Forschungspublikationen

2 Ergebnisse
06.06.2025

Kationenfunktionalisierte Chitinfasern – Entwicklung eines kontinuierlichen Spinnprozesses für ionenfunktionalisierte Biopolymerfasern auf Basis von Chitin

Rohstoffe Fasern Nachhaltigkeit

Zusammenfassung

Im Rahmen des IGF-Projektes „Kationenfunktionalisierte Chitinfasern“ wurde erfolgreich ein kontinuierlicher, KMU-gerechter Spinnprozess zur Herstellung neuartiger, kationenfunktionalisierter Chitinfasern entwickelt. Mit diesem Verfahren war es erstmals möglich, reine Chitinfasern aus kostengünstigen Rohstoffen und unter Verwendung unbedenklicher Lösungsmittel im technisch relevanten Maßstab herzustellen. Damit konnte Chitin, eines der am häufigsten vorkommenden Biopolymere, erstmals für faserbasierte Anwendungen wirtschaftlich nutzbar gemacht werden. Durch die Funktionalisierung der Chitinfasern mit bioaktiven Ionen, insbesondere Calciumionen, wurde eine gezielte Modifikation der Fasereigenschaften erreicht. Diese Innovation ermöglichte eine deutlich verbesserte enzymatische Stabilität und damit eine kontrollierte Degradation der Fasern, wie sie für viele medizinische und textile Anwendungen erforderlich ist. Darüber hinaus eröffnete die entwickelte Technologie die Möglichkeit, maßgeschneiderte Funktionalisierungen der Chitinfasern für spezifische Anwendungen zu realisieren. Auf Basis der Projektergebnisse wurde somit unmittelbar produktvorbereitendes Basiswissen geschaffen, das die Entwicklung innovativer Produkte im Bereich der Medizintextilien, der regenerativen Medizin sowie des Tissue Engineering ermöglicht.

Bericht

Einleitung, Problemstellung und Zielsetzung

Die Textilindustrie steht im Spannungsfeld wachsender Anforderungen: Klimawandel, Ressourcenknappheit und ein zunehmend nachhaltigkeitsbewusstes Konsumverhalten fordern neue Lösungen entlang der gesamten Wertschöpfungskette. Bisher wird der Markt von synthetischen Fasern dominiert, die auf fossilen Rohstoffen basieren und damit erheblich zur Umwelt- und Klimabelastung beitragen [1–2]. Naturfasern stellen eine grünere Alternative dar, sind jedoch nicht uneingeschränkt nachhaltig. Ihr Anbau verbraucht oft sehr viel Wasser und es werden Düngemittel und Pflanzenschutzmittel eingesetzt, was ihre Umweltbilanz ebenfalls belastet [3].

In diesem Kontext rückt Chitin, das nach Cellulose zweithäufigste natürlich vorkommende Polymer, zunehmend in den Fokus als vielversprechender, bio-basierter Rohstoff mit hoher Funktionalität [4]. Es fällt in großen Mengen als Nebenprodukt in der Lebensmittelindustrie, beispielsweise bei der Verarbeitung von Krebs- und Schalentieren, an. Damit ist es nicht nur reichlich verfügbar, sondern auch kostengünstig und nachhaltig. Chitin und seine Derivate, wie beispielsweise Chitosan, weisen eine Vielzahl wünschenswerter Eigenschaften auf: Sie sind biologisch abbaubar, bioaktiv, biokompatibel und weisen aufgrund ihrer kristallinen Struktur eine hohe mechanische Festigkeit auf. Dadurch eignet es sich hervorragend für hochwertige, funktionale Textilanwendungen, z. B. im Bereich medizinischer Einwegprodukte, in dem der Bedarf kontinuierlich wächst und gleichzeitig enorme Abfallmengen anfallen. Die Herausforderung besteht jedoch in der technologischen Nutzbarmachung dieses Rohstoffs: Chitin ist aufgrund seiner teilkristallinen molekularen Struktur kaum löslich, was einerseits die positiven Funktionen des Werkstoffs ermöglicht jedoch andererseits die Weiterverarbeitung zu textilen Strukturen erheblich erschwert. Herkömmliche Lösungsansätze setzen auf aggressive und gesundheits- sowie umweltbedenkliche Lösungsmittel wie Trichloressigsäure oder LiCl/DMA. Diese führen zu Polymerabbau, Materialschwächung und aufwendigen Reinigungsschritten [5–7]. Für medizinische Anwendungen sind diese Prozesse ungeeignet und eine Skalierung in den industriellen Maßstab ist kaum umsetzbar.

Ein alternativer, deutlich nachhaltigerer Ansatz ist die Verwendung ionischer Flüssigkeiten (engl. ionic liquids, IL). Diese modernen Lösungsmittel haben das Potenzial, Chitin in Lösung zu bringen, ohne dessen Struktur zu beeinträchtigen. Allerdings sind auch hier die technologischen Barrieren hoch, sodass bisherige Prozesse überwiegend diskontinuierlich und für geringe Produktionsmengen realisiert wurden [8–10]. Somit fehlt bislang ein wirtschaftlich tragfähiger und durchgehend nachhaltiger Prozess, der die Herstellung von Chitinfasern kontinuierlich und in industriell relevanter Menge ermöglicht.

Das Ziel des IGF-Projektes 22568 „Kationenfunktionalisierte Chitinfasern“ bestand daher in der Entwicklung eines kontinuierlichen, lösungsmittelbasierten Nassspinnverfahrens für 100 % reine Chitinmultifilamentgarne, das sowohl materialschonend als auch prozesstechnisch skalierbar ist. Durch eine integrierte Funktionalisierung mit bioaktiven Kationen (z. B. Calcium- oder Strontium-Ionen, welche die Knochenregeneration unterstützen) sollte zudem die Grundlage für die Herstellung von Funktionstextilien geschaffen werden, um neue Anwendungsfelder für Unternehmen zu eröffnen – insbesondere im wachstumsstarken Bereich der Smart und Medical Textiles.

Erzielte Ergebnisse

Im IGF-Projekt „Kationenfunktionalisierte Chitinfasern“ wurde erfolgreich ein kontinuierlicher, KMU-gerechter Spinnprozess zur Herstellung reiner Chitinmultifilamentgarne im industriell relevanten Maßstab realisiert. Durch die gezielte Funktionalisierung mit bioaktiven Ionen konnten die Fasereigenschaften spezifisch angepasst und eine kontrollierte, enzymatische Abbaubarkeit erreicht werden. Im Folgenden werden die wesentlichen Projektergebnisse und technologischen Entwicklungen im Detail erläutert.

Prozessentwicklung für die kontinuierliche Fertigung von Chitinmultifilamentgarnen

Im Projektverlauf wurden verschiedene IL systematisch auf ihre Eignung als Lösungsmittel für die Filamenterspinnung untersucht. Die besten Ergebnisse lieferte 1-Ethyl-3-methylimidazoliumpropionat (EMIMOPr, proionic GmbH, Raaba-Grambach, AT). Diese IL konnte verschiedene untersuchte Chitinqualitäten und -provenienzen bei moderaten Temperaturen (60 – 90 °C) effizient lösen, ohne das Polymer zu degradieren. Entscheidend war dabei auch, dass EMIMOPr im späteren Prozessschritt vollständig aus den Fasern entfernt werden konnte. In Abbildung 1 sind die ermittelten FT-IR-Spektren am Beispiel des verwendeten Chitinpulvers (grau) sowie der daraus hergestellten Multifilamentgarne (rot) nach dem Spinnprozess graphisch dargestellt. Die Ergebnisse zeigten keine Veränderung der chemischen Struktur des Chitins nach dem Spinnprozess und keine Lösungsmittelspuren.

Mit dieser IL konnten stabile Spinnlösungen mit Chitinkonzentrationen zwischen 3 Gew.-% und 5 Gew.-% hergestellt werden. Um eine gute Prozessführung zu gewährleisten – insbesondere bei der Überführung in den Technikumsmaßstab – wurden die rheologischen Eigenschaften gezielt untersucht und eingestellt. Der im Labormaßstab entwickelte Spinnprozess wurde anschließend erfolgreich auf eine modulare Lösungsmittelnassspinnanlage (Fourné Maschinenbau GmbH, Alfter-Impekoven, DE) mit individuell steuerbaren Zonen für Extrusion, Koagulation, Waschen und Trocknung im semi-industriellen Technikumsmaßstab übertragen. Ein besonderes Augenmerk lag dabei auf der Konfiguration der Spinndüsen, um einen stabilen Spinnprozess und eine homogene Filamentstruktur zu erzeugen.

Im Vergleich zu bisherigen Projektergebnissen und etablierten Spinnprozessen – insbesondere dem konventionellen Chitosanspinnen mit Essigsäure als Lösungsmittel [11] sowie der Verwendung von IL (z. B. 1-Ethyl-3-Methylimidazoliumacetat, EMIMOAc [12]) für Chitosan mit Deacetylierungsgraden über 70 % – zeigen die im Rahmen dieses Projektes hergestellten Chitinfilamentgarne signifikant höhere Festigkeiten von ≥ 20 N (vgl. Abbildung 3, rechts). Die erzielten mechanischen Eigenschaften übertreffen damit sämtliche in bisherigen Vorhaben erzielten Ergebnisse und unterstreichen das große Potenzial des neu entwickelten Spinnverfahrens. Der Forschungsbedarf hinsichtlich der beobachteten Wertestreuungen in Abhängigkeit von der Düsengeometrie sowie anlagenbedingte Limitierungen, die derzeit das Verspinnen von Lösungen mit höheren Viskositäten erschweren, bildet zudem eine solide Grundlage für zukünftige Projekte zur weiteren Prozessoptimierung und -weiterentwicklung.

Funktionalisierung der Chitinfasern mit bioaktiven Ionen

Ein weiteres zentrales Ziel war die Entwicklung eines Verfahrens zur in den Spinnprozess integrierten neuartigen Funktionalisierung von Chitinfasern mit bioaktiven Calcium-, Strontium- und Magnesiumionen, die zusätzliche Eigenschaften mitbringen – insbesondere für den Einsatz in medizinischen Textilien, etwa bei knochenaufbauenden Implantaten oder Wundauflagen. Hierzu wurden drei unterschiedliche methodische Ansätze konzipiert und experimentell untersucht: (1) die direkte Einbringung der Ionen in die Spinnlösung, (2) die Funktionalisierung der Filamente während der Koagulation im Fällbad sowie (3) der Vergleich dieser Inline-Methoden mit einer nachgelagerten Funktionalisierung von Chitinmonofilamenten nach der Erspinnung. Eine schematische Darstellung der untersuchten Funktionalisierungsansätze ist in Abbildung 4 am Beispiel der Funktionalisierung mit Calcium-Ionen dargestellt.

Aussichtsreiche Ergebnisse wurden insbesondere bei der Funktionalisierung direkt im Spinnprozess während der Koagulation erzielt. Durch die Zugabe von Calcium-, Magnesium- oder Strontiumsalzen in das Koagulationsbad (deionisiertes Wasser) konnten die Ionen effektiv in die noch nicht vollständig verfestigten Filamente eingebracht werden. Die Inline-Funktionalisierung ermöglichte eine gleichmäßige Ionenverteilung, ohne die mechanische Struktur der Fasern negativ zu beeinflussen.

Anhand der in Zusammenarbeit mit Partnern aus der Industrie und Forschung (u.a. Anton Paar GmbH, Institut für Abfall- und Kreislaufwirtschaft der TUD) durchgeführten Untersuchungen wie EDX-Analysen (vgl. Abbildung 5), optische Emissionsspektrometrie (ICP-OES) (vgl. Abbildung 6), Zeta-Potential-Messungen und FTIR-Spektroskopie, wurde nachgewiesen, dass die Ionen dauerhaft in der Faserstruktur eingebunden sind, sowohl an der Oberfläche als auch im Inneren des Filaments. Insbesondere Calciumionen weisen eine hohe Affinität zu Chitin auf und bleiben auch nach längeren Wasch- und Trocknungsprozessen in der Faser erhalten. Zur Untersuchung des Ionenabgabeverhaltens bzw. der Ionenfreisetzung unter physiologisch relevanten Bedingungen wurden systematische Elutionsversuche durchgeführt. Die erzielten Ergebnisse zeigen, dass der Großteil der Ionen innerhalb kurzer Zeit (≤ 7 d) aus den Filamenten freigesetzt wird und nur ein geringer Restanteil langfristig in der Faserstruktur verbleibt. Im Hinblick auf potenzielle Anwendungen, beispielsweise in der Entwicklung bioaktiver Medizintextilien oder für Systeme zur gezielten Wirkstofffreisetzung, stellt das beobachtete Freisetzungsverhalten einen Vorteil dar: Die schnelle Ionenabgabe könnte entzündungshemmende, wundheilungsfördernde oder mineralisierende Effekte unmittelbar nach Applikation unterstützen und damit die Funktionalität solcher Materialien deutlich erhöhen.

Trotz der spröden Materialstruktur – eine bekannte Eigenschaft kristalliner Biopolymere, wie Chitin – konnten durch gezielte Prozessanpassung textile Flächenstrukturen realisiert werden. Insbesondere durch die Kombination mit Stützgarnen, wie Baumwolle oder Viskose, konnten Zwirne hergestellt werden, die sich anschließend zu Geweben und Gestricken weiterverarbeiten ließen. Erste Demonstratoren, u. a. Maschen- und Gewebemuster, belegten die grundsätzliche Eignung für technische und medizinische Textilanwendungen (vgl. Abbildung 7). Trotz der derzeit noch hohen Sprödigkeit des Garnmaterials zeigen die Ergebnisse ein großes Potenzial für zukünftige Anwendungen. Durch gezielte Maßnahmen, wie z. B. das Aufbringen von Schlichten oder die Kombination mit anderen bioabbaubaren Polymeren (z. B. Viskose, Cellulose, Baumwolle etc.), könnte die Flexibilität weiter verbessert werden, wodurch ein breites Anwendungsspektrum in medizinischen und technischen Textilien ermöglicht wird. Insgesamt stellt die Entwicklung einen vielversprechenden Ansatz zur Nutzung biobasierter Materialien in anspruchsvollen textilen Anwendungen dar.

 Zusammenfassung

Im Rahmen des IGF-Projektes „Kationenfunktionalisierte Chitinfasern“ wurde erfolgreich ein kontinuierlicher, KMU-gerechter Spinnprozess zur Herstellung neuartiger, kationenfunktionalisierter Chitinfasern entwickelt. Mit diesem Verfahren war es erstmals möglich, reine Chitinfasern aus kostengünstigen Rohstoffen und unter Verwendung unbedenklicher Lösungsmittel im technisch relevanten Maßstab herzustellen. Damit konnte Chitin, eines der am häufigsten vorkommenden Biopolymere, erstmals für faserbasierte Anwendungen wirtschaftlich nutzbar gemacht werden. Durch die Funktionalisierung der Chitinfasern mit bioaktiven Ionen, insbesondere Calciumionen, wurde eine gezielte Modifikation der Fasereigenschaften erreicht. Diese Innovation ermöglichte eine deutlich verbesserte enzymatische Stabilität und damit eine kontrollierte Degradation der Fasern, wie sie für viele medizinische und textile Anwendungen erforderlich ist. Darüber hinaus eröffnete die entwickelte Technologie die Möglichkeit, maßgeschneiderte Funktionalisierungen der Chitinfasern für spezifische Anwendungen zu realisieren. Auf Basis der Projektergebnisse wurde somit unmittelbar produktvorbereitendes Basiswissen geschaffen, das die Entwicklung innovativer Produkte im Bereich der Medizintextilien, der regenerativen Medizin sowie des Tissue Engineering ermöglicht.

Danksagung

Das IGF-Vorhaben 22568 „Kationenfunktionalisierte Chitinfasern“ der Forschungsvereinigung Forschungskuratorium Textil e.V. wurde über den Projektträger DLR im Rahmen des Programms zur Förderung der „Industriellen Gemeinschaftsforschung“ (IGF) des Bundesministeriums für Wirtschaft und Klimaschutz (BMBK) aufgrund eines Beschlusses des Deutschen Bundestages gefördert. Wir danken den genannten Institutionen für die Bereitstellung der finanziellen Mittel. Darüber hinaus danken wir den Mitgliedern des projektbegleitenden Ausschusses für ihre Unterstützung während der Projektbearbeitung.

Literatur

[1]        A new textiles economy: Redesigning fashion’s future: Ellen MacArthur Foundation, 2017.

[2]        Deutsche Stiftung Meeresschutz: Studie Mikroplastik im Meer und seinen Klimafolgen.  https://www.stiftung-meeresschutz.org/themen/meeresverschmutzung/mikroplastik-im- meer-und-seine- klimafolgen/ (20.05.2025).

[3]        GOEL, S.: Wool is 44% Carbon. Leonardo 45(2012)2, pp. 186–187.

[4]        SHAMSHINA, J. L.: Chitin in ionic liquids: historical insights into the polymer's dissolution and isolation. A review. Green Chemistry 21(2019)15, pp. 3974–3993.

[5]        EP0051421A1. Kifune; Inoue; Mori: Chitin fibers, process for the production of the same and surgical sutures formed of such chitin fibers.

[6]        NGUYEN, K. D.: Temperature Effect of Water Coagulation Bath on Chitin Fiber Prepared through Wet-Spinning Process. Polymers 13(2021)12.

[7]        LIANG, Y.; JIANG, N.; LIU, X.; NIE, L.; SONG, D.; JIANG, L.; YU, H.; XU, W.; ZHU, K.: Fabrication of Shaped Chitin Fibers by Gradient Regeneration Combined with a Physical Pressure Method. ACS Applied Polymer Materials 6(2024)2.

[8]        SHAMSHINA, J. L.; ZAVGORODNYA, O.; BERTON, P.; CHHOTARAY, P. K.; CHOUDHARY, H.; ROGERS, R. D.: Ionic Liquid Platform for Spinning Composite Chitin–Poly(lactic acid) Fibers.  ACS Sustainable Chemistry & Engineering 6(2018)8.

[9]        ZHU, C.; RICHARDSON, R. M.; SONG, Y.; RAHATEKAR, S. S.; LUCIA, L.; AYOUB, A.: One Step Dissolution, Extrusion, and Fiber Spinning of Chitin Using Ionic Liquid Solvents // Polysac- charide-based Fibers and Composites. Band 18, Cham: Springer, 2018. - ISBN 978-3-319- 56595-8. 117.

[10]      Ota, A.; Beyer, R.; Hageroth, U.; Müller, A.; Tomasic, P.; Hermanutz, F.; Buchmeoser, M. R.: Chitin/Cellulose blend fibers prepared by wet and dry wet spinning. Polymers for Ad- vanced Technologies 32(2021)1, pp. 335.

[11]      TOSKAS, G.; BRÜNLER, R.; HUND, H.; HUND, R.-D.; HILD, M.; AIBIBU, D.; CHERIF, C.: Pure chitosan microfibres for biomedical applications. Autex Research Journal 13(2013)4, pp. 134– 140.

[12]      KUZNIK, I., KRUPPKE, I., PÖTZSCH H. F., CHERIF, C.: Pure chitosan multifilament yarns made using a semi-industrial pilot scale wet-spinning process with ionic liquids. J. Appl. Polym. Sci. 2024, 141(23), e55457.

AutorInnen: Kuznik, Irina Scheele, Sabrina Benecke, Lukas Kruppke, Iris Cherif, Chokri

Technische Universität Dresden
Fakultät Maschinenwesen
Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM)
01062 Dresden

https://tu-dresden.de/mw/itm

More entries from TU Dresden, Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik ITM

06.03.2023

Technologieentwicklung zur nachhaltigen Herstellung hochreiner Chitosanfilamentgarne mit hohem Leistungs- und Funktionsvermögen (CHION)

Rohstoffe Fasern Garne Nachhaltigkeit

Zusammenfassung

Das IGF Projekt 21168 BR „Chion“ umfasst eine Technologieentwicklung zur Herstellung von Chitosanmultifilamentgarnen, die ein Maßschneidern der Garneigenschaften hinsichtlich ihres Leistungs- und Funktionsvermögens in allen Prozessstufen ermöglicht. Dabei werden die Materialkosten, das Einsatzfeld sowie die im Multifilamentgarn erreichbaren Funktionalitäten zunächst durch die Rohmaterialauswahl definiert. Durch die Nutzung von ionischen Flüssigkeiten sind erstmalig kostengünstigere Chitosane in verschiedenen Qualitäten sowie Deacetylierungsgraden < 90 % für einen Lösungsmittelnassspinnprozess einsetzbar, die bisher mit konventionellen Spinnprozessen nicht verarbeitbar waren. Aus den erzielten und ausführlich ausgewerteten Projektergebnissen wurden notwendige Prozessparameter für die erfolgreiche Übertragung der erarbeiteten Grundlagen auf einen Technikumsmaßstab sowie dazugehörige Prozessentwicklung für die Erspinnung vom Chitosanmultifilamentgarn mit hohem Leistungsvermögen und Festigkeiten bis zu 28 cN/tex auf einer Pilot-Lösungsmittelnassspinnanlage abgeleitet und umgesetzt. Zum Nachweis der textilen Verarbeitbarkeit der erzeugten Multifilamentgarne aus 100 % Chitosan erfolgte eine erfolgreiche Umsetzung textiltechnischer Demonstratoren in konventionellen textilen Web-, Strick- oder Flechtprozessen auf industrieüblichen Textilmaschinen.

Bericht

Einleitung, Problemstellung und Zielsetzung

Im 21. Jh. wächst die hohe Bereitschaft der Gesellschaft, ökologische, ressourcen- und umweltschonend hergestellte Produkte zu verwenden, stets weiter. Hierbei hat die Textil- und Faserbranche die Chance, durch biobasierte Produkte auf Grundlage von nachwachsenden Rohstoffen, wie Chitin bzw. Chitosan, Entwicklungen voranzutreiben, um dem gesellschaftlichen, nationalen sowie internationalen Bedarf an biobasierten Produkten gerecht zu werden.

Das Biopolymer Chitin und sein Derivat Chitosan sind bereits vielseitig genutzte Rohstoffe in der (Bio-)Medizin und Pharmazie, die jedoch kaum als reines textiles Produkt verfügbar sind. Chitin ist mit 1,5·105 t/a das zweithäufigste natürlich vorkommende Biopolymer nach Cellulose [1]. Die halbkristalline Struktur und das stabile Netzwerk aus molekularen Bindungen limitieren jedoch die Löslichkeit von Chitin stark, weshalb vornehmlich das Chitinderivat Chitosan in der Forschung und Materialentwicklung untersucht wird. Die Materialklasse des Chitosans weist hervorragende biologische und antibakterielle Eigenschaften sowie Zellbesiedelbarkeit und Biodegradabilität auf [2, 3]. In den letzten Jahren wurden zwar beträchtliche Forschungsanstrengungen unternommen, um effiziente Chitosanprodukte zu entwickeln, dennoch ist die Verfügbarkeit reiner, langzeitstabiler Chitosanmultifilamentgarne aktuell stark eingeschränkt [4]. Ebenso wird ein robuster, adaptierbarer Prozess zur Erzeugung dieser leistungsstarken Garne dringend benötigt, da heutige Chitosanfilamentgarne hinsichtlich mechanischer Eigenschaften stark limitiert sind. Aufgrund der natürlichen Herkunft und der damit verbundenen Variabilität von Rohmaterialeigenschaften, wie bspw. Deacetylierungsgrad (DA), Molekulargewicht (MW), etc., bestehen nach wie vor große Herausforderungen, Chitosanmultifilamentgarne mittels der bisher entwickelten säure- und alkalidominierten Herstellungsprozesse zu erzeugen.

Das Ziel des IGF Projektes 21168 BR „Chion“ bestand deshalb darin, Multifilamentgarne aus 100 % Chitosan mit hohem Leistungs- und Funktionsvermögen auf Basis eines robusten Lösungsmittelnassspinnverfahrens mit ionischen Lösungsmitteln in reproduzierbarer Qualität und mit einstellbaren Eigenschaften zu erzeugen.

Erzielte Ergebnisse

Durch die Nutzung von ionischen Flüssigkeiten (ionic liquids, IL) werden erstmalig kostengünstigere Chitosane mit geringeren Mw bzw. niedrigen DA < 90 % dem Lösungsmittelnassspinnprozess zugänglich gemacht. Ein hoher Anteil an Acetamidgruppen bei Chitosan mit geringem DA führt zu einer Steigerung der intermolekularen Wechselwirkungen, wodurch ein erhöhtes Leistungsvermögen bis zu 28 cN/tex, sowie eine gute textiltechnische Verarbeitung der mittels IL hergestellter Chitosanmultifilamentgarne resultieren. Die komplexe Erforschung der Chitosan-IL-Systeme mit verschiedenen Chitosanqualitäten, MW sowie DA 60 – 90 % mit imidazolhaltigen IL erfolgte zunächst unter vereinfachten Randbedingungen für Monofilamente. Aus den Ergebnissen wurden wichtige Prozessparameter und aussichtsreiche Chitosan-IL-Kombinationen abgeleitet und der entwickelte Prozess auf den Multifilamentmaßstab übertragen. Eine strukturmechanische Einstellung der Eigenschaften der Chitosanmultifilamente war ein grundlegender Gegenstand der Forschungsarbeiten. Jeder Entwicklungsschritt wurde dabei von systematischen Material- und Prozesscharakterisierungen sowie Analysen begleitet. Systematische Untersuchungen erfolgten zur Löslichkeit von Chitosan in IL, Viskositätsstudien, Fasermorphologie sowie -geometrie, chemischen und physikalischen Materialeigenschaften, Kristallinität- und Degradationsverhalten sowie zum Einfluss einer zielgerichteten Verstreckung während des Spinnprozesses auf strukturmechanische Einstellung der textil-physikalischen Eigenschaften. Durch die Integration säure- und temperaturempfindlicher Modellwirkstoffe in die Spinnlösung wurde die Funktionalisierbarkeit der erzeugten Chitosanfilamentgarne nachgewiesen sowie die Bioaktivität und deren Beständigkeit im Koagulationsbad und am Garn erforscht. Im Ergebnis der gezielten Abstimmung der molekularen Eigenschaften des Chitosans und der erarbeiteten Spinnprozessparameter steht somit ein robuster, übertragbarer Lösungsmittelnassspinnprozess zur Erspinnung der Chitosanmultifilamentgarne im Technikumsmaßstab zur Verfügung. Zum Abschluss wurde die textile Verarbeitbarkeit der erzeugten Chitosanmultifilamentgarne in Strick-, Web- und Flechtprozessen untersucht und nachgewiesen.

Untersuchung des Lösungsvermögens von Chitosan in IL sowie Spinnlösungherstellung

Der erste Schritt der Forschungsarbeiten umfasste die Untersuchung und Bewertung des Lösungsvermögens ionischer Flüssigkeiten (IL) für Chitosan. Mittels systematischer Versuchsdurchführung wurden 19 kommerziell verfügbaren Materialien unterschiedlicher Qualitäten (z.B. medizinisches Chitosan, industrielles Chitosan, etc.), Provenienzen (z.B. Shrimps, Krabben, pilzbasiertes Chitosan), DA (60 – 90 %) sowie MW charakterisiert und deren Löslichkeit in aussichtsreichen imidazolhaltigen IL grundlegend analysiert und ausgewertet. Die erzielten Ergebnisse zeigen, dass besonders kurzkettige IL in Kombination mit Acetat-Anionen ein hervorragendes Lösungsvermögen für alle untersuchten Chitosane aufweisen (vgl. Abbildung 1), woraus eine Ableitung aussichtsreicher Chitosan-IL-Kombinationen für weitere Prozessentwicklungsschritte folgte.

Die Herstellung der Chitosan-IL-Spinnlösungen erfolgte mittels thermischer Unterstützung in Feststoffkonzentrationen bis zu 8 Gew.-% und wurde von rheologischen Untersuchungen in Abhängigkeit von den Parametern Temperatur und Scherrate begleitet und bewertet. Zur Untersuchung der Stabilität, Prozessierbarkeit sowie Spinnbarkeit der hergestellten homogenen Chitosan-IL-Lösungen wurden diese im Labormaßstab zu Monofilamenten verarbeitet. Umfangreiche Analysen umfassten dabei besonders Untersuchungen der Fadenbildung in Abhängigkeit von verwendeten Rohmaterialien sowie Prozessparametern, wie Feststoffgehalt, Temperatur und Verweilzeit im Koagulationsmedium, sowie des Diffusionsverhaltens und der resultierenden Fasereigenschaften. Die erarbeiteten Grundlagen bildeten dabei eine Basis für die Prozessentwicklung der Multifilamentgarnerspinnung aus IL. Die erzielten Ergebnisse zeigen, dass sich alle untersuchten Chitosan-IL-Kombinationen zu reinen Chitosanfasern verarbeiten lassen, und dienen somit als Nachweis, dass IL ein geeignetes und aussichtsreiches Lösungsmittel zur Herstellung von Chitosanmultifilamentgarnen darstellen.

Erspinnung der Chitosanmultifilamentgarne

Im nächsten Schritt der Forschungsarbeiten fand die erfolgreiche Übertragung der im Labor erarbeiteten Grundlagen auf einen Lösungsmittelnassspinnprozess im Technikumsmaßstab statt. Die Erspinnung der Chitosanmultifilamentgarne erfolgte dabei an der Lösungsmittelnassspinnanlage (Fourné Maschinenbau GmbH) des ITM. Die Pilot-Spinnanlage ist speziell für FuE-Prozessentwicklungen ausgelegt und ermöglicht u. a. Versuche mit 2 – 60 Liter Spinnlösung.

Für die Spinnversuche wurde die Chitosan-IL-Spinnlösung zunächst filtriert und unter bestimmten temperatur- und druckbedingten Konditionen entgast. Die Multifilamenterspinnung erfolgte mittels unterschiedlicher Spinndüsengeometrien, u.a. 78 Löcher à 90 μm (90 µm/78f) bzw. 24 Löcher à 160 μm (160 µm/12f). Die präparierte, temperierte Spinnlösung wurde in ein Koagulationsbad mit deionisiertem Wasser als Medium extrudiert. Die resultierenden Multifilamentgarne weisen Garnfeinheiten von ca. 50–65 tex sowie Filamentdurchmesser von ca. 30–50 µm in Abhängigkeit von der Düsengeometrie auf. Um maßgeschneiderte Funktionalitäten, wie hohe mechanische Festigkeiten und Kristallinitäten sowie verbesserte Molekülorientierung, zu erzielen, wurde der Einfluss des Faserverzugs während des Spinnprozesses systematisch untersucht und mittels gezielter Versuchsplanung effektive Verzugsparameter ausgearbeitet. Die prozessbegleitenden systematischen Untersuchungen umfassten dabei die Charakterisierung der mechanischen und textil-physikalischen Eigenschaften der mittels IL ersponnenen Garne sowie den Vergleich der erzielten Kennwerte mit konventionell hergestellten Chitosangarnen auf Essigsäurebasis (AcOH). Der DA des Rohmaterials spielt dabei eine besonders große Rolle: Ein hoher Anteil an Acetamidgruppen bei Chitosan mit geringem DA (< 90 %) führt zu einer Steigerung der intermolekularen Wechselwirkungen, woraus verbesserte mechanische Eigenschften resultieren. Die erzielten Ergebnisse weisen eine hohe Funktionalität sowie deutlich verbesserte Festigkeiten der mittels IL ersponnenen Chitosanmultifilamentgarne im Vergleich zu den konventionellen Chitosangarnen (DA 90 %) aus AcOH auf (vgl. Abbildung 3, rechts). Mittels erarbeiteten Verzugsparametern lassen sich zudem maßgeschneiderte textil-physikalische Eigenschaften, wie Elastizität oder Festigkeiten, je nach gestellten Anforderungen einstellen.

Textiltechnische Umsetzung der Chitosanmultifilamentgarne

Im letzten Schritt der Projektbearbeitung folgte die erfolgreiche textiltechnische Verarbeitung der Chitosanmultifilamentgarne aus IL zu Strick- und Webmustern sowie Geflechten (vgl. Abbildung 4). Die technische Verarbeitung von konventionellen Chitosangarnen auf Textilmaschinen stellte aufgrund unzureichender mechanischer Festigkeit und Knotenreisskräften bisher immer eine Herausforderung dar. Eine störungsfreie Verarbeitung in Web-, Strick- oder Flechtprozessen ohne eine spezielle Garnvorbehandlung bzw. Maschinenanpassungen konnte bisher für konventionelle Chitosanmultifilamentgarne nicht umgesetzt werden. Die mittels IL hergestelltes Chitosanmultifilamentgarne bieten dagegen die notwendige mechanische Stabilität sowie Flexibilität, um in konventionellen textilen Prozessen auf industrieüblichen Textilmaschinen zu Strick-, Web- oder Flechtstrukturen verarbeitet zu werden. Durch eine zusätzliche Garnfunktionalisierung, wie bspw. Schlichteauftrag, wird die Verarbeitbarkeit des Materials sowie die Qualität des Fertigproduktes noch zusätzlich verbessert.

Danksagung

Das IGF-Vorhaben 21168 BR der Forschungsvereinigung Forschungskuratorium Textil e.V. wurde über die AiF im Rahmen des Programms zur Förderung der industriellen Gemeinschaftsforschung (IGF) vom Bundesministerium für Wirtschaft und Klimaschutz aufgrund eines Beschlusses des Deutschen Bundestages gefördert. Wir danken den genannten Institutionen für die Bereitstellung der finanziellen Mittel. Darüber hinaus möchten wir den Mitgliedern des Projektbegleitenden Ausschusses für ihre Unterstützung während der Projektbearbeitung danken.

Die vollständige Veröffentlichung steht zum Download zur Verfügung.

AutorInnen: Kuznik, Irina; Kruppke, Iris; Cherif, Chokri

Technische Universität Dresden
Fakultät Maschinenwesen
Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM)
01062 Dresden

https://tu-dresden.de/mw/itm

More entries from TU Dresden, Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik ITM