stiftung Heidenau
Pirnaer Straße 37
01809 Heidenau
cornell.wüstner@ptspaper.de

https://tu-dresden.de/mw/itm | https://www.ptspaper.de

More entries from TU Dresden, Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik ITM

29.09.2022

Projekt CoopLaserJoining

Composites Textilmaschinenbau Recycling

Zusammenfassung

Der Fokus des Forschungsvorhabens liegt auf der Verbesserung der Multimaterialverbindungen von recyceltem Carbon mit Aluminium und der Entwicklung eines intelligenten Strahlschalters zur Betreibung von parallelgeschalteten Laserprozessen mit einer Laserquelle.

Bericht

Mit der Weiterentwicklung der Elektromobilität wird der Bedarf der Automobilindustrie an Leichtbaukomponenten immer deutlicher. Die Leichtbauteile werden benötigt, um das Gewicht des Fahrzeugs zu reduzieren und damit die Reichweite zu erhöhen. Gleichzeitig steigt mit der jährlichen Wachstumsrate von 11% bei carbonfaserverstärkten (CFK) Verbundwerkstoffen die Sorge um die Entsorgung bzw. Wiederverwendung von Carbonfasermaterialien speziell aus der Automobilindustrie. Denn nach EU-Regelung müssen 85 Prozent des im Automobil verbauten Materials wiederverwendet werden und 95 Prozent recyclingfähig sein. Im Multimaterialbau stehen die Fügestellen im Fokus. Fügestellen sind kritische Bereiche für die mechanischen Eigenschaften des Konstrukts, behindern aber gleichermaßen die Materialtrennung am Lebensende und erschweren damit das Recycling.

Ziel des Vorhabens von CoopLaserJoining ist die Entwicklung modernster Laserbearbeitungs- und Fügetechnologien für rezyklierbare Carbonfaserverbundwerkstoffe für den Einsatz in Automobilkarosserieteilen. Zur Erhöhung der Produktivität der Laserbearbeitungsprozesse wird ein intelligenter Strahlschalter entwickelt, welcher die vorhandene Laserleistung auf zwei oder mehr Bearbeitungsköpfe aufteilt. So kann die Zykluszeit für die Lasermaterialbearbeitung in beiden Fügeprozessen mindestens halbiert werden und erhöht so Effizienz und Wettbewerbsfähigkeit der Laserprozesse.
Hierbei konzentriert sich das Projektkonsortium auf die Einbringung von Krafteinleitungselementen mittels Ultrakurzpuls (UKP)-Laserbohren in Preforms zur Erhöhung der Haftfestigkeit und Verkürzung der Prozesskette. Außerdem erlauben lösbare Verbindungen eine Verbesserte Trennbarkeit der Materialien und schaffen somit die Voraussetzung zum einfachen Recycling der Materialien.

Das Vorhaben wird am Beispiel der Automobilindustrie für die kostenorientierte Massenproduktion durchgeführt. Ein Aluminium-Leichtbaurahmen wird mit verschiedenen CFK-Komponenten verstärkt. Die Dauerfestigkeit und Belastbarkeit der Bauteile wird im Wesentlichen durch die Fertigungstechnologie sowie die Technik des Verbindens der CFK-Bauteile mit dem Aluminium-rahmen bestimmt. Die Festigkeit der resultierenden Verbindungen wird durch Belastung bis zum Versagen bewertet. So ist es möglich, für unter-schiedliche Funktionsteile eine optimierte Fertigungs- und Fügetechnik zu identifizieren und den Fügeprozess an die spezifischen Anforderungen anzupassen.

Projektbeteiligte
Fraunhofer Institut für Lasertechnik, Amphos GmbH, Seoul National University of Science and Technology, Sungwoo Hitech CO., LTD.

Das Forschungsvorhaben CoopLaserJoining (01DR21026B) wird am Institut für Textiltechnik der RWTH Aachen University (ITA), dem Fraunhofer Institut für Lasertechnik (ILT) und der Firma Amphos GmbH durchgeführt. Es wird vom Bundesministerium für Bildung und Forschung im Rahmen der Fördermaßnahme IB-Asien gefördert.

AutorInnen: Santino Wist

ITA Institut für Textiltechnik an der RWTH Aachen University, Otto-Blumenthal-Strasse 1, 52074 Aachen, Deutschland

More entries from ITA Institut für Textiltechnik der RWTH Aachen University

29.09.2022

DigiPEP: Lastpfadgerecht-ausgelegte Bauteile

Composites Technische Textilien

Zusammenfassung

Bei Entwicklungen von Bauteilen aus faserverstärkten Kunststoffen steht häufig der Leichtbauaspekt im Vordergrund. Dazu werden die auftretenden Lastfälle anhand der Randbedingungen und Kräfte bestimmt und anschließend das Bauteil entsprechend ausgelegt. Wird dieser Ansatz noch weiter ausgereizt, so wird die Methode meist den Tailored Textiles zugeordnet. Tailored Textiles sind, wie es der Begriff bereits vermuten lässt, Textilien, die auf den Anwendungsfall abgestimmt hergestellt werden. Dazu gehört ebenfalls das Tailored Fibre Placement (TFP) Verfahren. Dabei können Rovings variabel-axial abgelegt und festgestickt werden. Durch diese Art der Ablage können Stickmuster gemäß den auftretenden Lastfällen im geformten Bauteil erstellt werden. Das Verfahren ist somit extrem verschnittarm und kann zur lokalen Verstärkung in Form von Inserts eingesetzt werden oder als gesamtes Bauteil mit einem enormen Leichtbauansatz verwendet werden. In Kombination mit geringen Anschaffungs- und Prozesskosten bietet das Verfahren besonders für KMU ein großes Potential.

Bericht

Während des Produktentstehungsprozesses (PEP) von Faserverbundbauteilen aus TFP-Preforms ist eine Vielzahl von Iterationen notwendig um die gewünschten Eigenschaften im fertigen Bauteil zu gewährleisten. Vor allem das Zusammenspiel der verschiedenen Prozessschritte von der Roving-Ablage, der Drapierung bis hin zur Infusion und die auftretenden Wechselwirkungen erschweren die Bauteilauslegung. Um die benötigten Auslegungsprozesse zu verknüpfen und so die Anzahl der Iterationen möglichst zu reduzieren wird im Rahmen des DigiPEP-Projektes der Model Based Systems Engineering (MBSE) Ansatz verwendet (siehe Abb. 1). Dieser Ansatz ermöglicht eine Integration der verschiedenen Modelle und eine Zuordnung der Aufgaben zu einzelnen Verantwortlichen. Insgesamt soll somit ein Modell mit einem User Interface entstehen, das nur die wichtigsten Randbedingungen und Entscheidungen von dem jeweiligen Verantwortlichen erfordert. In das Modell sollen Modelle zur Strukturanalyse, Stickpfadauslegung, Topologie-Optimierung, Drapierung und Versagensanalyse des fertigen Bauteils integriert werden. Darüber hinaus soll eine Kosteneinschätzung sowie eine Form der Lebenszyklusanalyse ermöglicht werden. Um die verschiedenen Modelle zu erzeugen und eine Datenbasis aufzubauen, wird u.a. das Ablageverhalten verschiedener Materialien untersucht sowie mechanische Prüfungen an Probenkörper durchgeführt. Dabei werden die Produktionsparameter variiert, um deren Einfluss auf die mechanischen Eigenschaften zu untersuchen. Diese Variation wird ebenfalls zur Untersuchung des Drapierverhaltens verwendet. Zur Repräsentation des Drapierverhaltens im Modell soll eine Datenbasis aus qualitativen Versuchen erzeugt und mittels Künstlicher Intelligenz in das MBSE-Modell integriert werden.

Das erzeugte Modell wird anhand der Auslegung eines Demonstrator-Bauteils validiert. Dieses Demonstrator-Bauteil stammt aus dem Bereich des zukünftigen Transportes und der Produktion der Zukunft. Das erzeugte MBSE-Modell soll durch das erstellte Userinterface einfach bedienbar sein. Als Einsatzgebiet zielt das Projekt besonders auf KMU ab, um für diese den Einsatz der TFP-Technologie zu vereinfachen und die Auslegung neuer Bauteile zu beschleunigen. Darüber hinaus wird angestrebt durch die Software eine grobe Kosten- sowie Nachhaltigkeitsabschätzung zu ermöglichen. Damit kann der Anwender vor der genaueren Planung bereits erste Aussagen gegenüber dem Kunden treffen.

Das auf zwei Jahre ausgelegte Projekt wird vom Bundesministerium für Wirtschaft und Klimaschutz (BMWK) im Rahmen des Technologietransferprogramms Leichtbau unter der Fördernummer 03LB3063A gefördert. An der Bearbeitung sind die folgenden Partner beteiligt: EDAG Group, Digel Sticktech GmbH & Co. KG, ModuleWorks GmbH, Ph-MECHANIK GmbH & Co. KG, adesso SE.

AutorInnen: Rebecca Emmerich, Till Quadflieg

ITA Institut für Textiltechnik an der RWTH Aachen University, Otto-Blumenthal-Strasse 1, 52074 Aachen, Deutschland

Sporttech Mobiltech

More entries from ITA Institut für Textiltechnik der RWTH Aachen University