Forschungspublikationen

3 Ergebnisse
21.05.2024

Aktiv verformbare Gelenke für Smart Composite Anwendungen

Gestricke & Gewirke Composites Sensorik Technische Textilien Smart Textiles

Zusammenfassung

Funktionsintegrierte aktiv verformbare Faserkunststoffverbunde, auch Smart Composites genannt, gewinnen stetig an Bedeutung und finden zunehmend Anwendung in allen volkswirtschaftlichen und technologischen Leitbranchen, wie dem Fahrzeug‑, Maschinen‑ und Anlagenbau sowie in der Medizin‑, Umwelt‑ und Luftfahrttechnik.

Im IGF-Projekt 21969 BR erfolgte am ITM die simulationsgestützte Entwicklung gestrickter 3D-Preformen zur Realisierung aktiv verformbarer 3D-Faserkunststoffverbunde mit mehrachsigem Festkörpergelenk. Dabei werden als Aktoren Drähte aus Formgedächtnislegierung eingesetzt und textiltechnisch direkt in die textilen Verstärkungsstrukturen integriert, die einmal in der Matrix eingebettet die spätere Beweglichkeit des Bauteils sicherstellen. Dadurch sind erstmalig das Leichtbaupotenzial von Hochleistungsfasern und das Leistungspotenzial textilbasierter Aktoren zur Erzielung komplexer 3D-Bewegungen in hohem Maße ausnutzbar, was langfristig zu einer deutlichen Steigerung der Energieeffizienz von Systemen und Komponenten beiträgt.

Bericht

Einleitung und Problemstellung

Im Zuge der notwendigen Etablierung nachhaltiger Lösungen besteht derzeit ein hoher Bedarf an hochbelastbaren und zugleich extrem leichten Bauteilen aus faserverstärkten Kunststoffverbunden (FKV) mit zusätzlichen Funktionalitäten. Insbesondere aktiv verformbare FKV mit strukturintegrierten Aktoren und Festkörpergelenken haben ein hohes Innovationspotenzial zur Realisierung komplexer 3D-Bewegungsaufgaben, für die herkömmliche Bewegungsmechanismen in Differentialbauweise meist eine lineare Kopplung mehrerer konventioneller Gelenke und dezentraler Antriebe erfordern, die eine hohe Massenträgheit und demzufolge einen hohen Energieverbrauch bedingen.

Zur Ausnutzung des Leichtbaupotenzials von FKV besteht daher ein hoher Bedarf an funktionsintegrierten textilen Verstärkungsstrukturen, die gleichzeitig als bedarfsgerechte Funktions- und Festigkeitsträger fungieren. Daraus herstellbare, aktiv verformbare FKV-Bauteile kommen zunehmend in industriellen Anwendungen zum Einsatz, u. a. im Maschinen‑ und Anlagenbau (z. B. Soft Robotik [1], Leichtbauroboterarme), der Medizintechnik (z. B. aktive Orthesen und Prothesen, Endoskopie-Endeffektoren), im Schiff‑ und Automobilbau (z. B. adaptive Spoiler, aktiv verformbare Hydrofoils) sowie in der Luftfahrt (z. B. morphing wings [2 – 4]). Sie weisen eine aktiv geometrisch-veränderbare äußere Form auf, die i. d. R. über eine steuerbare Modulation der inneren Morphologie des Werkstoffes oder durch strukturintegrierte Aktoren, z. B. nach thermischer Aktivierung kontrahierende Drähte aus Formgedächtnislegierung (FGL) [5], einstellbar ist. Derzeit verfügen diese Lösungen allerdings nur über Festkörpergelenke mit einem Freiheitsgrad und können damit lediglich einfache Verformungen ausführen [6 – 8]. Komplexere 3D-Bewegungen sind deshalb nur durch eine kinematische Kopplung erreichbar, d. h. durch die in Bauteillängsrichtung versetzte Anordnung mehrerer einachsiger Festkörpergelenke. Bisher sind keine geeigneten Auslegungsstrategien zur Umsetzung komplexer, mehrachsiger Bewegungen von duroplastischen 3D-FKV-Bauteilen durch textilintegrierte, mehrachsige Festkörpergelenke vorhanden.

Zielsetzung

Das Ziel des IGF-Forschungsprojektes 21969 BR war die simulationsgestützte Entwicklung, Umsetzung und Erprobung gestrickter schlauchförmiger Verstärkungshalbzeuge mit mehrachsigem Festkörpergelenk sowie strukturintegrierten Aktor- und Energieversorgungsnetzwerken zur Herstellung definiert und aktiv verformbarer 3D-FKV-Integralbauteile mit Duromermatrix, die mindestens zwei Freiheitsgraden aufweisen.

Derartige 3D-FKV-Bauteile mit biegeweichem Festkörpergelenk besitzen, analog zu biologischen Vorbildern, eine segmentierte Struktur mit zwei durch das Gelenk elastisch miteinander gekoppelten starren Segmenten (vgl. Abbildung 1). Die bei Aktivierung der FGL-Aktoren infolge der Kontraktion verrichtete Verformungsarbeit generiert ein Biegemoment um die jeweilige Gelenkachse und induziert somit entsprechende Relativbewegungen der starren FKV-Segmente.

Die wesentlichen Herausforderungen im Projekt sind die bedarfsgerechte Auslegung geeigneter Deformationsbereiche des Festkörpergelenks sowie die integrale Fertigung von funktionalisierten 3D-Verstärkungshalbzeugen als schlauchförmige Mehrlagengestricke. In diese sollen im Strickprozess sowohl FGL-Drähte als auch ein für deren elektrisch induzierte Aktivierung erforderliches Energieversorgungsnetzwerk aus leitfähigem Garnmaterial simultan integriert werden. Die FGL-Aktoren sind dabei so anzuordnen, dass das mehrachsige Festkörpergelenk mindestens zwei im Deformationsbereich konzentrierte Freiheitsgrade aufweist, die Biegeverformungen um zwei Hauptgelenkachsen zulassen. Zudem sind sie direkt während des Strickprozesses so zu verarbeiten, dass sie form‑ und kraftschlüssig in der Struktur eingebunden sind und somit eine maximale, reproduzierbare Auslenkung der aktiv verformbaren FKV-Bauteile ermöglichen.

Ergebnisse

Simulationsgestützte Strukturauslegung

Im Projekt erfolgte zunächst die Präzisierung der zu erfüllenden Anforderungen an relevante aktiv verformbare FKV-Integralbauteile ohne externe Motoren in den anvisierten Anwendungsbereichen. Nach Ableitung der Anforderungen an integral gefertigte, funktionalisierte 3D-Textilhalbzeuge mit strukturintegrierten FGL-Aktoren erfolgte eine simulationsgestützte Analyse der maximal erreichbaren Verformungen von aktiv verformbaren FKV-Bauteilen an festgelegten Funktionsmustern mittels Finiter Element Methode (FEM). Dazu wurde das Woodworth-Kaliske-FGL-Materialmodell verwendet [9], das in der Lage ist, den Formgedächtniseffekt der eingesetzten FGL-Aktoren durch direkte Vordehnung abzubilden. Aufbauend auf den Ergebnissen der FEM-Analyse wurden bindungstechnische Ansätze zur integralen Realisierung der Funktionsmuster und insbesondere zur Lösung folgender Aufgaben entwickelt:

  1. Gestaltung von biegeweichen Gelenk‑ bzw. Deformationsbereichen für eine höchstmögliche Verformung der FKV-Bauteile.
  2. Stricktechnische Einbindung der FGL-Aktoren für eine hinreichende form- und kraftschlüssige Fixierung und somit maximale Auslenkung der FKV-Bauteile.
  3. Stricktechnische Einbindung der elektrisch leitfähigen Garne für eine in-situ Kontaktierung, d. h. zuverlässige, stoffschlüssige elektrische Verbindung der FGL-Aktoren mit dem Energienetzwerk im FKV-Bauteil.

Die Ergebnisse zeigen (vgl. Abbildung 2), dass im Vergleich zu den starren Segmenten (Section#1 mit 8 Verstärkungslagen à jeweils 1.200 tex in Kett- und Schussrichtung) die entwickelten 2D-Gelenkbereiche mit nur 2 Verstärkungslagen à 1.200 tex in Kett- und Schussrichtung (Section#2) bzw. à 1.200 tex in Kettrichtung und 410 tex in Schussrichtung (Section#3) um ca. 50 % geringere Biegemodule aufweisen (Section#1: ca. 12 GPa; Section#2 und Section#3: ca. 6 GPa in Bauteillängsrichtung) und daher als Deformationsbereiche prinzipiell geeignet sind [10].

Nach Konsolidierung von 3D-FKV-Bauteilen mit Epoxidharz (EP) wurde jedoch festgestellt, dass die Biegesteifigkeit der Deformationsbereiche zu hoch ist, um eine Verformung des 3D-Bauteils zu erlauben. Das ist auf die hohe Drucksteifigkeit des EPs in Verbindung mit der gekrümmten Rohrwandung zurückzuführen, die einen hohen Verformungswiderstand bedingen, was auch die durchgeführte FEM-Analyse bestätigt. Daher wurde im Projekt ein Multi-Matrix-Ansatz verfolgt, um die Gelenk‑ bzw. Deformationsbereiche mit einem viel biegeweicheren Matrixmaterial als das EP zu versehen. Hierfür wurden während der Infiltration im VARI-Verfahren zugleich die starren Segmente mit EP konsolidiert, die Deformationsbereiche hingegen mit einem fließfähigen Polyurethan-Matrixsystem (PUR) Biresin®-407 der Firma Sika Deutschland GmbH. Dieses gießfähige Elastomer mit einer Viskosität von ca. 600 mPa·s und einer Shore-Härte A 85 weist insbesondere ein niedriges Biegemodul von ca. 2 GPa auf (vgl. PUR-Section in Abbildung 2), was eine Verformung auch von rohrförmigen 3D-FKV-Bauteilen begünstigt.

Die Ergebnisse zeigen weiterhin, dass durch Maschenbildung über Plattieren direkt während des Strickprozesses FGL-Aktoren und elektrisch leitfähige Garne gezielt lokal vermaschbar sind (vgl. Abbildung 3). Somit sind zugleich eine form‑ und kraftschlüssige Fixierung der FGL-Aktoren in den Textilhalbzeugen mit ca. 100 N Auszugskraft im Verbund als auch eine zuverlässige elektrische in-situ Kontaktierung (stoffschlüssige Verbindung) mit niedrigen Übergangswiderständen von ca. 5 Ω realisierbar. Grund dafür ist die im Vergleich zu gestreckten Fäden ohne Verschlingungen (z. B. Kettfaden oder Teilschuss) über die Maschenbildung deutlich größere Kontaktfläche zwischen den Funktionsgarnen. Die elektrische Leitfähigkeit wird zudem durch lokales Applizieren eines Leitklebers (Silberlack Leitsilber der Firma Kemo-Electronic GmbH) im Kontaktierungsbereich verbessert.

Damit lassen sich anhand des Multi-Matrix-Ansatzes aktiv verformbare 2D-FKV-Integralbauteile mit mehreren Deformationsbereichen sowie strukturintegrierten Aktor- und Energienetzwerken realisieren (vgl. Abbildung 4). Thermographische Untersuchungen zeigen, dass die verschiedenen Deformationsbereiche über einen einzigen FGL-Aktor durch das Energienetzwerk separat ansteuerbar sind. Die Aktivierung des FGL-Aktors über die gesamte Bauteillänge, d. h. über die zwei PUR-Deformationsbereiche, führt zu erreichbaren Verformungen von ca. 50 mm, was mittels Lasertriangulation nachgewiesen wurde.

Aktiv verformbare 3D-FKV-Integralbauteile

Das entwickelte FEM-Modell wurde anhand der Ergebnisse mechanischer Charakterisierung von 2D- und 3D-Verbundproben validiert, insb. Zug-, 4-Punkt- und 3-Punkt-Biegeversuche sowie Aktivierungsversuche, und darauf aufbauend für die Auslegung und Optimierung von aktiv verformbaren 3D-FKV-Bauteilen mit mehrachsigen Festkörpergelenken, die jeweils zwei Freiheitsgrade aufweisen, herangezogen. Dabei wurden verschiedene 3D-Gelenktopologien entworfen und mit der Realisierung aktiv verformbarer 3D-FKV-Bauteile schrittweise optimiert. Somit konnte eine Vorzugslösung für die Umsetzung eines generischen Technologiedemonstrators abgeleitet werden (vgl. Abbildung 5). Diese weist einen faltenbalgartigen PUR-Gelenkbereich auf und ermöglicht Verformungen von max. 44,8 mm, was einer Auslenkung von ca. 11° entspricht. Zur Sicherstellung einer maximalen Auslenkung des Bauteils sind dabei die FGL-Aktoren im Gelenkbereich innerhalb des FKV-Rohres freiliegend zugeführt und erst an den Extremitäten der starren FKV-Segmenten lokal fixiert. Zudem sind sie im Gelenkbereich gezielt umgelenkt, um eine exzentrische Krafteinleitung bei Kontraktion der FGL-Aktoren hervorzurufen und somit hohe Biegeverformungen zu bewirken.

Die Umsetzung und Prüfung des Technologiedemonstrators (vgl. Abbildung 6) in Form eines mehrgliedrigen, aktiv verformbaren 3D-Gelenkarms, z. B. für den Anwendungsbereich Robotik, bestätigt, dass die neuartigen, gestrickten 3D-Verstärkungshalbzeuge mit mehrachsigen Festkörpergelenken sowie strukturintegrierten FGL-Aktor- und Energienetzwerken für die flexible Herstellung aktiv verformbarer 3D-FKV-Integralbauteile sehr gut geeignet sind. Die entwickelten Gelenktopologien ermöglichen erstmalig die Realisierung mehrachsiger Festkörpergelenke mit zwei Freiheitsgraden, die komplexe 3D-Bewegungsaufgaben mit erreichbaren Bauteilverformungen von ca. 50 mm ausführen können. Dabei sind im Vergleich zu herkömmlichen Bewegungsmechanismen, die eine lineare Kopplung mehrerer Gelenke und dezentraler Antriebe mit hoher Massenträgheit und demzufolge hohem Energiebedarf erfordern, wesentliche Vorteile erreichbar, insbesondere hinsichtlich des geringeren Montageaufwandes, der Reibungs- bzw. Verschleißfreiheit und der damit weitestgehend dauerhaften Wartungsfreiheit sowie des niedrigen Energieverbrauchs der FGL-Aktoren.

Damit sind die Voraussetzungen für eine wirtschaftliche und flexible Fertigung neuartiger, funktionalisierter 3D-Textilhalbzeuge für die Realisierung aktiv verformbarer 3D-FKV-Integralbauteile in reproduzierbarer Qualität geschaffen.

Zusammenfassung

Im abgeschlossenen IGF-Forschungsprojekt 21969 BR wurde erfolgreich eine auf der Flachstricktechnik basierende, flexible und industrietaugliche Fertigungstechnologie zur integralen Herstellung funktionalisierter 3D-Textilverstärkungshalbzeuge mit mehrachsigen Festkörpergelenken, strukturintegrierten Aktoren sowie für deren Aktivierung erforderlichen elektrisch leitfähigen Zuleitungen entwickelt, umgesetzt und erprobt.

Damit sind aktiv verformbare FKV-Bauteile realisierbar, die durch definiert angesteuerte Aktoren aus Formgedächtnislegierung (FGL) komplexe 3D-Bewegungen ausführen können. Dabei ermöglichen speziell gestaltete, topologisch optimierte Gelenkbereiche mit mehreren Freiheitsgraden innerhalb der textilen Verstärkungsstruktur die spätere 3D-Bewegungsaufgaben. Der geringere Montageaufwand, die Reibungs- bzw. Verschleißfreiheit und die damit weitestgehend dauerhafte Wartungsfreiheit sind erhebliche Vorteile gegenüber herkömmlichen Bewegungsmechanismen, die dazu mehrere konventionelle Drehgelenke erfordern. Dadurch sind zugleich das Leichtbaupotenzial von Hochleistungsfasern und das Leistungspotenzial textilbasierter FGL-Aktoren zur Erzielung komplexer 3D-Bewegungen in hohem Maße ausnutzbar.

Potenzielle industrielle Anwendungen sind aktiv verformbare 3D-FKV-Integralbauteile, die erstmals mit intrinsischen 3D-Gelenkmechanismen ausgestattet werden können, u. a. im Maschinen- und Anlagenbau (z. B. mehrgliedrige Roboterarme), im Schiff- und Fahrzeugbau (z. B. aktiv verformbare Tragfläche oder adaptive Verstellmechanismen für Spoiler) sowie in der Medizintechnik (z. B. aktive Orthesen und Prothesen, Endoskopie-Endeffektoren). Insbesondere die KMU der Textil- und FKV-Industrie beziehen aus den Projektergebnissen den konkreten Nutzen, dass ihnen technologisches Wissen zur simulationsgestützten Konzeptionierung, Auslegung und Fertigung maßgeschneiderter Textilverstärkungshalbzeuge für aktiv verformbare 3D-FKV-Bauteile mit strukturintegrierten Festkörpergelenken bereitgestellt wird, die in den genannten Marktbereichen eine steigende Nachfrage erfahren.

Danksagung

Das IGF-Vorhaben 21969 BR der Forschungsvereinigung Forschungskuratorium Textil e. V. wurde über die AiF im Rahmen des Programms zur Förderung der industriellen Gemeinschaftsforschung (IGF) vom Bundesministerium für Wirtschaft und Klimaschutz aufgrund eines Beschlusses des Deutschen Bundestages gefördert.

Die Autoren danken den genannten Institutionen für die Bereitstellung der finanziellen Mittel sowie den involvierten Unternehmen im projektbegleitenden Ausschuss für die fachliche Unterstützung und die Bereitstellung von Versuchsmaterial. Der Forschungsbericht und weiterführende Informationen sind am Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik der TU Dresden erhältlich.

 

Literaturverzeichnis

[1]           Lee, J.-H.; Chung, Y.S.; Rodrigue, H.: Long Shape Memory Alloy Tendon-based Soft Robotic Actuators and Implementation as a Soft Gripper. In: Scientific Reports 9 (2019) 1, S. 11251.

[2]           Wan A Hamid, W.L.H.: Design of a Composite Morphing Wing. London: Imperial College of Science, Technology and Medicine, Department of Aeronautics. PhD Thesis, 2019.

[3]           Hajarian, A.; Zakerzadeh, M.R.; Baghani, M.: Design, analysis and testing of a smart morphing airfoil actuated by SMA wires. In: Smart Materials and Structures 28 (2019) 115043, S. 1–12.

[4]           Ashir, M.; Hindahl, J.; Nocke, A.; Cherif, C.: Development of an adaptive morphing wing based on fiber-reinforced plastics and shape memory alloys. In: Journal of Industrial Textiles 50 (2020) 1, S. 114–

129.

[5]           Suman, A.; Fabbri, E.; Fortini, A.; Merlin, M.; Pinelli, M.: On the design strategies for SMA-based morphing actuators: state of the art and common practices applied to a fascinating case study. In: Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering (2020), S. 1–17.

[6]           Ashir, M.; Nocke, A.; Cherif, C.: Maximum deformation of shape memory alloy based adaptive fiber-reinforced plastics. In: Composites Science and Technology 184 (2019) 107860, S. 1–15.

[7]           Ashir, M.; Nocke, A.; Cherif, C.: Adaptive fiber-reinforced plastics based on open reed weaving and tailored fiber placement technology. In: Textile Research Journal 90 (2020) 9-10, S. 981–990.

[8]           Lohse, F.; Wende, C.; Klass, K.-D.; Hickmann, R.; Häntzsche, E.; Bollengier, Q.; Ashir, M.; Pöschel, R.; Bolk, N.; Trümper, W.; Cherif, C.: Bio-inspired semi-flexible joint based on fibre-reinforced composites with shape memory alloys. In: Journal of Intelligent Material Systems and Structures (2020), S. 1–11.

[9]           Woodworth, L.A.; Lohse, F.; Kopelmann, K.; Cherif, C.; Kaliske, M.: Development of a constitutive model considering functional fatigue and pre-stretch in shape memory alloy wires. In: International Journal of Solids and Structures 234-235 (2022), S. 111242.

[10]        Bollengier, Q.; Rabe, D.; Mersch, J.; Häntzsche, E.; Nocke, A.; Cherif, C.: Development of integrated in-situ actuator networks for the realization of flexure hinges for highly deformable fiber-reinforced plastic composites. In: Passion for Innovation. 21st World Textile Conference AUTEX 2022, Online (Lodz, Poland) (2022) - ISBN 978-83-66741-75-1, S. 440–444.

AutorInnen: Bollengier, Quentin Rabe, David Mersch, Johannes Annadata, Achyuth Ram Gereke, Thomas Häntzsche, Eric Cherif, Chokri

Technische Universität Dresden
Fakultät Maschinenwesen
Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM)
01062 Dresden

https://tu-dresden.de/mw/itm

More entries from TU Dresden, Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik ITM

18.10.2022

In-situ structural monitoring of fibre-reinforced plastic composites under compressive loading

Garne Composites Sensorik Nachhaltigkeit Technische Textilien Tests

Zusammenfassung

Continuous structural monitoring of FRP components, especially in complex, changing load scenarios, represents an efficient solution approach to detect potentially occurring fatigue or damage at an early stage. Especially in FRP components, textile-based sensors are an economical solution for continuous in-situ structure monitoring, due to their high structural compatibility and direct textile integration during textile production.       

The textile-based sensor concept developed in this research project was electromechanically characterised at the yarn and composite scale and was further processed in multiaxial warp-knitting to manufacture functionalised fabrics. The sensor functionality in CFRP specimen was tested in tensile, pressure and bending tests. Finally, a CFRP profile demonstrator was used to test and prove the practical feasibility and functionality. These "smart composites" not only enable continuous in-situ structural monitoring of FRP components under tensile, bending and, especially, compressive stress, but can also be used to detect cracking and delamination processes. This allows both the understanding of the material behaviour to be improved and taken into account for future designs, as well as necessary measures to be initiated to ensure the functionality of the overall system.

Bericht

Introduction

Fibre-reinforced composite structures are currently used in the fields of mechanical engineering, aircraft construction and automotive engineering, among others, due to their excellent mechanical properties combined with a high lightweight construction potential [1]. In the construction sector, high-performance textiles are increasingly being used as a substitute for steel reinforcement in textile reinforced concrete [2], due to their mechanical and chemical properties and the resulting resource-saving, filigree, lightweight construction potential. The long-term stable functionality and safety of fibre-reinforced composite structures is urgently required due to their frequent use in safety-critical components and structures. A promising practice-oriented approach is the continuous structural monitoring in order to quantify the (residual) load-bearing capacity and to initiate any necessary measures to ensure functional capability. A particularly economical and structurally compatible solution are textile-based sensors that are integrated during the manufacture of the textile reinforcement and used to detect complex load scenarios as well as cracking and delamination processes at the composite scale. [3 – 6]

Due to their operating principle, textile-based strain sensors are mainly used for monitoring composite structures subjected to tensile stress. In order to be able to derive reliable statements about structural changes and critical overload conditions even in complex overlapping stress scenarios (e.g. tensile and compressive stresses), textile-based pressure sensitive sensor systems for continuous in-situ structural monitoring for FRP were developed in IGF project 21169 BR.

Objective and solution

The aim of the IGF research project was the development, characterisation and testing of textile-based pressure sensitive sensor systems and their textile-technical integration in multi-axial warp knitting for the production of sensor-functionalised textile reinforcements for use in FRP. The requirements for the textile sensors were derived simulation-based by analysing a functional demonstrator. The textile sensors were specifically designed to detect structural deformations induced by tensile, bending and especially compressive stresses. Therefore, the approach of increasing the pressure sensitivity of textile sensors by pre-tension was investigated. The sensor behaviour was extensively analysed in electromechanical investigations at fibre and composite scale and tested on the functional demonstrator.

Acknowledgement

The IGF project 21169 BR of the Research Association Forschungskuratorium Textil e.V., Reinhardtstr. 12-14, 10117 Berlin was funded by the Federal Ministry of Economics and Climate Protection via the AiF within the framework of the programme for the promotion of joint industrial research and development (IGF) on the basis of a resolution of the German Bundestag.

The authors would like to thank the above-mentioned institutions for providing the financial resources. The research report and further information are available from the Institute of Textile Machinery and High Performance Textile Materials Technology at TU Dresden.

AutorInnen: Le Xuan, Hung; Seidel, André; Hahn, Lars; Nocke, Andreas; Cherif, Chokri

Technische Universität Dresden
Fakultät Maschinenwesen
Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM)
01062 Dresden

More entries from TU Dresden, Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik ITM

18.10.2022

In-situ-Strukturüberwachung von Faserkunststoffverbunden unter Druckbeanspruchung

Garne Composites Sensorik Nachhaltigkeit Technische Textilien Tests

Zusammenfassung

Die kontinuierliche Strukturüberwachung von FKV-Bauteilen vor allem in komplexen, wechselnden Belastungsszenarien stellt einen effizienten Lösungsansatz dar, um frühzeitig potenziell auftretende Ermüdungserscheinungen oder Schäden zu detektieren. Gerade in FKV-Bauteilen sind textilbasierte Sensoren eine wirtschaftliche Lösung zur kontinuierlichen In-situ-Strukturüberwachung, aufgrund ihrer direkten textiltechnischen Integration während der Flächenbildung und hohen Strukturkompatibilität.    

Das in diesem Forschungsprojekt entwickelte textilbasierte Sensorkonzept wurde auf der Garn- und Verbundebene elektromechanisch charakterisiert und wurde im Multiaxialkettenwirken zu funktionalisierten Gelegen und fortführend in etablierten Verbundbildungstechnologien zu CFK-Proben weiterverarbeitet sowie umfangreich in Zug-, Druck- und Biegeversuchen charakterisiert. Anhand eines CFK-Profil Demonstrators wurde die praktische Umsetzbarkeit und Funktionsfähigkeit erprobt und bewiesen. Diese „Smart-Composites“ ermöglichen nicht nur eine kontinuierliche In-situ-Strukturüberwachung von FKV-Bauteilen unter Zug-, Biege- und vor allem Druckbeanspruchung, sondern können auch für die Detektion von Riss- und Delaminationsvorgängen eingesetzt werden. Dadurch können sowohl das Verständnis des Materialverhaltens verbessert und für zukünftige Auslegungen berücksichtigt als auch erforderliche Maßnahmen zur Gewährleistung der Funktionsfähigkeit des Gesamtsystems eingeleitet werden.

Bericht

Einleitung

Faserverstärkte Verbundstrukturen (Composites) werden gegenwärtig u. a. in den Bereichen des Maschinen-, Flugzeug- und Automobilbaus aufgrund der ausgezeichneten mechanischen Eigenschaften bei gleichzeitig höchstem Leichtbaupotenzial eingesetzt [1]. Auch im Bausektor finden Hochleistungstextilien, substituierend zur Stahlbewehrung, zunehmend Anwendung im Carbonbeton [2], aufgrund ihrer mechanischen sowie chemischen Eigenschaften und der daraus resultierenden ressourcenschonenden, filigranen Leichtbauweise. Die langzeitstabile Funktionsfähigkeit und Sicherheit von faserverstärkten Verbundstrukturen ist durch den häufigen Einsatz in sicherheitskritischen Komponenten und Strukturen dringend erforderlich. Ein vielversprechender praxisorientierter Lösungsansatz stellt hierbei die kontinuierliche Strukturüberwachung dar, um die (Rest-)Tragfähigkeit zu quantifizieren und um ggf. erforderliche Maßnahmen zur Gewährleistung der Funktionsfähigkeit einzuleiten.  
Eine besonders wirtschaftliche und strukturkompatible Lösung sind textilbasierte Sensoren, die während der Herstellung der textilen Verstärkungshalbzeuge integriert und zur Erfassung komplexer Lastfälle sowie Riss- und Delaminationsvorgänge auf Verbundebene eingesetzt werden. [3 – 6]

Textilbasierte Dehnungssensoren werden prinzipbedingt vorwiegend zur Überwachung in zugbeanspruchten Verbundstrukturen eingesetzt. Um zuverlässige Aussagen über strukturelle Veränderungen und kritische Überlastzustände auch in komplex überlagerten Beanspruchungsszenarien (bspw. Zug- und Druckbeanspruchungen) ableiten zu können, wurden im IGF-Projekt 21169 BR textilbasierte druckmessfähige Sensorsysteme zur kontinuierlichen In-situ-Strukturüberwachung für FKV entwickelt.

Zielsetzung und Lösungsweg

Das Ziel des IGF-Forschungsprojekts war die Entwicklung, Charakterisierung und Erprobung textilbasierter druckmessfähiger Sensorsysteme und deren textiltechnische Integration im Multiaxialkettenwirken zur Herstellung sensorisch-funktionalisierter textiler Verstärkungshalbzeuge für den Einsatz in FKV. Das Anforderungsprofil an die textilen Sensoren wurde anhand eines Funktionsdemonstrators simulationsgestützt abgeleitet und gezielt darauf ausgelegt strukturelle Deformationen durch einwirkende Zug-, Biege- und vor allem Druckbeanspruchungen zu erfassen. Hierfür wurde der Ansatz verfolgt, die Drucksensitivität von textilen Sensoren durch die gezielte Einstellung und Aufrechterhaltung einer Vorspannung bzw. -dehnung zu erhöhen. Das Sensorverhalten wurde umfangreich in elektromechanischen Untersuchungen auf Faser- und Verbundebene analysiert und am Funktionsdemonstrator erprobt.

Danksagung

Das IGF-Vorhaben 21169 BR der Forschungsvereinigung Forschungskuratorium Textil e.V., Reinhardtstr. 12-14, 10117 Berlin wurde über die AiF im Rahmen des Programms zur Förderung der industriellen Gemeinschaftsforschung und -entwicklung (IGF) vom Bundesministerium für Wirtschaft und Klimaschutz aufgrund eines Beschlusses des Deutschen Bundestages gefördert.

AutorInnen: Le Xuan, Hung; Seidel, André; Hahn, Lars; Nocke, Andreas; Cherif, Chokri

Technische Universität Dresden
Fakultät Maschinenwesen
Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM)
01062 Dresden

More entries from TU Dresden, Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik ITM