Research publications

9 results
29.04.2024

Thermoplastische Schale/Rippen-Bauteile mit durchgängiger Faserverstärkung

Fibres Yarns Knittings Composites Technical Textiles

Abstract

Im Bereich des Automobil- und Maschinenbaus wird kontinuierlich nach Innovationen gesucht, um den wachsenden Anforderungen gerecht zu werden. Ein Bereich, der zunehmend an Bedeutung gewinnt, sind Schale/Rippen-Bauteile aus endlosfaserverstärktem Thermoplast. Bisherige Herstellungsverfahren sind jedoch komplex und führen zu unzureichender Faserverstärkung in den Rippen, was deren potenzielle Einsatz in hochbelastbaren Bauteil verhindert. Der Übergangsbereich zwischen der Schale und den Rippen ist besonders anfällig für strukturelle Defizite, die eine Überdimensionierung der Bauteile erfordern, um das Versagensrisiko, einschließlich Delamination, zu minimieren. Im abgeschlossenen Forschungsprojekt der Industriellen Gemeinschaftsforschung wurden daher Verstärkungstextilien entwickelt, die diese Problematik lösen, indem Fasern während der Verbundbildung in anspruchsvolle 3D-Bauteilgeometrie bedarfsgerecht fließen können. Das Ergebnis ist eine gleichmäßige Endlosfaserverstärkung der Schale sowie eine durchgängige stapelfaserbasierte Verstärkung von der Schale in die Rippe sowie der Rippe selbst. Diese Technologie ermöglicht anordnungsabhängig eine Steigerung der Steifigkeit und Festigkeit thermoplastischer Bauteile um mindestens 50 % und kann unerwünschte Delaminationen verhindern.

Report

Einleitung und Problemstellung

Leichtbaugerechte schalenförmige Bauteile werden aus mechanischen Gründen mit Funktionsstrukturen in Form von Rippen versehen. Die Natur zeigt Vorbildlösungen z.B. die Erdnuss, die durch Schale/Rippen-Anordnungen eine anforderungsgerechte Versteifung bei gleichzeitig extrem geringer Masse ermöglicht. In allen Bereichen des Automobil- und Maschinenbaus besteht ein hoher Bedarf an lasttragenden Bauteilen aus Faser-Kunststoff-Verbunden (FKV). Die Halbschalenbauweise des Flugzeug- und Schiffbaus zeigen rippenverstärkte Strukturen nach bionischem Vorbild mit überaus lasttragenden Eigenschaften, deren Herstellung unter Verwendung arbeitsintensiver Preforming-, Komplettierungs- und Verbundbildungsprozesse unter Verwendung duroplastischer Matrix allerding kostenintensiv ist. Besonders der Einsatz von kurzfaserverstärkten Thermoplasten für mittlere und große Serien ist sehr wirtschaftlich [1 – 3], die mechanische Eigenschaften insbesondere Steifigkeit und Festigkeit sind aber stark begrenzt. Derzeit verbraucht der Bereich Fahrzeuge 7 % der gesamten Kunststoffmenge in Deutschland [4]. Zur Überwindung der werkstoffbedingten Schwachstellen werden im Schalenbereich endlosfaserbasierte Faser-Matrix-Halbzeuge wie Organobleche und UD-Tapes verarbeitet. Die damit erreichbare gerichtete Faserverstärkung in der Schale führt zu deutlich besseren mechanischen Eigenschaften, erfordert allerdings weiterhin das Anspritzen von verstärkenden Rippen [1, 2]. Weiterhin werden langfaserverstärkte Thermoplaste (LFT) industriell eingesetzt, bei denen unidirektional Faserbündel in die thermoplastische Schmelze eingebracht werden, um Schalenbereich und Rippen in Rippenrichtung zu verstärken [5]. Die Bauteilumsetzung erfordert i.d.R. kostenintensive, mehrstufige Anlagen- und Werkzeugtechnik [6]. Um die Prozesskette zu verkürzen bzw. die Komplexität der Technik zu reduzieren, werden auch glasmattenverstärkte Thermoplaste (GMT) in Direktverfahren wie das einstufige Thermoformpressen zu Schale/Rippen-Bauteile verarbeitet, was insbesondere für klein- und mittelständische Unternehmen wichtig ist.

Eine gerichtete Faserverstärkung zwischen Schale und Rippe sowie im Übergangsbereich ist verfahrensbedingt mit keinem der bisherigen Ansätze realisierbar, sodass die resultierenden Bauteile für lasttragende Anwendungen nur eingeschränkt geeignet sind. Bei Biegebeanspruchung können u.a. die Rippen von der Schale delaminieren oder die Rippen weisen einen geringen Faseranteil und eine ungerichtetete Faserorientierung auf und sind damit weniger steif.

Zielsetzung

Ziel war es, anforderungsgerecht ausgelegte Hybridgarne, die sowohl aus Endlosfilamenten für den Schalenbereich als auch aus Stapelfasern für den Rippenbereich bestehen, mit definierten Fließeigenschaften zu entwickeln und zu textilen Flächengebilden mit neuen Eigenschaften zu verarbeiten. Während einem einstufigen Thermopressprozess sollen die Fasern nach dem Aufschmelzen der matrixbildenden Hybridgarnkomponente gezielt in die Kavität der Rippe fließen. Die gewünschte Faserverstärkung soll somit während der Verbundbildung von selbst entstehen.

Ergebnisse

Zu Beginn des Projektes wurden zunächst die industriellen Anwendungsfelder für rippenverstärkte thermoplastische Schalenbauteile recherchiert. Vielfältige Anwendungsmöglichkeiten ergeben sich u.a. bei der Realisierung von lasttragenden Bauteilen und Modulsystemen in der Automobilindustrie, z.B. Batteriegehäuse bzw. -wannen, Abdeckungen, Interieur- und Exterieurbauteile (z.B. Querträger), Front- und Heckbauteile (z.B. Stoßfänger). Hauptanwendungsgebiete sind alle Bauteile, die im Spritzgieß- oder Pressverfahren hergestellt werden und gegenüber dem Stand der Technik erhöhte Anforderungen an Steifigkeit, Festigkeit oder Zähigkeit bei gleichzeitiger Minimierung der Bauteilmasse erfüllen sollen. Darauf basierend wurden repräsentative Funktionsmuster und ein Demonstrator mit komplexer werdender Rippenstruktur definiert vgl. Abbildung 1.

Die Auswahl der zu verwendenden Ausgangsmaterialien, deren Anteile, Feinheit und Geometrie erfolgte nach physikalischen und verfahrenstechnischen Eigenschaften wie Schmelzverhalten und Viskosität, Transluzenz, Festigkeit und Steifigkeit. Die in Frage kommenden Kohlenstofffasern (CF) finden aufgrund ihrer hervorragenden mechanischen und chemischen Eigenschaften zunehmend Anwendung als Verstärkungsmaterialien im Bereich der FVK. Aufgrund der z.B. nicht realisierbaren energetischen Verwertung und des hohen Energiebedarfs bei der Herstellung von CF besteht derzeit ein großes Engagement für das Recycling dieser Fasern [7]. Letztendlich wurden mehrere Materialsysteme auf Basis von Glasfasern (GF) und recycelten Kohlefasern (rCF) ausgewählt, um die Fließbewegung bzw. die Fließwege anhand der optischen Eigenschaften (rCF-schwarz, GF-weiß transparent) im konsolidierten Bauteil überdurchschnittlich gut charakterisieren zu können. Als Verstärkungsfaserwerkstoff wurde für den Schalenbereich GF 50 Vol.% und für den Rippenbereich rCF 30 bis 50 Vol.% Typ I (Trockenfasern aus Spulenresten, Produktionsresten bzw. Verschnitt) eingesetzt. Als matrixbildende Hybridgarnkomponente wurde beispielhaft und aufgrund der etablierten Verwendung Polypropylen (PP) eingesetzt.

Unter Nutzung vorhandener Friktionsspinn- und Umwindespinntechnologien wurden im Folgenden fließfähige stapelfaserbasierte Hybridgarne aus rCF mit dem Ziel einer weitgehend parallelen Kernfaserstruktur entwickelt, umgesetzt und charakterisiert sowie Vorzugslösungen für weiterführende Arbeiten bereitgestellt. Die Hybridgarne wurden anschließend in UD-Wickelstrukturen vgl. Abbildung 2 (li.) überführt und unter zielführenden Prozessbedingungen experimentell zu ersten Schale/Rippen-Funktionsmustern mit unterschiedlichen Rippenhöhen H verarbeitet bzw. konsolidiert. Hierzu und zur Untersuchung der Fließeigenschaften der Hybridgarne war es im Vorfeld notwendig, ein modular aufgebautes Werkzeug für die Verbundbildung im Thermopressverfahren zu realisieren und alle dafür notwendigen Prozesseinstellungen zu ermitteln.

Die Hybridgarne füllen während des Pressvorgangs bei vergleichsweise geringem Druck von ca. 2 MPa die gesamte Werkzeugkavität der Rippe vollständig bis zu einem Faservolumengehalt rCF/PP von derzeit 70/30 Vol.%. Die Abbildung 2 (re.) zeigt ein Ergebnis anhand Funktionsmuster FM1, bei dem die Rippe durch die anvisierten Fließeigenschaften während des Pressvorgangs mit Fasern gefüllt wurden. Die Fasern liegen überwiegend entlang der Rippe. Bestandteil der Arbeiten war auch die Untersuchung des Fließverhaltens der rCF u.a. mittels bildanalytischer Charakterisierung von Schnitt- und Schliffproben [8].

Generell ist die Belastbarkeit von UD-Faserlagen richtungsabhängig begrenzt, so dass biaxiale Faseranordnungen unter Verwendung der Mehrlagen-Flachstricktechnologie in den Fokus gerückt sind. Gestricke, bei denen Verstärkungsfäden in die Maschen integriert sind, werden als Mehrlagengestricke (MLG) bezeichnet. MLG können monoaxial, biaxial oder multiaxial angeordnete Verstärkungsfäden aufweisen. Zur Steuerung der Fließbewegung wurden partielle Variationen von – in der Matrix nicht thermisch auflösbaren (GF/PP) sowie thermisch auflösbaren (PP) Maschenfadenmaterialien untersucht. Systematisch wurden dazu Bindungen von endlosfilament- und stapelfaserbasierten Hybridgarnen in der 2D-Textilstruktur zur Einstellung einer orientierten, verzugsfreien Verstärkungsfaseranordnung entwickelt. Basierend auf dem Funktionsmuster FM1 und den Voruntersuchungen wurden Varianten abgeleitet, die sich u.a. hinsichtlich der Hybridgarnanordnung, deren lokaler Menge und hinsichtlich des lokal eingesetzten Maschenfadenmaterials unterscheiden. Die Varianten wurden mittels modularer Werkzeugeinsätze zu Schale/Rippe-Funktionsmustern mit unterschiedlichen Rippenhöhen H verarbeitet. Eine Stapelung von bis zu 10 gleichzeitig zu verarbeitenden biaxialen MLG vgl. Abbildung 3 (li.) wurde detailliert untersucht. Abbildung 3 (re.) zeigt ein Ergebnis der Entwicklungen.

Während des Verarbeitungsprozesses im Thermopressverfahren wird die ursprünglich leere Rippengeometrie mit einem hohen rCF-Faseranteil von bis zu 70 % gefüllt und damit die beabsichtigte Faserverstärkung von der Schale in die Rippe sowie in der Rippe realisiert. Die Länge der Stapelfasern im Hybridgarn beträgt derzeit bis zu 80 mm.

Nach der Verbundbildung erfolgten umfassende Versuchsreihen zur Ermittlung der Festigkeits- und Steifigkeitskennwerte mittels 3-Punkt-Biegeversuch. Insgesamt lässt sich aus den Ergebnissen ableiten, dass die Endlosfaserverstärkung in der Schale die ermittelten Werte und Verläufe deutlich dominiert und somit das Verhältnis von Schalendicke zu Rippenhöhe minimiert werden kann, so dass die versteifende Wirkung der Rippe deutlicher hervortritt. Dadurch erhöht sich der Leichtbaugrad, da die i.d.R. großflächigen Schalenbereiche dünner dimensioniert werden können und somit eine annähernd gleiche mechanische Leistungsfähigkeit bei geringerer Bauteilmasse erreicht werden kann.

Die ermittelten Materialkennwerte wurden kontinuierlich zur Verbesserung und Validierung eines im Rahmen der Projektdurchführung entwickelten Simulationsmodells herangezogen, um zukünftig das Verbundmaterialverhalten durch die Kombination von Endlosfilamenten und Stapelfasern im Übergangsbereich zwischen Schale und Rippe realitätsnah vorhersagen zu können. Zur Verifizierung wurden Referenzbauteile hergestellt und mit den entwickelten Varianten verglichen. Die Ergebnisse zeigen eine 4-fach höhere Festigkeit und eine 2-fach höhere Steifigkeit gegenüber der Referenz. Damit konnte der Nachweis der Tragfähigkeitssteigerung von min. 50% erbracht werden. Delamination trat nicht auf.

Das hohe Potenzial der partiell fließfähiger 2D-Textilhalbzeugen wurde abschließend durch die praxisnahe Herstellung eines generischen Demonstrators (vgl. Abbildung 4) unter Anwendung der Vorzugslösungen für Hybridgarne und 2D-Textilstrukturen aufgezeigt.

Die Prozesskette, beginnend mit der Definition der Bauteilanforderungen, simulationsgestützten Dimensionierung, anforderungsgerechten Hybridgarnherstellung, Entwicklung der partiell fließfähigen 2D-Textilstrukturen mit biaxialer Verstärkungsfaseranordnung, Umsetzung der textilen Strukturen und abschließenden Verbundbildung durch das Thermo-Fließpressverfahren wurde mit Projektabschluss validiert. Der damit realisierte Demonstrator wurde anhand von Biegeversuchen geprüft und weist im Ergebnis die vordimensionierte, hohe Biegesteifigkeit auf. Aktuell erfolgen Gespräche zum industriellen Einsatz des neuen Verfahrens.

Zusammenfassung

Im Ergebnis konnten unter Verwendung der entwickelten partiell fließfähigen 2D-Textilstrukturen exemplarisch thermoplastische Schale/Rippen-Bauteile mit hohem Faservolumenanteil im Übergangsbereich zwischen Schale und Rippe und mit einer Festigkeits- und Steifigkeitssteigerung von mindestens 50 % gegenüber dem Stand der Technik hergestellt werden. Während der Verarbeitung fließen die Stapelfasern gezielt aus einer textilen Flächenstruktur in nahezu beliebige dreidimensionale Rippengeometrien. Die endlosfaserbasierte Verstärkung im Rippenbereich bleibt weitgehend unverzerrt und wie gewünscht in gestreckter Anordnung. Die resultierenden Bauteile können kostengünstig in einem einzigen Verbundbildungsschritt hergestellt werden, was zu einer erheblichen Effizienzsteigerung und potenziell zur Erhöhung der einsetzbaren Kunststoff- und Fasermenge u.a. im Bereich Fahrzeuge führen kann.

Danksagung

Das IGF-Vorhaben 21372 BR der Forschungsvereinigung Forschungskuratorium Textil e. V. wurde über die AiF im Rahmen des Programms zur Förderung der industriellen Gemeinschaftsforschung (IGF) vom Bundesministerium für Wirtschaft und Klimaschutz aufgrund eines Beschlusses des Deutschen Bundestages gefördert. Die Autoren danken den genannten Institutionen für die Bereitstellung der finanziellen Mittel. Weiterhin danken wir den Firmen des projektbegleitenden Ausschusses für die fachliche Unterstützung sowie allen weiteren Partnern, die in der Forschungsarbeit zu diesem Themenkreis unterstützten. Der Schlussbericht ist über den Gesamtverband der deutschen Textil- und Modeindustrie e. V., Berlin beziehbar. Weiterführende Informationen sind am Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM) erhältlich.

Authors: Sven Hellman

Technische Universität Dresden
Fakultät Maschinenwesen
Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM)
01062 Dresden

https://tu-dresden.de/mw/itm

More entries from TU Dresden, Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik ITM

28.11.2023

Entwicklung einer neuartigen Spinntechnologie zur Realisierung skalierbarer nano-, submikro- und mikrostrukturierter Faseroberflächen für technische und medizinische Anwendungen

Fibres Yarns Technical Textiles Medicine

Abstract

Das Hauptziel des IGF Projektes 21411 BR war die gezielte und reproduzierbare Oberflächenstrukturierung von Fasern während der Herstellung von Multifilamentgarnen. Dazu erfolgte die Entwicklung eines Verfahrens zur Herstellung von Bikomponentengarnen aus einem Grundpolymer und einer wasserlöslichen, strukturbildenden PVOH-Mantelkomponente. Durch das Herauslösen der Mantelkomponente in einem weiteren Prozessschritt werden dann nano-, submikro- und mikrostrukturierte Oberflächen erzeugt. Durch diese Verfahrensentwicklung sind nun erstmalig oberflächenstrukturierte Fasern herstellbar, die mit konventionellen Verfahren zur Oberflächenfunktionalisierung bisher nicht möglich waren. Der dazu notwendige Spinnprozess inkl. grundlegende Prozessparameter wurden im Projekt im Technikumsmaßstab erarbeitet. Die Nutzbarkeit der Ergebnisse wurde durch die erfolgreiche Erspinnung von Multifilamentgarnen mit strukturierten Faseroberflächen auf einer Pilot-Biko-Schmelzspinnanlage gezeigt. Die textiltechnische Verarbeitbarkeit der erzeugten Biko-Multifilamentgarnen erfolgte mit der erfolgreichen Umsetzung textiltechnischer Demonstratoren in Webversuchen.

Report

Einleitung, Problemstellung und Zielsetzung
Die kontinuierliche Entwicklung innovativer Technologien im Bereich der chemischen Faserproduktion ist entscheidend für die Fortentwicklung der gesamten Textilwirtschaft. Die gegenwärtige Fokussierung auf technische Textilien und medizintechnische Textilprodukte eröffnet vielversprechende Perspektiven für die deutsche Textil- und Faserindustrie. Diese aufstrebenden Märkte umfassen innovative Anwendungen, wie textiles Bauen, einschließlich komplex strukturierter architektonischer Membranen oder die Biomedizin mit Produkten, wie textile Implantate und Gewebsregenerationslösungen.

Ein neuartiger und vielversprechender Lösungsansatz ist die zielgerichtete Oberflächenstrukturierung der Fasern bereits während der Faserherstellung, um zum einen die Faseroberfläche zu erhöhen und zum anderen eine formschlüssige Anbindung der Matrix an die Faser zu erreichen. Diese Strukturierung auf der Einzelfilamentebene zeichnet sich durch regelmäßig oder stochastisch verteilte Nano- und Mikrostrukturen aus, darunter fibrillenartige Formationen. Dies führt zu einer definierten Oberflächenmorphologie und -topografie mit Kavitäten (Vertiefungen) und einer Oberflächenrauheit.

Für eine umfassende Nutzbarkeit dieser bisher unbekannten oberflächenstrukturierte Filamente, wurden im IGF Projektes 21411 BR „Nano, submikro- und mikrostrukturierte Fasern“ verschiedene Materialsysteme untersucht: das am Markt in großen Mengen verfügbare technische Polyester (PET - aromatischer Polyester), das im medizinischen Bereich häufig verwendete Polylactid Acid (PLA - aliphatischer Polyester) und ein High Density-Polyethylen (HDPE – Polyolefin). Basis für die Herstellung der strukturierten Fasern war eine Verfahrensentwicklung des Bikomponenten (Biko)-Schmelzspinnens. Kernpunkt dieser Entwicklung ist der temporäre Einsatz von wasserlöslichem Polyvinylalkohol (PVOH) als strukturformende Mantelkomponente im Fadenbildungsprozess. Eine anschließende Entfernung der strukturformenden Mantelkomponente entweder auf Garnebene oder auf Textilebene erzeugt dann die strukturierten Faseroberflächen im nano- (bis 0,1 μm), submikro- (0,1 ̶ 1 μm) und mikroskaligen (1 ̶ 2 μm) Bereich. Jeder dazu notwendige Entwicklungsschritt wurde von methodischen Material- und Prozesscharakterisierungen sowie gängigen physikalischen und chemischen Analysen begleitet, z.B. Untersuchungen der thermischen Eigenschaften des PVOH, der rheologischen Eigenschaften der Blend/PVOH-Mischungen sowie des Löslichkeitsverhaltens des PVOH aus dem Mantel der Biko-Fasern.

Erzielte Ergebnisse
Untersuchung der Schmelzspinnbarkeit von Polymer-PVOH-blends

Besondere Kernaufgaben der gesamten Verfahrensentwicklung war die Identifizierung prozesstechnisch geeigneter Materialpaarungen zur Herstellung von Blend-Formulierungen für die Vorlage im Schmelzspinnprozess. Die Ableitung von Vorzugsformulierungen für das Schmelzspinnen erfolgte im Projekt anhand der physikalischen und rheologischen Eigenschaften der jeweiligen Polymer-PVOH-Blend-Formulierungen. Zur Darstellung der Schmelzspinnbarkeit wurden weiterhin die thermische Stabilität und das Degradationsverhalten verschiedener wasserlöslicher PVOH sowie der Compoundpolymere (PET, PLA bzw. PE) mittels thermogravimetrischer Analyse (TGA) bestimmt. Die ausgewählten Compoundpolymere zeigen eine Zersetzung unter Schutzgasatmosphäre erst bei Temperaturen von weit über 300 °C, wobei es eine zentrale Abbaustufe gibt (VGL: Abbildung 1, links). Die untersuchten PVOH-Typen weisen dagegen verschiedene Abbaustufen und Zersetzungsbereiche mit ersten auftretenden Abbaureaktionen ab 100 °C auf (vgl. Abbildung 1, links). Die Kristallisations- und Schmelztemperaturen sowie das Fenster der Verarbeitungstemperaturen wurden mittels dynamischer Differenzkalorimetrie (DSC) bestimmt. Besonderes Augenmerk bei der rheologischen Charakterisierung der PVOH-Materialien war die Identifikation zum jeweiligen Compoundpolymer sowie zu prozesstypischen Anforderungen (z.B. Extrusionsverhalten, Spinndüsendynamik) passender Viskositäten.

Abbildung 1

Abbildung 1: Ergebnisse der TGA Untersuchungen - Massenänderung in Abhängigkeit von Temperatur und Zeit unter Schutzgasatmosphäre (N2)

 

Erspinnung der nano-, submikro- und mikrostrukturierter Fasern
Die Erspinnung der grundlegend untersuchten Polymer (PET, PLA und PE-PVOH)-Blends zu Biko-Multifilamentgarnen erfolgte mittels der am ITM vorhandenen Biko-Schmelzspinnanlage. Die dafür notwendigen experimentellen Arbeiten zur Herstellung von Biko-Fasern durch Evaluierung verschiedener Spinnprozessparameter wurde systematisch umgesetzt, um ein tiefgründiges Verständnis für die Wechselwirkungen zwischen Garneigenschaften und Prozessparametern aufzubauen. Bei der Erspinnung wurden die Anordnungen Kern-Mantel- bzw. orange pie-Geometrie untersucht (Abbildung 2). Die prozessbegleitenden systematischen Untersuchungen umfassten die Charakterisierung der mechanischen und textil-physikalischen Eigenschaften. Aus den analytischen Untersuchungen und der Spinnprozessentwicklung wurde ein Spinnkonzept für die Erspinnung der Biko-Präkursorfasern für neuartige nano-, submikro- und mikroskalige strukturierte Fasermaterialien erstellt.

 

Abbildung 2

Abbildung 2: Ausgewählte Düsengeometrien a) core-shell aus PET und PET/PVOH, b) orange-pie aus PET und PET/PVOH, c) core-shell aus PLA und PLA/PVOH, b) orange-pie aus PLA und PLA/PVOH

 

Verfahrensentwicklung zum Herauslösen der strukturbildenden Stützkomponente (PVOH)
Zur Erzeugung der Oberflächenstrukturierung erfolgte die Entwicklung eines industrienahen Verfahrens zum Herauslösen der strukturbildenden Stützkomponente (PVOH) aus dem Fasermantel. Erforscht wurde das Herauslösen der Stützkomponenten aus den Biko-Fasern nach dem Verstrecken bzw. nach der textilen Flächenbildung. Ein kontinuierliches Lösen des PVOH im Spinnprozess war aufgrund des Unterschieds zwischen Fadenlaufgeschwindigkeit (≥ 100 m/min) notwendiger Lösezeit von PVOH (≥ 180 s, vgl. Abbildung 1) nicht umsetzbar.

Abbildung 3

Abbildung 3: Löseeigenschaften der PVOH-Typen in Wasser unter Raumtemperatur und leichter Strömung

 

Besondere Aufmerksamkeit galt der Ermittlung relevanter Prozessparameter, wie Lösezeit und -temperatur, sowie der Auswahl des Lösungsmittels auf das Löseverhalten von PVOH, was in in zwei Entwicklungsstufen erfolgte: 1. Stufe - diskontinuierliches Herauslösen im Labormaßstab und 2. Stufe diskontinuierliche Löseversuche in einem Rolle-zu-Rolle-Prozess. Die Bewertung der Oberflächenstrukturierung erfolgte anhand von Lichtmikroskopie- und Rasterelektronenmikroskopie-(REM)Aufnahmen (Abbildung 4). Das entwickelte Verfahren zum gezielten Herauslösen von PVOH aus einem Multifilamentgarn ermöglichte die Erzeugung einer strukturierten Oberfläche. Die Optimierung der Prozessparameter sowie die praktische Umsetzbarkeit in einem kontinuierlichen Produktionsprozess sind die entscheidenden nächsten Schritte für die industrielle Anwendbarkeit dieser vielversprechenden Technologie.

Abbildung 4

Abbildung 4: REM-Aufnahmen  Einzelfilamenten der Biko-Filamentgarne: (links) vor dem Herauslösen des PVOH aus der Mantelkomponente, (rechts) nach dem Herauslösen des PVOH aus der Mantelkomponente

 

Textiltechnische Verarbeitung der nano-, submikro- und mikrostrukturierten Fasern
Die Beurteilung des Webverhaltens der ersponnenen Biko-Fasern erfolgte mittels Webversuchen auf einer Spulenschützen-Bandwebmaschine SL 150 (MAGEBA TEXTILMASCHINEN GMBH & CO. KG). Dabei wurde ein Standard-Polyestergarn als Kettfaden (16 Fäden/cm/Lage) eingesetzt. Das Biko-Garn wurde mittels eines Spulenschützen in Schussrichtung (7 Fäden/cm/Lage) eingebracht (vgl. Abbildung 5, links). Erfolgreich umgesetzt wurde in einem störungsfreien Webprozess ein zweilagiges, schlauchförmiges Gewebe mit Köperbindung in der oberen und Atlasbindung in der unteren Lage. Die Flächengebilde wurden mikroskopisch auf Filamentbrüche oder Fadenschädigung untersucht.

Abbildung 5

Abbildung 5: Textiltechnische Verarbeitung der Biko-Garne im Webprozess auf einer Spulenschützen-Bandwebmaschine (links); Zweilagiges, schlauchförmiges Gewebe aus Biko-Garn im Schussfaden und einem Polyestergarn in Kettfadenrichtung (rechts)

 

Zusammenfassung
Das Hauptziel des IGF Projektes 21411 BR war die gezielte und reproduzierbare Oberflächenstrukturierung von Fasern während der Herstellung von Multifilamentgarnen. Dazu erfolgte die Entwicklung eines Verfahrens zur Herstellung von Bikomponentengarnen aus einem Grundpolymer und einer wasserlöslichen, strukturbildenden PVOH-Mantelkomponente. Durch das Herauslösen der Mantelkomponente in einem weiteren Prozessschritt werden dann nano-, submikro- und mikrostrukturierte Oberflächen erzeugt. Durch diese Verfahrensentwicklung sind nun erstmalig oberflächenstrukturierte Fasern herstellbar, die mit konventionellen Verfahren zur Oberflächenfunktionalisierung bisher nicht möglich waren. Der dazu notwendige Spinnprozess inkl. grundlegende Prozessparameter wurden im Projekt im Technikumsmaßstab erarbeitet. Die Nutzbarkeit der Ergebnisse wurde durch die erfolgreiche Erspinnung von Multifilamentgarnen mit strukturierten Faseroberflächen auf einer Pilot-Biko-Schmelzspinnanlage gezeigt. Die textiltechnische Verarbeitbarkeit der erzeugten Biko-Multifilamentgarnen erfolgte mit der erfolgreichen Umsetzung textiltechnischer Demonstratoren in Webversuchen.

 

Danksagung
Das IGF-Vorhaben 21411 BR der Forschungsvereinigung Forschungskuratorium Textil e.V. wurde über die AiF im Rahmen des Programms zur Förderung der industriellen Gemeinschaftsforschung (IGF) vom Bundesministerium für Wirtschaft und Klimaschutz aufgrund eines Beschlusses des Deutschen Bundestages gefördert. Wir danken den genannten Institutionen für die Bereitstellung der finanziellen Mittel. Darüber hinaus möchten wir den Mitgliedern des Projektbegleitenden Ausschusses für ihre Unterstützung während der Projektbearbeitung danken.

 

Authors: Frankenbach, Leopold Alexander Lukoschek, Stephanie Kruppke, Iris Cherif, Chokri

Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik, TU Dresden

More entries from TU Dresden, Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik ITM

20.06.2023

Entwicklung von Heavy Tows aus recycelten Carbonfasern für kostengünstige duroplastische Composites mit hohem Leistungsvermögen (rCF-Heavy Tows)

Raw materials Fibres Yarns Composites Textile machinery Recycling Sustainability Circular economy Technical Textiles

Abstract

Im Rahmen des IGF-Forschungsvorhabens (21612 BR) wurde am ITM die gesamte Prozesskette zur industriellen Herstellung neuartiger drehungsfreier rCF-Heavy Tows entwickelt. Insbesondere wurde eine neuartige Technologie zur Herstellung von rCF-Heavy Tows auf Basis recycelter Carbon- (rCF, ≥ 90 Vol.-%) und Schmelzklebefasern (< 10 Vol.-%) konzipiert, konstruiert und erfolgreich umgesetzt. Diese umfasst die Faseraufbereitung, den Krempelprozess zur Krempelbandbildung, den Streckprozess zur Streckenbandbildung sowie die abschließende Fertigung der rCF-Heavy Tows aus rCF und Schmelzklebefasern in einem neuen entwickelten Versuchsstand. Der Nachweis der Eignung der entwickelten Technologie erfolgt mit der Umsetzung von rCF-Heavy Tows mit unterschiedlichen rCF Typen, Faserlängen und Faservolumengehalten und eines Demonstrators. Die entwickelten rCF-Heavy Tows mit Feinheiten zwischen 3000-7000 tex und deren Weiterverarbeitbarkeit zu textilen Halbzeugen wurden erfolgreich nachgewiesen. Die entwickelten rCF-Heavy Tows und darauf basierende Verbunde weisen eine maximale Verbundzugfestigkeit bzw ein maximales Zug-Modul von 1158±72 MPa bzw. 80±5,7 GPa auf. Die rCF Heavy Tows sind somit für kostengünstige duroplastische Composites mit hohem Leistungsvermögen und komplexer Geometrie einsetzbar. Damit bieten die entwickelten rCF-Heavy Tows ein sehr hohes Innovations- und Marktpotential in den Bereichen Werkstoffe und Materialien, Leichtbau, Umwelt- und Nachhaltigkeitsforschung sowie Ressourceneffizienz. Damit eröffnet sich die Gelegenheit für KMU der Textilindustrie neue Produkte und Technologien für den Faserverbundwerkstoffmarkt und sich als Lieferant für die Automobil-, Maschinenbau- sowie Luftfahrt-, Medizin- und Sportgeräteindustrie zu etablieren.

Report

Einleitung, Problemstellung und Zielsetzung

Carbonfaserverstärkte Verbundwerkstoffe (CFK) werden aufgrund ihrer hohen Steifigkeit und Festigkeit sowie der geringen Dichte zunehmend in Leichtbauanwendungen eingesetzt, insbesondere in den Bereichen Luft- und Raumfahrt, Transport, Windenergie, Sport oder Bau. Der globale CFK Bedarf wird sich Prognosen zufolge bis 2024 auf 197.000 t/a erhöhen und damit im Vergleich zu 2011 fast verdreifachen. Das zeigt den dringenden Bedarf an Lösungen zur Wiederverwertung der hochwertigen CF (rCF) im Sinne der Circular Economy. Das ist nicht nur aufgrund strenger rechtlicher Bestimmungen, sondern auch aus ökologischen sowie ökonomischen Gründen eine Notwendigkeit. Zahlreiche Forschungsinstitute und Unternehmen entwickelten in den letzten Jahren Lösungen zur Wiederverwendung von rCF in den Bereichen Vliesstoffe, Spritzgießen oder als Hybridgarne. Diese Arbeiten umfassen allerdings mehrheitlich den Einsatz von rCF in Kombination mit thermoplastischen Fasern für thermoplastische Composites. Für den Bereich rCF basierter duroplastischer CFK wurden bisher vorwiegend rCF-Vliesstoffe aus 100% rCF entwickelt. Da die Fasern in den Vliesstoffen prinzipbedingt nur eine begrenzte Länge und eine geringe Orientierung aufweisen und zusätzlich prozessbedingt hohen Faserschädigung auftreten, sind damit bisher nur max. 30% der Verbundkennwerte von CFK-Bauteilen aus Carbonfilamentgarnen erreichbar.

Aktuell sind die im Bereich hochbelastbarer CFK verwendeten Matrixsysteme überwiegend duroplastisch. Derartige Bauteile weisen eine hohe Formstabilität und hohe Steifigkeiten sowie Festigkeiten auf und eignen sich aufgrund niedrigviskoser Matrixsysteme zur Umsetzung komplexer Bauteilgeometrien. Jedoch werden aufgrund der bisher für diese Bauteile nur ungenügend in rCF abbildbaren, notwendigen Eigenschaften vorrangig Primärcarbonfilamentgarne eingesetzt. Neben einer geringen Nachhaltigkeit verursacht das auch um mind. 200 % höhere Kosten. Die Herstellung primäres Carbonfilamentgarnes erfordert einen hohen Energiebedarf von ca. 230 MJ/kg mit einem CO2-Emissionsäquivalent von 20 kg CO2/kg CF. Hier ist eine deutliche Verbesserung der CO2-Bilanz notwendig, um einen wesentlichen Beitrag zu den anvisierten Klimaschutzzielen der BRD bzw. der EU leisten zu können. Aus diesem Grund ist der Fokus der Projektarbeit die Entwicklung neuartiger, nachhaltiger rCF-Heavy Tows aus recycelten Carbonfasern (rCF) und dazugehöriger Fertigungstechnologien zur Umsetzung kostengünstiger duroplastischer Composites mit hohem Leistungsvermögen.

Danksagung

Das IGF-Vorhaben 21612 BR der Forschungsvereinigung Forschungskuratorium Textil e.V. wurde über die AiF im Rahmen des Programms zur Förderung der industriellen Gemeinschaftsforschung und -entwicklung (IGF) vom Bundesministerium für Wirtschaft und Klimaschutz (BMWK) aufgrund eines Beschlusses des Deutschen Bundestages gefördert. Wir danken den genannten Institutionen für die Bereitstellung der finanziellen Mittel.

Authors: Mahmud Hossain, Anwar Abdkader und Chokri Cherif

Technische Universität Dresden
Fakultät Maschinenwesen
Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM)
01062 Dresden

https://tu-dresden.de/mw/itm

More entries from TU Dresden, Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik ITM

06.03.2023

Technologieentwicklung zur nachhaltigen Herstellung hochreiner Chitosanfilamentgarne mit hohem Leistungs- und Funktionsvermögen (CHION)

Raw materials Fibres Yarns Sustainability

Abstract

Das IGF Projekt 21168 BR „Chion“ umfasst eine Technologieentwicklung zur Herstellung von Chitosanmultifilamentgarnen, die ein Maßschneidern der Garneigenschaften hinsichtlich ihres Leistungs- und Funktionsvermögens in allen Prozessstufen ermöglicht. Dabei werden die Materialkosten, das Einsatzfeld sowie die im Multifilamentgarn erreichbaren Funktionalitäten zunächst durch die Rohmaterialauswahl definiert. Durch die Nutzung von ionischen Flüssigkeiten sind erstmalig kostengünstigere Chitosane in verschiedenen Qualitäten sowie Deacetylierungsgraden < 90 % für einen Lösungsmittelnassspinnprozess einsetzbar, die bisher mit konventionellen Spinnprozessen nicht verarbeitbar waren. Aus den erzielten und ausführlich ausgewerteten Projektergebnissen wurden notwendige Prozessparameter für die erfolgreiche Übertragung der erarbeiteten Grundlagen auf einen Technikumsmaßstab sowie dazugehörige Prozessentwicklung für die Erspinnung vom Chitosanmultifilamentgarn mit hohem Leistungsvermögen und Festigkeiten bis zu 28 cN/tex auf einer Pilot-Lösungsmittelnassspinnanlage abgeleitet und umgesetzt. Zum Nachweis der textilen Verarbeitbarkeit der erzeugten Multifilamentgarne aus 100 % Chitosan erfolgte eine erfolgreiche Umsetzung textiltechnischer Demonstratoren in konventionellen textilen Web-, Strick- oder Flechtprozessen auf industrieüblichen Textilmaschinen.

Report

Einleitung, Problemstellung und Zielsetzung

Im 21. Jh. wächst die hohe Bereitschaft der Gesellschaft, ökologische, ressourcen- und umweltschonend hergestellte Produkte zu verwenden, stets weiter. Hierbei hat die Textil- und Faserbranche die Chance, durch biobasierte Produkte auf Grundlage von nachwachsenden Rohstoffen, wie Chitin bzw. Chitosan, Entwicklungen voranzutreiben, um dem gesellschaftlichen, nationalen sowie internationalen Bedarf an biobasierten Produkten gerecht zu werden.

Das Biopolymer Chitin und sein Derivat Chitosan sind bereits vielseitig genutzte Rohstoffe in der (Bio-)Medizin und Pharmazie, die jedoch kaum als reines textiles Produkt verfügbar sind. Chitin ist mit 1,5·105 t/a das zweithäufigste natürlich vorkommende Biopolymer nach Cellulose [1]. Die halbkristalline Struktur und das stabile Netzwerk aus molekularen Bindungen limitieren jedoch die Löslichkeit von Chitin stark, weshalb vornehmlich das Chitinderivat Chitosan in der Forschung und Materialentwicklung untersucht wird. Die Materialklasse des Chitosans weist hervorragende biologische und antibakterielle Eigenschaften sowie Zellbesiedelbarkeit und Biodegradabilität auf [2, 3]. In den letzten Jahren wurden zwar beträchtliche Forschungsanstrengungen unternommen, um effiziente Chitosanprodukte zu entwickeln, dennoch ist die Verfügbarkeit reiner, langzeitstabiler Chitosanmultifilamentgarne aktuell stark eingeschränkt [4]. Ebenso wird ein robuster, adaptierbarer Prozess zur Erzeugung dieser leistungsstarken Garne dringend benötigt, da heutige Chitosanfilamentgarne hinsichtlich mechanischer Eigenschaften stark limitiert sind. Aufgrund der natürlichen Herkunft und der damit verbundenen Variabilität von Rohmaterialeigenschaften, wie bspw. Deacetylierungsgrad (DA), Molekulargewicht (MW), etc., bestehen nach wie vor große Herausforderungen, Chitosanmultifilamentgarne mittels der bisher entwickelten säure- und alkalidominierten Herstellungsprozesse zu erzeugen.

Das Ziel des IGF Projektes 21168 BR „Chion“ bestand deshalb darin, Multifilamentgarne aus 100 % Chitosan mit hohem Leistungs- und Funktionsvermögen auf Basis eines robusten Lösungsmittelnassspinnverfahrens mit ionischen Lösungsmitteln in reproduzierbarer Qualität und mit einstellbaren Eigenschaften zu erzeugen.

Erzielte Ergebnisse

Durch die Nutzung von ionischen Flüssigkeiten (ionic liquids, IL) werden erstmalig kostengünstigere Chitosane mit geringeren Mw bzw. niedrigen DA < 90 % dem Lösungsmittelnassspinnprozess zugänglich gemacht. Ein hoher Anteil an Acetamidgruppen bei Chitosan mit geringem DA führt zu einer Steigerung der intermolekularen Wechselwirkungen, wodurch ein erhöhtes Leistungsvermögen bis zu 28 cN/tex, sowie eine gute textiltechnische Verarbeitung der mittels IL hergestellter Chitosanmultifilamentgarne resultieren. Die komplexe Erforschung der Chitosan-IL-Systeme mit verschiedenen Chitosanqualitäten, MW sowie DA 60 – 90 % mit imidazolhaltigen IL erfolgte zunächst unter vereinfachten Randbedingungen für Monofilamente. Aus den Ergebnissen wurden wichtige Prozessparameter und aussichtsreiche Chitosan-IL-Kombinationen abgeleitet und der entwickelte Prozess auf den Multifilamentmaßstab übertragen. Eine strukturmechanische Einstellung der Eigenschaften der Chitosanmultifilamente war ein grundlegender Gegenstand der Forschungsarbeiten. Jeder Entwicklungsschritt wurde dabei von systematischen Material- und Prozesscharakterisierungen sowie Analysen begleitet. Systematische Untersuchungen erfolgten zur Löslichkeit von Chitosan in IL, Viskositätsstudien, Fasermorphologie sowie -geometrie, chemischen und physikalischen Materialeigenschaften, Kristallinität- und Degradationsverhalten sowie zum Einfluss einer zielgerichteten Verstreckung während des Spinnprozesses auf strukturmechanische Einstellung der textil-physikalischen Eigenschaften. Durch die Integration säure- und temperaturempfindlicher Modellwirkstoffe in die Spinnlösung wurde die Funktionalisierbarkeit der erzeugten Chitosanfilamentgarne nachgewiesen sowie die Bioaktivität und deren Beständigkeit im Koagulationsbad und am Garn erforscht. Im Ergebnis der gezielten Abstimmung der molekularen Eigenschaften des Chitosans und der erarbeiteten Spinnprozessparameter steht somit ein robuster, übertragbarer Lösungsmittelnassspinnprozess zur Erspinnung der Chitosanmultifilamentgarne im Technikumsmaßstab zur Verfügung. Zum Abschluss wurde die textile Verarbeitbarkeit der erzeugten Chitosanmultifilamentgarne in Strick-, Web- und Flechtprozessen untersucht und nachgewiesen.

Untersuchung des Lösungsvermögens von Chitosan in IL sowie Spinnlösungherstellung

Der erste Schritt der Forschungsarbeiten umfasste die Untersuchung und Bewertung des Lösungsvermögens ionischer Flüssigkeiten (IL) für Chitosan. Mittels systematischer Versuchsdurchführung wurden 19 kommerziell verfügbaren Materialien unterschiedlicher Qualitäten (z.B. medizinisches Chitosan, industrielles Chitosan, etc.), Provenienzen (z.B. Shrimps, Krabben, pilzbasiertes Chitosan), DA (60 – 90 %) sowie MW charakterisiert und deren Löslichkeit in aussichtsreichen imidazolhaltigen IL grundlegend analysiert und ausgewertet. Die erzielten Ergebnisse zeigen, dass besonders kurzkettige IL in Kombination mit Acetat-Anionen ein hervorragendes Lösungsvermögen für alle untersuchten Chitosane aufweisen (vgl. Abbildung 1), woraus eine Ableitung aussichtsreicher Chitosan-IL-Kombinationen für weitere Prozessentwicklungsschritte folgte.

Die Herstellung der Chitosan-IL-Spinnlösungen erfolgte mittels thermischer Unterstützung in Feststoffkonzentrationen bis zu 8 Gew.-% und wurde von rheologischen Untersuchungen in Abhängigkeit von den Parametern Temperatur und Scherrate begleitet und bewertet. Zur Untersuchung der Stabilität, Prozessierbarkeit sowie Spinnbarkeit der hergestellten homogenen Chitosan-IL-Lösungen wurden diese im Labormaßstab zu Monofilamenten verarbeitet. Umfangreiche Analysen umfassten dabei besonders Untersuchungen der Fadenbildung in Abhängigkeit von verwendeten Rohmaterialien sowie Prozessparametern, wie Feststoffgehalt, Temperatur und Verweilzeit im Koagulationsmedium, sowie des Diffusionsverhaltens und der resultierenden Fasereigenschaften. Die erarbeiteten Grundlagen bildeten dabei eine Basis für die Prozessentwicklung der Multifilamentgarnerspinnung aus IL. Die erzielten Ergebnisse zeigen, dass sich alle untersuchten Chitosan-IL-Kombinationen zu reinen Chitosanfasern verarbeiten lassen, und dienen somit als Nachweis, dass IL ein geeignetes und aussichtsreiches Lösungsmittel zur Herstellung von Chitosanmultifilamentgarnen darstellen.

Erspinnung der Chitosanmultifilamentgarne

Im nächsten Schritt der Forschungsarbeiten fand die erfolgreiche Übertragung der im Labor erarbeiteten Grundlagen auf einen Lösungsmittelnassspinnprozess im Technikumsmaßstab statt. Die Erspinnung der Chitosanmultifilamentgarne erfolgte dabei an der Lösungsmittelnassspinnanlage (Fourné Maschinenbau GmbH) des ITM. Die Pilot-Spinnanlage ist speziell für FuE-Prozessentwicklungen ausgelegt und ermöglicht u. a. Versuche mit 2 – 60 Liter Spinnlösung.

Für die Spinnversuche wurde die Chitosan-IL-Spinnlösung zunächst filtriert und unter bestimmten temperatur- und druckbedingten Konditionen entgast. Die Multifilamenterspinnung erfolgte mittels unterschiedlicher Spinndüsengeometrien, u.a. 78 Löcher à 90 μm (90 µm/78f) bzw. 24 Löcher à 160 μm (160 µm/12f). Die präparierte, temperierte Spinnlösung wurde in ein Koagulationsbad mit deionisiertem Wasser als Medium extrudiert. Die resultierenden Multifilamentgarne weisen Garnfeinheiten von ca. 50–65 tex sowie Filamentdurchmesser von ca. 30–50 µm in Abhängigkeit von der Düsengeometrie auf. Um maßgeschneiderte Funktionalitäten, wie hohe mechanische Festigkeiten und Kristallinitäten sowie verbesserte Molekülorientierung, zu erzielen, wurde der Einfluss des Faserverzugs während des Spinnprozesses systematisch untersucht und mittels gezielter Versuchsplanung effektive Verzugsparameter ausgearbeitet. Die prozessbegleitenden systematischen Untersuchungen umfassten dabei die Charakterisierung der mechanischen und textil-physikalischen Eigenschaften der mittels IL ersponnenen Garne sowie den Vergleich der erzielten Kennwerte mit konventionell hergestellten Chitosangarnen auf Essigsäurebasis (AcOH). Der DA des Rohmaterials spielt dabei eine besonders große Rolle: Ein hoher Anteil an Acetamidgruppen bei Chitosan mit geringem DA (< 90 %) führt zu einer Steigerung der intermolekularen Wechselwirkungen, woraus verbesserte mechanische Eigenschften resultieren. Die erzielten Ergebnisse weisen eine hohe Funktionalität sowie deutlich verbesserte Festigkeiten der mittels IL ersponnenen Chitosanmultifilamentgarne im Vergleich zu den konventionellen Chitosangarnen (DA 90 %) aus AcOH auf (vgl. Abbildung 3, rechts). Mittels erarbeiteten Verzugsparametern lassen sich zudem maßgeschneiderte textil-physikalische Eigenschaften, wie Elastizität oder Festigkeiten, je nach gestellten Anforderungen einstellen.

Textiltechnische Umsetzung der Chitosanmultifilamentgarne

Im letzten Schritt der Projektbearbeitung folgte die erfolgreiche textiltechnische Verarbeitung der Chitosanmultifilamentgarne aus IL zu Strick- und Webmustern sowie Geflechten (vgl. Abbildung 4). Die technische Verarbeitung von konventionellen Chitosangarnen auf Textilmaschinen stellte aufgrund unzureichender mechanischer Festigkeit und Knotenreisskräften bisher immer eine Herausforderung dar. Eine störungsfreie Verarbeitung in Web-, Strick- oder Flechtprozessen ohne eine spezielle Garnvorbehandlung bzw. Maschinenanpassungen konnte bisher für konventionelle Chitosanmultifilamentgarne nicht umgesetzt werden. Die mittels IL hergestelltes Chitosanmultifilamentgarne bieten dagegen die notwendige mechanische Stabilität sowie Flexibilität, um in konventionellen textilen Prozessen auf industrieüblichen Textilmaschinen zu Strick-, Web- oder Flechtstrukturen verarbeitet zu werden. Durch eine zusätzliche Garnfunktionalisierung, wie bspw. Schlichteauftrag, wird die Verarbeitbarkeit des Materials sowie die Qualität des Fertigproduktes noch zusätzlich verbessert.

Danksagung

Das IGF-Vorhaben 21168 BR der Forschungsvereinigung Forschungskuratorium Textil e.V. wurde über die AiF im Rahmen des Programms zur Förderung der industriellen Gemeinschaftsforschung (IGF) vom Bundesministerium für Wirtschaft und Klimaschutz aufgrund eines Beschlusses des Deutschen Bundestages gefördert. Wir danken den genannten Institutionen für die Bereitstellung der finanziellen Mittel. Darüber hinaus möchten wir den Mitgliedern des Projektbegleitenden Ausschusses für ihre Unterstützung während der Projektbearbeitung danken.

Die vollständige Veröffentlichung steht zum Download zur Verfügung.

Authors: Kuznik, Irina; Kruppke, Iris; Cherif, Chokri

Technische Universität Dresden
Fakultät Maschinenwesen
Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM)
01062 Dresden

https://tu-dresden.de/mw/itm

More entries from TU Dresden, Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik ITM

16.01.2023

Leistungsfähigkeit und Nachhaltigkeit steigern durch den Einsatz von verbundgerecht profilierten Textilbetonbewehrungen

Fibres Yarns Knittings Textile machinery Sustainability Technical Textiles

Abstract

Am ITM der TU Dresden wurden neuartige, verbundoptimierte Bewehrungsgarne auf Basis der Flecht- und Tränkumformtechnik simulationsgestützt entwickelt, die bis zu 500 % höhere Verbundkräfte im Beton als Garne ohne Profilierung übertragen können. Die Profil- und Flechtgarne weisen bereits bei einer Verbundlänge von nur 50 mm eine vollständige Verankerung auf. Mit der am ITM entwickelten Tränkumformtechnik konnten tetraederförmige Profilgarne gefertigt werden, die aufgrund der patentierten Tetraedergeometrie das zugmechanische Leistungpotential der Carbonfasern nahezu vollständig ausnutzen können. Weiterhin wurde im Zuge der Flechtgarnentwicklung eine neue Flechtstruktur entwickelt, welche die nahezu vollständige Eliminierung der Strukturdehnung unter Last ermöglichte. Somit war die Fertigung von profilierten Bewehrungsgarnen mit sehr hohen zugmechanischen Eigenschaften möglich. Darüber hinaus wurde die Multiaxial-Kettenwirktechnik derart weiterentwickelt, dass die neuartigen Bewehrungsgarne (Profil- und Flechtgarne) schädigungsfrei zu gitterförmigen Textilbetonbewehrungen mit verbundoptimierter Profilierung verarbeitet werden können. Daraus ergibt sich eine deutlich höhere Materialeffizienz der Textilbewehrung, sodass bisher notwendige unverhältnismäßige Überdimensionierungen und große Überlappungslängen deutlich reduziert werden können. Dies ist insbesondere in Anbetracht der energieintensiven Herstellung von Carbonfasern und damit für den Nachhaltigkeitsanspruch der zukunftsweisenden Carbonbetontechnologie von enormer Bedeutung, um das Bauen der Zukunft ressourcenschonend und nachhaltig zu gestalten.

Die erzielten Projektergebnisse stellen zudem einen wesentlichen Beitrag zur Herstellung von extrem belastbaren Textilbetonstrukturen mit deutlich besseren Verbundeigenschaften dar, sodass für die Bauindustrie perspektivisch neue Möglichkeiten zur Bauteilfertigung im Bereich der Sanierung und des Neubaus entstehen.

Report

Abstract
Ressourcenschonend Bauen und dennoch ein hohes Leistungspotential ausschöpfen, ist das überhaupt möglich? Am Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM) der TU Dresden wurden im Rahmen des Forschungsprojektes IGF 21375 BR verbundgerecht profilierte Textilbetonbewehrungen sowie die dazugehörigen Fertigungstechnologien entwickelt, die genau dies ermöglichen. Auf Basis der Flecht- und Tränkumformtechnik wurden neuartig profilierte Bewehrungsgarne simulationsgestützt entwickelt, die analog zu gerippten Stahlbewehrungen einen sehr hohen Verbund mit der Betonmatrix aufweisen und das hohe Leistungspotential der Carbonfasern hinsichtlich der zugmechanischen Eigenschaften ausnutzen. Damit kann die notwendige Verbundlänge für eine vollständige Kraftübertragung zwischen Textilbewehrung und Beton auf wenige Zentimeter reduziert, und somit bis zu 80 % der bauteilabhängigen Überdimensionierung der Textilbewehrung eingespart werden. Die Weiterentwicklung der Multiaxial-Kettenwirktechnik zur anforderungsgerechten und faserschonenden Verarbeitung der profilierten, konsolidierten Garne zu gitterförmigen Bewehrungsstrukturen ermöglicht die Fertigung von profilierten Textilbetonbewehrungen mit höchsten Verbundeigenschaften für den Einsatz in Carbonbeton-Bauteilen mit maximaler Material- und Ressourceneffizienz.

Ausgangssituation und Problemstellung
Bekannterweise ist der Klimawandel die größte Herausforderung des 21. Jahrhunderts, welcher nur durch eine konsequente Einsparung von Ressourcen und CO2-Emmision erfolgreich bewältigt werden kann. Da die Baubranche mit einem Anteil von ca. 38 % der weltweiten CO2-Emission, insbesondere aufgrund des enormen Zementverbrauchs, einen erheblichen Beitrag zur bisherigen Klimaerwärmung hat [1], ist ein Wandel zu mehr Energie- und Ressourceneffizienz sowie einem wachsenden Nachhaltigkeitsbewusstsein zwingend erforderlich. Im Zuge dessen etabliert sich insbesondere der ressourceneffiziente Carbonbeton, bestehend aus einer korrosionsbeständigen Textilbewehrung in Kombination mit einer deutlich reduzierten Betondeckung, im Bauwesen als überzeugende Alternative zum konventionellen Stahlbeton zunehmend [2,3].  

Aufgrund der hohen Tragfähigkeiten der textilen Bewehrung bei kleineren notwendigen Betonquerschnitten kommt jedoch dem Verbund zwischen Textil und Beton eine außerordentlich große Bedeutung zu. Bisher lag der Fokus der F&E auf der Entwicklung von Tränkungsmitteln und zugehöriger Tränkungssysteme zur Verbesserung des stoffschlüssigen Haftverbundes mit der Betonmatrix [4]. Damit lassen sich jedoch nur geringe Kräfte mit einem Schubfluss von etwa 5-40 N/mm übertragen, eine effiziente Ausnutzung der textilen Bewehrung ist nicht möglich. Signifikante Verbesserungen zur Übertragung der Verbundkräfte versprechen Lösungen mit einer Profilierung der Garnoberfläche [5]. Daher wurden im Rahmen des IGF-Forschungsprojektes 21375 am ITM der TU Dresden neuartige Technologie zur kontinuierlichen und reproduzierbaren Herstellung profilierter textiler Hochleistungsgarne und deren Weiterverarbeitung zu Bewehrungsstrukturen entwickelt. Diese neuartigen, profilierten Bewehrungen zeichnen sich dadurch aus, dass diese im Betonverbund deutlich höhere Kräfte übertragen können [6,7]. Zur Generierung einer Profilierung auf Garnebene wurden Lösungen auf Basis der Flechttechnik und mittels tränkumformtechnischer Verfahren simulationsgestützt entwickelt und umgesetzt. Die Prämissen waren eine unnachgiebige Profilgebung mit garnaxial symmetrischem Aufbau, damit eine gleichmäßige und hohe Lastübertragung gewährleistet ist. Die Herstellung gitterartiger Bewehrungsstrukturen, bestehend aus den profilierten Bewehrungsgarnen, erfolgte durch die Weiterentwicklung der Multiaxial-Kettenwirktechnik. Diese wurde entsprechend der notwendigen Anpassungsmaßnahmen zur schädigungsarmen und anforderungsgerechten Weiterverarbeitung der profilierten Bewehrungsgarne zu Gitterstrukturen hinsichtlich der bestehenden Teilprozesse (Garnzuführung, Schusslegung, Maschenbildung, Tränkung und Aufwicklung) modular weiterentwickelt.

Entwicklung der neuartig profilierten Bewehrungsgarne
Für die anforderungsgerechte Entwicklung von profilierten Bewehrungsgarnen für Betonanwendungen erfolgte eine simulationsgestützte Garnentwicklung auf Basis der Flecht- und Tränkumformtechnik. Die wesentliche Herausforderung bestand insbesondere darin, profilierte Garne mit minimaler Strukturdehnung zu realisieren, sodass beim Versagen der Betonmatrix bei ca. 0,2 % Dehnung eine initiale Kraftübertragung der Textilbewehrung ermöglicht wird und die Rissbreiten minimiert werden [3]. Hierzu wurde eine neuartige Flechtstruktur mit einem Varioflechter entwickelt. Darüber hinaus wurde der Flechtprozess derart weiterentwickelt, dass eine ondulationsarme Vorstabilisierung der Flechtgarnstruktur während des Flechtprozesses ermöglicht wird und dennoch eine textile Weiterverarbeitbarkeit gewährleistet ist. Im Ergebnis wurden neuartige Varioflechtgarne sowie konventionelle Packungsflechtgarne bestehend aus Carbonfasern mit nahezu eliminierter Strukturdehnung, minimaler Faserschädigung und anforderungsgerechter Vorstabilisierung der Garnstruktur realisiert (siehe Tabelle 1).

...

Leistungspotential der neuartigen profilierten Bewehrungsgarne
Die neuentwickelten profilierten Bewehrungsgarne zeichnen sich durch nahezu unveränderte zugmechanische Eigenschaften, jedoch bis zu 500 % höhere Verbundeigenschaften im Vergleich zu Carbonrovings ohne Profilierung bzw. aus Referenztextilien extrahierten Rovings aus (siehe Abbildung 1). Zudem weisen sie keine erkenntliche Strukturdehnung auf, sodass eine initiale Kraftübertragung ohne zusätzliche Rissöffnung nach dem Versagen der Betonmatrix möglich ist. Jedoch konnte eine Verbundsteigerung um über 500 % von ca. 20 N/mm der Carbonrovings ohne Profil auf über 100 N/mm der profilierten Bewehrungsgarne erzielt werden, womit eine signifikante Steigerung der Materialeffizienz einhergeht (siehe Abbildung 1). Hierbei zeichnen sich insbesondere die Varioflechtgarne durch sehr hohe Verbundsteifigkeiten aus, die für eine initiale Kraftübertragung von besonderem Interesse sind. Die Packungsflechtgarne sowie die Profilgarne mit Tetraeder-Geometrie haben annähernd gleiche Verbundeigenschaften. Die Verbundsteifigkeit ist im Vergleich zu den Varioflechtgarnen etwas geringer, jedoch ist deren Fertigung produktiver.

...

Weiterentwicklung des Flächenbildungsprozesses
Zur Verarbeitung der neuartig profilierten Bewehrungsgarne zu einer gitterförmigen Bewehrungsstruktur wurde eine am ITM vorhandene Biaxial-Kettenwirkmaschine des Typs Malimo 14022 sowie die entsprechenden Teilprozesse (Garnzuführung, Schusslegung, Maschenbildung, Tränkung und Aufwicklung) angepasst und weiterentwickelt, sodass einerseits die vorstabilisierten Flechtgarne sowie die konsolidierten tetraederförmigen Profilgarne weiterverarbeitbar sind. Hierzu wurde insbesondere der Schusslegungsprozess dahingegen modifiziert, dass ein neuartiger Schussfadenführer für die Schusslegung der vorstabilisierten Flechtgarne entwickelt wurde. Die biegesteifen Profilgarne können nicht mit dem konventionellen Schusslegungsverfahren verarbeitet werden, sodass ein neuartiges Stabablagesystem bestehend aus eine Schussstab-Magazin-Speicher und einer Welle mit Profilwalzen entwickelt wurde (siehe Abbildung 2). Die vorkonfektionierten Schussstäbe wurden über das Stabablagesystem vereinzelt in eine mit neuen Halteelemente modifizierte Transportkette eingelegt.

...

Danksagung
Das IGF-Vorhaben 21375 BR der Forschungsvereinigung Forschungskuratorium Textil e. V. wurde über die AiF im Rahmen des Programms zur Förderung der Industriellen Gemeinschaftsforschung (IGF) vom Bundesministerium für Wirtschaft und Klimaschutz aufgrund eines Beschlusses des Deutschen Bundestages gefördert. Der Schlussbericht und weiterführende Informationen sind am Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik der TU Dresden erhältlich.

Die vollständige Veröffentlichung steht zum Download zur Verfügung.

Authors: Penzel, Paul; Hahn, Lars; Abdkader, Anwar; Cherif, Chokri

Technische Universität Dresden
Fakultät Maschinenwesen
Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM)
01062 Dresden

https://tu-dresden.de/mw/itm

More entries from TU Dresden, Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik ITM

24.11.2022

Oberflächenprofilierte Carbongitter für Carbonbetonanwendungen

Knittings Composites Textile machinery Sustainability Technical Textiles

Abstract

Am ITM der TU Dresden wurden Verfahren entwickelt, die es ermöglichen, auf einer Multiaxial-Kettenwirkmaschine mit integrierter Tränkungs- und Aushärtemodul kontinuierlich oberflächenprofilierte Gitter in reproduzierbarer hoher Qualität für Carbonbetonanwendungen herzustellen. Im Lösungsansatz 1, der Profilierung durch Prägen der Verstärkungsfäden, kann der Schubfluss um mehr als 400 % gegenüber einem Glattgarn gesteigert werden. Die Skalierung und Steigerung der Produktivität dieser Technologie auf Industrieniveau wird Gegenstand zukünftiger Forschungsarbeiten sein. Im Lösungsansatz 2 wurde ein Wirkfaden grober Feinheit (> 150 tex) als profilgebende Komponente (Profilwirkfaden) verwendet und zur maschenbasierten Fixierung der Verstärkungsfäden genutzt. Weitere Forschungsperspektiven zur Steigerung der Verbundhaftung ergeben sich für diese Profilierungsvariante insbesondere in einer Erhöhung der Stoff- und Formschlussverbindung zwischen Profilwirk- und Verstärkungsfaden.

Eine Erhöhung des Schubflusses bzgl. des Verbundes zwischen der durch Prägen profilierten Textilbewehrung und dem Beton führt direkt zu einer Verringerung der Auszugslängen unter Last und damit zur Reduzierung der Überlappungslängen um bis zu 75 % bei der Verarbeitung von profilierten Carbonbetonbewehrungen. Damit wird eine Grundlage für eine kosten- und ressourceneffiziente Herstellung von Carbonbetonbauteilen geschaffen, da hierbei eine Vielzahl, von überlappenden Textilbewehrungsbereichen auftreten. Dieser Aspekt verbessert die Wirtschaftlichkeit von Carbonbetonanwendungen und trägt dazu bei, diese innovative und ressourcenschonende Art des Bauens weiter zu etablieren.

Report

Abstract

Die volle Substanzfestigkeit des Hochleistungsmaterials Carbon kann im Betonverbund immer noch nicht ausgenutzt werden kann. Das liegt in der geringen Festigkeit der stoffschlüssigen Verbindung zwischen Carbonfaden und Betonmatrix begründet. Hier setzte das erfolgreich abgeschlossene Forschungsprojekt IGF 21153 BR des ITM an. Der Fokus lag auf der Entwicklung und Umsetzung von Verfahren zur Integration von Formschlusselementen im Herstellungsprozess von textilen Bewehrungen zur Steigerung der Verbundfestigkeit zwischen Bewehrung und Beton. Es wurde nachgewiesen, dass der dadurch erreichte zusätzliche Formschluss auf Basis einer Oberflächenprofilierung, ähnlich dem gerippten Bewehrungsstahl, den Schubfluss vervierfacht, die erforderliche Überlappungslänge folglich viertelt und damit den Materialeinsatz erheblich reduziert. Zwei Vorzugsvarianten wurden herausgearbeitet, für deren erfolgreiche Umsetzung die Entwicklung von Inline-Temperatur- und Feuchtigkeitsmesssystem erforderlich war.

Ausgangssituation und Problemstellung

Beton ist weltweit der wichtigste und am häufigsten eingesetzte Baustoff und wird in nahezu allen Anwendungsbereichen in Kombination mit einer Bewehrung zur Aufnahme der Zugkräfte eingesetzt [1]. Durch die Kombination von Beton mit einem Bewehrungsmaterial wie Stahl, können Bauwerke errichtet werden, die höchsten Beanspruchungen standhalten können. Da Stahl jedoch ein korrosionsanfälliges Material ist, muss eine signifikante Deckschicht stark basischen Betons aufgewendet werden, um einen Verlust der Tragleistung durch Korrosion der Bewehrung zu verlangsamen [2]. Zur Abtragung der im Bauwerk wirkenden Drucklasten ist die Dicke der Deckschicht nicht erforderlich. Daher erfolgte in den letzten beiden Dekaden die Entwicklung und sukzessive Praxiseinführung von Textilbewehrungen, die aus hochleistungsfähigen Multifilamentgarnen aus Carbon oder alkaliresistentem Glas bestehen, die mit textilen Verfahren zu mehraxialen Gitterstrukturen verarbeitet und, um den inneren und äußeren Verbund sicherzustellen, getränkt werden [3–5]. Derartige Textilbewehrungen können bei einer Betonersparnis von bis zu 70 % (durch dünnwandige Bauweise) die gleichen Kräfte übertragen wie konventionelle Stahlbewehrungen. Textilbewehrungen sind korrosionsunempfindlich und ermöglichen eine sehr effiziente, betonsparende und dauerhafte Armierung von Betonbauwerken bzw. ‑bauteilen in den vielfältigsten Anwendungsgebieten [6, 7].

....

Technische Entwicklung und Umsetzung

Zur Lösung der beschriebenen Problemstellung wurden Verfahren zur prozessintegrierten Profilierung der Textilbewehrung entwickelt. Hierfür wurden zwei Lösungskonzepte entwickelt, erprobt und evaluiert, die durch unterschiedliche Prinzipien (Prägen und Profilwirkfaden) gezielt Profilierungen ausbilden und die zudem in die textile Fertigung integrierbar sind.

Zur Steigerung der Warenqualität und um den Trocknungs- und Aushärteprozess gezielt hinsichtlich der erreichbaren Zugfestigkeit mit geringer Streuung steuern zu können, wurde eine Inline-Temperaturüberwachung auf Basis taktiler, mitlaufender Temperatursensoren entwickelt. Die Überwachung der Gelegefeuchtigkeit erfolgte mit der NIR-Sensorik (Near Infrared). Die Streuung der Zugfestigkeit der Textilbewehrung in der Warenausgangskontrolle konnte aufgrund der Prozessüberwachung halbiert werden. Es konnte zudem gezeigt werden, dass bestimmte Parameter des Multiaxial-Kettenwirkprozesses einen moderaten Einfluss auf die Eigenschaften der Bewehrung und deren Verbund zum Beton haben, z. B. die Stichlänge und die Bindungsart.

...

Materialcharakterisierung und Ergebnisse

Im Anschluss an die konstruktive Entwicklung und Umsetzung der Lösungskonzepte zur prozessintegrierten Herstellung eines profilierten Multiaxialgitters erfolgte sowohl die Fertigung von textilen Musterstrukturen als auch von Betonverbundprüfkörpern. Zur Charakterisierung der Musterstrukturen wurde das Auszugverhalten der profilierten Multiaxialgitter untersucht. Die für die Fertigung der Bewehrungsstrukturen gewählten Material- und Prozessparameter sind in Tabelle 1 zusammengefasst. Während der Musterfertigung wurde zudem die Oberflächentemperatur mittels eines eigens dafür entwickelten mitlaufenden kontaktbasierten Temperaturmesssystems sowie die Feuchtigkeit der Musterstrukturen mittels Nah-Infrarotsensorik überwacht und die Temperatur in der Trocknungs- und Aushärtestrecke entsprechend angepasst.

...

Danksagung

Das IGF-Vorhaben 21153 BR der Forschungsvereinigung Forschungskuratorium Textil e. V. wurde über die AiF im Rahmen des Programms zur Förderung der Industriellen Gemeinschaftsforschung (IGF) vom Bundesministerium für Wirtschaft und Klimaschutz aufgrund eines Beschlusses des Deutschen Bundestages gefördert. Der Schlussbericht und weiterführende Informationen sind am Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik der TU Dresden erhältlich.

Die vollständige Veröffentlichung steht zum Download zur Verfügung.

Authors: Zierold, Konrad; Hahn, Lars; Cherif, Chokri

Technische Universität Dresden
Fakultät Maschinenwesen
Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM)
01062 Dresden

More entries from TU Dresden, Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik ITM

18.10.2022

In-situ-Strukturüberwachung von Faserkunststoffverbunden unter Druckbeanspruchung

Yarns Composites Sensor Technology Sustainability Technical Textiles Tests

Abstract

Die kontinuierliche Strukturüberwachung von FKV-Bauteilen vor allem in komplexen, wechselnden Belastungsszenarien stellt einen effizienten Lösungsansatz dar, um frühzeitig potenziell auftretende Ermüdungserscheinungen oder Schäden zu detektieren. Gerade in FKV-Bauteilen sind textilbasierte Sensoren eine wirtschaftliche Lösung zur kontinuierlichen In-situ-Strukturüberwachung, aufgrund ihrer direkten textiltechnischen Integration während der Flächenbildung und hohen Strukturkompatibilität.    

Das in diesem Forschungsprojekt entwickelte textilbasierte Sensorkonzept wurde auf der Garn- und Verbundebene elektromechanisch charakterisiert und wurde im Multiaxialkettenwirken zu funktionalisierten Gelegen und fortführend in etablierten Verbundbildungstechnologien zu CFK-Proben weiterverarbeitet sowie umfangreich in Zug-, Druck- und Biegeversuchen charakterisiert. Anhand eines CFK-Profil Demonstrators wurde die praktische Umsetzbarkeit und Funktionsfähigkeit erprobt und bewiesen. Diese „Smart-Composites“ ermöglichen nicht nur eine kontinuierliche In-situ-Strukturüberwachung von FKV-Bauteilen unter Zug-, Biege- und vor allem Druckbeanspruchung, sondern können auch für die Detektion von Riss- und Delaminationsvorgängen eingesetzt werden. Dadurch können sowohl das Verständnis des Materialverhaltens verbessert und für zukünftige Auslegungen berücksichtigt als auch erforderliche Maßnahmen zur Gewährleistung der Funktionsfähigkeit des Gesamtsystems eingeleitet werden.

Report

Einleitung

Faserverstärkte Verbundstrukturen (Composites) werden gegenwärtig u. a. in den Bereichen des Maschinen-, Flugzeug- und Automobilbaus aufgrund der ausgezeichneten mechanischen Eigenschaften bei gleichzeitig höchstem Leichtbaupotenzial eingesetzt [1]. Auch im Bausektor finden Hochleistungstextilien, substituierend zur Stahlbewehrung, zunehmend Anwendung im Carbonbeton [2], aufgrund ihrer mechanischen sowie chemischen Eigenschaften und der daraus resultierenden ressourcenschonenden, filigranen Leichtbauweise. Die langzeitstabile Funktionsfähigkeit und Sicherheit von faserverstärkten Verbundstrukturen ist durch den häufigen Einsatz in sicherheitskritischen Komponenten und Strukturen dringend erforderlich. Ein vielversprechender praxisorientierter Lösungsansatz stellt hierbei die kontinuierliche Strukturüberwachung dar, um die (Rest-)Tragfähigkeit zu quantifizieren und um ggf. erforderliche Maßnahmen zur Gewährleistung der Funktionsfähigkeit einzuleiten.  
Eine besonders wirtschaftliche und strukturkompatible Lösung sind textilbasierte Sensoren, die während der Herstellung der textilen Verstärkungshalbzeuge integriert und zur Erfassung komplexer Lastfälle sowie Riss- und Delaminationsvorgänge auf Verbundebene eingesetzt werden. [3 – 6]

Textilbasierte Dehnungssensoren werden prinzipbedingt vorwiegend zur Überwachung in zugbeanspruchten Verbundstrukturen eingesetzt. Um zuverlässige Aussagen über strukturelle Veränderungen und kritische Überlastzustände auch in komplex überlagerten Beanspruchungsszenarien (bspw. Zug- und Druckbeanspruchungen) ableiten zu können, wurden im IGF-Projekt 21169 BR textilbasierte druckmessfähige Sensorsysteme zur kontinuierlichen In-situ-Strukturüberwachung für FKV entwickelt.

Zielsetzung und Lösungsweg

Das Ziel des IGF-Forschungsprojekts war die Entwicklung, Charakterisierung und Erprobung textilbasierter druckmessfähiger Sensorsysteme und deren textiltechnische Integration im Multiaxialkettenwirken zur Herstellung sensorisch-funktionalisierter textiler Verstärkungshalbzeuge für den Einsatz in FKV. Das Anforderungsprofil an die textilen Sensoren wurde anhand eines Funktionsdemonstrators simulationsgestützt abgeleitet und gezielt darauf ausgelegt strukturelle Deformationen durch einwirkende Zug-, Biege- und vor allem Druckbeanspruchungen zu erfassen. Hierfür wurde der Ansatz verfolgt, die Drucksensitivität von textilen Sensoren durch die gezielte Einstellung und Aufrechterhaltung einer Vorspannung bzw. -dehnung zu erhöhen. Das Sensorverhalten wurde umfangreich in elektromechanischen Untersuchungen auf Faser- und Verbundebene analysiert und am Funktionsdemonstrator erprobt.

Danksagung

Das IGF-Vorhaben 21169 BR der Forschungsvereinigung Forschungskuratorium Textil e.V., Reinhardtstr. 12-14, 10117 Berlin wurde über die AiF im Rahmen des Programms zur Förderung der industriellen Gemeinschaftsforschung und -entwicklung (IGF) vom Bundesministerium für Wirtschaft und Klimaschutz aufgrund eines Beschlusses des Deutschen Bundestages gefördert.

Authors: Le Xuan, Hung; Seidel, André; Hahn, Lars; Nocke, Andreas; Cherif, Chokri

Technische Universität Dresden
Fakultät Maschinenwesen
Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM)
01062 Dresden

More entries from TU Dresden, Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik ITM

18.10.2022

Entwicklung von Textilstrukturen mit materialintrinsischem Formänderungsvermögen für die regenerative Medizin (TexMedActor)

Yarns Fabrics Sustainability Technical Textiles Medicine

Abstract

Im IGF-Projekt 21022 BR/1 „TexMedActor“ wurden Gewebe auf Basis von Formgedächtnis- bzw. Elektroaktiven-Garnen entwickelt, die in der Lage sind, einerseits Defekte an Hohlorganen zu umschließen und andererseits durch Mikrobewegungen Zellen stimulieren zu können. Dafür wurden Einflüsse von Spinnverfahren und Materialzusammensetzung auf das Formgedächtnisverhalten TPU-basierter Garne charakterisiert und insbesondere die Aktivierungstemperatur auf Werte der Körperkern- und Körperoberflächentemperatur eingestellt. Weiterhin wurde piezoelektrische PVDF-Garne entwickelt, deren Anteil polarer Kristallphasen durch die Spinnparameter und Nachbehandlung deutlich erhöht war, wodurch auch das piezoelektrische Verhalten des Materials gesteigert werden konnte. Damit konnten dynamische Veränderungen der Porengröße in situ nachgewiesen werden, die eine stimulierende Wirkung auf Zellen entfalten können. Die Ergebnisse bieten mit einem neuen Verfahren und einer neuen Produktgruppe (Textilien mit intrinsischem, aktivem Formänderungsvermögen) nicht nur bei Medizinprodukten ein hohes Innovationspotenzial, sondern auch bei einer Vielzahl von lukrativen Anwendungen in einer Vielzahl von Nischen, z. B. Sporttextilien und Filtertextilien. Diese können weiterhin als Basis zur Entwicklung von extrakorporalen Medizinprodukten wie Kompressionstextilien, Bandagen und Orthesen genutzt werden.

Report

Einleitung, Problemstellung und Zielsetzung

In Deutschland führt sowohl der demografische Wandel der Gesellschaft als auch Verletzungen infolge von Traumata zu einem hohen Anteil von Personen mit behandlungsbedürftigen Erkrankungen des Herz-Kreislauf-Systems oder Verletzungen an Gefäßen und inneren Organen. Zur Behandlung von Verletzungen an inneren Organen, Gefäßen oder Nerven sind meist komplexe Eingriffe (Anastomosen) erforderlich, bei denen aufwändige Fixierungen und Nahtführungen erforderlich sind. Diese komplizierten und aufwändigen Prozeduren sind häufig mit langen Eingriffszeiten verbunden, die wiederum direkt mit erhöhten Komplikationsraten korrelieren [1‑3]. Zur Überbrückung solcher Defekte werden zunehmend tubuläre Kunststoffimplantate entwickelt, die jedoch kein Einwachsen von Gewebezellen ermöglichen und damit dem Konzept der regenerativen Medizin entgegenstehen, das die Wiederherstellung von Körpergeweben und ‑zellen anstrebt. Darüber hinaus kommt es bei der Auffüllung der Defekte häufig zu Störungen der Regeneration durch die nicht an die Biomechanik angepassten strukturmechanischen Eigenschaften. Ferner verhindern die fehlende Interkonnektivität der Porenräume der Ersatzstrukturen das Einwachsen von Zellen, das Zellwachstum, die Nährstoffversorgung und den Abtransport der Stoffwechselprodukte.

Im Rahmen des in vitro Tissue Engineerings werden neben statischen Zellkultursystemen auch dynami­sche Systeme entwickelt. Diese basieren beispielsweise auf kontinuierlichen oder pulsierenden Flüssigkeitsströmungen oder auf einer zyklischen Dehnung des eingespannten Zellträgersystems bzw. der Unterlage [4]. Eine Nachbildung der natürlichen mechanischen Wachstumsstimuli ist mit solchen Bio­reaktorsystemen jedoch nicht möglich, da sich insbesondere in größeren Strukturen eine lokal erhöhte Strömungsgeschwindigkeit entlang der größten Durchgangsporen bzw. lediglich eine Überströmung des gesamten Zellträgersystems einstellt und in mechanisch stimulierten Systemen unerwünschte Spannungsspitzen und undefinierte Verzerrungen im Bereich der Klemmen und Auflagen auftreten.

Da der native Aufbau der vier wichtigsten Gewebetypen (Binde- und Stützgewebe, Nerven-, Muskel- und Epithelgewebe) aus denen Organe, wie Knochen, Blutgefäße, Muskeln, Sehnen und Bänder, gebildet sind, aus faserartigen Konstrukten besteht, lassen sich diese mit textilen Strukturen besonders gut biomimetisch nachbilden. Mithilfe vorbedachter Faseranordnungen können dreidimensionale, kom­plexe Geometrien mit interkonnektierenden Porenräumen aufgebaut werden, an der sich Zellen in ihrer Wachstumsrichtung orientieren können [5]. Deshalb sind faserbasierte High‑Tech Strukturen zur Überwindung der Limitationen aktuell verfügbarer Implantate besonders prädestiniert.

Daher wurden im Rahmen des IGF-Forschungsvorhabens TexMedActor (21022 BR/1) neuartige Textilstrukturen mit materialintrinsischem Formänderungsvermögen für die regenerative Medizin mit einer Vielzahl von unterschiedlichen Anwendungsfeldern, insbesondere der Anastomose, entwickelt. Das verfolgte Konzept sieht hierbei die textiltechnologische Realisierung von Strukturen mit einem Formgedächtniseffekt vor. Die Textilien sollen gezielt vorbestimmte Geometrien annehmen können, um sich an Defekte interaktiv anzupassen und um komplexe Eingriffe zum Überbrücken bzw. zum Stützen von Defekten an inneren Organen wie Gefäßen und Nerven zu vereinfachen. Ein weiterer Wirkmechanismus soll darüber hinaus die elektromechanische Stimulation mit dem Ziel der aktiven, gezielten Anregung des Zellwachstums ermöglichen. Somit soll die Regeneration beschleunigt bzw. überhaupt erst ermöglicht werden, da die erforderlichen Stimuli zur gewebe- und zellangepassten Wachstumsanregung insbesondere bei schwach bzw. nicht durchbluteten Körpergeweben, wie Knorpeln, Sehnen, Bändern, oder bei Wundheilungsstörungen oder chronischen Wunden fehlen. Es sollen weiterhin neuartige Bioreaktoren mittels intrinsischen Eigenschaften der textilen Strukturen entwickelt werden, die den Wirkmechanismus zur elektromechanischen Stimulation nutzen, um selbst in hochkomplexen und großskaligen Zellträgerstrukturen die Zellen an jeder Stelle gleichmäßig zu stimulieren. Die mechanischen Reize gehen hierbei vom Material selbst aus. Diese materialintrinsische Stimulation stellt eine neue Methode für die optimale Zellkultivierung dar, sodass die Zellen auf den textilen Zellträgerstrukturen unter Verzicht auf extern angelegte Flüssigkeitsströmungen oder mechanische Verformungen stimuliert werden können. Damit sollen zwei anerkannte medizintechnische Probleme behoben werden: 1) Komplizierte, aufwändige und mit minimalinvasiven Verfahren schwer oder nicht zu realisierende Operationen an innenliegenden Organen, Gefäßen oder Nerven sowie 2) fehlende gewebe- und zellangepassten Stimuli zur Anregung des Wachstums seitens der bisher verwendeten Ersatzstrukturen und ‑materialien sowie derzeit verfügbarer dynamischer Zellkultursysteme.

Danksagung

Das IGF-Vorhaben 21022 BR/1 der Forschungsvereinigung Forschungskuratorium Textil e.V. wurde über die AiF im Rahmen des Programms zur Förderung der industriellen Gemeinschaftsforschung (IGF) vom Bundesministerium für Wirtschaft und Klimaschutz aufgrund eines Beschlusses des Deutschen Bundestages gefördert. Wir danken den genannten Institutionen für die Bereitstellung der finanziellen Mittel. Darüber hinaus möchten wir den Mitgliedern des Projektbegleitenden Ausschusses für ihre Unterstützung während der Projektbearbeitung danken.

Authors: Benecke, Lukas; Aibibu, Dilbar; Cherif, Chokri

Technische Universität Dresden
Fakultät Maschinenwesen
Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM)
01062 Dresden

More entries from TU Dresden, Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik ITM

30.09.2022

CF/AR/Thermoplast Hybridgarne für anforderungsgerechte thermoplastische Composites mit herausragenden, skalierbaren Steifigkeits-, Festigkeits-, Crash- und Impacteigenschaftskombinationen

Fibres Yarns Composites Textile machinery

Abstract

Im Rahmen des IGF-Forschungsvorhabens (21004 BR/1) wurden am ITM Materialkonzepte auf Basis von zwei, in der Industrie etablierten Garnbildungstechnologien realisiert und damit CF/AR/PA 6- bzw. rCF/rAR/PA 6-Hybridgarne für anforderungsgerechte thermoplastische Composites mit herausragenden, skalierbaren Steifigkeits-, Festigkeits-, Crash- und Impacteigenschaftskombinationen hergestellt. Dabei wurden die Einflüsse der Parameter der Krempel-, Strecken- und Flyerspinnanlage (MK1) sowie der Lufttexturieranlage (MK2) und der Faservolumenanteile auf die mechanischen Eigenschaften analysiert, um anforderungsgerechte und definierte Engineered Garne und darauf basierende Composites zu entwickeln. Die untersuchten Garnbildungstechnologien ergänzen sich bzw. konkurrieren teilweise untereinander, bilden dadurch aber auch ein breites Technologiespektrum ab, das eine große Breitenwirkung für die Anwendung der Ergebnisse zur Produktentwicklung in zahlreichen deutschen und oft auf wenige Technologien spezialisierten KMU der Textiltechnik erzeugt.

Report

Einleitung, Problemstellung und Zielsetzung

Aktuelle faserverstärkte Kunststoffverbunde (Composites) werden entweder nach Steifigkeits- und Festigkeits- oder Impact- bzw. Crasheigenschaften ausgelegt. Komplexe, sich überlagernde Lastszenarien werden dabei nur sehr beschränkt berücksichtigt. Zwar gibt es erste realisierte Verbundbauteile, bspw. die B-Säule eines Automobils [1], bei denen Composites (bspw. Carbonfaserprepregs) zur Realisierung hoher gewichtsspezifischer Steifigkeiten und Festigkeiten mit metallischen Komponenten (bspw. Stahlbleche) zur Erreichung der notwendigen Schadenstoleranz kombiniert werden. Bei derartigen Konzepten erfolgt die Hybridisierung auf Makro- (Strukturebene) oder Mesoebene (Garnebene) und erfordert extrem aufwendige und kostenintensive Fertigungsprozesse [2–4]. Konzeptbedingt weisen diese Bauteilen zudem stark ausgeprägte interlaminare Grenzflächen auf, an denen durch komplexe Beanspruchungen hohe Scherspannungen entstehen, die dann zu frühzeitigen Delaminationen mit entsprechenden Strukturversagen führen [5–8]. Im Rahmen des hier vorgestellten Projekts wurden ein Konzept zur Überwindung der Nachteile und für den Einsatz bei zukünftigen Entwicklungen erarbeitet und umgesetzt. Der Ansatz besteht dabei darin, die Kombination der verschiedenen Komponenten durch Hybridisierung auf Mikroebene (innerhalb eines Garnes/Faserebene) zu gestalten und damit deren Eigenschaftspotentiale maximal auszuschöpfen. Durch den Einsatz recycelter Hochleistungsfasern ergeben sich zudem deutliche Vorteile hinsichtlich Nachhaltigkeit, Ressourceneffizienz und Wirtschaftlichkeit gegenüber konventionellen Composites.

Ziel des Projekts ist die Kreierung einer neuen auf Mikroebene hybridisierten dreikomponentigen Werkstoffklasse für thermoplastische Leichtbauanwendungen. Durch die gezielte Kombination der Verstärkungsfasern Carbon und Aramid sind über Variation der Verstärkungsfaseranteile und Faseraufmachung lastfallgerecht hohe Steifigkeiten und Festigkeiten mit hohen Crash- bzw. Impacteigenschaften kombinierbar. Abb. 1a zeigt schematisch die Eigenschaften von CF/AR Hybridcomposites nach dem Stand der Technik (Abb. 1a unten durch Ellipse hervorgehoben), aus zu entwickelnden Engineered Garnen (oben, Bereich innerhalb der gestrichelten Linien) und die theoretischen Materialpotentiale (oben, farbige Linien) jeweils in Abhängigkeit der Faservolumenanteile. Die systematische Untersuchung des Einflusses der materialspezifischen Faservolumenanteile für eine skalierbare Auslegung der Composites, erfolgte beispielhaft in fünf Stufen (CF/AR bzw. rCF/rAR: 50/0 %; 40/10 %; 25/25 %; 10/40 %; 0/50 %).

Die Entwicklungsarbeiten konzentrierten sich auf drei wesentliche Schwerpunkte. Der erste Schwerpunkt war die Weiterentwicklung der Prozesstechnik, sodass die auf Engineered Garnen basierenden Composites aufgrund geringer Faserschädigungen, einer hohe Gleichmäßigkeit und hohen Faserorientierung hohe Festigkeiten und Steifigkeiten aufweisen. Der zweite Schwerpunkt war die erstmalige Umsetzung der homogenen Durchmischung von drei Fasermaterialien auf Mikroebene, sodass gleichzeitig Steifigkeiten, Festigkeiten und ebenfalls Impact- und Crasheigenschaften signifikant erhöht werden können. Der dritte Schwerpunkt lag in der Auslegung der Engineered Garne, um so herausragende, skalierbare Steifigkeits-, Festigkeits-, Crash- und Impacteigenschaftskombinationen für verschiedenste Anforderungen gezielt einstellen zu können (Abb. 1a).

Die konkrete Umsetzung des angestrebten Ziels, Realisierung von CF/AR/PA6 bzw. rCF/rAR/PA6 Hybridgarnen zur Herstellung anforderungsgerechter thermoplastischer Composites mit herausragenden, skalierbaren Steifigkeits-, Festigkeits-, Crash- und Impacteigenschaftskombinationen, erfolgte unter Verwendung von zwei Materialkonzepten (Abb. 1b) auf Basis von zwei, in der Industrie etablierten Garnbildungstechnologien (Abb. 1a). Dabei wurden die komplexen Zusammenhänge zwischen Prozessparametern und Material-Garn-Verbundeigenschaften analysiert und für die KMU fundiertes Wissen für die Entwicklung, materialabhängige Auslegung der Engineered-Garne, die Ableitung der bestmöglichen Material- und Prozessparameter für konkrete Anwendungen sowie für die Steuerung der Fertigungsprozesse erarbeitet und in Form eines Verfahrensleitfadens aufbereitet. Die detaillierte Beschreibung der Entwicklungsarbeiten kann aus dem Abschlussbericht entnommen werden.

Danksagung

Das IGF-Vorhaben 21004 BR/1 der Forschungsvereinigung Forschungskuratorium Textil e.V. wurde über die AiF im Rahmen des Programms zur Förderung der industriellen Gemeinschaftsforschung (IGF) vom Bundesministerium für Wirtschaft und Klimaschutz aufgrund eines Beschlusses des Deutschen Bundestages gefördert. Wir danken den genannten Institutionen für die Bereitstellung der finanziellen Mittel.

 

 

 

Authors: Matthias Overberg, Anwar Abdkader, Chokri Cherif

Technische Universität Dresden
Fakultät Maschinenwesen
Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM)
01062 Dresden

https://tu-dresden.de/mw/itm

More entries from TU Dresden, Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik ITM