Research publications

08.09.2023

Mit einem Sustainability-Assessment zur nachhaltigen Unternehmensstrategie

Sustainability Technical Textiles

Abstract

Die Textilindustrie gilt im Sinne der Nachhaltigkeit auf europäischer Ebene als Risikobranche. Warum das eine besondere Herausforderung ist und wie ein systematischer Ansatz zur nachhaltigen Transformation von Unternehmen aussehen kann, erfahren Sie in diesem Artikel.

Die Textilindustrie ist bekannt für ihre Innovationen und Ideen, die weit über die traditionellen Anwendungen von Bekleidung und einfachen Stoffen hinausgehen. Einige Beispiele sind der Einsatz von Glas- oder Carbonfasern zum Ersatz von Stahlbewehrungen in Betonbauteilen, künstliche Herzklappen aus Textilien oder Wasserstofftanks aus Carbonfasern. Allerdings steht die Textilindustrie vor großen Herausforderungen in Bezug auf Nachhaltigkeit. Sie ist weltweit eine der Branchen mit den höchsten Umweltbelastungen und hat auch erhebliche soziale Auswirkungen auf die Arbeitskräfte in der Lieferkette, die häufig auf Baumwollfeldern in Ländern wie China, Indien oder Pakistan beginnt. Hier ist ein systematischer Ansatz zur Nachhaltigkeitsbewertung erforderlich. Das Ergebnis der Nachhaltigkeitsbewertung bildet den Status Quo ab, kann als Benchmark im Vergleich mit anderen Unternehmen der Branche verwendet werden und bietet einen optimalen Ausgangspunkt für die Integration von Nachhaltigkeit in die Unternehmensstrategie.

Report

Einleitung

Aachen/München: Die Textilindustrie ist bekannt für ihre Innovationen und Ideen, die weit über die traditionellen Anwendungen von Bekleidung und einfachen Stoffen hinausgehen. Einige Beispiele sind der Einsatz von Glas- oder Carbonfasern zum Ersatz von Stahlbewehrungen in Betonbauteilen, künstliche Herzklappen aus Textilien oder Wasserstofftanks aus Carbonfasern.

Allerdings steht die Textilindustrie vor großen Herausforderungen in Bezug auf Nachhaltigkeit. Sie ist weltweit eine der Branchen mit den höchsten Umweltbelastungen und hat auch erhebliche soziale Auswirkungen auf die Arbeitskräfte in der Lieferkette, die häufig auf Baumwollfeldern in Ländern wie China, Indien oder Pakistan beginnt. Auch die weiterverarbeitenden Prozesse innerhalb der Wertschöpfungskette bergen die Gefahr unzureichender Umweltschutzmaßnahmen und der Missachtung international geltender Menschenrechte. Eine nachhaltige Textilindustrie hingegen setzt sich gezielt und insbesondere für den Einsatz von umweltfreundlichen Materialien, faire Arbeitsbedingungen und die Reduzierung des Energie- und Wasserverbrauchs ein. „Die EU verweist in ihrer neuen Sustainable Product Initiative nicht umsonst verstärkt auf ein hohes Maß an Umweltschutz und notwendige Verbesserungen der Umweltqualität. Wir müssen an den wichtigen gesellschaftlichen Herausforderungen forschen und neue Technologien schnell in die Umsetzung bringen“, so Prof. Thomas Gries vom Institut für Textiltechnik (ITA) der RWTH Aachen University.
 

Systematischer Ansatz zur Nachhaltigkeitsbewertung

Auf Unternehmensebene fängt die Transformation mit der Erfassung der notwenigen Daten (Indikatoren) und der der daraus resultierenden Messbarkeit der eigenen Nachhaltigkeitsleistung an. Die TÜV SÜD Industrie Service GmbH hat dazu eine Methodik entwickelt, die in Zusammenarbeit mit dem ITA für die Textilindustrie adaptiert und optimiert wurde: die Nachhaltigkeitsbewertung orientiert sich an den 17 Sustainable Development Goals (SDG) der Vereinten Nationen. Auf der Grundlage verschiedener Indikatoren, die durch Branchen- und Ländervergleiche gewichtet werden, wird die Nachhaltigkeitsleistung des Unternehmens objektiv, unabhängig und transparent beurteilt. „Mit unserer Nachhaltigkeitsbewertung ermöglichen wir allen relevanten Akteuren der Wertschöpfungskette Klarheit über den Ist-Zustand der unternehmensspezifischen Nachhaltigkeit zu erlangen, die wesentlichen Nachhaltigkeitsrisiken zu identifizieren und mit den daraus abgeleiteten Verbesserungsmaßnahmen einen wesentlichen Schritt in Richtung eines Nachhaltigkeitsmanagementsystems zu gehen“, so Lucas Wagner von der TÜV SÜD Industrie Service GmbH. Dieser Ansatz umfasst die gesamte Unternehmensstrategie und ist auch für andere Branchen einsetzbar.
 

Integration von Nachhaltigkeit in die Unternehmensstrategie

Das Ergebnis der Nachhaltigkeitsbewertung bildet den Status Quo ab, kann als Benchmark im Vergleich mit anderen Unternehmen der Branche verwendet werden und bietet einen optimalen Ausgangspunkt für die Integration von Nachhaltigkeit in die Unternehmensstrategie. Die objektive Bewertung bietet zunächst die Möglichkeit, notwendige Schwerpunkte für die Transformation hin zu einem nachhaltigen Unternehmen zu identifizieren. Zusammen mit externen Experten, z. B. aus der Forschung, werden Potentiale identifiziert und konkrete Umsetzungsmaßnahmen abgeleitet. „Das Vorgehen bietet einen holistischen Ansatz, um die nachhaltige Transformation zu einem Kern der Unternehmensstrategie zu machen. Die Wirtschaftlichkeit bildet dabei eine wichtige Säule“, so Prof. Gries. Darüber hinaus bietet die Nachhaltigkeitsbewertung durch die TÜV SÜD Industrie Service GmbH eine ausgezeichnete Ausgangslage, um die Anforderungen der CSRD, also der „Corporate Sustainability Reporting Directive“ zu erfüllen. So wird Nachhaltigkeit zu einem planbaren Erfolgsfaktor für Unternehmen.

Bildunterschriften:

Abbildung 1: 17 Ziele für nachhaltige Entwicklung (SDG) der Vereinten Nationen (Quelle: Vereinte Nationen)

Abbildung 2: Methodischer Ansatz für die Nachhaltigkeitsbewertung eines Unternehmens (Quelle: TÜV SÜD Industrie Service GmbH)

Abbildung 3: Wesentlichkeitsanalyse und Strategieentwicklung (Quelle: TÜV SÜD Industrie Service GmbH)

Authors: Pohlmeyer, Florian1 Wagner, Lucas2 Möbitz, Christian1 Gries, Thomas1

1: Institut für Textiltechnik der RWTH Aachen University, Otto-Blumenthal-Str. 1, 52074 Aachen

2: TÜV SÜD Industrie Service GmbH, Westendstraße 199, 80686 München

More entries from ITA Institut für Textiltechnik der RWTH Aachen University

25.08.2023

Wärmebehandlung von Magnesium-Stents zur Erhöhung der maximalen Radialkraft

Technical Textiles Medicine Tests

Abstract

Die Chronisch Venöse Insuffizienz (CVI) stellt ein anhaltendes venöses Stauungssyndrom dar, das aufgrund diverser pathologischer Abweichungen im Venensystem mit graduell fortschreitendem Verlauf entsteht. Das Ziel des BioV²alve-Projektes ist die biologische Rekonstruktion der Venenklappenfunktion durch ein biohybrides, textil-bewehrtes, minimal-invasiv implantierbares Device. Die Verwendung einer biodegradierbaren magnesiumbasierten Stentstruktur, welche sich nach erfolgter Einheilung der Venenklappe in das Umgebungsgewebe auflöst, ermöglicht eine schonende Therapie mit geringer dauerhafter Materialeinbringung in den Körper. Im Rahmen der Stententwicklung wurde der Einfluss der Wärmebehandlung nach dem Flechtprozess auf die maximale Radialkraft untersucht. Es wurde gezeigt, dass eine Ausscheidungshärtung des Magnesiums bei einer Temperatur von 225 °C und einer Dauer von 34 h eine Steigerung der Radialkraft ermöglicht.

Report

1.  Einleitung

Die Chronisch Venöse Insuffizienz (CVI) stellt ein anhaltendes venöses Stauungssyndrom dar, das aufgrund diverser pathologischer Abweichungen im Venensystem mit graduell fortschreitendem Verlauf entsteht. Im Rahmen der Definition von CVI manifestieren sich Beinödeme, die zunächst über Nacht spontan rückgängig gemacht werden können, jedoch unbehandelt persistieren können [2,4,5].

Die Pathogenese der Erkrankung resultiert aus einer Insuffizienz der Venenklappen. Diese Defizienz der Klappen kann auf angeborene Fehlbildungen, strukturelle Schwäche oder abnormale, expandierbare Venenwände infolge anderer Pathologien wie Adipositas, langanhaltendes Stehen oder Sitzen zurückzuführen sein. Hieraus resultiert venöser Rückfluss, Behinderung des Blutflusses, Stauung und erhöhter Druck in den distalen Venenabschnitten. [1,4,6]

Die Therapie der CVI gliedert sich in konservative und invasive Maßnahmen. Die Wahl der Behandlungsstrategie hängt von der Anatomie und dem Stadium der Krankheit ab, wobei oft eine Kombination beider Ansätze empfohlen wird. Konservative Behandlungsoptionen umfassen allgemeine Maßnahmen, Kompressionstherapie, physikalische Entstauungstechniken sowie medikamentöse Therapien. Jedoch existieren Einschränkungen bezüglich der Effektivität konservativer Ansätze in bestimmten Kontexten, wie bei älteren Patienten mit multiplen Komorbiditäten. Die invasiven Verfahren fokussieren sich auf die Entfernung oder Verödung defizienter Venen oder die Isolierung der Refluxquelle vom restlichen Venensystem, wodurch das Blut ausschließlich durch gesunde Venen zirkuliert. Diese Maßnahmen führen zu signifikanter Symptomreduktion, Steigerung der Lebensqualität und Prävention von Folgeschäden. [3,5]

Das Ziel des BioV²alve-Projektes ist die biologische Rekonstruktion der Venenklappenfunktion durch ein biohybrides, textilbewehrtes, minimal-invasiv implantierbares Device. Die Trägerstruktur für die künstliche Venenklappe bildet ein degradierbarer, geflochtener Magnesiumstent. Dieser dient zur initialen Verankerung der Klappenstruktur in der Vene. Das Design des Stents wird bezüglich der Radialkraft optimiert um eine ausreichende Verbindung zwischen der Klappenstruktur und der Venenwand zu gewährleisten. Darüber hinaus wird das Migrationsrisiko des Implantates vermindert. Weitere Aspekte des Stentdesigns konzentrieren sich auf die ausreichende Flexibilität zur Anpassung an die Anatomie der Venenwand sowie der Sicherstellung von Knickresistenz. Die Klappenstruktur des Implantates wird der Anatomie der nativen Venenklappe nachempfunden. Eine gewirkte Netzstruktur bildet die textile Verstärkung der Klappe. Durch gezielte Nahtpunkte wird die Klappenstruktur am Stent verankert. Das Textil wird im BioV²alve Projekt mit einer Hydrogelbeschichtung kombiniert.

Das Ziel der Studie ist die Untersuchung des Einflusses der Wärmebehandlung der Stents auf die Radialkraft. Hierzu werden zwei verschiedene Wärmebehandlungen aus der Literatur verwendet.

2.  Material und Methoden

Stentherstellung

Die Stents werden mittels Einfadenflechten hergestellt. Hierbei wird Magnesium Draht der Legierung WE43 der Firma Meotec GmbH, Aachen, Deutschland mit einer Drahtstärke von 300 µm verwendet. Die Maße der Stents sind l = 25 mm und d = 12 mm.

Wärmebehandlung der Stents

Drei Temperatur-Dauer-Kombinationen werden auf jeweils drei Stents verwendet. Nach den Wärmebehandlungen wird bei allen Stents die Radialkraft getestet.

s. Tabelle 1: Temperatur und Dauer der Wärmebehandlungen

Radialkrafttestung

Zur Bestimmung der Radialkraft der Stents wird der Radialkrafttester TTR2 der Firma Blockwise Engineering LLC, Tempe, USA verwendet. Die Messungen erfolgen in Anlehnung an Teil 2 der DIN EN ISO 25539 und die ASTM Richtlinie F3067 – 14. Pro Parameterkombination werden drei Proben geprüft.

s. Tabelle 2:   Prüfparameter der Radialkraftprüfung

3. Ergebnisse

Die maximale Radialkraft wird genutzt, um die unterschiedlichen Wärmebehandlungen miteinander zu vergleichen. Pro Kombination der Prozessparameter wird die maximale Radialkraft von drei Proben ermittelt. Die Mittelwerte mit Standardabweichung aus den jeweils drei Proben wurden in Abbildung 1 aufgetragen. Der Referenzstent hat eine Radialkraft von 16,5 N ± 0,7 N und weist somit die niedrigste maximale Radialkraft auf. Die Wärmebehandlung mit 210 °C für 8 h führt zu einer Steigerung der maximalen Radialkraft auf 19,8 N ± 0,7 N.  Die Parameterkombination 225 °C mit 34 h weist mit 23,2 ± 0,8 N den höchsten Wert der maximalen Radialkraft. Dies entspricht einer Steigerung von 40 % gegenüber der Referenz ohne Wärmebehandlung.

s. Abbildung 1:   Maximale Radialkraft der Stents (Mittelwert und Standardabweichung)

s. Abbildung 2: Exemplarische Hysteresschleifen der Radialkraftmessung mit drei Zyklen eines Stents mit der Wärmebehandlung 225 °C und 34 h

4.  Zusammenfassung

Die Chronisch Venöse Insuffizienz (CVI) stellt ein anhaltendes venöses Stauungssyndrom dar, das aufgrund diverser pathologischer Abweichungen im Venensystem mit graduell fortschreitendem Verlauf entsteht. Das Ziel des BioV²alve-Projektes ist die biologische Rekonstruktion der Venenklappenfunktion durch ein biohybrides, textil-bewehrtes, minimal-invasiv implantierbares Device. Die Verwendung einer biodegradierbaren magnesiumbasierten Stentstruktur, welche sich nach erfolgter Einheilung der Venenklappe in das Umgebungsgewebe auflöst, ermöglicht eine schonende Therapie mit geringer dauerhafter Materialeinbringung in den Körper. Im Rahmen der Stententwicklung wurde der Einfluss der Wärmebehandlung nach dem Flechtprozess auf die maximale Radialkraft untersucht. Es wurde gezeigt, dass eine Ausscheidungshärtung des Magnesiums bei einer Temperatur von 225 °C und einer Dauer von 34 h eine Steigerung der Radialkraft ermöglicht.

5.  Danksagung

Das Projekt „BioV²alve“ (EFRE-0801315) wurde durch den Europäischen Fond für Regionale Entwicklung Nordrhein-Westfalen (EFRE.NRW) gefördert.

6.  Quellen

1.              Douketis, J.:  Chronisch Venöse Insuffizienz und Postthrombotisches Syndrom. Kenilworth 2016, URL: https://www.msdmanuals.com/de-de/profi/herz-kreislauf-krankheiten/periphere-venenerkrankungen/chronisch-venöse-insuffizienz-und-postthrombotisches-syndrom, Zugriff am 04.11.2019

2.              Ludwig, M.: Repetitorium für die Facharztprüfung Innere Medizin.
2. Aufl. Elsevier, München, Deutschland 2017

3.              Pannier F., Noppeney, T., Breu, F., et al.: S2k - Leitlinie Diagnostik und Therapie der Varikose, 03/2019

4.              Rabe, E., Gerlach, H.-E.: Praktische Phlebologie.
2. vollst. überarb. Aufl. THIEME, Stuttgart 2006

5.              Santler, B., Goerge, T.: Die chronische venöse Insuffizienz - Eine Zusammenfassung der Pathophysiologie, Diagnostik und Therapie. Journal der Deutschen Dermatologischen Gesellschaft 2017; 15 (5): 538–557

6.              Weber, B., Robert, J., Ksiazek, A., et al.:  Living-Engineered Valves for Transcatheter Venous Valve Repair. Tissue engineering Part C Methods 2014; 20 (6): 451–463

7.              Li, H.; Lv, F.; Liang, X.; Qi, Y.; Zhu, Z.; Zhang, K.:Effect of heat treatment on microstructures and mechanical properties of a cast Mg-Y-Nd-Zr alloy, Materials Science & Engineering A 667 (2016), S. 409-416

8.              Mengucci, P.; Barucca, G.; Riontino, G.; Lussana, D.; Massazza, M.; Ferragut, R.; Hassan Aly, E.: Structure evolution of a WE43 Mg alloy submitted to different thermal treatments, Materials Science and Engineering A 479 (2008), S. 37-44

Authors: Caroline Emonts Ren Pan Thomas Gries

Institut für Textiltechnik der RWTH Aachen, Otto-Blumenthal-Str. 1, 52074 Aachen

Stents Implantat Geflecht

More entries from ITA Institut für Textiltechnik der RWTH Aachen University

02.08.2023

Strain sensing of textile structures with polymer-based bicomponent filaments

Fibres Sensor Technology Smart Textiles

Abstract

Strain monitoring can be critical for structures such as light weight composites or civil structures. Many of these application already use textiles or fibres, meaning that sensor fibres are predestined for incorporation and monitoring. Polymer-based sensor filaments allow for a wide range of tailorability for the individual applications. In this work, particle based nanocomposite filaments are melt spun. Afterward, they are characterised regarding the morphology and static resistivities. Lastly, selected filaments are tested regarding the dynamic resistivity to evaluate the suitability for use as a strain sensor using the example of carbon fibre composite structures. It is shown in this work that the sensor filament can be produced by the melt spinning process. Further challenges which are not yet solved included the identification of outlier filaments without destructive testing, as well as the data analysis for the generation of a calibration curve. In further work, other application cases will be tested as well as additional, elastic filaments.

Report

Introduction

Smart textiles and wearables are no new topics in the field of textile research. Nevertheless, they have yet to reach the market breakthrough expected. Instead, the drastic increase in the market share is pushed into the future with each new study. Despite this breakthrough delay, there is no shortage of work in the academic field.

Much of the work is currently focusing on employing metal coated yarns for applications in which electrical signals are detected and transmitted. Although the electrical conductivity of these materials is in the range of typical metals, they are often negatively influenced from external factors such as moisture and friction. One approach to combat the wear is to employ a material in which the conductive component is integrated during production rather than subsequently applied as a coating. This can be done through the melt compounding of conductive particles into thermoplastic polymers, which are then extruded to filaments. These materials are inherently conductive but, when spun alone, are still subject to the influence of external moisture.

In order to solve both problems of wear and influence of moisture, bicomponent thermoplastic filaments have been developed at ITA. Additionally, these filaments open up opportunities for new filament sensors to be integrated not only in clothing but also lightweight composites and civil structures. The production, characterisation and outlook of these novel filaments is described below.

Production

Melt spinning is a method for the continuous filament production. Specifically, monofilament melt spinning is used for the manufacturing of products such as fishing line, tennis strings and 3D-printer filament. With the addition of a second extruder bicomponent filaments can also be produced. A schematic visualisation of the employed bicomponent monofilament machine is shown in Figure 1.

In order to generate an inherently conductive compound, conductive nanoparticles are mixed with a carrier thermoplastic material. In this work, a commercially available compound consisting of 4 wt.% carbon nanotubes (CNTs) and 96 wt.% thermoplastic polyurethane (TPU) from the company NanoCyl SA, Sambreville, Belgium is used. This compound is the core component of the filament. Two different sheath components are used: Polypropylene (PP) Moplen HP561R, LyondellBasel Industries Holding B.V., Rotterdam, The Netherlands and TPU 1185 from BASF Polyurethane, Lemsförde, Germany. The resulting filaments will be further referred to as PP/TPU and TPU/TPU. The production parameters for the filaments are shown in Table 1.

Table 1:            Production parameters for the monofilaments (see attached pdf)

Results and discussion

The cross-sections of the filaments are analysed using light microscopy. The samples are first embedded in epoxy and polished. The images of the filaments are shown in Figure 2. The variance of the final areas and diameters stem from the difference in the material density in the molten and solid state. In both filaments a clear distinction between the core and sheath components is visible.

Electrical analysis to determine the static and dynamic electrical resistance is done by cutting the filament cleanly to expose the core and then dipping the filament in silver paint. An electrical path from the core to the surface of the filament is generated and the filament can be contacted with standard clamps. This method is schematically shown in Figure 3. Unfortunately, due to the softness of the TPU in the sheath, this method is not suitable for the electrical contacting of the TPU/TPU filament. Therefore, only the results of the PP/TPU filament are presented.

For the first quantitative tests, electrical resistance is measured simultaneously while applying a tensile strain. The starting length of the filament to be deformed is 5 cm and a constant speed of 1 mm/min is applied. This roughly corresponds to a strain rate of 2 %/min. This slow speed is derived from the strain rates for testing of geoplastics. The total length of the sensor filament, including the length clamped in the tensile machine and length needed to attach the multimeter, is 20 cm. Five filament samples are tested in this set-up. The test set-up is shown schematically in Figure 4.

In conventional strain gauge technology, the electrical response of the sensor is given as the normalised change of the resistance using the equation below. Here Rε is the resistance at strain ε and R0 is the resistance at strain 0 %.

 

ΔR/R [-] = Rε [Ω] - R0 [Ω]R0 [Ω]

(1)

This same convention is initially used for the analysis of the sensor filaments. The resulting curves for the filament PP/TPU is shown in Figure 5, left. It can be seen that, although the general trend of the curves is similar, an exact calibration of the sensors is not yet possible. One assumption for the varying trends results from the variance in the R0 of the filaments, causing a difference in the scaling of the curves as shown is Eq. 1. The initial values R0 can be seen in Figure 6.

The sensor response is then calculated in regards only to the change in resistance, as opposed to the normalised change. This alternate equation can be seen below and the resulting diagram can be seen in Figure 5, right.

 

ΔR [Ω] = R [Ω] -R0 [Ω]

(2)

 

It can be seen that the response of the five tested filaments is in much more agreement when only the change in the resistance is considered. This result demonstrates the fact that the analysis of the novel sensor filaments may not be taken completely from conventional, current solutions and may have to be rethought entirely. Additionally, there seems to be a correlation between the noise of the measurements and the high R0, for example for repetitions 4 and 5. When these filaments are removed from the visual representation, a calibration of the sensor filament can be done with high precision until 7 %, which is generally larger than expected strains in structural applications (Figure 7).

Conclusion and Outlook

The results presented here show the extreme potential of polymer-based sensor filaments. Through the production parameters, the filaments can be tailored to match specific requirements of a variety of applications. These sensor filaments can revolutionise structural health monitoring in civil structures, lightweight components and many, yet to be discovered, applications. In order to realise this technological breakthrough, work still needs to be done in various aspects:

  • Identification of more technical applications, for which the sensor filaments can be relevant
  • Mechanical and electrical contacting of the filaments in a more robust manner, as well as contacting of the softer TPU/TPU filaments
  • Variation of testing parameters in order to investigate the sensor response under different loading cases (cyclic, relaxation, creep, different strain rates, combination of loading)
  • Testing of the sensor response after integration in to the substrate material
  • Data analysis to understand the proper data visualisation for the novel material
  • Improvements of the electrical circuit while testing to include four-point electrical measurements as well as the incorporation of a Wheatstone bridge

 

Acknowledgment

We would like to thank the Federal Ministry for Economic Affairs and Climate Action (BMWK) for funding of the project ZIM Plug&Sense (KK5055907ZG0).

Authors: Jeanette Ortega Thomas Gries

ITA Institut für Textiltechnik der RWTH Aachen University
Otto-Blumenthal-Str. 1
52074 Aachen

More entries from ITA Institut für Textiltechnik der RWTH Aachen University

19.07.2023

Magnesium als Textil: Potenziale textiler Mg-Implantate

Fabrics Knittings Medicine Tests

Abstract

Implantate werden eingesetzt, um Körperfunktionen wiederherzustellen oder zu unterstützen. Stentimplantate werden beispielsweise implantiert, um Blutgefäße oder Organe zu öffnen oder zu stabilisieren. Insbesondere bei direktem Blutkontakt, aber auch in nicht-vaskulären Anwendungsbereichen verursachen dauerhaft im Patienten verbleibende Fremdkörper Langzeitkomplikationen und sorgen für eine erhöhte Patientenbelastung. Die zentralen Defizite sind Entzündungsreaktionen, notwendige Revisions- oder Entnahmeoperationen, Stress-Shielding (Gewebeveränderung aufgrund mechanischer Einflüsse), Lockerung und Migration aufgrund des Wachstums des Patienten und erhebliche Einschränkungen diagnostischer Verfahren wie Röntgen und CT-Scans durch die Verursachung von Bildartefakten. Aus den genannten Gründen wird seit einigen Jahren bereits an degradierbaren Implantatmaterialien geforscht. Magnesium hat sich dabei aufgrund seiner mechanischen Eigenschaften als vielversprechend erwiesen. Während Fertigungsverfahren wie Gießen oder Schneiden von Magnesium bereits gut erforscht sind, besteht wenig veröffentlichtes Wissen über die Entwicklung Mg-Draht basierter, textiler Strukturen. In dieser Studie wird die Möglichkeit der Verarbeitbarkeit von Magnesiumdraht in textilen Fertigungsverfahren aufgezeigt und am Beispiel von Stentimplantaten relevante Stell- und Zielgrößen validiert. Es kann gezeigt werden, das Magnesium textil verarbeitbar ist und sich anhand von Mg-Draht für die medizinische Anwendung geeignete textile Strukturen erzeugen lassen.

Report

Abstract: Implantate werden eingesetzt, um Körperfunktionen wiederherzustellen oder zu unterstützen. Stentimplantate werden beispielsweise implantiert, um Blutgefäße oder Organe zu öffnen oder zu stabilisieren. Insbesondere bei direktem Blutkontakt, aber auch in nicht-vaskulären Anwendungsbereichen verursachen dauerhaft im Patienten verbleibende Fremdkörper Langzeitkomplikationen und sorgen für eine erhöhte Patientenbelastung. Die zentralen Defizite sind Entzündungsreaktionen, notwendige Revisions- oder Entnahmeoperationen, Stress-Shielding (Gewebeveränderung aufgrund mechanischer Einflüsse), Lockerung und Migration aufgrund des Wachstums des Patienten und erhebliche Einschränkungen diagnostischer Verfahren wie Röntgen und CT-Scans durch die Verursachung von Bildartefakten. Aus den genannten Gründen wird seit einigen Jahren bereits an degradierbaren Implantatmaterialien geforscht. Magnesium hat sich dabei aufgrund seiner mechanischen Eigenschaften als vielversprechend erwiesen. Während Fertigungsverfahren wie Gießen oder Schneiden von Magnesium bereits gut erforscht sind, besteht wenig veröffentlichtes Wissen über die Entwicklung Mg-Draht basierter, textiler Strukturen. In dieser Studie wird die Möglichkeit der Verarbeitbarkeit von Magnesiumdraht in textilen Fertigungsverfahren aufgezeigt und am Beispiel von Stentimplantaten relevante Stell- und Zielgrößen validiert. Es kann gezeigt werden, das Magnesium textil verarbeitbar ist und sich anhand von Mg-Draht für die medizinische Anwendung geeignete textile Strukturen erzeugen lassen.

  1. Einleitung

Die Food and Drug Administration (FDA), die Aufsichtsbehörde für Lebensmittel und Arzneimittel in den USA, einem der größten Medizintechnikmärkte der Welt, definiert Implantate als Produkte, die an oder unter der Körperoberfläche implantiert werden, um Medikamente abzugeben, Körperfunktionen zu überwachen oder Organe und Gewebe zu unterstützen. Beispiele sind Stentimplantate, Knochenschrauben/-platten sowie Herzschrittmacher und Defibrillatoren. [FDA19] Die Fallzahlen der Implantationen in Deutschland verdeutlichen, dass es zwei große Anwendungsbereiche für Implantate gibt. Sieht man von Zahnimplantaten ab, werden die meisten Implantate im Bereich des Skelettsystems eingesetzt. Im Jahr 2017 wurden 238.000 Hüftgelenke, 191.000 Kniegelenke und 26.000 Endoprothesen in Extremitäten implantiert. An zweiter Stelle stehen Stentimplantate mit 138.000 Implantaten in Gefäßen und Organen. [Bra18]

Die aktuell überwiegend verwendeten Implantatmaterialien können in Metalle, Polymere und Keramiken unterteilt werden. Metalle wie rostfreier Stahl werden verwendet, wenn eine hohe Festigkeit erforderlich ist, während Nickel-Titan-Legierungen eingesetzt werden, wenn ein elastisches Strukturverhalten erforderlich ist. Im Bereich der Polymere werden verschiedene Kunststoffe verwendet, von Polyethylen für hohe Abriebfestigkeit bis zu Polytetrafluorethylen (PTFE) für besonders geringe Reibung. Keramische Werkstoffe werden vor allem als Hüftgelenkkugeln, Knochenersatzmaterial und in der Zahnmedizin verwendet, darunter Aluminium und Zirkonoxid. [SSA+15; Psc20]

Diese beständigen Implantatmaterialien bringen allerdings entscheidende Nachteile mit sich. Die fünf am häufigsten genannten Defizite sind im Folgenden zusammengefasst:

  1. Ein zentrales Defizit ist das Risiko von Entzündungsreaktionen, wie z. B. beim Einsatz von Stentimplantaten. Stents werden eingesetzt, um verengte Gefäße wieder zu öffnen oder offen zu halten. Wenn ein Stent über einen längeren Zeitraum von mehreren Jahren im Körper verbleibt, kann es aufgrund mechanischer und biochemischer Reizungen zu Entzündungsreaktionen (Inflammation) kommen. Diese führt zur Bildung von Narbengewebe, welches den Stent überwuchern kann, wodurch das betroffene Gefäß wieder verschlossen wird (Restenose). [OTO+21]
  2. Ein weiterer Nachteil sind die notwendigen Revisions- oder Entnahmeoperationen für vorübergehend benötigte Implantate. In diesem Zusammenhang sind die häufig erforderlichen Medikamente zur Verringerung von Fremdkörperreaktionen und ihre Nebenwirkungen eine zusätzliche Belastung der Patienten. Dies und der zusätzliche Eingriff führt zu erhöhter Belastungen des Patienten, höheren Kosten und operationsbedingten Risiken wie bspw. Infektionen. [WXH+20]
  3. Stress Shielding ist ein Defizit permanenter Implantate, welches insbesondere in der Orthopädie auftritt. Dieser Effekt hängt mit den mechanischen Eigenschaften der verwendeten Implantatmaterialien zusammen, insbesondere mit der Festigkeit und dem elastischen Verhalten. Die heute verwendeten Materialien haben in der Regel eine höhere Zugfestigkeit und ein höheres Elastizitätsmodul als der umgebende Knochen. Dadurch werden die Kräfte, die nativ gleichmäßig durch den Knochen geleitet werden, je nach Belastung lokal, punktuell in das weichere Füllmaterial (Spongiosa) des Knochens eingebracht. Bereiche des Knochens, die nun weniger belastet werden, werden zurückgebildet und dies kann zu einer Lockerung des Implantats führen. [WXH+20]
  4. Ein Nachteil bei der Behandlung junger, noch wachsender Patienten ist, dass sich Implantate, die lange Zeit im Körper verbleiben, nur bedingt dem Wachstum anpassen können. Dies kann zur Lockerung von Endoprothesen und so zu einem erhöhten Risiko der Migration von Stentimplantaten führen. Darüber hinaus können Implantate das natürliche Wachstum des Patienten negativ beeinflussen. [OTO+21]
  5. Implantate erschweren die Diagnostik anhand bildgebender Verfahren. Insbesondere metallische Implantate verursachen Bildartefakte in Röntgenaufnahmen oder bei CT-Scans, was die Auswertung des Bildmaterials erschwert oder unmöglich macht. [OTO+21]

Zusammenfassend kann also festgehalten werden, dass es sinnvoll wäre Implantate zu verwenden, die während der Heilungsphase abgebaut werden, damit der Körper nach und nach seine natürliche Funktion wiederherstellen kann und langfristig keine Fremdkörper im Patienten zurückbleiben.

  1. Stand der Technik & Defizit

Bei der Auswahl geeigneter Implantatmaterialien müssen drei zentrale Materialeigenschaften berücksichtigt werden. Die Biokompatibilität, die mechanischen Eigenschaften sowie die Degradationszeit. Biokompatible Materialien verursachen keine nachteiligen Gewebereaktionen, sind metabolisierbar und erzeugen pH-neutrale Abbauprodukte. Was die mechanischen Eigenschaften betrifft, so müssen Zugfestigkeit und Elastizitätsmodul genauso wie die Degradationszeit in vivo der Heilungszeit der jeweiligen Anwendung entsprechen. [PRW+22]

Die Auswahl an in der aktuellen Forschung relevanten, abbaubaren Implantatmaterialien umfasst Polymere wie PLLA (Polymilchsäure) und PDS (Polydioxanon) sowie Metalle wie Eisen und Magnesium (Tabelle 1). Ein optimales Implantatmaterial sollte chemisch neutral abbaubar sein, eine biokompatibel sein und innerhalb des optimalen Korridors der Abbaudauer liegen. Insbesondere bei Anwendungen in Hohlorganen und Gefäßen sollten die mechanischen Eigenschaften des Implantatmaterials besonders hoch sein, um ein optimales Verhältnis zwischen Wandstärke und Stützkraft zu ermöglichen. Da PLLA und Eisen zu langsam degradieren, setzt sich Magnesium aufgrund seiner besseren Zugfestigkeit und Steifigkeit im Vergleich zu PDS als besser geeignetes Material für tragende und stützende Anwendungen durch. [PRW+22]

s. Anlage Tabelle 1: Eigenschaften degradierbarer Materialien [EBK+22; MLM+20; LFW14]

Es ist anzumerken, dass die Eigenschaften von purem Magnesium hinsichtlich der Anwendung für medizinische Implantate nicht ausreichend sind. Wie bei anderen Metallen können diese Eigenschaften anhand der Stellgrößen Legierungskomponenten, Kornstruktur sowie Geomtrie- und Oberflächengestaltung eingestellt werden. Dabei spielen das metallische Gefüge (Legierungszusammensetzung und Kornstruktur), die geometrische Gestaltung des Implantats, die Oberflächenbehandlung und die Beschichtung eine Rolle. Eine in der Medizintechnik häufig verwendete Legierung ist WE43, die Yttrium, verschiedene seltene Erden und Zirkonium enthält und eine hohe Festigkeit und Korrosionsbeständigkeit aufweist. [LFW14] Es befinden sich bereits lasergeschnittene Implantate aus diesem Material wie der Magmaris-Stent von Biotronik SE, Berlin in klinischen Studien, Knochenschrauben wie die Magnezix-Schraube der Firma Syntellix AG, Hannover sind bereits auf dem Markt und auch an großvolumigen, 3D-gedruckten (Lasersintern) Lösungen wird geforscht. [HIK+18; Syn19] Die textile Verarbeitung von Mg-Draht zu textilen Implantaten ist nach aktuellem Stand der Technik noch wenig erforscht. Dabei besteht gerade im Bereich großlumiger Gefäßprothesen ein hoher, stark wachsender Bedarf. [GJG22; Mer23b]

  1. Methodik

Bei der Validierung von Magnesium als Implantatmaterial für die Herstellung abbaubarer, textiler Stützstrukturen sind initial zwei zentrale Fragen zu klären.

  1. Zum einen stellt sich die Frage nach der Verarbeitbarkeit des Ausgangsmaterials. Textile Prozesse erfordern spezifische, mechanische und tribologische Eigenschaften des Halbzeugs. Hierzu gehören eine hohe Zugfestigkeit, ein geeignetes Elastizitätsmodul und passende Biegesteifigkeit sowie ein verarbeitbarer Durchmesser des Ausgangsmaterials.
  2. Zum anderen muss die Eignung der Produkteigenschaften der textilen Strukturen für relevante klinische Indikationen gewährleistet sein. Hierzu gehören die mechanischen Eigenschaften (FRRF, FCOF) (1) sowie die mechanische Integrität bei zyklischer Belastung der Implantate (2).

3.1 Validierung der Verarbeitbarkeit

Am Institut für Textiltechnik der RWTH Aachen wurde die Verarbeitbarkeit von Magnesium und vergleichbaren Werkstoffen zur Herstellung von textilen Schlauchstrukturen durch Stricken, Weben und Flechten bereits untersucht (IGF-Forschungsprojekt 18880 N "MagCage - Textiles Magnesium-Implantat mit spezifischem mechanischem und geometrischem Eigenschaftsprofil für die Behandlung großer Knochendefekte in Röhrenknochen"). Es konnte gezeigt werden, dass aus Magnesiumdraht schlauchförmige Strukturen durch Strickverfahren hergestellt werden können. Im Webprozess führte die Herstellung von Geweben mit geschlossenen Webkanten aufgrund der Biegesteifigkeit des Ausgangsmaterials zu unbrauchbaren, inhomogenen Ergebnissen. Die Verarbeitbarkeit im Flechtprozess wurde sowohl maschinell als auch manuell untersucht. Es konnte gezeigt werden, dass der Magnesiumdraht mit geringen Modifikationen der Flechtklöppel verarbeitet werden kann. Auch die manuelle Verarbeitbarkeit des Magnesiumdrahtes konnte nachgewiesen werden (Siehe Abbildung 1). [Bol18]

s. Anlage Abbildung 1: Textile Verarbeitung von Magnesium-Draht [Bol18; Mer23a]

3.2 Validierung der Produkteigenschaften

Die Eignung von drahtbasierten Geflechten zur Anwendung als Implantat wurde am Institut für Textiltechnik am Beispiel von Stentimplantaten untersucht und bestätigt [Mer23b]. Eine Validierung der relevanten Produktparameter sowie der Dauerfestigkeit der Produkte steht noch aus und soll hier vorgestellt werden. Zur Prüfung der mechanischen Eigenschaften der Stentstrukturen bestehen genormte Verfahren wie die radiale Druckprüfung (DIN EN ISO 25539-2) (Siehe Abbildung 2). Dabei wird der Widerstand des Implantats gegen Kompression auf einen kleineren Durchmesser gemessen. Eine Bewertung kann z. B. anhand der radialen Stützkraft des Implantats bei einem Mindestdurchmesser von 50 % des Ausgangsdurchmessers vorgenommen werden.

s. Anlage Abbildungs 2:           Prüfvorrichtung zur Validierung der Radialkraft der Stentimplantate [Mer23a]

Im Rahmen der hier veröffentlichten Studien wurden zunächst zentrale Produktparameter (1) und ihr Einfluss auf die Zielgrößen Radialkraft (FRRF), Öffnungskraft (FCOF) sowie die bleibende Verformung (Längung, ΔDS und Stauchung, ΔLS) untersucht. Die berücksichtigen Produktparameter sind die Kronenzahl nK, der Flechtwinkel (Anzahl der Windungen nW) sowie die Länge der Implantate LS (Tabelle 2). Der Stent Durchmesser beträgt DS = 16 mm. Die Stentimplantate wurden manuell aus PEO-beschichtetem Mg-Draht der Firma Meotec GmbH, Aachen (DD = 0,2 mm) geflochten (Abbildung 3), in Anlehnung an die Prüfnorm DIN EN ISO 25539-2 geprüft und anhand eines faktoriellen Versuchsplanes ausgewertet.

s. Anlage Tabelle 2 und Abbildung 3: Tabelle 2:   Strukturmerkmale und Variationen und Abbildung 3:   Exemplarische Darstellung der Mg-Stentimplantate

Zur Validierung der Dauerfestigkeit (2) wurden in Anlehnung an die Prüfnorm DIN EN ISO 25539-2 zyklische Versuche durchgeführt. Das hierzu herangezogene Stentdesign ist ein Rundgeflecht mit einer Länge LS = 30 mm und einem Durchmesser von DS = 6 mm. Zur Validierung der Dauerfestigkeit wurde in Vorversuchen zunächst der Bereich der „elastischen Verformung“ des Implantates ermittelt. Es wurde ein Crimp-Durchmesser von DS = 85% D0 als überwiegend elastischer Prüfbereich definiert. Vollständige elastische Rückstellung ist mit dem vorliegenden Mg-Draht nicht möglich. Mit diesem Prüfdurchmesser wurden Versuchsreihen mit nP = 50 und 200 Zyklen durchgeführt und ausgewertet.

4. Ergebnisse

Im Folgenden werden die Ergebnisse der Parameteruntersuchung (1) sowie der Validierung der Dauerfestigkeit (2) vorgestellt.

Im Rahmen der Parameterstudie (1) konnte gezeigt werden, dass die Anzahl der Kronen nK einen deutlichen Einfluss auf die Radialkraft FRRF und die Öffnungskraft FCOF der Stents hat. Durch eine Erhöhung der Kronenanzahl nK von 6 auf 12 ergibt sich eine durchschnittliche Steigerung der Radialkraft FRRF um ca. 381 % und eine Zunahme der Öffnungskraft FCOF um durchschnittlich ca. 32 %. Des Weiteren führt die Erhöhung der Kronenanzahl nK zu einer signifikanten Veränderung der bleibenden Verformung. Dabei wurde eine Reduzierung der bleibenden Stauchung ΔDS von durchschnittlich ca. 65 % und eine Erhöhung der bleibenden Längung ΔLS von durchschnittlich ca. 33 % festgestellt.

Die Erhöhung der Anzahl der Windungen nW zeigt einen positiven Effekt in Bezug auf die Radialkraft FRRF und die Öffnungskraft FCOF der Stents. Durch eine Erhöhung der Anzahl der Windungen nW von 1 auf 2 wurde eine durchschnittliche Steigerung der Radialkraft FRRF um ca. 253 % und eine Zunahme der Öffnungskraft FCOF um ca. 212 % beobachtet. In Bezug auf die bleibende Verformung ist ein Anstieg um ca.  33 % bei der bleibenden Längung ΔLS erkennbar, während der Effekt auf die bleibende Stauchung ΔDS nicht eindeutig festzustellen ist.

Der Produktparameter Länge LS wirkt sich negativ auf die Radialkraft FRRF und die Öffnungskraft FCOF aus. Eine Erhöhung LS der Länge von 37 mm auf 45 mm führt zu einer durchschnittlichen Reduzierung der Radialkraft FRRF um ca. 11 % und zu einer durchschnittlichen Verringerung der Öffnungskraft FCOF um ca. 16 %. In Bezug auf die bleibenden Längung ΔLS und bleibende Stauchung ΔDS sind keine eindeutigen Effekte festzustellen. Die zahlenmäßigen Ergebnisse sind in Abbildung 4, die durchschnittlichen Effekte der einzelne Parameter auf die Zielgrößen in Tabelle 3 dargestellt. 

s. Anlage Abbildung 4 und Tabelle 3, Abbildung 3:   Exemplarische Darstellung der Mg-Stentimplantate und Tabelle 3:        Mittlerer Effekt auf Zielgrößen (Faktorieller Versuchsplan)

Die Validierung der Dauerfestigkeit (2) wurde bei einem Prüfdurchmesser von DS = 85% D0 validiert (nP = 10) und durchgeführt (Abbildung 5, links). Die zyklischen Versuche wurden zunächst mit nP = 50 Zyklen durchgeführt (Abbildung 5, rechts).

s. Anlage Abbildung 5:           Zentrale Ergebnisse der zyklischen Versuche (1/2)

Die maximale Radialkraft (DS,85) des Implantates schwankt über den Prüfverlauf, während die geometrische Integrität erhalten bleibt. Es kommt zu keiner nennenswerten plastischen Verformung. Eine Veränderung der Stützkraft über den Prüfverlauf ist nicht erkennbar (Abbildung 6, links). Die mittlere Radialkraft stagniert zwischen 11,5 N und 10,7 N, bei einer Standardabweichung von 0,3 – 0,5 N. Die Radialkräfte von Zyklus 1., 25. und 50. unterscheiden sich nicht signifikant. Die Versuchsreihe mit nP = 200 Zyklen (nS = 1) ergibt ein ähnliches Ergebnis (Abbildung 6, rechts). Die Streuung der Ergebnisse nimmt erheblich zu, aber es ist keine Tendenz erkennbar.

s. Anlage Abbildung 6:           Zentrale Ergebnisse der zyklischen Versuche (2/2)

4. Fazit und Ausblick

Die Anwendungsbereiche für drahtbasierte Implantate wie bspw. Stentimplantate sind groß und nehmen zu. Degradierbare Implantate gelten dabei als vielversprechender Lösungsansatz, um die Defizite permanenter Implantate auszuräumen. Drahtbasierte Fertigungsverfahren zur Herstellung von Mg-Implantaten sind allerdings kaum untersucht. Im Rahmen der vorliegenden Studie wurden Ergebnisse zu relevanten mechanischen Eigenschaften von Mg-Implantaten und wie diese im Produktdesign eingestellt werden können präsentiert.

Die Ergebnisse der Studie zeigen signifikante Effekte der zentralen Produktparameter, insbesondere auf die Zielgrößen Radialkraft FRRF und Öffnungskraft FCOF. Im Hinblick auf die Öffnungskraft FCOF ergibt sich die Anzahl der Windungen nW aber auch die Anzahl der Kronen nK als entscheidende Faktoren mit größtem Optimierungspotential. Es stellte sich auch heraus, dass die Länge LS einen schwach negativen Einfluss auf die Öffnungskraft FCOF hat, was bei der Auslegung berücksichtigt werden sollte. Eine Bewertungsübersicht der zentralen Ergebnisse bezüglich der Effektstärken ist in Tabelle 4 dargestellt.

Die zyklischen Versuche zeigen, dass Mg-Draht basierte Stentimplantate eine geringe Ermüdungsneigung aufweisen und eine vollelastische Strukturstabilität der textilen Strukturen nach einmaliger Verformung im 1. Prüfzyklus gegeben ist. Bis zu nP = 200 Zyklen wurden kein Materialversagen oder anderweitige Unregelmäßigkeiten beobachtet. Auch wenn die Forschung noch am Anfang steht, zeigt diese, wie auch vorangegangene Veröffentlichungen [Mer23b; GJG22], das Magnesium als Implantatmaterial für drahtbasierte (Stent-)Implantate ein Werkstoff mit hohem Innovationspotenzial ist.

s. Anlage Abbildung 6:           Zentrale Ergebnisse der zyklischen Versuche (2/2)

 

Literaturverzeichnis

[Bol18]        Bolle, T.: MagCage - Textiles Magnesium-Implantat mit spezifischem mechanischem und geometrischem Eigenschaftsprofil für die Behandlung großer Knochendefekte in Röhrenknochen, 2018

[Bra18]       Brandt, Mathias: Was am häufigsten implantiert wird, 2018, https://de.statista.com/infografik/16204/operationen-zum-einsetzen-von-implantaten-in-deutschland/, Zugriff am 17.07.2023

[EBK+22]    Erben, J.; Blatonova, K.; Kalous, T.; Capek, L.; Behalek, L.; Boruvka, M.; Chvojka, J.:
The Injection Molding of Biodegradable Polydioxanone-A Study of the Dependence of the Structural and Mechanical Properties on Thermal Processing Conditions
Polymers Band:14 (2022)            H. 24

[FDA19]      FDA: Implants and Prosthetics, 2019, https://www.fda.gov/medical-devices/products-and-medical-procedures/implants-and-prosthetics, Zugriff am 17.07.2023

[GJG22]      Grimm, Y.; Jaworek, F.; Gries, T.:
Overview on the current global market of stent implants. Düren: Shaker Verlag, 2022

[HIK+18]     Haude, M.; Ince, H.; Kische, S.; Abizaid, A.; Tölg, R.; Alves Lemos, P.; van Mieghem, N. M.; Verheye, S.; Birgelen, C. von; Christiansen, E. H.; Barbato, E.; Garcia-Garcia, H. M.; Waksman, R.: Safety and clinical performance of a drug eluting absorbable metal scaffold in the treatment of subjects with de novo lesions in native coronary arteries: Pooled 12-month outcomes of BIOSOLVE-II and BIOSOLVE-III
Catheterization and cardiovascular interventions : official journal of the Society for Cardiac Angiography & Interventions Band:92 (2018) H. 7, E502-E511

[LFW14]     Luthringer, B. J.; Feyerabend, F.; Willumeit-Römer, R.:
Magnesium-based implants: a mini-review
Magnesium research Band:27 (2014)      H. 4, S. 142–154

[Mer23a]     Merkord, F.:
Evaluierung automatisierter Verfahren zur Herstellung drahtbasiert geflochtener Stentimplantate.
1. AuflageAufl.- Düren: Shaker, 2023

[Mer23b]     Merkord, F.:
Magnesium Wire in Medical Application - A Glimpse Into Future (2023)

[MLM+20]   Martins, J. A.; Lach, A. A.; Morris, H. L.; Carr, A. J.; Mouthuy, P.-A.:
Polydioxanone implants: A systematic review on safety and performance in patients
Journal of biomaterials applications Band:34 (2020)        H. 7, S. 902–916

[OTO+21]   Ochijewicz, D.; Tomaniak, M.; Opolski, G.; Kochman, J.:
Inflammation as a determinant of healing response after coronary stent implantation
The international journal of cardiovascular imaging Band:37 (2021) H. 3, S. 791–801

[PRW+22]   Prasadh, S.; Raguraman, S.; Wong, R.; Gupta, M.:
Current Status and Outlook of Temporary Implants (Magnesium/Zinc) in Cardiovascular Applications
Metals Band:12 (2022)     H. 6, S. 999

[Psc20]       Pschyrembel: Transplantation, 2020, https://www.pschyrembel.de/Transplantation/K0MU4, Zugriff am 17.07.2023

[SSA+15]    Saini, M.; Singh, Y.; Arora, P.; Arora, V.; Jain, K.:
Implant biomaterials: A comprehensive review
World journal of clinical cases Band:3 (2015)      H. 1, S. 52–57

[Syn19]       Syntellix AG: Bioresorbierbare Magnesiumschrauben (MgYREZr) in der orthopädischen Chirurgie, 2019, https://wehrmed.de/humanmedizin/bioresorbierbare-magnesiumschrauben-mgyrezr-in-der-orthopaedischen-chirurgie-3832.html, Zugriff am 18.07.2023

[WXH+20]        Wang, J.-L.; Xu, J.-K.; Hopkins, C.; Chow, D. H.-K.; Qin, L.:
Biodegradable Magnesium-Based Implants in Orthopedics-A General Review and Perspectives: Advanced science (Weinheim, Baden-Wurttemberg, Germany) Band:7 (2020) H. 8, S. 1902443

Authors: Merkord, Felix Newroly, Bendewar Gerber, Dennis Gries, Thomas

Institut für Textiltechnik der RWTH Aachen, Otto-Blumenthal-Str. 1, 52074 Aachen

More entries from ITA Institut für Textiltechnik der RWTH Aachen University

07.07.2023

Innovation durch Zusammenarbeit: wie die Digitalisierung die Vliesstoffindustrie verändern wird

Nonwovens Textile machinery Sensor Technology

Abstract

Die Vliesstoffindustrie steht vor zahlreichen Herausforderungen, darunter komplexe Produktionsprozesse, hohe Qualitätsanforderungen, regulatorischer Druck und Fachkräftemangel. Um diesen Herausforderungen zu begegnen, ist eine zunehmende Automatisierung auf der Grundlage der Digitalisierung der Industrie erforderlich. Obwohl die vierte industrielle Revolution große Versprechen mit sich bringt, hinken viele Unternehmen, einschließlich der Textilindustrie, bei der Umsetzung von Industrie 4.0 noch hinterher. Dies liegt teilweise am hohen Implementierungsaufwand, fehlenden Standards, hohen Kosten, mangelndem Know-how und fehlender Datengrundlage. Um die Vorteile der Digitalisierung nutzen zu können, sollten Unternehmen eine kosteneffiziente Datengrundlage aufbauen und digitale Kooperationen in Ökosystemen eingehen. Die Digitalisierung und die nachhaltige Transformation sollten Hand in Hand gehen, um ökonomische, soziale und ökologische Nachhaltigkeitsziele zu erreichen. Eine Plattformlösung kann eine skalierbare und interoperable Lösung bieten. Eine Zusammenarbeit zwischen verschiedenen Akteuren, die gemeinsame Fragen beantworten, ist erforderlich, um ein einheitliches digitales System für die Vliesstoffindustrie aufzubauen. Wenn diese Herausforderungen erfolgreich bewältigt werden, können Unternehmen von den Vorteilen der Digitalisierung profitieren und ihre Wettbewerbsfähigkeit steigern. Dies gilt nicht nur für einzelne Unternehmen, sondern für die gesamte Branche. Eine gemeinsame Zusammenarbeit und das Auftreten gegenüber Förderträgern und der Politik sind erforderlich, um diese Ziele zu erreichen. Eine Zusammenarbeit mit anderen Branchen wie der Papierindustrie kann ebenfalls vorteilhaft sein, um Lösungen effizienter und kostengünstiger umzusetzen.

Report

Abstract: Die deutsche Industrie befindet sich an einem kritischen Punkt. Während die Nachhaltigkeitsanforderungen durch die zunehmende Regulierung steigen, bietet die Digitalisierung die Chance, Produktionsprozesse zur optimieren und Ressourcen zu sparen. Damit einher gehen zusätzliche bürokratische Hürden, wie auch zuletzt das Lieferkettensorgfaltspflichtengesetz zum Jahreswechsel gezeigt hat. Um im Wettbewerb bestehen zu können und langfristig erfolgreich zu sein, ist es wichtig, digitale Ökosysteme zur effizienten Verarbeitung der entsprechenden Daten zu entwickeln, die sowohl ökologisch als auch ökonomisch tragfähig sind. Dies erfordert jedoch ein Umdenken innerhalb der Branche und die Verknüpfung von technologischen Fortschritten mit nachhaltigem Handeln. Dieser Artikel zeigt die bereits erzielten Fortschritte und ein mögliches weiteres Vorgehen auf.

Die Vliesstoffindustrie im Wandel

Der Blick auf den Status Quo zeigt zunächst zahlreiche Problemherde: Der hohe Komplexitätsgrad der Produktionsprozesse, die hohen Qualitätsanforderungen in vielen technischen, systemrelevanten Anwendungen, der zunehmende regulatorische Druck und der allgegenwärtige Fachkräftemangel treffen auf die ohnehin preis- bzw. kostensensible Vliesstoffbranche. Zur Komplexität tragen die große Vielfalt an Rohstoffen, Einflussparametern, Produktionsanlagen und Anwendungen bei. Die zunehmende Regulierung erhöht zusätzlich den Druck, wie z. B. das Lieferkettensorgfaltspflichtengesetz durch die zunehmende Verantwortung für die gesamte Lieferkette zeigt. Die Textilindustrie wird in der europäischen Variante als Risikobranche eingestuft und daher besonders beachtet. In den kommenden Jahren wird durch die EU-Richtlinie zur Nachhaltigkeitsberichtserstattung für viele Unternehmen ebenfalls ein erheblicher zusätzlicher Aufwand entstehen. Diese zusätzlichen Regularien müssen durch immer weniger Fachkräfte erfüllt werden: bis 2060 werden in Deutschland 10-16 Millionen Arbeitskräfte fehlen [FSW21], die europäische Textilindustrie wird schon in der nächsten Dekade 500.000 Arbeitskräfte aufgrund des demografischen Wandels verlieren [Wal22]. Die zunehmenden Herausforderungen sind nur durch eine steigende Automatisierung zu beherrschen, die Grundlage dafür bildet die Digitalisierung der Industrie.

Die vierte industrielle Revolution geht mit großen Versprechen einher, z. B.: Einsparung von Kosten, Steigerung von Umsätzen und Steigerung des Automatisierungsgrades [LBO18]. Jedoch verharren viele Unternehmen noch in den ersten Stufen der Industrie 4.0 und sind weit von den Versprechen entfernt. Das gilt auch für die Textilindustrie, die allerding als ein Vorreiter für Innovationen in diesem Bereich gilt. Die Hauptprobleme liegen im hohen Implementierungsaufwand, der zu Teilen durch fehlende Standards, hohe Kosten, fehlendes Know-how (insbesondere in KMU), einer mangelnden Infrastruktur und einer fehlenden Datengrundlage begründet ist [BDG+22]. Da die hohen Kosten häufig mit einem nur schwer zu quantifizierendem Nutzen einhergehen, werden Projekte im Bereich Industrie 4.0 häufig ausgebremst [VSH+22]. Bei einer fehlenden oder mangelhaften Datengrundlage können selbst die besten Algorithmen im Bereich der Künstlichen Intelligenz keine guten Ergebnisse liefern [RMB+21]. Der Hauptfokus sollte also im Aufbau dieser Datengrundlage mit kosteneffizienten Mitteln liegen. Wichtig zu beachten ist: Digitalisierung, KI oder Machine Learning sollten nicht dem Selbstzweck dienen, sondern stets nur Werkzeuge zum Erreichen von konkreten Zielen sein. Häufig sind einfache und pragmatische Lösungen ausreichend.

Neben den rein ökonomischen Zielen haben Digitalisierungslösungen und darauf aufbauende Anwendungen ein großes Potenzial, auch soziale und ökologische Nachhaltigkeitsziele zu erreichen, z. B. durch Effizienzgewinne [BDF+22]. Eine Bewertung der Nachhaltigkeitsleistung eines Unternehmens oder der Produktion ist ohne Daten schlicht nicht möglich, sodass die digitale und die nachhaltige Transformation Hand in Hand gehen müssen [Bun20]. Neben dem digitalen Zwilling der Produktion kann zukünftig auch der nachhaltige Zwilling der Produktion aufgebaut werden. Die automatisierte Verfügbarkeit der Daten wird bei einer Anpassung an bestehende Regularien erheblich zum Bürokratieabbau beitragen können, z. B. bei der Nachhaltigkeitsberichtserstattung.

Plattformmodelle als skalierbare Lösung

Eine skalierbare und interoperable Lösungsmöglichkeit bieten Kooperationen in digitalen Ökosystemen [KW22]. Der nahtlose Austausch von Informationen (sowohl unternehmensintern als auch -extern) ist die Voraussetzung für die informationsbasierte Entscheidungsfindung in einem Unternehmen [VSW+18]. Wenn Daten in einheitlicher Form vorliegen, muss die Kompatibilität nicht erst aufwändig im Anschluss herbeigeführt werden. Diese Vereinheitlichung kann durch digitale Plattformen sichergestellt werden werden, denen z. B. standardisierte Datenmodelle zugrunde liegen. In Community-basierten Ökosystemen können zunächst gemeinsame Grundlagen der Zusammenarbeit in Form von Standards erarbeitet werden. Als simples Beispiel ist hier die einheitliche Namensgebung von Variablen in Vliesstoffanlagen zu nennen. In plattformbasierten Ökosystemen werden unternehmensübergreifende technische Entwicklungen und digitale Services entwickelt. Wie das Zusammenspiel in der Vliesstoffindustrie aussehen könnte, ist in Abbildung 1 dargestellt. [Bun21]

Die Plattform bündelt die jeweils notwendigen Aktivitäten für die Lösungsmöglichkeiten in digitalen Ökosystemen. Wichtig zu erwähnen ist, dass die Teilnehmer des Ökosystems auch jeweils mehrere Rollen einnehmen können. Beispielhaft können die Vliesstoffmaschinenbauer gleichzeitig zum Betreiber der Plattform werden. Außerdem ist es nicht erforderlich, dass die Daten der Vliesstoffproduzenten in eine externe Softwarelösung geladen werden müssen: eine interne Datenspeicherung on-premise ist jederzeit möglich. Ein beispielhafter Aufbau einer Plattform für die Vliesstoffindustrie ist in Abbildung 1 dargestellt. Die Vliesstoffhersteller profitieren als Geräte-Nutzer von digitalen Services, wie z. B. Predictive Maintenance, die vom Maschinenbau als Geräte-Hersteller zur Verfügung gestellt werden. Service-Anbieter, wie z. B. Entwicklung von Applikationen mit Künstlicher Intelligenz, können ebenfalls externe Services auf der Plattform anbieten. Die drei Ebenen werden zentral durch einen Orchestrator zusammengeführt. Ein Akteur kann jeweils mehrere Rollen einnehmen. So kann ein Vliesstoffmaschinenbauer oder ein Zusammenschluss von Maschinenbauern ebenfalls zum Orchestrator der Plattform werden. Dem Maschinenbau wird es möglich zusätzliche Services anzubieten und damit insgesamt die Qualität seiner Produkte zu erhöhen. Der Einsatz und Service seiner Maschinen wird optimiert, Kunden gebunden und das Angebotsportfolio erweitert. Dem Vliesstoffproduzenten wird es möglich, Daten effizient und herstellerübergreifend auszuwerten und auf zahlreiche Service-Dienstleistungen gleichzeitig zuzugreifen. [Bun21]

Abbildung 1: Beispielhafter Aufbau einer Plattformlösung für die Vliesstoffindustrie [nach Bun21] (s. Anlage)

Die Anwendungsfälle in der Vliesstoffindustrie reichen von der einfachen Visualisierung von Daten bis zur automatisierten Auswertung und Steuerung von Produktionsanlagen. Die Plattformlösung vereinheitlicht die Anwendungsfälle und verhindert die Schaffung von teuren Insellösungen. Der hohe Aufwand der Integration von Daten wird deutlich reduziert und die Skalierbarkeit von Lösungen wird möglich.

Fundamente für die Zusammenarbeit

Die Ausführungen zeigen auch: für den Aufbau eines einheitlichen digitalen Systems für die Vliesstoffindustrie ist eine Zusammenarbeit verschiedener Akteure erforderlich. Fragen die gemeinschaftlich beantwortet werden müssen sind z. B. folgende:

  • Welche Daten müssen für eine datenbasierte Modellierung von Vliesstoffverfahren erhoben werden?
  • Welche Datenquellen sind erforderlich?
  • Wie muss eine einheitliche Datenerhebung (z. B. einheitliche Bezeichnung von Variablen oder Qualitätsgrößen) aussehen?

Nur durch die gemeinschaftliche Beantwortung solcher Fragen sind die technischen Herausforderungen einer solchen Plattform zu beherrschen, die durch das breite Spektrum unterschiedlicher Maschinen und Strukturen bestehen. Auch rechtliche Fragen und Fragen des Datenschutzes sind in der Anfangsphase zu klären. Beim Aufbau der Strukturen können neutrale Forschungsinstitutionen wie das Institut für Textiltechnik der RWTH Aachen oder das in Düren geplante Digital Nonwoven Innovation Center (D-NIC) in öffentlich geförderten Forschungsprojekten unterstützen.

Vorteile für die gesamte Branche

Zusammenfassend ist zu sagen, dass die Vliesstoffbranche vor zahlreichen Herausforderungen steht. Der hohe Komplexitätsgrad der Produktionsprozesse, die hohen Qualitätsanforderungen, der regulatorische Druck und der Fachkräftemangel erfordern eine steigende Automatisierung von Entscheidungen, die auf der Digitalisierung der Industrie basiert. Viele Unternehmen sind jedoch noch weit von den Versprechen der vierten industriellen Revolution entfernt. Um diese Herausforderungen zu bewältigen und Potenziale zu heben, sollten Unternehmen eine kosteneffiziente Datengrundlage aufbauen, die die Basis für die Implementierung von Industrie 4.0 darstellt. Digitale Kooperationen in Ökosystemen können eine skalierbare und interoperable Lösungsmöglichkeit bieten. Die Digitalisierung und die nachhaltige Transformation müssen Hand in Hand gehen, um ökonomische, soziale und ökologische Nachhaltigkeitsziele zu erreichen. Wenn Unternehmen diese Herausforderungen erfolgreich meistern, können sie von den Vorteilen der Digitalisierung profitieren und ihre Wettbewerbsfähigkeit steigern. Diese Vorteile beziehen sich nicht nur auf einzelne Akteure, sondern gelten für die gesamte Branche. Dafür ist ein gemeinsames Handeln und Auftreten (z. B. gegenüber Förderträgern oder der Politik) erforderlich. Auch die Zusammenarbeit mit weiteren Branchen wie der Papierindustrie ist denkbar, um entwickelte Lösungen besser skalieren zu können und damit kosteneffizienter zu gestalten.

Literatur:

[BDF+22]                      Boll, Susanne; Dowling, Michael; Faisst, Wolfgang; Mordvinova, Olga; Pflaum, Alexander; Rabe, Martin; Veith, Eric; Nieße, Astrid; Gülpen, Christian; Schnell, Markus; Terzidis, Orestis; Riss, Uwe; Eckerle, Christin; Manthey, Sarah; Pehlken, Alexandra; Zielinski, Oliver:
Mit Künstlicher Intelligenz zu nachhaltigen Geschäftsmodellen: 2022

[BDG+22]                      Bauer, W.; Dirzus, D.; Gülpen, C.; Kiupel, N.; Kubach, U.; Mantwill, F.; Matysczok, C.; Otten, W.; Pickel, P.; Teschner, W.; Wenzel, S.; Westerkamp, D.; Weyrich, M.:
Künstliche Intelligenz im Ingenieuralltag
Berlin: Juli 2022

[Bun20]                         Bundesministerium für Wirtschaft und Energie (BMWi):
Nachhaltige Produktion: Mit Industrie 4.0 die Ökologische Transformation aktiv gestalten
Berlin: November 2020,
https://www.plattform-i40.de/IP/Redaktion/DE/Downloads/Publikation/Nachhaltige-Produktion.pdf?__blob=publicationFile&v=5

[Bun21]                         Bundesministerium für Wirtschaft und Energie (BMWi):
Digitale Ökosysteme in der Industrie - Typologie, Beispiele und zukünftige Entwicklung: April 2021

[FSW21]                        Fuchs, Johann; Söhnlein, Doris; Weber, Brigitte:
IAB-Kurzbericht - Aktuelle Analysen aus dem Institut für Arbeitsmarkt- und Berufsforschung
Nürnberg: 23.11.2021

[KW22]                          Kagermann, H.; Wahlster, W.:
Ten Years of Industrie 4.0
Sci Band:4 (2022)    H. 3, S. 26

[LBO18]                         Leyh, C.; Bley, K.; Ott, M.:
Chancen und Risiken der Digitalisierung
In Hofmann, Josephine:
Arbeit 4.0 - Digitalisierung, IT und Arbeit. - Wiesbaden: Springer Vieweg, 2018, S. 29–51

[RMB+21]                      Rueden, L. von; Mayer, S.; Beckh, K.; Georgiev, B.; Giesselbach, S.; Heese, R.; Kirsch, B.; Walczak, M.; Pfrommer, J.; Pick, A.; Ramamurthy, R.; Garcke, J.; Bauckhage, C.; Schuecker, J.:
Informed Machine Learning - A Taxonomy and Survey of Integrating Prior Knowledge into Learning Systems
IEEE Transactions on Knowledge and Data Engineering (2021), S. 1

[VSH+22]                      Volkwein, Malte; Schmitt, Jan; Heidelbach, Joachim; Schöllhammer, Oliver; Evcenko, Dimitri; Kett, Holger:
Blinde Flecken in der Umsetzung von Industrie 4.0 – identifizieren und verstehen
München: 14.03.2022

[VSW+18]                     Vialkowitsch, Jens; Schell, Otto; Willner, Alexander; Vollmar, Friedrich; Schulz, Thomas; Pethig, Florian; Neidig, Jörg; Usländer, Thomas; Reich, Johannes; Nehls, Daniel; Lieske, Matthias; Diedrich, Christian; Belyaev, Alexander; Bock, Jürgen; Deppe, Torben:
I4.0-Sprache - Vokabular, Nachrichtenstruktur und semantische Interaktionsprotokolle der I4.0-Sprache
Berlin: April 2018

[Wal22]                          Walter, Lutz:
Ready to Transform - A Strategic Research and Innovation Agenda to underpin the EU Strategy for Sustainable and Circular Textiles
Brüssel: April 202
2

 

*Institut für Textiltechnik der RWTH Aachen University, Otto-Blumenthal-Str. 1, 52074 Aachen

More entries from ITA Institut für Textiltechnik der RWTH Aachen University

20.06.2023

Development of heavy tows from recycled carbon fibers for low-cost and high performance thermoset composites (rCF heavy tows)

Raw materials Fibres Yarns Composites Textile machinery Recycling Sustainability Circular economy Technical Textiles

Abstract

Within the framework of the IGF research project (21612 BR), the entire process chain for the industrial production of novel twist-free rCF heavy tows was developed at ITM. In particular, a novel technology for the production of rCF heavy tows based on recycled carbon (rCF ≥ 90 vol.%) and hot melt adhesive fibers (< 10 vol.%) was designed, constructed and successfully implemented. This includes fiber preparation, the carding process for card sliver formation, the stretching process for drawn sliver formation, and the final fabrication of the rCF heavy tows from rCF and hot melt adhesive fibers in a newly developed test set-up. The suitability of the developed technology is demonstrated by the implementation of rCF heavy tows with different rCF types, fiber lengths and fiber volume contents and a demonstrator. The developed rCF heavy tows with finenesses between 3000-7000 tex and their further processability into textile semi-finished products were successfully demonstrated. The developed rCF Heavy Tows and composites based on them exhibit a maximum composite tensile strength and a maximum Young’s modulus of 1158±72 MPa and 80±5.7 GPa, respectively. The rCF Heavy Tows are thus applicable for low-cost thermoset composites with high performance and complex geometry. Thus, the developed rCF Heavy Tows offer a very high innovation and market potential in the fields of materials and materials, lightweight construction, environmental and sustainability research, and resource efficiency. This opens up the opportunity for SMEs in the textile industry to develop new products and technologies for the fiber composite market and to establish themselves as suppliers for the automotive, mechanical engineering and aerospace, medical and sports equipment industries.

Report

Introduction, problem definition and aim of the project

Carbon fiber-reinforced plastics (CFRP) are increasingly used in lightweight applications due to their high stiffness and strength as well as low density, especially in aerospace, transportation, wind energy, sports equipment or construction. Global demand of CFRP is predicted to increase to 197,000 t/a by 2024, almost tripling compared to 2011. This shows an urgent need for solutions to recycle the high quality carbon fiber (rCF) in terms of the circular economy. This is necessary not only due to strict legal regulations, but also for ecological and economic reasons. In recent years, numerous research institutes and companies developed solutions for the reuse of rCF in the fields of nonwovens, injection molding or as hybrid yarns. However, the majority of these works involve the use of rCF in combination with thermoplastic fibers for thermoplastic composites. In the field of rCF-based thermoset CFRP, mainly rCF nonwovens made of 100% rCF have been so far developed. Since the fibers in the nonwovens mostly have a limited length and a low orientation and process-related additional high fiber damage occurs, with these materials only maximum 30% of the composite characteristic values of CFRP components made of carbon filament yarns can be so far achieved.

Currently, the matrix systems used in the field of high mechanical loaded CFRPs are predominantly thermoset. Such components exhibit high dimensional stability, high stiffness and strength as well as are suitable for the implementation of complex component geometries due to low-viscosity matrix systems. However, primary carbon filament yarns are particularly used for these components due to the insufficient properties of rCF. In addition to low sustainability, the utilization of these filament yarns result in at least 200 % higher cost. The production of primary carbon filament yarn requires a high-energy demand of about 230 MJ/kg with a CO2 emission equivalent to 20 kg CO2/kg CF. Here, a significant improvement of the CO2 balance is required to make a substantial contribution to the envisaged climate protection goals of the Federal Republic of Germany and the EU. For this reason, the focus of the project work is the development of novel, sustainable rCF heavy tows made of recycled carbon fibers (rCF) and associated manufacturing technologies for the implementation of cost-effective thermoset composites with high mechanical performance.

Acknowledgments

The IGF project 21612 BR of the Research Association Forschungskuratorium Textil e.V. was funded by the Federal Ministry of Economics and Climate Protection (BMWK) via the AiF within the framework of the program for the promotion of joint industrial research and development (IGF) on the basis of a resolution of the German Bundestag. We would like to thank the above-mentioned institutions for providing the financial resources.

Authors: Mahmud Hossain, Anwar Abdkader und Chokri Cherif

Technische Universität Dresden
Fakultät Maschinenwesen
Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM)
01062 Dresden

https://tu-dresden.de/mw/itm

More entries from TU Dresden, Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik ITM

20.06.2023

Entwicklung von Heavy Tows aus recycelten Carbonfasern für kostengünstige duroplastische Composites mit hohem Leistungsvermögen (rCF-Heavy Tows)

Raw materials Fibres Yarns Composites Textile machinery Recycling Sustainability Circular economy Technical Textiles

Abstract

Im Rahmen des IGF-Forschungsvorhabens (21612 BR) wurde am ITM die gesamte Prozesskette zur industriellen Herstellung neuartiger drehungsfreier rCF-Heavy Tows entwickelt. Insbesondere wurde eine neuartige Technologie zur Herstellung von rCF-Heavy Tows auf Basis recycelter Carbon- (rCF, ≥ 90 Vol.-%) und Schmelzklebefasern (< 10 Vol.-%) konzipiert, konstruiert und erfolgreich umgesetzt. Diese umfasst die Faseraufbereitung, den Krempelprozess zur Krempelbandbildung, den Streckprozess zur Streckenbandbildung sowie die abschließende Fertigung der rCF-Heavy Tows aus rCF und Schmelzklebefasern in einem neuen entwickelten Versuchsstand. Der Nachweis der Eignung der entwickelten Technologie erfolgt mit der Umsetzung von rCF-Heavy Tows mit unterschiedlichen rCF Typen, Faserlängen und Faservolumengehalten und eines Demonstrators. Die entwickelten rCF-Heavy Tows mit Feinheiten zwischen 3000-7000 tex und deren Weiterverarbeitbarkeit zu textilen Halbzeugen wurden erfolgreich nachgewiesen. Die entwickelten rCF-Heavy Tows und darauf basierende Verbunde weisen eine maximale Verbundzugfestigkeit bzw ein maximales Zug-Modul von 1158±72 MPa bzw. 80±5,7 GPa auf. Die rCF Heavy Tows sind somit für kostengünstige duroplastische Composites mit hohem Leistungsvermögen und komplexer Geometrie einsetzbar. Damit bieten die entwickelten rCF-Heavy Tows ein sehr hohes Innovations- und Marktpotential in den Bereichen Werkstoffe und Materialien, Leichtbau, Umwelt- und Nachhaltigkeitsforschung sowie Ressourceneffizienz. Damit eröffnet sich die Gelegenheit für KMU der Textilindustrie neue Produkte und Technologien für den Faserverbundwerkstoffmarkt und sich als Lieferant für die Automobil-, Maschinenbau- sowie Luftfahrt-, Medizin- und Sportgeräteindustrie zu etablieren.

Report

Einleitung, Problemstellung und Zielsetzung

Carbonfaserverstärkte Verbundwerkstoffe (CFK) werden aufgrund ihrer hohen Steifigkeit und Festigkeit sowie der geringen Dichte zunehmend in Leichtbauanwendungen eingesetzt, insbesondere in den Bereichen Luft- und Raumfahrt, Transport, Windenergie, Sport oder Bau. Der globale CFK Bedarf wird sich Prognosen zufolge bis 2024 auf 197.000 t/a erhöhen und damit im Vergleich zu 2011 fast verdreifachen. Das zeigt den dringenden Bedarf an Lösungen zur Wiederverwertung der hochwertigen CF (rCF) im Sinne der Circular Economy. Das ist nicht nur aufgrund strenger rechtlicher Bestimmungen, sondern auch aus ökologischen sowie ökonomischen Gründen eine Notwendigkeit. Zahlreiche Forschungsinstitute und Unternehmen entwickelten in den letzten Jahren Lösungen zur Wiederverwendung von rCF in den Bereichen Vliesstoffe, Spritzgießen oder als Hybridgarne. Diese Arbeiten umfassen allerdings mehrheitlich den Einsatz von rCF in Kombination mit thermoplastischen Fasern für thermoplastische Composites. Für den Bereich rCF basierter duroplastischer CFK wurden bisher vorwiegend rCF-Vliesstoffe aus 100% rCF entwickelt. Da die Fasern in den Vliesstoffen prinzipbedingt nur eine begrenzte Länge und eine geringe Orientierung aufweisen und zusätzlich prozessbedingt hohen Faserschädigung auftreten, sind damit bisher nur max. 30% der Verbundkennwerte von CFK-Bauteilen aus Carbonfilamentgarnen erreichbar.

Aktuell sind die im Bereich hochbelastbarer CFK verwendeten Matrixsysteme überwiegend duroplastisch. Derartige Bauteile weisen eine hohe Formstabilität und hohe Steifigkeiten sowie Festigkeiten auf und eignen sich aufgrund niedrigviskoser Matrixsysteme zur Umsetzung komplexer Bauteilgeometrien. Jedoch werden aufgrund der bisher für diese Bauteile nur ungenügend in rCF abbildbaren, notwendigen Eigenschaften vorrangig Primärcarbonfilamentgarne eingesetzt. Neben einer geringen Nachhaltigkeit verursacht das auch um mind. 200 % höhere Kosten. Die Herstellung primäres Carbonfilamentgarnes erfordert einen hohen Energiebedarf von ca. 230 MJ/kg mit einem CO2-Emissionsäquivalent von 20 kg CO2/kg CF. Hier ist eine deutliche Verbesserung der CO2-Bilanz notwendig, um einen wesentlichen Beitrag zu den anvisierten Klimaschutzzielen der BRD bzw. der EU leisten zu können. Aus diesem Grund ist der Fokus der Projektarbeit die Entwicklung neuartiger, nachhaltiger rCF-Heavy Tows aus recycelten Carbonfasern (rCF) und dazugehöriger Fertigungstechnologien zur Umsetzung kostengünstiger duroplastischer Composites mit hohem Leistungsvermögen.

Danksagung

Das IGF-Vorhaben 21612 BR der Forschungsvereinigung Forschungskuratorium Textil e.V. wurde über die AiF im Rahmen des Programms zur Förderung der industriellen Gemeinschaftsforschung und -entwicklung (IGF) vom Bundesministerium für Wirtschaft und Klimaschutz (BMWK) aufgrund eines Beschlusses des Deutschen Bundestages gefördert. Wir danken den genannten Institutionen für die Bereitstellung der finanziellen Mittel.

Authors: Mahmud Hossain, Anwar Abdkader und Chokri Cherif

Technische Universität Dresden
Fakultät Maschinenwesen
Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM)
01062 Dresden

https://tu-dresden.de/mw/itm

More entries from TU Dresden, Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik ITM

25.05.2023

Schutz von Wäldern gegen den Borkenkäfer mittels funktionalisierter Textilien

Fibres Sustainability Technical Textiles

Abstract

Im dem vom BMWK geförderten Projekt „HolzSchutzTex“ haben die Partner „FBW GmbH“ mit Sitz in Niederzier, „Reimann Spinnerei und Weberei GmbH“ mit Sitz in Emsdetten sowie das Institut für Textiltechnik (ITA) der RWTH Aachen University gemeinsam an der Entwicklung eines funktionalisierten Gewebes zum Schutz von Wäldern und Holz vor Borkenkäfern gearbeitet. Derzeit werden dazu Insektizide eingesetzt, welche auch andere Nutzinsekten töten und schädigend auf Wasserorganismen wirken können. Da Nutzinsekten wichtig für das Ökosystem sind, wird zunehmend an einer kontrollierten Schädlingsbekämpfung gearbeitet. Auch der Holzschutz soll auf aversive als auf tödliche Methoden zurückgehen, um eine umweltfreundlichere Lagerung des Holzes ohne Qualitätsverlust zu gewährleisten.

Ziel des Projekts ist die Entwicklung eines Polymercompounds basierend auf einem für Schadinsekten abstoßenden Geruchsstoff. Als Geruchsstoff wird unter anderem Neemöl verwendet. Anschließend werden aus dem Compound Monofilamente hergestellt und zu einem textilen Netz verarbeitet, dessen Wirksamkeit in Praxisversuchen untersucht wird.

Report

Einleitung


Der Wald spielt in vielen Funktionen eine wichtige Rolle bei der Bekämpfung der Klimakrise. Ein gesunder und resilienter Wald ist somit von höchster Wichtigkeit für die Zukunft. Starke Dürren zwischen 2018 und 2020 haben den Wald unter enormen Stress gestellt. Wassermangel und Hitzehaben die Bäume geschwächt und anfällig für Schädlinge wie den Borkenkäfer gemacht. Vor allem der Kronenzustand von Fichtenwäldern ist dabei stark betroffen. Der Borkenkäfer ist aktuell der größte Schädling in deutschen Wäldern. Er befällt hauptsächlich Fichten, welche mit 25 % die weitverbreitetste Baumart in Deutschland ist [Joh19a]. Borkenkäfer sind in der Lage großflächig geschwächte, aber auch gesunde Bäume absterben zu lassen und stellen somit ein großes Problem für den Wald dar [Nor15].


Bisherige Methoden zum Schutz der Bäume zielen darauf ab, die Borkenkäferdichte in einer Region allgemein zu senken. Übliche passive Vorgehensweisen sind, dem Käfer das Brutmaterial zu entziehen oder befallenes Holz schnellstmöglich zu entfernen. Mit Fallen können Käfer auch gezielt zu eliminiert werden, wobei Insektizide zum Einsatz kommen. Der Einsatz von chemischen Mitteln im Wald ist immer mit Vorsicht zu behandeln und sollte nur als Ultima Ratio eingesetzt werden, da er ungeplant auf andere, nützliche Tierarten Einfluss haben kann [HS12].


Im Rahmen  des  Projekts „HolzSchutzTex“  wird  ein  Gewebe  aus funktionalisierten Monofilamenten untersucht. In der Praxis soll es auf geschlagenes Holz gelegt werden und dieses vor Borkenkäfern schützen. Dies verhindert einerseits einen wirtschaftlichen Schaden. Dieser entsteht, wenn Borkenkäfer Holzpolter angreifen und somit wirtschaftlich nutzbares Holz unbrauchbar machen. Andererseits kann dem Borkenkäfer so Brutmaterial entzogen werden, wodurch es die Käfer insgesamt schwerer haben, sich auszubreiten. Die mechanische Barriere durch das Gewebe und für Käfer abstoßende Geruchsstoffe sollen die gewünschte Wirkung erbringen, ohne andere Käferarten zu gefährden.

Materialien

Die Monofilamente für das Projekt „HolzSchutzTex“ werden aus einem Polymer-Geruchsstoff-Compound hergestellt. Das verwendete Polymer, Lumicene Supertough 40ST05, ist ein metallocen-katalysiertes Ethylencopolymer. Lumicene Supertough ist der Handelsname eines speziellen Kunststoffes aus der Kunststoff Gruppe der Polyethylene der Firma TOTAL RESEARCH & TECHNOLOGY FELUY, in Belgien [TOT19]. Neemöl und „Termite Repellent Film“ (TRF) wurden als Geruchsstoffe verwendet.

TRF erhält seinen termitenabweisenden Effekt durch seine Inhaltsstoffe Lavendelöl, Pfefferminzöl und Citronellal.  Diese sind Biozid-Stoffe und jeweils mit einer Konzentration von weniger als 0,5 m% im Masterbatch gelöst. TRF ist farblos und riecht durch den Zusatzstoff Citronellal leicht nach Zitrone [FBW21].Bei Neemöl handelt es sich um ein Extrakt aus Samen und Rinde des Neem-Baumes. Es ist ein durchsichtiges, bei Raumtemperatur zähflüssiges Öl [COP+16]. In Neemöl sind mindestens 100 biologisch aktive Stoffe vorhanden, von denen Azadirachtin der Wichtigste ist. Seine repellente Wirkung gegen Kupferstecher wurde bereits 1990 erforscht [WS90]. Die Schmelztemperaturen liegen bei 120°C und 160°C, wodurch sich beide Stoffe in herkömmlichen Extrudern mit dem Polymer gemischt und zu einem Film oder Filament ausgearbeitet werden können. Die Geruchsstoffe und das Polymer werden durch die Firma FBW GmbH zu einem Compounds mit jeweils 2 m% und 5 M% verarbeitet.

Herstellungsmethodik

Es werden jeweils Gewebe mit 25 und 30 Schuss/10 cm für die Compounds TRF-5 M%-2022, Neemöl-5 M%-2022 und aus reinem Lumicene Supertough 40ST05 hergestellt. Die mit dem Geruchsstoff versetzten Monofilamente werden in den Geweben nur als Schussfaden eingetragen. Die Kettfäden werden wegen des hohen Umrüstaufwands und den damit verbundenen Kosten als Standardfilament ausgeführt. Die Kettfäden sind im Gewebe schwarz und grün eingefärbt.

Käferversuche

Die Wirksamkeit der Gewebe gegen Borkenkäfer wurde an Versuchen im Wald erprobt. Dafür wurden Fallen mit den verschiedenen Geweben bestückt und die gefangenen Käfer ermittelt. Bei den Fallen handelt es sich um Schlitzfallen der Firma WITASEK aus Feldkirchen in Kärnten und der Firma THEYSON aus Salzgitter. Diese sind circa 50 cm x 60 cm große schwarze Boxen mit Schlitzen an Vorder- und Rückseite und Auffangbehälter im Inneren (Abbildung 1).

Bei Schlitzfallen handelt es sich um Prallfallen: Die Käfer werden durch das Pheromon TYPOSAN P306 angelockt, fliegen gegen die Falle, prallen davon ab und fallen durch die nach oben geöffneten Schlitze durch einen Trichter in den Auffangbehälter. Es wurden 14 Fallen auf einer ca. 45.000 m² abgeholzten Fläche aufgestellt. Um den Einfluss der Geruchsadditive zwischen Fallen zu minimieren haben sie einen Abstand von mindestens 40 m. Der Mindestabstand zu umgebenden Bäumen beträgt 20 m.

Abbildung 1: Bild einer Schlitzfalle (s. PDF)

Die Anordnung der Fallen ist in Abbildung 2 zu sehen. Die Fallen werden so aufgestellt, dass sie die gleiche Orientierung aufweisen und in Hauptwindrichtung ausgerichtet sind.

Abbildung 2: Anordnung der Schlitzfallen auf der Fläche (s. PDF)

Dadurch kann eine möglichst ähnliche Geruchsausbreitung sichergestellt werden. Gewebe mit und ohne die verschiedenen Additive wurden von außen und innen an Fallen angebracht. Zusätzlich wurde eine Referenzfalle ohne Gewebe getestet. So gab es 8 verschiedene Ausstattungen. Alle 3 Tage wurden die Fallen geleert und die Standorte rotiert, um den Einfluss des Standortes zu minimieren. Bei jeder Leerung wird die Anzahl der gefangenen Käfer erfasst. Die Versuche werden über drei Wochen vom 02.08.2022 bis zum 23.08.2022 durchgeführt.

Ergebnisse und Diskussion


Vor Auswertung der Ergebnisse ist es sinnvoll mögliche Ergebnisse zu betrachten. Bei einer nachweisbaren Wirkung des Geruchstoffes ist zu erwarten, dass in der Referenzfalle (Falle 14) am meisten Käfer gefangen werden. Diese besitzt weder eine geruchliche noch eine mechanische Schutzwirkung, sodass Käfer ungehindert in die Falle fliegen können. Die Fallen 1 bis 4 sind mit einem geruchsstofffreien Gewebe ausgestattet. Es ist zu erwarten, dass durch die mechanische Barrierewirkung weniger Käfer als in Falle 14 gefangen werden. Am wenigsten Käfer sollten in den Fallen gefangen werden, die mit den geruchsstoffversetzten Geweben ausgerüstet sind (Fallen 5 bis 12). Hier lässt sich keine Vorhersage treffen, ob der Geruchsstoff TRF oder Neemöl eine stärkere repellente Wirkung aufweist. Die aufsummierten Anzahlen der gefangenen Käfer pro Falle sind in Abbildung 3 dargestellt.

Abbildung 3: Kumulierte Käferanzahl pro Falle über den gesamten Zeitraum (s. PDF)

Insgesamt werden 2014 Käfer gefangen. In den Daten ist kein Zusammenhang zwischen gefangenen Käfern und Art des Gewebes zu erkennen. In Falle 5 werden am meisten Käfer gefangen. Diese Falle ist mit dem Gewebe TRF- 5 M%-2022 bestückt. Die Falle 12 hat 204 Käfer gefangen. Das Gewebe dieser Falle ist mit Neemöl-5 M%-2022 versetzt. Bei den Fallen mit Geruchsstoff ist allerdings ein umgekehrter Zusammenhang zu erwarten. Beiden Geruchsstoffen ist damit keine direkte repellente Wirkung zuzuordnen.

In Abbildung 4 ist die kumulierte Käferanzahl der Gewebearten ohne Additiv, TRF-Geruchsstoff und Neemöl dargestellt. Für diesen Vergleichswert werden die gesamten Fallenfangzahlen der Gewebearten aufsummiert. Es ist zu erkennen, dass alle Gewebearten nahezu gleich viele Käfer gefangen haben. Wird die Anzahl der gefangenen Käfer der jeweiligen Gewebearten auf die Gesamtkäferanzahl bezogen, so ergibt sich für jede Gewebeart ein Anteil von 29 %. Eigentlich zu erwarten ist, dass die Gewebe ohne Additiv deutlich mehr Käfer fangen.

Abbildung 4: Kumulierte Käferanzahl nach Gewebeart (s. PDF)

Dass bei den Versuchen keine Wirksamkeit der Geruchsstoffe festgestellt wird, bedeutet nicht zwangsläufig, dass die Geruchsstoffe keine repellente Wirkung gegen Borkenkäfer aufweisen. Ebenso ist es möglich, dass die Geruchsadditive im Gewebe zu schwach sind. Genauso ist es möglich, dass das verwendete Pheromon in der Falle zu stark war und die Geruchsstoffe aus den Geweben überlagert hat. In diesem Fall wären alle Fallen gleich attraktiv für die Borkenkäfer. Bei Betrachtung der unterschiedlichen Anbringungsarten des Gewebes lässt sich feststellen, dass Fallen mit außen installiertem Gewebe weniger Käfer fangen als Fallen, bei denen das Gewebe innen angebracht wurde. Dieser Zusammenhang ist in Abbildung 5 zu sehen.


Zusammenfassung und Ausblick

Im Rahmen des Projekts „HolzSchutzTex“ wurden Monofilamente mit Geruchsadditiv zur Vergrämung von Borkenkäfern zu Geweben hergestellt. Diese sollen bereits geschlagenes Holz vor einem Borkenkäferbefall schützen. Zur Wirksamkeitsanalyse der fertigen Gewebe werden diese im Rahmen einer Versuchsreihe mit Borkenkäferschlitzfallen untersucht. Diese Versuchsreihe wird auf einer Lichtung neben einem Fichtenwald durchgeführt. Dabei werden die Fallen mit unterschiedlichen Geweben verschiedener Additive und Eigenschaften bestückt.

Um sicherzustellen, dass die Messwerte nicht durch die verschiedenen Standorte der Fallen beeinflusst werden, werden diese in gleichen Intervallen rotiert. In den Versuchen werden insgesamt 2014 Borken-käfern gefangen, wobei sich jeweils 29 % in Fallen mit 5 % TRF, 5 % Neemöl und ohne Additiv befinden. Die Wirksamkeit der Duftstoffe hinsichtlich der vergrämenden Wirkung konnte nicht abschließend bewertet werden, allerdings kann eine Barrierewirkung des Funktionsgewebes nachgewiesen werden.

Abbildung 5: Mittelwerte der Käferfangzahlen nach Anbringungsart des Gewebes (s. PDF)

 

Quellen
[Bun22] Bundesministerium für Ernährung und Landwirtschaft: Ergebnisse der Waldzustandserhebung 2021: März 2022
[FBW21] FBW GmbH: Material Safety Data Sheet – Regulation 1907/2006/EC: 2021, Ausgestellt im Juli 2022
[HS12] Hurling, R.; Stetter, J.: Untersuchungen zur Fangleistung von Schlitzfallen und Fangholzhaufen bei der lokalen Dichteabsenkung von Buchdrucker (Ips typographus)-Populationen, Gesunde Pflanzen Band:64 (2012), H. 2, S. 89–99
[Joh19a] Johann Heinrich von Thünen-Institut: Wald in Deutschland - Wald in Zahlen: 2019
[Nor15] Nordwestdeutsche Forstliche Versuchsanstalt: Integrierte Bekämpfung rindenbrütender Borkenkäfer (2015), https://www.nw-fva.de/fileadmin/nwfva/common/veroeffentlichen/waldschutzpraxis/Waldschutz_PraxisInfo_01_Borkenkaefer_2015-04.pdf, Zugriff am 04.05.2023
[TOT19] TOTAL RESEARCH & TECHNOLOGY FELUY: Lumicene® Supertough 40ST05, https://polymers.totalenergies.com/supertough-40st05, Zugriff am 05.05.2023
185190195200205210215220225230InnenAußenKäferanzahlAnbringungMittelwert

Authors: Schüll, Elena Pursche, Franz Gries, Thomas

Institut für Textiltechnik (ITA) der RWTH Aachen University, Otto-Blumenthal-Straße 1, 52074 Aachen, Germany

Agrotech Oekotech Geotech

More entries from ITA Institut für Textiltechnik der RWTH Aachen University

15.05.2023

Google Lens in der Altkleidersortierung

Recycling Sustainability Circular economy Interior Textiles Fashion

Abstract

Die Textilindustrie steht vor enormen ökologischen Herausforderungen, die auf ein lineares Wertschöpfungsmodell zurückzuführen sind. Gegenwärtig fallen 7 bis 7,5 Millionen Tonnen textiler Reststoffe in der EU-27 und der Schweiz jährlich an - dies entspricht mehr als 15 Kilogramm pro Person. Die größte Quelle dafür sind entsorgte Kleidungsstücke und Heimtextilien von Verbrauchern - sie machen etwa 85 Prozent der gesamten textilen Reststoffe aus. Diese großen Mengen an textilen Reststoffen müssen sortiert und verarbeitet werden.

Google Lens ist eine Bilderkennungssoftware von Google, die auf maschinellem Lernen und künstlicher Intelligenz basiert. Mit Hilfe der Kamera eines Smartphones kann Google Lens Bilder von Objekten, Texten oder Landschaften erfassen, diese erkennen und interpretieren. Die Technologie ist in der Lage, eine Vielzahl von Objekten und Materialien zu identifizieren und auf entsprechende Webseiten zu verweisen.

In einer Versuchsreihe am Institut für Textiltechnik wurde der Einsatz von Google Lens in der Altkleidersortierung getestet. Dabei stand die Auswertung der Genauigkeit von Google Lens zur Erkennung von verschiedenen Merkmalen im Vordergrund. Insgesamt zeigen die Ausführungen in diesem Artikel, dass Google Lens noch keine adäquate Lösung für die automatisierte Auswertung in der Altkleidersortierung darstellt. Die Ausführungen zeigen allerdings auch Potentiale für die Weiterentwicklung der Technologie auf. Auch eine Kombination mit weiterer Sensorik (z. B. NIR) oder eigens entwickelten Algorithmen zur Bildauswertung ist vielversprechend.

Report

Abstract:

Die Textilindustrie steht vor enormen ökologischen Herausforderungen, die auf ein lineares Wertschöpfungsmodell zurückzuführen sind. Dieses kennzeichnet sich durch kurze Nutzungsdauern, eine geringe Wiederverwendungsquote und geringes Faser-zu-Faser Recycling der Textilien. So wird ein großer Teil der nicht wiederverwendbaren textilen Reststoffe deponiert oder energetisch verwertet. Die Alttextilien werden von Sortierbetrieben entweder für das Recycling oder für den Weiterverkauf vorbereitet. Hier benötigt es neue Technologien zur Merkmalserkennung von Textilien, um die manuellen Prozessschritte zu ersetzen und zu verbessern. Herausforderungen der bisher händischen Sortierung sind der Arbeitskräftemangel und die unzureichende Objektivität und Qualität der Sortierung. In diesem Artikel werden neue Lösungen zur Automatisierung der Merkmalserkennung ausgewertet.

Herausforderungen in der Altkleidersortierung

Gegenwärtig fallen 7 bis 7,5 Millionen Tonnen textiler Reststoffe in der EU-27 und der Schweiz jährlich an - dies entspricht mehr als 15 Kilogramm pro Person [HJL+22]. Die größte Quelle dafür sind entsorgte Kleidungsstücke und Heimtextilien von Verbrauchern - sie machen etwa 85 Prozent der gesamten textilen Reststoffe aus. Diese großen Mengen an textilen Reststoffen müssen sortiert und verarbeitet werden. Aktuell wird die von Verbrauchern aussortierte Kleidung in Altkleidercontainern entsorgt. Von dort aus werden sie in Sortierbetriebe transportiert, in denen jedes Kleidungsstück inspiziert und händisch in verschiedene Kategorien sortiert wird. Es wird beispielsweise zwischen Qualität oder Art des Materials unterschieden. Diese Schritte gilt es zu automatisieren, um die Anzahl der Fehlsortierungen zu reduzieren und die Limitationen der manuellen Sortierung zu überwinden. Die manuelle Sortierung von Altkleidern ist durch den Arbeitskräftemangel und die unzureichende Qualität stark limitiert. Es gibt erste Ansätze, um die Herausforderungen zur Merkmalserkennung der Textilien zu lösen. Durch Nahinfrarotspektroskopie kann beispielsweise das Material des Textils erkannt und identifiziert werden. Allerdings können mit der Technologie weitere wichtige Merkmale wie die Art des Kleidungsstücks, die Marke und der Zustand nicht analysiert werden. Für die Auswertung dieser Merkmale können allerdings Bildverarbeitungssysteme verwendet werden. Einen Ansatz für die Auswertung von Bildmerkmalen bietet die Software Google Lens.

Die Funktion von Google Lens

Google Lens ist eine Bilderkennungssoftware von Google, die auf maschinellem Lernen und künstlicher Intelligenz basiert. Mit Hilfe der Kamera eines Smartphones kann Google Lens Bilder von Objekten, Texten oder Landschaften erfassen, diese erkennen und interpretieren. Die Technologie ist in der Lage, eine Vielzahl von Objekten und Materialien zu identifizieren und auf entsprechende Webseiten zu verweisen. Die Suchergebnisse werden nach Relevanz und Ähnlichkeit mit dem Objekt auf dem Foto klassifiziert. [Taf21] Darüber hinaus kann Google Lens auch QR-Codes scannen und automatisch Webseiten öffnen, Adressen suchen und Termine in den Kalender eintragen. Die Software ist auch in der Lage, Texte in anderen Sprachen zu erkennen und zu übersetzen, was besonders nützlich für Reisende ist. Insgesamt bietet Google Lens eine schnelle und effektive Möglichkeit, visuelle Informationen zu interpretieren und zu nutzen, um den Benutzern eine bessere Erfahrung zu bieten. Diese Eigenschaften machen einen Einsatz von Google Lens in der Altkleidersortierung interessant. Die Software ist bereits mit einer großen Menge von Daten trainiert und ermöglicht einen gezielten Zugriff auf sämtliche im Internet vorhandene Informationen zu einem Kleidungsstück.

Google Lens für die Sortierung von Altkleidern

In einer Versuchsreihe am Institut für Textiltechnik wurde der Einsatz von Google Lens in der Altkleidersortierung getestet. Dabei stand die Auswertung der Genauigkeit von Google Lens zur Erkennung von verschiedenen Merkmalen im Vordergrund. In dem Versuch wurde die Informationsgewinnung durch den Einsatz von Google Lens in den folgenden sechs Merkmalen geprüft:

  • Typ des Textils bzw. Art der Bekleidung
  • Farbe
  • Material
  • Marke
  • Preisklasse
  • Geschlecht

Die Versuchsdurchführung ist in die folgenden drei Schritte aufgeteilt: Aufnahme von Bildern, Auswertung der Bilder mit Google Lens und Auswertung der fünf relevantesten Suchergebnisse hinsichtlich der sechs Merkmale. Die Aufnahme der Bilder erfolgt in einem statischen Versuchsaufbau. Die Textilien werden auf einem ebenen Untergrund ausgebreitet und von oben unter Beleuchtung fotografiert (siehe Abbildung 1). Für die Auswertung des Versuches werden die sechs Merkmale in definierte Ausprägungen eingeteilt (z. B. werden sechs Preisklassen definiert). Die Auswertung erfolgt anhand der ersten fünf von Google vorgeschlagenen Ergebnisse. Für die Vergleichbarkeit der Ergebnisse erfolgt eine Einteilung in ein Punktesystem: pro Textil wird je ein Punkt pro Merkmal und Treffer vergeben, wenn dieses Merkmal richtig erkannt wird, sodass pro Textil und Treffer maximal 6 Punkte zu vergeben sind. Ein Merkmal gilt als richtig erkannt, wenn die Information eindeutig aus dem Text auf der weitergeleiteten Webseite hervorgeht. Insgesamt werden 90 Textilien ausgewertet. Die Trefferquote wird als Quotient aus der erreichten Punktzahl und der maximal erreichbaren Punktzahl angegeben.

Zunächst erfolgt eine Auswertung des Einflusses des Alters eines Textils auf die Treffergenauigkeit: neuere Textilien erreichen eine Treffergenauigkeit von 32,96 %, wohingegen ältere Textilien (älter als 30 Jahre) eine Treffergenauigkeit von lediglich 22,58 % erreichen. Dieser Umstand ist auf die höhere Verfügbarkeit von Daten neuer Textilien zurückzuführen. Auch bei der Art der Textilien zeigen sich Unterschiede in der Auswertung: Heimtextilien weisen lediglich eine Trefferquote von 15,00 % auf, wohingegen Textilien in der Kategorie „Bluse/Hemd“ eine Trefferquote von 45,33 % aufweisen. Am besten wird die Art der Bekleidung erkannt (56,22 % Trefferquote), wohingegen die Marke nur zu 4,67 % erkannt wird. Dieser Umstand ist sowohl auf die große Ähnlichkeit verschiedener Marken als auch auf die teilweise nur geringe direkte Erkennbarkeit von Markennamen oder Logos zurückzuführen. Auch das Material wird nur zu ca. 13,11 % richtig erkannt, da dieses Merkmal nicht direkt visuell zu erkennen ist. Zuletzt bietet auch die Betrachtung der Unterschiede in Abhängigkeit der Relevanz der Treffer kein eindeutiges Ergebnis: beim ersten und relevantesten Treffer liegt die durchschnittliche Trefferquote bei 29,66 % und beim zweiten bis fünften Treffer ebenfalls zwischen 25,19 % und 32,09 %. Anzumerken ist allerdings, dass die Ergebnisse insgesamt nicht ausreichend sind. Für einen sinnvollen Einsatz der Technologie sind Trefferquoten von ca. 90-95 % erforderlich. So lässt sich insgesamt feststellen, dass Google Lens mit dem gewählten Versuchsaufbau und der gewählten Auswertelogik nicht für den Einsatz in der Altkleidersortierung geeignet ist.

 

Weiterentwicklung der Technologie

Eine Lösungsmöglichkeit zur Weiterentwicklung der Technologie liegt in der erweiterten Auswertung von Informationen. Zum Beispiel können zusätzlich auch Bilder auf der Webseite (z. B. Fotos von Etiketten) oder der Seitenquelltext ausgewertet werden. Außerdem ist die Einteilung der Merkmalskategorien kritisch zu prüfen, da diese einen erheblichen Einfluss auf die Auswertung hat. Weiterhin sind Änderungen am Versuchsaufbau denkbar: eine Lösung könnte z. B. in der Aufhängung von Textilien bestehen oder in der Änderung der Beleuchtung. Außerdem kann die Suche in Google Lens mit Texten verknüpft werden, sodass eine Suche näher eingegrenzt und mit zusätzlichen Sensoren verknüpft werden könnte. Diese Lösungsmöglichkeiten werden in weiteren Projekten und Versuchen am ITA weiterentwickelt.

Insgesamt zeigen die Ausführungen in diesem Artikel, dass Google Lens noch keine adäquate Lösung für die automatisierte Auswertung in der Altkleidersortierung darstellt. Die Ausführungen zeigen allerdings auch Potentiale für die Weiterentwicklung der Technologie auf. Auch eine Kombination mit weiterer Sensorik (z. B. NIR) oder eigens entwickelten Algorithmen zur Bildauswertung ist vielversprechend.

Bildunterschriften:

Abbildung 1: Aufbau des Versuches (eigene Darstellung)

Literatur:

[HJL+22]                       Hedrich, Saskia; Janmark, Jonatan; Langguth, Nikolai; Magnus, Karl-Hendrik; Strand, Moa:
Scaling textile recycling in Europe - turning textile waste into value: Juli 2022

[Taf21]                           Taffel, S.:
Google’s lens: computational photography and platform capitalism
Media, Culture & Society Band:43 (2021) H. 2, S. 237–25
5

Authors: Pohlmeyer, Florian* Johannsen, Hanna* Möbitz, Christian* Gries, Thomas* Kleinert, Tobias

*alle: Institut für Textiltechnik der RWTH Aachen University, Otto-Blumenthal-Str. 1, 52074 Aachen

Kleinert, Tobias (Lehrstuhl für Informations- und Automatisierungssysteme für die Prozess- und Werkstofftechnik der RWTH Aachen University, Turmstr. 46, 52064 Aachen)

More entries from ITA Institut für Textiltechnik der RWTH Aachen University

19.04.2023

Forschung am ITM der TU Dresden für eine Webtechnologie zur Fertigung neuer Thermogewebe

Fabrics Textile machinery Sustainability Smart Textiles Fashion

Abstract

Im Frühjahr des Jahres 2023 ist mit branchenübergreifender Beteiligung der Industrie das IGF-Projekt „Entwicklung einer Webtechnologie zur integralen Fertigung von Vlies-Thermogeweben mit Heizfunktion“ (IGF 22817 BR) am ITM angelaufen. Projektziel ist die Entwicklung eines einstufigen Webverfahrens zur Herstellung gekammerter Mehrlagengewebe mit integriertem Dämmmaterial.

Report

Sport- und Outdoorbekleidung sind heutzutage beliebter denn je, da immer mehr Menschen ihre Freizeitaktivitäten in der Natur verbringen möchten. Mit steigendem Interesse an Wandern, Skifahren und anderen Outdoor-Aktivitäten wächst auch die Nachfrage nach hochwertiger Ausrüstung, wie zum Beispiel Thermojacken und Schlafsäcken.

Solche isolierenden Thermostrukturen werden auch im Automobilbau zur Dachisolation verwendet. Diese mehrschichtigen Strukturen umfassen einen Ober- und Unterstoff sowie den dazwischenliegenden Dämmstoff. Zur Verbindung der Lagen werden Steppnähte eingesetzt, die die Lagen zueinander in Position halten. Durch das eingeschlossene Luftvolumen kann ein hoher Isolationsgrad erreicht werden, der jedoch im Bereich der Steppnähte durch die Komprimierung des Dämmstoffes und den in Wärmedurchgangsrichtung verlaufenden Steppfaden stark abnimmt. Die so entstehenden Kältebrücken reduzieren die Funktionalität der Produkte und begrenzen das Potenzial der Dämmstoffe stark. Darüber hinaus umfasst die Fertigung der Thermostrukturen mehrere teils komplexe zeit- und materialintensive Teilschritte. Zur Vermeidung beschriebener Kältebrücken und Vereinfachung des Herstellverfahrens wird in diesem Projekt die Entwicklung eines Webverfahrens angestrebt, dass die integrale Fertigung von Thermostrukturen erlaubt. Durch die Substitution des Ober- und Unterstoffs durch ein gekammertes Mehrlagengewebe mit Bindekette wird die Verbindung der Lagen ohne Steppnähte gewährleistet.

Eingebrachte Heizstrukturen sollen die Wärmewirkung zusätzlich erhöhen. Die Verwendung einer Jacquardmaschine bietet außerdem die Möglichkeit einer freien Musterung der Deckflächen, deren Designmöglichkeiten zurzeit durch den Steppnahtverlauf begrenzt werden.

Schwerpunkt des Projektes ist die Entwicklung einer industriell verwendbaren und KMU-gerechten Auslegungsmethodik für beschriebene Thermogewebe, wodurch bei individuellen Kundenanfragen schnell strukturelle, geometrische und materialseitige Vorgaben bereitgestellt werden. Ein weiterer Schwerpunkt ist die konstruktiv-technologische Entwicklung eines Webverfahrens inklusive Trenn-, Vorlage- und Verarbeitungsprozess des Dämmmaterials, die Entwicklung geeigneter Gewebebindungen und einem Konzept für einen produktspezifischen Warenabzug. Die integrale Fertigung der Thermostruktur an Funktionsmustern wird darauf aufbauend beispielhaft erprobt und bewertet.

Die Anwendungsfelder für integral gewebte Thermostrukturen reichen vom Funktionsbekleidungsbereich über den Tierbedarf in Form von z. B. Pferdedecken bis hin zu Isolationsanwendungen im Fahrzeugbau. Die Beteiligung der Industrie mit Vertretern verschiedener Branchen wie Smart Textiles, Vliesstoff-, Gewebe- und Garnherstellung, Softwareentwicklung, Fahrzeugbau und Textilhersteller zeigt den deutlichen Bedarf an solchen Innovationen.

Ziel des Projektes ist es, den Wärmedurchgangskoeffizienten von Thermostrukturen um ca. 20 % im Vergleich zu gesteppten Konstruktionen zu reduzieren. Damit soll ein deutlicher Wettbewerbsvorteil durch die stark verbesserte Performance von Outdoorbekleidung und Thermotextilien in verschiedene Branchen geschaffen werden. Die einstufige Fertigung ermöglicht zusätzlich die Einsparung von Herstellkosten. Mit den Projektergebnissen soll ein Beitrag zur Nachhaltigkeit und kosteneffizienten Fertigung von Thermostrukturen geleistet werden. Darüber hinaus wird eine Verbesserung in den Technologiesektoren Textilmaschinenbau und Weberei erreicht.

Das IGF-Vorhaben 2817 BR (Entwicklung einer Webtechnologie zur integralen Fertigung von Vlies-Thermogeweben mit Heizfunktion) der Forschungsvereinigung Forschungskuratorium Textil e.V. wird über die AiF im Rahmen des Programms zur Förderung der Industriellen Gemeinschaftsforschung (IGF) vom Bundesministerium für Wirtschaft und Klimaschutz aufgrund eines Beschlusses des Deutschen Bundestages gefördert.

Technische Universität Dresden
Fakultät Maschinenwesen
Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM)
01062 Dresden

https://tu-dresden.de/mw/itm

More entries from TU Dresden, Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik ITM

05.04.2023

High-efficiency electrodes with ultralight fabric-based current collectors for lithium-ion batteries

Fabrics Sustainability Technical Textiles

Abstract

Lithium-ion batteries (LIB) are indispensable key components for electro mobility and the success of the energy transition. They offer high energy density and high cycle stability. Eight partners from industry and science are developing technologies and components in the funded project "revoLect" (funding code: 03ETE041) in order to be able to produce resource-saving and more efficient LIBs. The project is pursuing two key innovations: the replacement of the usual metal foils with a metallized fabric structure and the use of silicon as anode material.

Report

Batteries are one of the key components for the success of the global energy transition. They are indispensable as stationary energy storage devices in combination with electricity from renewable energies and are a basic prerequisite for electro mobility. The demand for batteries is currently increasing enormously. Already, about 16% of newly registered passenger cars in Germany have an electric drive [1]. In addition to this increasing demand for electro mobility, there is also an increasing demand for batteries for smartphones, laptops, electric bicycles and stationary energy storage

The most important current battery type is lithium-ion batteries (LIB). Their high energy density and high cycle stability offer a long range for electric vehicles at marketable costs. The task now is to exploit the potential of the batteries by further developing all their components and their production technologies. This is the goal pursued by the eight project partners of the revoLect project funded by the German Federal Ministry of Economics and Climate Protection BMWK. The project partners are pooling their expertise along the entire process chain of battery production. In the project, novel electrodes with lightweight fabric-based current collectors are being developed for lithium-ion batteries using a resource-saving technology. This technology requires less use of primary raw materials such as copper and aluminum compared to previous lithium-ion batteries. At the same time, this technology enables higher energy densities and thus further material savings from the cell to the system level. Another development focus is the use of pure silicon as anode material in combination with the lightweight fabric structure of the electrodes.

Project partner PORCHER INDUSTRIES GERMANY GmbH is a specialist in the production of glass fabrics from glass filament yarns. In the revoLect project, PORCHER INDUSTRIES is developing ultralight glass fabrics as the basis for electricity collectors. The aim here is to produce ultralight fabrics from the finest glass filament yarns. In parallel, the Dresden University of Technology, Institute of Textile Machinery and High Performance Material Technology (ITM), is developing ultralight carbon fabrics based on a carbon spreading technology for the highly efficient electrodes.

The developed carbon and glass fabrics are metallized by elfolion GmbH by vacuum processes for use as current collectors. The current collector strip material is provided for the production of composite electrodes. elfolion itself is aiming at the realization of a cell cathode, consisting of fractal porous solid structures, which are the active component of the electrode. Compared to the state of the art, the open-mesh and lightweight structure of the fabrics and the porous coating lead to significantly reduced material usage and larger active surfaces. This increases the energy density of battery cells significantly in terms of both mass and volume.

The RWTH Aachen University, Chair of Production Engineering of E-Mobility Components (PEM), is developing processes for coating the fabric-based current collectors with slurry-based electrode materials. Among other things, the pilot plant for cell production is being adapted to process the novel materials. In addition, it is investigating the design and production of the battery cells based on the components provided by the project partners.

Fraunhofer FEP's goal in the revoLect project is to develop a process for depositing silicon on the fabric structures. Claus Luber explains: "We have to match the silicon layer and the fabric structures in such a way that an optimum is achieved with regard to the gravimetric energy density of the anode. Fraunhofer FEP has decades of experience in the development of roll-to-roll technologies. Based on this, we will develop a suitable and economically attractive roll-to-roll vapor deposition process."

The partner CUSTOMCELLS ® coats the novel substrates with electrode paste under industry-standard conditions. Subsequently, the performance of the batteries is tested by electrochemical measurements.

The Institute for Experimental Physics at the Technical University of Freiberg is involved in the characterization of the processed individual components and button and pouch cells. From this, microstructure-property correlations as well as design proposals and processing parameters will be derived for the cooperation partners.

ROMONTA GmbH interconnects the manufactured cells to battery systems and carries out final practice-related application tests. In the evaluation, cell parameters such as aging and current/voltage resistance are to be analyzed and transferred to the mobile application. This will ensure the powerful performance of the LIB.

Lithium-ion batteries with significantly increased energy density and lower material consumption compared to the state of the art: this is the ambition of the project consortium. All partners in the revoLect project will be working at full speed over the next 3 years on application-oriented development along the entire process chain for the production of highly efficient lithium-ion batteries.

[1] source: ADAC- new car registrations in November 2022, www.adac.de/news/neuzulassungen-kba/

About the project

revoLect - High-efficiency electrodes with ultralight fabric-based current collectors for lithium-ion batteries. Subproject: Development of vacuum technologies for the productive deposition of columnar silicon layers on fabric.

Funding reference: 03ETE041                   

Duration: 01.09.2022 – 31.08.2025

Project partner:

  • Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP
  • Technische University of Technology – Faculty of Chemistry and Physics - Institute for Experimental Physics
  • Rheinisch-Westfälische Technische Hochschule Aachen - Faculty 4 – Mechanical Engineering – Chair of Production Engineering of E-Mobility Components (PEM)
  • Dresden University of Technology – Faculty of Mechanical Engineering – Institute for Textile Machinery and Textile High Performance Materials
  • Porcher Industries Germany GmbH
  • elfolion GmbH
  • ROMONTA GmbH
  • CUSTOMCELLS®

 

Technische Universität Dresden
Fakultät Maschinenwesen
Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM)
01062 Dresden

https://tu-dresden.de/mw/itm

Downloads:

More entries from TU Dresden, Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik ITM

05.04.2023

Hocheffiziente Elektroden mit ultraleichten Stromsammlern auf Gewebebasis für Lithium-Ionen-Batterien

Fabrics Sustainability Technical Textiles

Abstract

Lithium-Ionen-Batterien (LIB) sind unverzichtbare Schlüsselkomponenten für die Elektromobilität und das Gelingen der Energiewende. Sie bieten eine hohe Energiedichte und hohe Zyklenfestigkeit. Acht Partner aus Industrie und Wissenschaft entwickeln im Förderprojekt „revoLect“ (Förderkennzeichen: 03ETE041) Technologien und Komponenten, um ressourcenschonende und effizientere LIBs produzieren zu können. Das Projekt verfolgt zwei wesentliche Innovationen: der Ersatz der üblichen Metallfolien durch eine metallisierte Gewebestruktur als Stromsammler und der Einsatz von Silizium als Anodenmaterial.

Report

Batterien sind eine der Schlüsselkomponenten für den Erfolg der globalen Energiewende. Sie sind unverzichtbar als stationäre Energiespeicher im Zusammenspiel mit Strom aus erneuerbaren Energien und stellen eine Grundvoraussetzung der Elektromobilität dar. Der Bedarf an Batterien steigt gegenwärtig enorm. Bereits jetzt haben etwa 16% der neuzugelassenen PKW in Deutschland einen Elektroantrieb [1]. Zu diesem steigenden Bedarf bei der Elektromobilität kommt der steigende Bedarf an Batterien für Smartphones, Laptops, Elektrofahrrädern und die stationäre Energiespeicherung.

Der wichtigste gegenwärtige Batterietyp sind Lithium-Ionen-Batterien (LIB). Ihre hohe Energiedichte und hohe Zyklenfestigkeit bieten eine hohe Reichweite für Elektrofahrzeuge zu marktfähigen Kosten. Nun gilt es, das Potenzial der Batterien durch eine Weiterentwicklung all ihrer Komponenten und deren Produktionstechnologien auszuschöpfen. Dieses Ziel verfolgen die acht Projektpartner des vom Bundesministerium für Wirtschaft und Klimaschutz BMWK geförderten Projektes revoLect. Die Projektpartner bündeln ihre Kompetenzen entlang der gesamten Prozesskette der Batterieproduktion. Im Projekt werden neuartige Elektroden mit leichtgewichtigen Stromsammlern auf Gewebebasis für LIB mit einer ressourcenschonenden Technologie entwickelt. Diese Technologie erfordert einen geringeren Einsatz von Primärrohstoffen wie zum Beispiel Kupfer und Aluminium, verglichen mit etablierten Verfahren. Gleichzeitig ermöglicht diese Technologie höhere Energiedichten und dadurch weitere Materialeinsparungen von der Zell- bis zur Systemebene. Ein weiterer Entwicklungsschwerpunkt ist der Einsatz von reinem Silizium als Anodenmaterial in Kombination mit der leichten Gewebestruktur der Elektroden.

Der Projektpartner PORCHER INDUSTRIES GERMANY GmbH ist ein Spezialist für die Fertigung von Glasgeweben aus Glasfilamentgarnen. Im Projekt revoLect entwickelt PORCHER INDUSTRIES ultraleichte Glas-Gewebe als Basis für die Stromkollektoren. Ziel ist hier ultraleichte Gewebe aus feinsten Glasfilamentgarnen herzustellen. Parallel dazu erarbeitet die Technische Universität Dresden, Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM), ultraleichte Carbongewebe auf Basis einer Carbonspreiztechnologie für die hocheffizienten Elektroden.

Die entwickelten Carbon- und Glasgewebe werden von der elfolion GmbH durch vakuumtechnische Verfahren für den Einsatz als Stromkollektoren metallisiert. Das Stromkollektor-Bandmaterial wird zur Herstellung von Elektroden im Verbund bereitgestellt. Die elfolion selbst strebt die Realisierung einer Zell-Kathode, bestehend aus fraktalen porösen Festkörperstrukturen, die die Aktivkomponente der Elektrode darstellen, an. Die offenmaschige und leichte Struktur der Gewebe und die poröse Beschichtung führt gegenüber dem Stand der Technik zu deutlich reduziertem Materialeinsatz und größeren aktiven Oberflächen. Damit wird sowohl masse- als auch volumenbezogen die Energiedichte von Batteriezellen deutlich gesteigert.

Die Rheinisch-Westfälische Technische Hochschule Aachen, Lehrstuhl Production Engineering of E-Mobility Components (PEM), erarbeitet Prozesse zur Beschichtung der gewebebasierten Stromkollektoren mit Elektrodenmaterialien auf Slurrybasis. Dazu wird u.a. die Pilotanlage zur Zellproduktion auf die Verarbeitung der neuartigen Materialien adaptiert. Darüber hinaus untersucht sie die Auslegung und Produktion der Batteriezellen beruhend auf den, durch die Projektpartner, zur Verfügung gestellten Komponenten.

Das Ziel des Fraunhofer FEP im Projekt revoLect besteht in der Entwicklung eines Verfahrens zur Abscheidung von Silizium auf den Gewebestrukturen. Claus Luber erläutert: „Die Siliziumschicht und die Gewebestrukturen müssen wir so aufeinander abstimmen, dass hinsichtlich der gravimetrischen Energiedichte der Anode ein Optimum erzielt wird. Das Fraunhofer FEP hat jahrzehntelange Erfahrung in der Entwicklung von Rolle-zu-Rolle-Technologien. Darauf aufbauend werden wir einen passenden und ökonomisch attraktiven Rolle-zu-Rolle Bedampfungsprozess entwickeln.“

Der Partner CUSTOMCELLS® beschichtet die neuartigen Substrate mit Elektrodenpaste unter industrieüblichen Bedingungen. Anschließend wird durch elektrochemische Messungen die Leistungsfähigkeit der Batterien geprüft.

Das Institut für Experimentelle Physik der Technischen Universität Bergakademie Freiberg beschäftigt sich projektbegleitend mit der Charakterisierung der prozessierten Einzelkomponenten sowie Knopf- und Pouch-Zellen. Daraus werden Mikrostruktur-Eigenschaft-Korrelationen sowie Designvorschläge und Prozessierungsparameter für die Kooperationspartner abgeleitet.

Die ROMONTA GmbH schaltet die hergestellten Zellen zu Batteriesystemen zusammen und führt abschließende praxisbezogene Anwendungstests durch. In der Auswertung sollen Zellparameter wie z.B. Alterung und Strom-/Spannungsfestigkeit analysiert und auf die Anwendung im mobilen Bereich übertragen werden. Dadurch wird die leistungsstarke Performance der LIB sichergestellt.

LIB mit einer deutlich erhöhten Energiedichte und einem geringeren Materialverbrauch gegenüber dem Stand der Technik: das ist die Ambition des Projektkonsortiums. Alle Partner des Projektes revoLect arbeiten in den nächsten 3 Jahren mit Hochdruck an der anwendungsnahen Entwicklung entlang der gesamten Prozesskette zur Herstellung hocheffizienter LIB.

[1] Quelle: ADAC- Neuzulassungen im November 2022, www.adac.de/news/neuzulassungen-kba/

Über das Projekt

revoLect - Hocheffiziente Elektroden mit ultraleichten Stromsammlern auf Gewebebasis für Lithium-Ionen-Batterien

Förderkennzeichen: 03ETE041                  

Förderzeitraum: 01.09.2022 – 31.08.2025

Projektpartner:

  • Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP
  • Technische Universität Freiberg – Fakultät für Chemie und Physik – Institut für Experimentelle Physik
  • Rheinisch-Westfälische Technische Hochschule Aachen - Fakultät 4 - Maschinenwesen - Lehrstuhl für Production Engineering of E-Mobility Components (PEM)
  • Technische Universität Dresden - Fakultät Maschinenwesen - Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik
  • Porcher Industries Germany GmbH
  • elfolion GmbH
  • ROMONTA GmbH
  • CUSTOMCELLS®

Technische Universität Dresden
Fakultät Maschinenwesen
Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM)
01062 Dresden

https://tu-dresden.de/mw/itm

Downloads:

More entries from TU Dresden, Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik ITM

29.03.2023

Thermogeneratorpaneele basierend auf multifunktionalen Abstandsgewirken

Knittings Composites Textile machinery Sensor Technology Sustainability Technical Textiles

Abstract

Thermoelektrische Generatoren (TEG) bieten das Potenzial Abwärme verschleiß- und wartungsfrei in elektrischen Strom umzuwandeln und damit zur Einsparung von CO2-Emissionen beizutragen. Die Funktionsweise der TEG beruht auf dem materialinhärenten Seebeck-Effekt. Im Rahmen des IGF- Projektes 21144 BR wurden Thermogeneratorpaneele basierend auf abstandsgewirkten glasfaserverstärkten Paneelen entwickelt. Im Wirkprozess wurde die Integration von Glasfasern und thermoelektrischen Drähte umgesetzt. Dadurch wurden Leichtbaupaneele mit guten strukturmechanischen Eigenschaften (Druck-, Biegefestigkeit) und zusätzlicher Thermogenerator- und Wärmeisolationsfunktion realisiert. Diese sogenannten Multithermogeneratorpaneele (MTP) können mit ihrer autarken elektrischen Leistung für den Betrieb von Sensoren oder Kleingeräten genutzt werden.

Report

Einleitung

Der globale Energiebedarf steigt mit den laufenden industriellen Fortschritten und dem Bevölkerungswachstum stetig an. Die Energieversorgung nachhaltig zu gestalten, ist mit der aktuellen Dringlichkeit des Klimaschutzes, zwingend notwendig, um die Wirtschaft und auch die Zukunft nachfolgender Generationen zu sichern. Im Zuge der rasanten Entwicklung des Internet of Things (IoT) und der Digitalisierung besteht außerdem große Nachfrage nach autarken mobilen Stromquellen, mit denen selbstständig und zuverlässig elektronische Sensoren und Kommunikationsgeräte betrieben werden können. Die meisten technischen Prozesse nutzen nur 25 % bis 40 % der eingesetzten Energie zur Umwandlung in mechanische Energie. Der Rest wird in thermische Energie umgewandelt, die in der Regel verloren geht. Ein vielversprechender Ansatz zur Nutzung dieser thermischen Energie ist der Einsatz von thermoelektrischen Generatoren (TEG).

Die Stromerzeugung mittels TEG wird durch den Seebeck-Effekt beschrieben. Dabei entsteht zwischen der warmen (Th) und der kalten Kontaktstelle (Tk) der thermoelektrischen Funktionsmaterialpaare A und B, auch Thermoelemente (TE) genannt, eine elektrische Spannung (U). Die erreichbare Leistungsausbeute eines TEG ist neben der Umgebungstemperaturdifferenz (ΔT) von den materialspezifischen Parametern der eingesetzten TE abhängig. Diese Parameter werden durch die Gütezahl (ZT) beschrieben und umfassen die Seebeck-Koeffizienten (α in µV/K), die elektrische (σ, möglichst hoch) und die thermische Leitfähigkeit (λ, möglichst gering). Für eine hohe Leistungsausbeute sind Materialien mit einer hohen Differenz im Seebeck-Koeffizienten notwendig. Außerdem ist die Leistungsausbeute eines TEG-Moduls maßgeblich von der Anzahl in Reihe geschalteter TE in einem Modul abhängig. Werkstoffe für einen hohen thermoelektrischen Nutzeffekt basieren auf seltenen Rohstoffen, wie Bismut, Antimon und Tellur, die eine gute elektrische Leitfähigkeit, kombiniert mit einer geringen Wärmeleitfähigkeit aufweisen. Das Vorkommen und die Lebensdauer der Halbleiterelemente ist jedoch begrenzt und das Recycling aufwändig. Sie sind außerdem kostenintensiv und teilweise toxisch.

Daher werden von der Wirtschaft und der Forschung Entwicklungen neuer Materialien oder die Steigerung der Leistung der TEG sowie kostengünstigere Herstellverfahren vorangetrieben. Allerdings bestehen diese entwickelten Verfahren zumeist aus aufwändigen kombinierten Gieß- und Sinterprozessen sowie einer kostenintensiven notwendigen Nachbearbeitung. Zur Schaffung eines effizienten Herstellverfahrens für TEG mit einer produktiven Integrationsmöglichkeit einer hohen Anzahl an TE bietet die Abstandswirktechnik großes Potenzial. Mit dem Einsatz von Funktionsmaterialien und Hochleistungsgarnen in den Abstandsgewirken, wie Glasfasergarne, und einer späteren Infiltrierung und Konsolidierung mit Harzsystemen lassen sich großflächige Faserverbundstrukturen (z. B. Leichtbaupaneele) mit geschlossenen Deckschichten generieren, die neben der TEG-Funktion sehr gute strukturmechanische Eigenschaften aufweisen und auch als tragende Strukturen im Fahrzeug- oder Anlagenbau mit Wärmeisolation einsetzbar sind [1] .

Im Rahmen des Forschungsprojektes IGF 21144 BR wurden Leichtbaupaneele als tragende Bauteile mit multifunktionalen Eigenschaften, Multifunktionsthermogeneratorpaneele (MTP), realisiert, die durch die Umwandlung industrieller Abwärme in elektrischen Strom mit gleichzeitigem Kühleffekt zur Effizienzsteigerung von Batterien oder Elektromotoren in der Elektromobilität und von Hybridsystemen beitragen.


Entwicklung der Multithermogeneratorpaneele (MTP)

Der Grundaufbau der MTP besteht aus einem glasfaserverstärkten Abstandsgewirke, welches schlussendlich verharzt das Substrat des TEG darstellt. Die Thermoelemente (TE) werden in Form von Funktionsdrähten aus Eisen und Konstantan als Polfadensystem in der RR-Raschelwirkmaschine in den Abstand integriert, wie in Abbildung 2 veranschaulicht. Weiterhin gewährleisten Polfäden aus Monofilamenten, sowie Glasfasern (EC9-68x2) die Stabilität gegenüber mechanischer Beanspruchung. In den Deckflächen stellen je zwei Maschenfadensysteme aus PES (100/40 dtex) die Fixierung der Schuss- und Stehfäden sowie der TE sicher. Die Kontaktierung und Verschaltung der TE erfolgt durch die übereinanderliegende Anordnung und Verbindung der Funktionsdrähte in den Maschen der Gewirkebindung.

Zur Entwicklung und Auslegung der thermoelektrischen Struktur der MTP wurde ein elektrisches Modell entwickelt, in welchem die Anzahl und Geometrie der TE, ihre elektrische Kontaktierung, sowie die Art der Verschaltung der TE (Reihen-, Parallel- oder Mischschaltung) variabel ist. Für das Modell wurden gekoppelte multiphysikalische Ersatzschaltungsmodelle unter Ausnutzung der mathematischen Analogien der elektrischen/thermischen/mechanischen Domäne angewendet, in LT-Spice implementiert und im Hinblick auf die zuvor beschriebenen Parameter untersucht (Abbildung 1). Mittels des Modells kann die Schaltung der TE an den Lastwiderstand des Anwendungsfalls angepasst werden, sodass die maximale Leistung des TEG erreicht wird. Das vorhandene Modell wurde weiterhin durch das thermische Verhalten hinsichtlich Wärmeleitung und Wärmekapazität der Struktur erweitert.

Um die angestrebte thermoelektrische Struktur in eine Gewirkebindung für die RR-Rascheltechnologie zu überführen, wurden mehrere Bindungsvarianten für die Funktionsdrähte im Abstand des Paneels erarbeitet, umgesetzt und analysiert [2]. Weiterhin wurden unterschiedliche elektrische Verschaltungen der Funktionsdrähte entwickelt. Dabei ermöglicht eine kombinierte Reihen- und Parallelschaltung die maximale Einbindung von TE pro Fläche von bis zu 150.000 TE/m² und eine bessere Ausfallsicherheit im Vergleich zur Reihenschaltung. Der Innenwiderstand und die elektrische Leistung kann direkt über die Abmaße des Paneels angepasst werden. Die Struktur des Abstandsgewirkes mit dieser Verschaltung ist im Modell in Abbildung 2 dargestellt.

Zur Herstellung des thermoelektrischen Abstandsgewirkes als Halbzeug für die MTP wurde eine RR-Raschelwirkmaschine MiniTronic 808 von RIUS Comatex S.A. eingesetzt. Mit dem Ziel die Funktions- und Hochleistungsmaterialien schädigungsarm zu verarbeiten, wurde eine Nadelbestückung mit der Feinheit E12 verwendet. Für die Maschineneinstellung und die technologisch-konstruktive Weiterentwicklung der Abstandswirktechnik wurde zunächst der Bauraum der RR-Raschelmaschine und der Einzug der Drähte in den vorhandenen Garnlauf analysiert. Der Fadenlängenausgleich für die Maschenbildung, die Fadenwippe, ist kommerziell als Fadenwippe mit Stahlfedern umgesetzt. Dadurch wird die für die Fadensysteme benötigte Fadenzugkraft erreicht. Bei ebendieser Fadenzugkraft entstehen für die Funktionsdrähte aus Eisen- und Konstantan jedoch irreversible Knicke an den Umkehrpunkten der Lochnadeln. Diese Knicke verhindern das Gleiten der Drähte durch die Lochnadeln, sodass ein Drahtbruch entsteht. Die Drähte benötigen eine sehr niedrige Fadenzugkraft sowie einen Längenausgleich mit niedriger Federkonstante, da materialbedingt nur eine geringe elastische Dehnung (0,1 %) vorhanden ist.

Weiterhin waren technologische Modifikationen zur Verarbeitung von Glasfasergarnen als Schuss-, Steh- und Polfaden auf der RR-Raschelwirkmaschine erforderlich. Die Glasfaserrovings (350 tex) wurden bei der Verarbeitung als Polfadensystem aufgrund der Querkräftanfälligkeit bereits vor der Maschenbildung durch die kleinen Umlenkradien in der Lochnadel abgeschert. Daher wurden verzwirnte Glasfaserrovings als Verstärkungsfaser eingesetzt. Zur Verarbeitung dieser Glasfaserzwirne wurde ein Fadenliefersystem mit einer passiven Fadenzufuhr und einer konstanten Fadenzugkraft von 20 cN entwickelt und umgesetzt. Mittels angetriebener Spulenaufnahme für Glasfasern und Tänzerwalze zur Zugkraftregelung lässt sich dieses Prinzip automatisieren und auf ein System für hohe Produktionsgeschwindigkeiten übertragen.

In einem mehrstufigen Handlaminierverfahren wurden die hergestellten MTP-Halbzeuge mit hochtemperaturbeständigem Harz infiltriert und als MTP Demonstrator verarbeitet (Abbildung 3).


Elektrische Leistung der MTP

Zur Auswertung der thermoelektrischen Leistung der MTP wurde ein gekoppelter elektrisch-thermischer Versuchsstand entwickelt, der durch jeweils ein Peltier-Element an der Ober- und Unterseite eine aktive Erwärmung bzw. Kühlung realisiert. Damit sind Temperaturdifferenzen von bis zu 80 K erreichbar. Zwischen den Peltierelementen und der Probe sind Platten aus Aluminium eingeschraubt. Diese erfüllen zwei Funktionen. Erstens homogenisieren sie die Wärmeverteilung. Zweitens sind in den Platten jeweils Pt100-Temperaturfühler (Präzisionsklasse A) eingebracht. Die Temperaturfühler wurden dabei in Bohrungen platziert und mit Wärmeleitpaste verklebt, sodass eine gute Wärmeleitung zwischen Peltierelement, Probe und Temperatursensoren gewährleistet ist und die Temperaturabweichung zwischen Sensor und TEG-Oberfläche minimal ist. Die Widerstände der Pt100-Fühler wurden mit einem Keithley DAQ 6500 Präzisionsmultimeter aufgenommen. Die Ansteuerung des Multimeters erfolgte durch Matlab-Simulink. Anhand der gemessenen Temperaturen wurde die Spannungsquelle über SCPI-Befehle und einen PID-Regler geregelt, um eine präzise und stabile Kontrolle der Temperaturdifferenz zu erreichen. Gleichzeitig ermöglichte das Präzisionsmultimeter die Messung der vom TEG erzeugten Spannung, des durch den Lastwiderstand fließenden Stroms sowie des Innenwiderstands des TEGs. In Abbildung 4 sind der Prüfstand mit dem das Temperaturprofil während eines Versuchs mit 60 K Temperaturdifferenz und die aufgenommene Strom-Spannungs-Kennlinie abgebildet.

Mittels Präzisionsmultimeter wurden außerdem die Kontaktpunkte der Funktionsgarne in der gewirkten TEG-Struktur auf ihre Übergangswiderstände hin überprüft sowie der Gesamtwiderstand der TEG-Module ermittelt. Die Kontaktwiderstände zwischen den Funktionsdrähten lagen konstant unter 0,1 Ω. Entgegen der Erwartungen war dies auch nach der Faserverbundbildung der Fall, sodass der Innenwiderstand des finalen Demonstrators 0,9 Ω beträgt. Auch der thermoelektrische Effekt des MTP wurde durch das Harz nicht nachteilig beeinträchtigt. Dies wurde durch Vergleichsmessungen der MTP am Leibniz Institut für photonische Technologien (ipht) und bei der itp GmbH ebenfalls bestätigt.

Die Projektergebnisse zur Herstellung und zu den Eigenschaften von abstandsgewirkten MTP aus Eisen und Konstantan bilden eine Basis für die zielgerichtete Weiterentwicklung einer effizienten Fertigung von vertriebsreifen TEG. Die Ausnutzung der Produktivität der RR-Raschelwirkmaschine trägt dazu bei, die sonst kostenintensiven alternativen Energiekonzepte für Bevölkerung und Wirtschaft zugänglich und profitabel zu gestalten, sodass zum Erhalt der Umwelt beigetragen wird.


Danksagung

Das IGF-Vorhaben 21144 BR der Forschungsvereinigung Forschungskuratorium Textil e.V. wurde über die AiF im Rahmen des Programms zur Förderung der Industriellen Gemeinschaftsforschung (IGF) vom Bundesministerium für Wirtschaft und Klimaschutz aufgrund eines Beschlusses des Deutschen Bundestages gefördert. Das Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik der TU Dresden (ITM) dankt den genannten Institutionen für die Bereitstellung der finanziellen Mittel.

Der Abschlussbericht und weiterführende Informationen sind am Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik der TU Dresden vorhanden [3].

Die vollständige Veröffentlichung steht zum Download zur Verfügung.

Authors: Anke Golla, Johannes Mersch, Gerald Hoffmann, Chokri Cherif

Technische Universität Dresden
Fakultät Maschinenwesen
Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM)
01062 Dresden

https://tu-dresden.de/mw/itm

More entries from TU Dresden, Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik ITM

17.03.2023

Bionische 3D-Schale-Rippen-Strukturen mit komplex angeordneten Versteifungselementen

Knittings Composites Textile machinery Technical Textiles

Abstract

Im abgeschlossenen IGF-Projekt 20793 BR erfolgte am ITM die simulationsgestützte Entwicklung, Umsetzung und Erprobung eines innovativen Verfahrens zur integralen Herstellung endlosfaserverstärkter 3D-Schale-Rippen-Textilstrukturen mit komplex angeordneten Versteifungselementen. Inspiriert von der Amazonas-Riesenseerose, deren gigantische Blätter extrem tragfähig sind, weisen diese bionischen Preformen komplex angeordnete, sich kreuzende Versteifungselemente in 0°-, 90°- sowie in ± 45°-Ausrichtung und insbesondere eine durch alle Preformteile durchgehende Faserverstärkung auf. Das ermöglicht perspektivisch einen Durchbruch topologie‑ und strukturoptimierter, endlosfaserverstärkter 3D-Schale-Rippen-Verbundbauteile in Serienanwendungen.

Report

Einleitung und Problemstellung

Faserverstärkte Kunststoffverbunde (FKV) weisen ein sehr hohes Potenzial zur maßgeblichen Reduktion bewegter Bauteilmassen und somit zur Steigerung der Energieeffizienz auf. Für einen Durchbruch von FKV in Serienanwendungen fehlen allerdings flexible Verfahren, die eine schnelle Umsetzung kostengünstiger, endkontur- und kraftflussgerechter 3D-Preformen bei hoher Materialeffizienz und Vermeidung von Nachbearbeitungsschritten erlauben.

Zur Erhöhung der Biege-, Beul- und Torsionssteifigkeit hochbelasteter schalenförmiger FKV-Bauteile kommen heute in vielfältigen Anwendungsfeldern Versteifungselemente wie Rippen, Spanten oder Stringer zum Einsatz. Die Bauteile werden jedoch bisher meist in Differenzialbauweise auf Preform- bzw. Bauteilebene durch nachträgliches Fügen von Schalen- und Versteifungsstruktur hergestellt. Dadurch ist die Fertigung derartiger FKV-Bauteile aktuell sehr kostenintensiv. Zusätzlich fehlt dabei prozessbedingt eine durchgehende Faserverstärkung zwischen Schale und Rippe. Das Leichtbaupotenzial von Hochleistungsfasern wird so nur teilweise ausgenutzt. Additive Verfahren, wie das 3D-Drucken [1] oder das Spritzgießen [2], erlauben zwar die integrale Fertigung von 3D-Schale-Rippen-Strukturen mit komplexer Versteifungsstruktur, verfahrensbedingt ist jedoch die Möglichkeit der Einbringung einer Endlosfaserverstärkung in der Rippenstruktur stark begrenzt.

Im Rahmen des IGF-Projektes 18806 BR wurden am ITM grundlegende Basislösungen zur integralen Fertigung von 3D-Schale-Rippen-Mehrlagengestricken mit durchgängiger Endlosfaserverstärkung zwischen Schale und Rippenstruktur erfolgreich entwickelt und umgesetzt [3]. Allerdings konzentrierten sich die Arbeiten auf die Schaffung der technologischen Grundlagen für eine flexible Herstellung endkonturgerechter 3D-Schale-Rippen-Preformen mit ausschließlich in 90° angeordneten Rippen.

Natürliche Vorbilder zeigen jedoch, dass für eine optimale Aufnahme der auf das Bauteil wirkenden Belastungen eine komplexere Orientierung der Rippen notwendig ist. Dieses Prinzip findet sich z. B. in der komplex verrippten Struktur der Erdnussschale sowie in den gigantischen und extrem tragfähigen Blättern der Amazonas-Riesenseerose (vgl. Abbildung 1) wieder, die längliche, diagonale bzw. sich kreuzende Rippen sowie ein sehr geringes Eigengewicht aufweisen.

Für eine wirtschaftliche Nutzung dieses bionischen Prinzips in FKV-Anwendungen fehlen jedoch aktuell flexible und serientaugliche Fertigungsverfahren, die eine kosteneffiziente Umsetzung topologieoptimierter Schale-Rippen-Preformen mit derartig komplex angeordneten Versteifungselementen in Integralbauweise ermöglichen [4]. Die besondere Herausforderung für derartige Verfahren ergibt sich aus der notwendigen hohen Flexibilität zur Einstellung der je nach Anwendungs- und Lastfall extrem variierenden geometrischen sowie strukturmechanischen Anforderungen und damit der Strukturparameter, wie Rippendicke, -höhe und -ausrichtung.

Zielsetzung

Das Ziel des IGF-Forschungsprojektes 20793 BR war die simulationsgestützte Entwicklung, Umsetzung und Erprobung eines innovativen Verfahrens auf Basis der hochflexiblen Mehrlagenflachstricktechnik zur vollautomatisierten, integralen Fertigung endlosfaserverstärkter 3D-Schale-Rippen-Strukturen mit komplex angeordneten Versteifungselementen sowie kontinuierlicher, durchgängiger Faserverstärkung zwischen Schale und Rippenstruktur.

Ergebnisse

Simulationsgestützte Preform‑ und Technologieentwicklung

Die besondere Herausforderung im Projekt war die Entwicklung geeigneter Bindungstechniken und neuartiger Maschinenelemente zur integralen und verzugsfreien Fertigung lastgerecht ausgelegter 3D-Preformen mit komplex angeordneten Versteifungselementen in 0°-, 90°- und ± 45°-Ausrichtung sowie von Simulationstools für eine optimale, CAD-gestützte Auslegung daraus herstellbarer FKV-Bauteile. Nach Festlegung der Anforderungen an relevante Schale-Rippen-FKV-Bauteile und die Präzisierung typischer Lastfälle (hauptsächlich Biege-, Druck- und Torsionsbelastungen) erfolgte zunächst eine FEM-basierte Struktursimulation (Finite Elemente Methode) mit einem makroskopischen Modell. Dabei wurden die Parameter Rippendicke, -höhe sowie Wandstärke der Schale systematisch variiert, mit dem Ziel, die Zusammenhänge und die Wechselwirkungen zwischen den geometrischen Parametern und die resultierenden mechanischen Verbundeigenschaften zu ermitteln und somit die bestmöglichen Kennwerte für die Auslegung von 3D-Schale-Rippen-Textilhalbzeugen mit komplex angeordneten Versteifungselementen festlegen zu können.

Die Ergebnisse zeigen, dass die Rippenhöhe eine nur geringe Auswirkung auf die resultierende Biegefestigkeit der daraus hergestellten Verbunde aufweist. Die Rippendicke und die Wandstärke der Schale weisen hingegen einen sehr hohen Einfluss auf. Als Hauptfaktor für ein frühzeitiges Bauteilversagen wurde sowohl bei dem entwickelten FEM-Modell als auch bei der durchgeführten mechanischen Charakterisierung von 3D-Verbundproben ein durch interlaminare Scherspannung ausgelöster Bruch, sog. Delamination, zwischen unterschiedlichen Verstärkungslagen identifiziert (vgl. Abbildung 2). Zur besseren Vorhersage der mechanischen Eigenschaften von FKV wurde daher ein mesoskopisches FEM-Modell entwickelt und eingesetzt [5], das in der Lage ist, 3D-Schale-Rippen-Strukturen mit einem komplexen Lagenaufbau sehr detailliert abzubilden. Anhand dieses Modelles konnte festgestellt werden, dass die Orientierung der Verstärkungsfäden im Bereich der Rippe eine untergeordnete Rolle spielt. Ausschlaggebend für die Gewährleistung guter strukturmechanischen Verbundeigenschaften ist die Sicherstellung einer durchgängigen Faserverstärkung zwischen unmittelbar benachbarten Strukturbereichen, insbesondere an den Verbindungsstellen zwischen Rippen mit unterschiedlicher Orientierung (z. B. 0°/90°), sowie der Fixierung mehrerer Verstärkungslagen mit einem einzigen Maschenfaden. Somit weist eine 2D-Verbundprobe aus vier integral gefertigten, miteinander verbundenen Verstärkungslagen mit 17,8 GPa ein um 12 % höheres Biegemodul im Vergleich zu einer aus vier Einzellagen zusammengesetzten Verbundprobe auf, die 15,9 GPa erreicht.

Integral gefertigte 3D-Schale-Rippen-Strukturen

Basierend auf der durchgeführten Struktursimulation wurden der dabei ermittelte ideale Verlauf der Verstärkungsfäden iterativ mit den stricktechnisch realisierbaren Verstärkungsfadenanordnungen unter Berücksichtigung der technologischen Umsetzbarkeit verglichen und anschließend aussichtsreiche Bindungsvarianten mit lastgerecht angeordneten Verstärkungsfäden abgeleitet und festgelegt. Darauf aufbauend wurden insbesondere für die direkte Ausbildung diagonal angeordneter Rippen notwendige technologische Anpassungen an der vorhandenen Maschinentechnik abgeleitet, konstruktiv entwickelt und umgesetzt. Nach Implementierung einer neuartigen, modular in konventionelle Flachstrickmaschinen nachrüstbaren Vorrichtung für das Aufspreizen der Kettfadenschar wurden 3D-Schale-Rippen-Strukturen mit in 0°, 90° und ± 45° angeordneten Rippen auf einer modifizierten Flachstrickmaschine ARIES.3D technology der Firma Steiger (Steiger Participations SA, Vionnaz/Schweiz) stricktechnisch umgesetzt (vgl. Abbildung 3).

Mit der Umsetzung der Strukturen wurde gezeigt, dass die entwickelten Bindungsvarianten als Programmiermodule bereitgestellt werden können und mit geringem Programmieraufwand in kommerzielle Softwarelösungen zur Erstellung der Maschinensteuerprogramme übertragbar sind. Diese Module können miteinander kombiniert werden und ermöglichen somit eine beträchtliche Struktur- bzw. Produktvielfalt. Im Ergebnis des abgeschlossenen Forschungsprojektes steht fortan ein robustes und erprobtes Verfahren zur integralen Fertigung endlosfaserverstärkter 3D-Schale-Rippen-Strukturen mit komplex angeordneten Versteifungselementen auf Flachstrickmaschinen zur Verfügung.

Bauteilherstellung und Charakterisierung

Aus den integral gefertigten Preformen wurden FKV-Bauteile im SCRIMP-Verfahren (Seaman Composite Resin Infusion Molding Process) hergestellt. Dafür wurde ein Formwerkzeug mit modular einsetzbaren Metallkernen entwickelt, das die flexible Herstellung von 3D-Schale-Rippen-Bauteilen mit unterschiedlichen Rippenausrichtungen ermöglicht (vgl. Abbildung 4). Zu Vergleichszwecken erfolgte auch die Realisierung eines in Differenzialbauweise gefertigten FKV-Bauteils. Dabei wurden Schalen und Rippenstruktur separat hergestellt und anschließen miteinander gefügt. Die Untersuchungen haben gezeigt, dass für die Bauteilherstellung in Integralbauweise im Vergleich zur Differenzialbauweise deutlich weniger Arbeitsschritte erforderlich sind.

Zur Validierung der entwickelten FEM-Modelle erfolgte schließlich eine umfangreiche Charakterisierung der mechanischen Eigenschaften von 2D-Verbundproben mittels Zug-, Druck-, CAI- (Compression-After-Impact), 4‑Punkt-Biege-, ILSS‑ (Interlaminare Scherfestigkeit) sowie Charpy-Schlagversuchen. Ergänzend dazu wurden in Anlehnung an DIN EN ISO 14125 auch 3-Punkt-Biegeversuche an 3D-FKV-Bauteilen durchgeführt (vgl. Abbildung 5), um die Biegefestigkeit der neuartigen 3D-Schale-Rippen-Bauteile mit komplex angeordneten Rippen zu ermitteln.

Insgesamt ist festzuhalten, dass die neuartigen 3D-Schale-Rippen-Preformen mit komplex angeordneten Versteifungselementen für die flexible Herstellung hochbeanspruchbarer FKV-Bauteile mit komplexer Versteifungsstruktur und vor allem mit einer durchgängigen Faserverstärkung zwischen Schale und Rippen sehr gut geeignet sind. Die dabei erreichbare Endlosfaserverstärkung in den Rippen stellt eine deutliche Verbesserung im Vergleich zum Stand der Technik dar. Insbesondere ermöglicht der Einsatz der neuartigen 3D-Textilhalbzeuge eine deutliche Vereinfachung des Preforming-Prozesses. Im Vergleich dazu erfordert eine Premformherstellung in Differenzialbauweise eine hohe Anzahl an 2D-Textilstrukturen, welche in aufwendigen Prozessschritten zugeschnitten, vorgeformt, gestapelt, kompaktiert und fixiert werden müssen. Bei Anwendung der Projektergebnisse ist dazu nur noch eine Positionierung der integral gefertigten 3D-Preform im Werkzeug erforderlich. Außerdem weisen die realisierten 3D-Preformen aufgrund der Fixierung einer hohen Anzahl an Verstärkungsfadenlagen durch nur einen einzigen Maschenfaden eine hervorragende Stabilität auf, was perspektivisch eine vollautomatisierte Preformherstellung mittels Robotertechnik ermöglicht. Somit sind die Voraussetzungen für eine wirtschaftliche, automatisierbare Fertigung endlosfaserverstärkter 3D-Schale-Rippen-FKV-Bauteile mit komplex angeordneten Versteifungselementen in reproduzierbare Qualität geschaffen.

Zusammenfassung und Ausblick

Im Rahmen des IGF-Projektes 20793 BR wurde ein innovatives Fertigungsverfahren auf Basis der Mehrlagenflachstricktechnik zur integralen Herstellung lastgerecht ausgelegter 3D-Schale-Rippen-Strukturen mit komplex angeordneten Versteifungselementen entwickelt, umgesetzt und erfolgreich erprobt. Wesentliche Vorteile der Integralbauweise gegenüber der Differenzialbauweise sind ein deutlich schnellerer Preformaufbau sowie eine deutlich höhere mechanische Belastbarkeit daraus herstellbarer FKV-Bauteile durch die durchgehende Faserverstärkung zwischen benachbarten Strukturbereichen, z. B. zwischen Schale und Rippe. Derartige Bauteile sind dadurch wesentlich materialeffizienter auslegbar. Künftig ermöglicht das entwickelte Verfahren einen Durchbruch topologie‑ und strukturoptimierter endlosfaserverstärkter 3D-Schale-Rippen-FKV-Bauteile in Serienanwendungen.

Potenzielle industrielle Anwendungen sind u. a. für hochbelastbare rippenverstärkte Schalen im Schienenfahrzeug‑, Automobil- und Apparatebau (z. B. Türen oder Maschinenabdeckungen), Rumpfstrukturen im Schiffbau oder lasttragende Strukturen der Luft- und Raumfahrt (z. B. Flugzeugrumpf oder Isogrid-Strukturen).

Weiteres Forschungspotenzial besteht u. a. in der Weiterentwicklung der Technologie zur integralen Fertigung endlosfaserverstärkter 3D-Schale-Rippen-Strukturen mit diagonal angeordneten Versteifungselementen abweichend von der ± 45°-Anordnung bzw. mit gekrümmten Rippen [6].

Danksagung

Das IGF-Vorhaben 20793 BR der Forschungsvereinigung Forschungskuratorium Textil e. V. wurde über die AiF im Rahmen des Programms zur Förderung der industriellen Gemeinschaftsforschung (IGF) vom Bundesministerium für Wirtschaft und Klimaschutz aufgrund eines Beschlusses des Deutschen Bundestages gefördert.

Die Autoren danken den genannten Institutionen für die Bereitstellung der finanziellen Mittel sowie den involvierten Unternehmen im projektbegleitenden Ausschuss für die fachliche Unterstützung und die Bereitstellung von Versuchsmaterial. Der Forschungsbericht und weiterführende Informationen sind am Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik der TU Dresden erhältlich.

Authors: Quentin Bollengier, David Rabe, Minh Quang Pham, Eric Häntzsche, Chokri Cherif

Technische Universität Dresden
Fakultät Maschinenwesen
Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM)
01062 Dresden

https://tu-dresden.de/mw/itm

More entries from TU Dresden, Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik ITM

06.03.2023

Gewebte Papier-Textil-Strukturen für einen nachhaltigen Leichtbau

Fabrics Composites Textile machinery Sustainability Technical Textiles

Abstract

Mit dem technologischen Nachweis des neuartigen HyPerWeave-Ansatzes steht somit in der Zukunft eine nachhaltige Material- und Leichtbaulösung für eine Vielzahl an Branchen bereit, deren Eigenschaften (Stabilität, Brandschutz) auf den jeweiligen Anwendungsfall maßgeschneidert angepasst werden kann. Darüber ermöglicht die Kopplung von Papier- und Textiltechnik geschlossene Stoffkreisläufe, in denen das betreffende Bauteil gegen Ende der Produktlebenszeit und abhängig von seiner Zusammensetzung getrennt und zu neuen Leichtbaustrukturen recycelt werden kann.

Report

Mit dem konsequenten Einsatz von Leichtbau-Technologien können in vielen industriellen Bereichen sowie in der Mobilitäts- und Baubranche erhebliche Mengen an CO2-Emissionen eingespart werden. Jedoch erfordert die Herstellung entsprechender faserverstärkter Leichtbaustrukturen einen hohen Energie- und Ressourcenaufwand, wodurch eine tatsächliche CO2-Ersparnis erst sehr spät und am Ende der Nutzungsdauer erreicht wird. Zum Beispiel basieren Carbon- oder Aramidfaser in der Regel auf petrochemischen Ausgangsmaterialien und erfordern bei der Herstellung einen immensen Energieeinsatz. Im Gegensatz dazu bieten naturbasierte Verstärkungsfasern ein großes Potenzial zur Senkung von CO2-Emissionen und zur stofflichen Bindung von CO2 bei der Herstellung von Leichtbaustrukturen. Dennoch sind diese Technologien noch nicht weit verbreitet, da die Eigenschaften der Ausgangsmaterialien großen Schwankungen unterliegen und die Kompatibilität mit gebräuchlichen Matrixsystemen nicht immer gegeben ist.

Das branchenübergreifende Projekt "HyPerWeave" erforscht Wege zur Umsetzung eines CO2-armen und damit nachhaltigen Leichtbaus. Wissenschaftler:innen der Papiertechnischen Stiftung Heidenau (PTS) und des Instituts für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM) der TU Dresden entwickeln im Rahmen der Industriellen Gemeinschaftsforschung gewebte Verstärkungsstrukturen auf Basis von Papier (siehe Abbildung 1) für neuartige, hochstabile Leichtbaupaneele, wie sie in vielen Bereichen der Mobilität, der Gebäudeausrüstung oder dem Anlagenbau benötigt werden. Neben den Anforderungen an eine hohe spezifische Tragfähigkeit solcher Paneele, sind es daher insbesondere die Brandschutzeigenschaften bis DIN 4102 B1, die in der Materialentwicklung von HyPerWeave adressiert werden.

Die papier- und textiltechnologischen Arbeiten der Forschungseinrichtungen sind eng miteinander verzahnt. So konnten in der ersten Projektphase neue Papiere entwickelt werden, die ein vielversprechendes Eigenschaftsprofil hinsichtlich Mechanik, Brandschutz und textiltechnologischer Verarbeitbarkeit aufweisen und nun im Rahmen der zweiten Projektphase schrittweise auf praxisähnliche Versuchsanlagen der PTS hergestellt werden. Für die weitere Verarbeitung der Papiere zu integral verstärkten Leichtbaustrukturen wird am ITM eine neues Webverfahren entwickelt und konstruktiv-technologisch umgesetzt. Dies betrifft insbesondere die Materialführung, bei der das Papier in anforderungsgerechte Streifen geschnitten und in Form von Kettfäden bindungstechnisch in eine Abstandsgewebestruktur eingebracht werden. Die textilbasierte Kopplung zwischen der so aus dem Papier ausgeprägten Kernlage und den gleichzeitig gewebten Decklagen (siehe Abbildung) verspricht dabei gegenüber dem Stand der Technik eine deutlich verbessertes Delaminationsverhalten, gesteigerte Schubstabilität und Schadenstoleranz gegenüber geklebten Waben-Sandwichstrukturen. Die gewebten Papierhalbzeuge können anschließend mit Fixiermitteln und Matrixmaterialien auf Basis nachwachsender Rohstoffe zu hochwertigen Paneelen weiterverarbeitet werden.

Danksagung

Das IGF-Vorhaben 21856 BR (Entwicklung von integral gewebten Papier-Textil-Sandwichstrukturen für Leichtbaupaneele (Hybrid High Performance Paper Weaves – HyPerWeave) wird über die AiF im Rahmen des Programms zur Förderung der Industriellen Gemeinschaftsforschung (IGF) vom Bundesministerium für Wirtschaft und Klimaschutz aufgrund eines Beschlusses des Deutschen Bundestages gefördert.

Authors: Vorhof, Michael (1); Wüstner, Cornell (2); Sennewald, Cornelia (1); Cherif, Chokri (1) (1) Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM) (2) Papiertechnische Stiftung Heidenau

Technische Universität Dresden
Fakultät Maschinenwesen
Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM)
01062 Dresden
cornelia.sennewald@tu-dresden.de

Papiertechnische Stiftung Heidenau
Pirnaer Straße 37
01809 Heidenau
cornell.wüstner@ptspaper.de

https://tu-dresden.de/mw/itm | https://www.ptspaper.de

More entries from TU Dresden, Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik ITM

06.03.2023

Technology Development for the Sustainable Production of High-purity Chitosan Filament Yarns with High Performance and Functionality (Chion)

Raw materials Fibres Yarns Sustainability

Abstract

In the IGF project 21168 BR ‘Chion’, a technology for the manufacturing of chitosan multifilament yarns from ionic liquids was developed, enabling the tailoring of the yarn properties regarding their performance and functionality in all process stages. The material costs, the field of application and the functionalities achievable by the multifilament yarns are defined by the raw material selection. By using ionic liquids, it was possible for the first time to process lower-cost chitosans in various qualities and degree of deacetylation < 90%, previously unavailable with conventional spinning processes. From the achieved and extensively evaluated project results, required process parameters for the successful transfer of the elaborated fundamentals to a pilot scale as well as the process development for the spinning of chitosan multifilament yarns with high performance and strengths up to 28 cN/tex on a pilot solvent wet spinning plant were derived and implemented. To demonstrate the textile processability of the multifilament yarns, textile demonstrators were successfully fabricated for the first time in conventional textile weaving, knitting or braiding processes on standard industrial textile machines.

Report

Introduction and Objective

In the 21st century, society's high level of interest in using products that are manufactured in a sustainable way and minimize environmental impact grows constantly. In this context, the textile and fiber industry has the opportunity to accelerate the development of organic products from renewable raw materials, such as chitin and chitosan, in order to respond to the social, national and international demand for organic products.

The biopolymer chitin and its derivative chitosan are versatile and well-known materials used in (bio-)medicine and pharmacy. However, they are rarely available as a pure textile product. Chitin is the second abundant biopolymer after cellulose with 1.5-105 t/a [1]. The semi-crystalline structure and stable network of molecular bonds limit the solubility of chitin significantly. Therefore, chitin derivative chitosan is being primarily addressed by research and material development. The chitosan class of materials demonstrates excellent biological and antibacterial properties as well as cell colonizability and biodegradability [2, 3]. In the last few years, considerable research efforts have been made to develop efficient chitosan products; nevertheless, the availability of pure chitosan multifilament yarns with long-term stability is currently extremely limited [4]. Likewise, a robust, scalable process for manufacturing of high-performance chitosan filament yarns is urgently needed, as current products are severely limited in terms of mechanical properties. Due to the natural provenance and variability of raw material properties, such as degree of deacetylation (DD), molecular weight (Mw), etc. There are still major challenges in producing of chitosan multifilament yarns using the acid- and alkali-dominated manufacturing processes established so far.

The aim of the IGF research project ‘Chion’ (21168 BR) was therefore to develop a robust wet-spinning process based on ionic solvents for manufacturing of multifilament yarns from 100 % chitosan with high performance and functionality.

Obtained Results

By using ionic liquids (IL), lower cost chitosans with lower Mw and DD < 90% became accessible to the wet-spinning process for the first time. A high content of acetamide groups in chitosan with low DD (< 90%) leads to the increase of intermolecular interactions, which resulted in improved mechanical performance with tensile strengths up to 28 cN/tex and proper textile processing of chitosan multifilament yarns. The extensive research of chitosan-IL-systems with different chitosan proveniences, Mw and DD 60 – 90% with imidazol-based IL was initially carried out on a laboratory scale for monofilaments. Based on the results, important process parameters and promising chitosan-IL combinations were obtained and the developed process was successfully transferred to the multifilament scale. A structural-mechanical adjustment of the properties of the chitosan multifilament yarns was a fundamental object of the research work: Each development step was systematically monitored by material and process characterizations and analyses. Further investigations included the solubility of chitosan in IL, viscosity studies, fiber morphology and geometry, chemical and physical material properties, crystallinity and degradation behavior, as well as on the influence of controlled fiber drawing during the spinning process according the adjustment of the textile-physical properties. By integrating acid- and temperature-sensitive agents into the spinning dope, the functionality of the chitosan multifilament yarns was demonstrated. As a result of the precise tailoring of the molecular fiber properties and the developed spinning process parameters, a robust, scalable wet-spinning process is now available for manufacturing of pure chitosan multifilament yarns in pilot scale. Finally, the textile processability of the chitosan multifilament yarns was investigated and demonstrated by knitting, weaving and braiding processes.

Investigation of the solubility of chitosan in IL and spinning dope preparation

Initially, the dissolving ability of IL for chitosan was investigated and evaluated. Through systematic experiments, 19 commercially available chitosan materials of different qualities (e.g. medical grade chitosan, industrial grade chitosan, etc.), provenance (e.g. shrimps, crabs, fungal-based chitosan), degree of DD (60 – 90%) and Mw were characterized and their solubility evaluated in promising imidazole-based ILs. It was demonstrated that especially short-chain ILs in combination with acetate anions possess excellent solubility for all investigated chitosans (Figure 1). From the results of the dissolution tests, promising chitosan-IL combinations were defined for further process development steps.

The preparation of the chitosan-IL spinning dopes (Figure 2, left) was carried out using thermal processing in solids concentrations of up to 8 wt.-% and was monitored and evaluated by rheological investigations as a function of the temperature and shear rate (Figure 2, right). To investigate the stability, processability and spinnability of the homogeneous chitosan-IL-solutions, the spinning dopes were processed into monofilaments on a laboratory scale. In particular, fiber formation was analyzed as a function of the chitosan raw materials and process parameters, such as solid content, temperature, diffusion rate and residence time in the coagulation medium. The obtained results demonstrated, that all investigated chitosan-IL-combinations can be processed into pure chitosan fibers. Therefore, it was successfully proved that ILs are a suitable and promising solvent for the manufacturing of chitosan multifilament yarns.

Wet-spinning of the chitosan multifilament yarns

In the following step, the basic methods developed on the laboratory scale were successfully transferred to a wet-spinning process on a pilot scale. The chitosan multifilament yarns were spun on the wet-spinning plant (Fourné Maschinenbau GmbH) of the ITM. The pilot spinning plant is specially designed for R&D process developments and enables, in particular, test trials with 2 – 60 liters of spinning dope.

For the spinning trials, chitosan-IL spinning dope was first filtered and degassed under specific temperature and pressure conditions. Different spinneret geometries were used for multifilament spinning, including 78 holes of 90 μm (90 µm/78f) and 24 holes of 160 μm (160 µm/12f), respectively. The prepared tempered spinning dope was extruded into a coagulation bath with deionized water as medium. Overall yarn counts of about 50 – 65 tex and filament diameters of about 30 – 50 µm were achieved depending on the spinneret geometry. In order to achieve tailored functionalities, such as high mechanical strength and crystallinity as well as improved molecular orientation, the influence of fiber drawing during the spinning process was systematically investigated. The produced yarns were analyzed for their mechanical and textile-physical properties and compared with conventionally produced acetic acid (AcOH) based chitosan yarns. The DD of the raw material has an important role in this context: a high content of acetamide groups in chitosan with low DD (< 90%) leads to an increase in intermolecular interactions, resulting in improved mechanical properties. The results obtained demonstrate a high functionality as well as significantly improved mechanical properties of the IL spun chitosan multifilament yarns compared to the conventional chitosan fibers (DD 90%) (Figure 3, right). By means of elaborated drawing parameters, tailor-made textile-physical properties, such as elasticity or tensile strength, can be adjusted according to defined requirements.

Textile processing of the chitosan multifilament yarns

During the final phase of the project, the textile processing of the chitosan multifilament yarns from IL into knitted and woven patterns and braids was successfully implemented (Figure 4). The technical processing of conventional chitosan yarns on textile machines has always been a challenge due to insufficient mechanical strength and knot tearing forces. Trouble-free processing in weaving, knitting or braiding processes without special yarn pretreatment or machine adaptations could not be realized so far using conventional chitosan multifilament yarns. In contrast, the chitosan multifilament yarn produced by IL offers sufficient mechanical stability and flexibility to be processed into knitted, woven or braided structures in conventional textile processes on standard industrial production machines. Additional yarn functionalization, such as sizing, further improves the processability of the material and the quality of the finished product.

Acknowledgement

The IGF project 21168 BR of the Research Association Forschungskuratorium Textil e.V. was funded by the Federal Ministry of Economics and Climate Protection via the AiF within the framework of the program for the promotion of joint industrial research (IGF) on the basis of a resolution of the German Bundestag. We would like to thank the above-mentioned institutions for providing the financial resources. Furthermore, we want to thank the member of the ‘Projektbegleitender Ausschuss’ (project accompanying committee) for their support during the project.

The complete publication is available as download.

Authors: Kuznik, Irina; Kruppke, Iris; Cherif, Chokri

Technische Universität Dresden
Fakultät Maschinenwesen
Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM)
01062 Dresden

https://tu-dresden.de/mw/itm

chitosan multifilament yarns

More entries from TU Dresden, Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik ITM

06.03.2023

Technologieentwicklung zur nachhaltigen Herstellung hochreiner Chitosanfilamentgarne mit hohem Leistungs- und Funktionsvermögen (CHION)

Raw materials Fibres Yarns Sustainability

Abstract

Das IGF Projekt 21168 BR „Chion“ umfasst eine Technologieentwicklung zur Herstellung von Chitosanmultifilamentgarnen, die ein Maßschneidern der Garneigenschaften hinsichtlich ihres Leistungs- und Funktionsvermögens in allen Prozessstufen ermöglicht. Dabei werden die Materialkosten, das Einsatzfeld sowie die im Multifilamentgarn erreichbaren Funktionalitäten zunächst durch die Rohmaterialauswahl definiert. Durch die Nutzung von ionischen Flüssigkeiten sind erstmalig kostengünstigere Chitosane in verschiedenen Qualitäten sowie Deacetylierungsgraden < 90 % für einen Lösungsmittelnassspinnprozess einsetzbar, die bisher mit konventionellen Spinnprozessen nicht verarbeitbar waren. Aus den erzielten und ausführlich ausgewerteten Projektergebnissen wurden notwendige Prozessparameter für die erfolgreiche Übertragung der erarbeiteten Grundlagen auf einen Technikumsmaßstab sowie dazugehörige Prozessentwicklung für die Erspinnung vom Chitosanmultifilamentgarn mit hohem Leistungsvermögen und Festigkeiten bis zu 28 cN/tex auf einer Pilot-Lösungsmittelnassspinnanlage abgeleitet und umgesetzt. Zum Nachweis der textilen Verarbeitbarkeit der erzeugten Multifilamentgarne aus 100 % Chitosan erfolgte eine erfolgreiche Umsetzung textiltechnischer Demonstratoren in konventionellen textilen Web-, Strick- oder Flechtprozessen auf industrieüblichen Textilmaschinen.

Report

Einleitung, Problemstellung und Zielsetzung

Im 21. Jh. wächst die hohe Bereitschaft der Gesellschaft, ökologische, ressourcen- und umweltschonend hergestellte Produkte zu verwenden, stets weiter. Hierbei hat die Textil- und Faserbranche die Chance, durch biobasierte Produkte auf Grundlage von nachwachsenden Rohstoffen, wie Chitin bzw. Chitosan, Entwicklungen voranzutreiben, um dem gesellschaftlichen, nationalen sowie internationalen Bedarf an biobasierten Produkten gerecht zu werden.

Das Biopolymer Chitin und sein Derivat Chitosan sind bereits vielseitig genutzte Rohstoffe in der (Bio-)Medizin und Pharmazie, die jedoch kaum als reines textiles Produkt verfügbar sind. Chitin ist mit 1,5·105 t/a das zweithäufigste natürlich vorkommende Biopolymer nach Cellulose [1]. Die halbkristalline Struktur und das stabile Netzwerk aus molekularen Bindungen limitieren jedoch die Löslichkeit von Chitin stark, weshalb vornehmlich das Chitinderivat Chitosan in der Forschung und Materialentwicklung untersucht wird. Die Materialklasse des Chitosans weist hervorragende biologische und antibakterielle Eigenschaften sowie Zellbesiedelbarkeit und Biodegradabilität auf [2, 3]. In den letzten Jahren wurden zwar beträchtliche Forschungsanstrengungen unternommen, um effiziente Chitosanprodukte zu entwickeln, dennoch ist die Verfügbarkeit reiner, langzeitstabiler Chitosanmultifilamentgarne aktuell stark eingeschränkt [4]. Ebenso wird ein robuster, adaptierbarer Prozess zur Erzeugung dieser leistungsstarken Garne dringend benötigt, da heutige Chitosanfilamentgarne hinsichtlich mechanischer Eigenschaften stark limitiert sind. Aufgrund der natürlichen Herkunft und der damit verbundenen Variabilität von Rohmaterialeigenschaften, wie bspw. Deacetylierungsgrad (DA), Molekulargewicht (MW), etc., bestehen nach wie vor große Herausforderungen, Chitosanmultifilamentgarne mittels der bisher entwickelten säure- und alkalidominierten Herstellungsprozesse zu erzeugen.

Das Ziel des IGF Projektes 21168 BR „Chion“ bestand deshalb darin, Multifilamentgarne aus 100 % Chitosan mit hohem Leistungs- und Funktionsvermögen auf Basis eines robusten Lösungsmittelnassspinnverfahrens mit ionischen Lösungsmitteln in reproduzierbarer Qualität und mit einstellbaren Eigenschaften zu erzeugen.

Erzielte Ergebnisse

Durch die Nutzung von ionischen Flüssigkeiten (ionic liquids, IL) werden erstmalig kostengünstigere Chitosane mit geringeren Mw bzw. niedrigen DA < 90 % dem Lösungsmittelnassspinnprozess zugänglich gemacht. Ein hoher Anteil an Acetamidgruppen bei Chitosan mit geringem DA führt zu einer Steigerung der intermolekularen Wechselwirkungen, wodurch ein erhöhtes Leistungsvermögen bis zu 28 cN/tex, sowie eine gute textiltechnische Verarbeitung der mittels IL hergestellter Chitosanmultifilamentgarne resultieren. Die komplexe Erforschung der Chitosan-IL-Systeme mit verschiedenen Chitosanqualitäten, MW sowie DA 60 – 90 % mit imidazolhaltigen IL erfolgte zunächst unter vereinfachten Randbedingungen für Monofilamente. Aus den Ergebnissen wurden wichtige Prozessparameter und aussichtsreiche Chitosan-IL-Kombinationen abgeleitet und der entwickelte Prozess auf den Multifilamentmaßstab übertragen. Eine strukturmechanische Einstellung der Eigenschaften der Chitosanmultifilamente war ein grundlegender Gegenstand der Forschungsarbeiten. Jeder Entwicklungsschritt wurde dabei von systematischen Material- und Prozesscharakterisierungen sowie Analysen begleitet. Systematische Untersuchungen erfolgten zur Löslichkeit von Chitosan in IL, Viskositätsstudien, Fasermorphologie sowie -geometrie, chemischen und physikalischen Materialeigenschaften, Kristallinität- und Degradationsverhalten sowie zum Einfluss einer zielgerichteten Verstreckung während des Spinnprozesses auf strukturmechanische Einstellung der textil-physikalischen Eigenschaften. Durch die Integration säure- und temperaturempfindlicher Modellwirkstoffe in die Spinnlösung wurde die Funktionalisierbarkeit der erzeugten Chitosanfilamentgarne nachgewiesen sowie die Bioaktivität und deren Beständigkeit im Koagulationsbad und am Garn erforscht. Im Ergebnis der gezielten Abstimmung der molekularen Eigenschaften des Chitosans und der erarbeiteten Spinnprozessparameter steht somit ein robuster, übertragbarer Lösungsmittelnassspinnprozess zur Erspinnung der Chitosanmultifilamentgarne im Technikumsmaßstab zur Verfügung. Zum Abschluss wurde die textile Verarbeitbarkeit der erzeugten Chitosanmultifilamentgarne in Strick-, Web- und Flechtprozessen untersucht und nachgewiesen.

Untersuchung des Lösungsvermögens von Chitosan in IL sowie Spinnlösungherstellung

Der erste Schritt der Forschungsarbeiten umfasste die Untersuchung und Bewertung des Lösungsvermögens ionischer Flüssigkeiten (IL) für Chitosan. Mittels systematischer Versuchsdurchführung wurden 19 kommerziell verfügbaren Materialien unterschiedlicher Qualitäten (z.B. medizinisches Chitosan, industrielles Chitosan, etc.), Provenienzen (z.B. Shrimps, Krabben, pilzbasiertes Chitosan), DA (60 – 90 %) sowie MW charakterisiert und deren Löslichkeit in aussichtsreichen imidazolhaltigen IL grundlegend analysiert und ausgewertet. Die erzielten Ergebnisse zeigen, dass besonders kurzkettige IL in Kombination mit Acetat-Anionen ein hervorragendes Lösungsvermögen für alle untersuchten Chitosane aufweisen (vgl. Abbildung 1), woraus eine Ableitung aussichtsreicher Chitosan-IL-Kombinationen für weitere Prozessentwicklungsschritte folgte.

Die Herstellung der Chitosan-IL-Spinnlösungen erfolgte mittels thermischer Unterstützung in Feststoffkonzentrationen bis zu 8 Gew.-% und wurde von rheologischen Untersuchungen in Abhängigkeit von den Parametern Temperatur und Scherrate begleitet und bewertet. Zur Untersuchung der Stabilität, Prozessierbarkeit sowie Spinnbarkeit der hergestellten homogenen Chitosan-IL-Lösungen wurden diese im Labormaßstab zu Monofilamenten verarbeitet. Umfangreiche Analysen umfassten dabei besonders Untersuchungen der Fadenbildung in Abhängigkeit von verwendeten Rohmaterialien sowie Prozessparametern, wie Feststoffgehalt, Temperatur und Verweilzeit im Koagulationsmedium, sowie des Diffusionsverhaltens und der resultierenden Fasereigenschaften. Die erarbeiteten Grundlagen bildeten dabei eine Basis für die Prozessentwicklung der Multifilamentgarnerspinnung aus IL. Die erzielten Ergebnisse zeigen, dass sich alle untersuchten Chitosan-IL-Kombinationen zu reinen Chitosanfasern verarbeiten lassen, und dienen somit als Nachweis, dass IL ein geeignetes und aussichtsreiches Lösungsmittel zur Herstellung von Chitosanmultifilamentgarnen darstellen.

Erspinnung der Chitosanmultifilamentgarne

Im nächsten Schritt der Forschungsarbeiten fand die erfolgreiche Übertragung der im Labor erarbeiteten Grundlagen auf einen Lösungsmittelnassspinnprozess im Technikumsmaßstab statt. Die Erspinnung der Chitosanmultifilamentgarne erfolgte dabei an der Lösungsmittelnassspinnanlage (Fourné Maschinenbau GmbH) des ITM. Die Pilot-Spinnanlage ist speziell für FuE-Prozessentwicklungen ausgelegt und ermöglicht u. a. Versuche mit 2 – 60 Liter Spinnlösung.

Für die Spinnversuche wurde die Chitosan-IL-Spinnlösung zunächst filtriert und unter bestimmten temperatur- und druckbedingten Konditionen entgast. Die Multifilamenterspinnung erfolgte mittels unterschiedlicher Spinndüsengeometrien, u.a. 78 Löcher à 90 μm (90 µm/78f) bzw. 24 Löcher à 160 μm (160 µm/12f). Die präparierte, temperierte Spinnlösung wurde in ein Koagulationsbad mit deionisiertem Wasser als Medium extrudiert. Die resultierenden Multifilamentgarne weisen Garnfeinheiten von ca. 50–65 tex sowie Filamentdurchmesser von ca. 30–50 µm in Abhängigkeit von der Düsengeometrie auf. Um maßgeschneiderte Funktionalitäten, wie hohe mechanische Festigkeiten und Kristallinitäten sowie verbesserte Molekülorientierung, zu erzielen, wurde der Einfluss des Faserverzugs während des Spinnprozesses systematisch untersucht und mittels gezielter Versuchsplanung effektive Verzugsparameter ausgearbeitet. Die prozessbegleitenden systematischen Untersuchungen umfassten dabei die Charakterisierung der mechanischen und textil-physikalischen Eigenschaften der mittels IL ersponnenen Garne sowie den Vergleich der erzielten Kennwerte mit konventionell hergestellten Chitosangarnen auf Essigsäurebasis (AcOH). Der DA des Rohmaterials spielt dabei eine besonders große Rolle: Ein hoher Anteil an Acetamidgruppen bei Chitosan mit geringem DA (< 90 %) führt zu einer Steigerung der intermolekularen Wechselwirkungen, woraus verbesserte mechanische Eigenschften resultieren. Die erzielten Ergebnisse weisen eine hohe Funktionalität sowie deutlich verbesserte Festigkeiten der mittels IL ersponnenen Chitosanmultifilamentgarne im Vergleich zu den konventionellen Chitosangarnen (DA 90 %) aus AcOH auf (vgl. Abbildung 3, rechts). Mittels erarbeiteten Verzugsparametern lassen sich zudem maßgeschneiderte textil-physikalische Eigenschaften, wie Elastizität oder Festigkeiten, je nach gestellten Anforderungen einstellen.

Textiltechnische Umsetzung der Chitosanmultifilamentgarne

Im letzten Schritt der Projektbearbeitung folgte die erfolgreiche textiltechnische Verarbeitung der Chitosanmultifilamentgarne aus IL zu Strick- und Webmustern sowie Geflechten (vgl. Abbildung 4). Die technische Verarbeitung von konventionellen Chitosangarnen auf Textilmaschinen stellte aufgrund unzureichender mechanischer Festigkeit und Knotenreisskräften bisher immer eine Herausforderung dar. Eine störungsfreie Verarbeitung in Web-, Strick- oder Flechtprozessen ohne eine spezielle Garnvorbehandlung bzw. Maschinenanpassungen konnte bisher für konventionelle Chitosanmultifilamentgarne nicht umgesetzt werden. Die mittels IL hergestelltes Chitosanmultifilamentgarne bieten dagegen die notwendige mechanische Stabilität sowie Flexibilität, um in konventionellen textilen Prozessen auf industrieüblichen Textilmaschinen zu Strick-, Web- oder Flechtstrukturen verarbeitet zu werden. Durch eine zusätzliche Garnfunktionalisierung, wie bspw. Schlichteauftrag, wird die Verarbeitbarkeit des Materials sowie die Qualität des Fertigproduktes noch zusätzlich verbessert.

Danksagung

Das IGF-Vorhaben 21168 BR der Forschungsvereinigung Forschungskuratorium Textil e.V. wurde über die AiF im Rahmen des Programms zur Förderung der industriellen Gemeinschaftsforschung (IGF) vom Bundesministerium für Wirtschaft und Klimaschutz aufgrund eines Beschlusses des Deutschen Bundestages gefördert. Wir danken den genannten Institutionen für die Bereitstellung der finanziellen Mittel. Darüber hinaus möchten wir den Mitgliedern des Projektbegleitenden Ausschusses für ihre Unterstützung während der Projektbearbeitung danken.

Die vollständige Veröffentlichung steht zum Download zur Verfügung.

Authors: Kuznik, Irina; Kruppke, Iris; Cherif, Chokri

Technische Universität Dresden
Fakultät Maschinenwesen
Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM)
01062 Dresden

https://tu-dresden.de/mw/itm

More entries from TU Dresden, Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik ITM

20.02.2023

Entwicklung bekleidungstechnischer Assistenzsysteme zur Unterstützung der Mobilität älterer Menschen

Sustainability Technical Textiles Smart Textiles Medicine Tests

Abstract

Am ITM erfolgte im IGF-Projekt 21603 BR/1 die Entwicklung bekleidungstechnischer Assistenzsysteme zur Unterstützung der Mobilität älterer Menschen. Im Rahmen des Projektes wurde ein passives Exosuit zur Unterstützung der Aufstehbewegung (Sit-To-Stand – STS-Bewegung) prototypisch umgesetzt.

 

Report

1. Einleitung

Mobilität ist ein menschliches Grundbedürfnis und eine wesentliche Voraussetzung, um sich sozial in die Gesellschaft zu integrieren. Mit steigender Lebenserwartung und dem damit verbundenen demographischen Wandel wird das Thema Mobilität künftig zunehmend wichtiger. Ältere Menschen vermeiden es aufgrund körperlicher Einschränkungen, ohne fremde Hilfe ihren Wohnraum zu verlassen. Der Verlust der Mobilität ist eines der maßgeblichen Risiken des Alterns [1].

In den letzten Jahren wurden unter Einsatz von Robotik und Mechatronik tragbare Roboter, Anzüge oder Geräte entwickelt, die mittels externer Kräfte zur Unterstützung der menschlichen Mobilität beitragen (aktive Exoskelette) [2]. In aktuellen Forschungen geht es um die Gestaltung von Soft-Exosuits, die keinen äußeren starren Rahmen haben, aber auch auf der Wirkung externer Kräfte basieren [3]. Aus medizinischer Sicht ist die Anwendung derartige Lösungen für ältere Menschen, die nur altersbedingte körperliche Einschränkungen haben, umstritten. Fehlende aktive Bewegung führt in der Regel zu einer Rückbildung der Muskulatur, was nicht im Sinne der potentiellen Nutzer wäre. Während im Bereich des Hochleistungs- und Freizeitsports seit Jahrzehnten an der Material- und Schnittentwicklung für Funktionskleidung gearbeitet wird, ist der Kundenkreis der älteren Menschen bisher vernachlässigt worden [4-8].

2. Zielsetzung und Lösungsweg

Ziel dieser Forschung war es deshalb, durch bekleidungstechnische Assistenzsysteme die Mobilität älterer Menschen zu unterstützen ohne die körpereigenen Kräfte abzubauen und einem Muskelabbau weitgehend entgegenzuwirken. Im Rahmen des Projektes wurde ein passives Exosuit zur Unterstützung der Aufstehbewegung (Sit-To-Stand – STS-Bewegung) prototypisch umgesetzt.

Die bekleidungstechnischen Assistenzsysteme für die STS-Bewegung wurden in Form von Funktionswäsche entwickelt, die unter der normalen Tageskleidung getragen werden kann. Diese besteht aus textilen Materialien unterschiedlicher Dehnsteifigkeiten, die die Bewegung des Menschen durch eine gezielte Energiespeicherung/-abgabe, die auf die erforderlichen Muskelkräfte abgestimmt ist, fördern. Die textiltechnische Unterstützung soll unter Berücksichtigung des zu gewährleistenden Tragekomforts nicht das ganze Gewicht des Menschen tragen. Somit muss ein Kompromiss zwischen Tragkraft und Unterstützungslevel gefunden werden. Die belastungsangepasste Materialauswahl erfolgt auf Grundlage biomechanischer Modellierung/Simulation sowie der textilphysikalischen Materialcharakterisierung. Abbildung 1 zeigt die zur Erreichung des Forschungszieles nötigen Prozessschritte.

3. Ergebnisse

Die Ergebnisse sind in folgende Kapitel unterteilt:

3.1 Erfassung von Scandaten mobilitätseingeschränkter Probanden

3.2 Generierung personenindividueller kinematischer/biomechanischer Menschmodelle zur Simulation der Bewegung

3.3 Berechnung/Simulation der Muskelkräfte

3.4 Schnitttechnische Entwicklung des Assistenzsystems und Funktionalisierung

3.5 Validierung der Assistenzwirkung

Die umfassende Ergebnispräsentatiom finden Sie in der Veröffentlichung, die zum Download (pdf-Datei) zur Verfügung steht.

4. Zusammenfassung

In diesem Forschungsvorhaben wurde ein passives bekleidungstechnisches Assistenzsystem in Form von Funktionswäsche für Menschen mit leichten Mobilitätseinschränkungen entwickelt. Dabei geht es darum, den Bewegungsapparat zu entlasten, d. h. die für eine STS-Bewegung benötigten Kräfte zu reduzieren und die Stabilität der Bewegungen zu erhöhen. Dazu wurden personenindividuelle Daten scantechnisch erfasst, textile Materialien unterschiedlicher Dehnsteifigkeiten ausgewählt und charakterisiert, die zu unterstützenden Muskelkräfte in Abhängigkeit der definierten Bewegung simuliert sowie die Schnittgestaltung und Positionierung von Funktionselementen dementsprechend anforderungsgerecht ausgeführt. EMG-Messungen zeigen die unterstützende Wirkung des passiven Assistenzsystems. Die Reduzierung der detektierten Muskelaktivität liegt für die relevanten Muskelgruppen zwischen 6% und 40 %. Damit stellen sie künftig eine erfolgversprechende, nutzerorientierte und alltagstaugliche Lösung dar, um die Mobilität zu unterstützen, ohne die körpereigenen Kräfte abzubauen und einem Muskelabbau entgegenzuwirken.

Danksagung

Das IGF-Vorhaben 21603 BR/1 der Forschungsvereinigung Forschungskuratorium Textil e.V. wurde über die AiF im Rahmen des Programms zur Förderung der industriellen Gemeinschaftsforschung und -entwicklung (IGF) vom Bundesministerium für Wirtschaft und Klimaschutz aufgrund eines Beschlusses des Deutschen Bundestages gefördert.

Die vollständige Veröffentlichung steht zum Download zur Verfügung.

Authors: Ellen Wendt, Doudou Zhang, Sybille Krzywinski, Yordan Kyosev

Technische Universität Dresden
Fakultät Maschinenwesen
Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM)
01062 Dresden

https://tu-dresden.de/mw/itm

More entries from TU Dresden, Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik ITM

16.01.2023

Increased performance and sustainability through the use of profiled textile reinforcements for concrete applications

Fibres Yarns Knittings Textile machinery Sustainability Technical Textiles

Abstract

At the ITM of the TU Dresden, new, bond optimized reinforcement yarns were developed on the basis of braiding and forming technology, which can transmit up to 500 % higher bond forces in concrete than yarns without profile. The profiled rovings and braided yarns show at a bond length of only 50 mm a full anchoring. With the forming technology developed at the ITM, profiled rovings could be manufactured which, due to the patented tetrahedral geometry, can almost completely exploit the tensile potential of the carbon fibers. In the course of developing the braiding yarns, a new vario braiding structure was developed, with nearly eliminated structural elongation under load. This made it possible to manufacture profiled reinforcement yarns with very high tensile properties, which is a basic requirement for use in concrete. In addition, the multiaxial warp knitting technology has been further developed in such a way that the new bond optimized reinforcement yarns (profiled rovings and braiding yarns) can be processed without damage into profiled, grid-like textile reinforcements. This results in a significantly higher material efficiency of the textile reinforcement, so that previous necessary disproportionate oversizing and large overlapping lengths can be significantly reduced. This is of enormous importance, especially in view of the energy-intensive production of carbon fibers and consequently for the sustainability goal of the future-oriented carbon concrete technology, in order to make concrete constructions of the future resource saving and sustainable.

The project results achieved also represent a significant contribution to the production of extremely resilient textile-reinforced concrete structures with significantly improves bond properties, arising new prospects in the construction industry for component production in the field of renovation and new construction.

Report

Abstract
Building in a resource-saving way and still exploiting a high performance potential, is that even possible? At the Institute for Textile Machinery and High Performance Material Technology (ITM) at the TU Dresden, such composite optimized profiled textile reinforcements for concrete applications and the related manufacturing technology were developed as part of the research project IGF 21375 BR. On the basis of braiding and forming technology, a new generation of profiled reinforcement yarns was developed with the help of simulation-based investigations. Like ribbed steel reinforcements, these profiled yarns have a very high bond with the concrete matrix, but despite the profiling they almost fully exploit the performance potential of the carbon fibers in terms of tensile properties. In this way, the bond length required for complete force transmission between the textile reinforcement and the concrete can be reduced to just a few centimeters, and up to 80 % of the component-dependent oversizing of the textile reinforcement can be saved. The further development of the multiaxial warp knitting technology for the requirement-based and fiber-friendly processing of the profiled yarns into grid-like reinforcement structures enables the production of profiled textile reinforcement structures with the highest bond properties for use in carbon-reinforced concrete components with maximum material and resource efficiency.

Initial situation and problem definition
As is generally known, climate change is the greatest challenge of the 21st century, which can only be successfully overcome by consistently saving resources and CO2 emissions. Since the construction industry, with a share of approx. 38 % of global CO2 emissions, has made a significant contribution to global warming to date, in particular due to the enormous cement consumption [1], a change to more energy and resource efficiency as well as a growing awareness of sustainability is absolutely necessary. In the course of this, a resource-efficient carbon concrete, consisting of a corrosion-resistant textile reinforcement in combination with a significantly reduced concrete cover, is established in the construction industry as a convincing alternative to conventional steel reinforced concrete [2,3].

Due to the high load-bearing capacity of the textile reinforcement with the smaller concrete cross-sections required, the bond between the textile and the concrete is extremely important. So far, R&D has focused on the development of impregnations and impregnation systems for improved material bond with the concrete matrix [4]. However, only small forces with a shear flow of about 5 - 40 N/mm can be transferred, an efficient utilization of the textile reinforcement is not possible. Solutions with profiling of the yarn surface promise significant improvements in the transmission of bond forces [5]. Therefore, new technologies for the continuous and reproducible production of profiled textile high-performance fiber yarns and their further processing into reinforcement structures were developed within a research project at the ITM of the TU Dresden. These innovative, profiled reinforcements are characterized by their ability to transmit significantly higher bond forces in concrete [6,7]. In particular, this was realized by a form-fitting effect between the textile and the concrete, that meets the specific requirements of a stiff and symmetrical surface profile of the reinforcement yarns in order to guarantee a constant and high force transmission. To generate the yarn profiling, solutions based on braiding technology and forming processes were developed and implemented with the help of simulation-supported studies. The premises were a permanently stable textile structure and a profile with a symmetrical structure. The realization of grid-like reinforcement structures, consisting of the profiled reinforcement yarns, was carried out using the multiaxial warp knitting technology. This was developed further on a modular basis with regard to the existing processes (yarn feeding, weft yarn insertion, knitting process, impregnation and winding) in accordance with the necessary adaptation measures for the fiber-friendly and requirement-based further processing of the profiled reinforcement yarns into grid-like structures.

Development of the innovative profiled reinforcement yarns
For the development of bond optimized profiled reinforcement yarns for concrete applications, a simulation-supported yarn development was carried out on the basis of braiding and forming technology. In particular, the main challenge was to realize profiled yarns with minimal structural elongation, so that, an initial force transmission of the textile reinforcement is possible and the concrete crack widths are minimized [3] if the concrete matrix fails at approx. 0.2 % elongation. For this purpose, a new type of varying braiding structure was developed. Moreover the braiding technology was further developed to enable a low-undulation and pre-stabilization of the braiding yarn structure during the braiding process, yet still ensuring further textile processing. As a result, it is now possible to implement novel vario braiding yarns as well as conventional packing braided yarns, consisting of carbon fibers with nearly eliminated structural elongation, minimal fiber damage and the required pre-stabilization of the yarn structure (see Table 1).

...

Performance potential of the new profiled reinforcement yarns
The newly developed profiled reinforcement yarns are characterized by nearly unchanged tensile properties, yet up to 500 % higher bond properties compared to carbon rovings without profile or rovings extracted from reference textiles (see Figure 1). In addition, they do not show any noticeable structural elongation, so that an initial force transmission is possible without additional crack opening after the failure of the concrete matrix. However, an increase in bond strength of more than 500 % from approx. 20 N/mm of the carbon rovings without a profile to over 100 N/mm of the profiled reinforcement yarns was achieved, which is accompanied by a significant increase in material efficiency (see Figure 1). The vario braiding yarns in particular are characterized by very high bond stiffness, which is of particular interest for an initial force transmission. The packing braiding yarns and the profiled rovings with tetrahedral geometry have almost the same bond properties. The bond stiffness is marginally lower compared to the vario braiding yarns, whereas their production is more productive than the vario braiding yarns.

Development of the multiaxial-warp knitting process
To process the newly profiled reinforcement yarns into a grid-like reinforcement structure, a biaxial warp knitting machine Malimo 14022 at the ITM and the corresponding sub-processes (yarn feeding, weft yarn insertion, knitting process, impregnation and winding) were adapted and further developed so that on the one hand the pre-stabilized braiding yarns and the consolidated tetrahedral-shaped profiled rovings can be processed further. For this purpose, the weft thread laying process in particular was modified by developing a new type of weft thread guide for the laying of the pre-stabilized braiding yarns. Since the rigid profiled rovings could not be processed with the conventional weft laying process, a new type stick placement system consisting of a stick magazine and a shaft with profile rollers was developed (see Figure 2). The pre-cut sticks were individually inserted via the stick placement system into a transport chain modified with new fixing elements.

In order to guarantee textile processing, the pre-stabilized braiding yarns were impregnated and consolidated after the warp knitting process, contrary to the rigid profiled rovings, which do not require any further impregnation.. On the basis of extensive production tests, a new type of impregnation system was developed based on the kiss coater process with an additional coating roller for applying an impregnation agent to both sides of the pre-stabilized braiding yarns. Various reinforcement structures were manufactured and characterized with the implemented system technology. Figure 3 shows a new type of profiled textile reinforcement consisting of prefabricated profiled rovings with tetrahedral shape.

Acknowledgments
The IGF research project 21375 BR of the Forschungsvereinigung Forschungskuratorium Textil e. V. is funded through the AiF within the program for supporting the „Industriellen Gemeinschaftsforschung (IGF)“ from funds of the Federal Ministry for Economic Affairs and Climate Action on the basis of a decision by the German Bundestag.

The complete publication is available as download.

Authors: Penzel, Paul; Hahn, Lars; Abdkader, Anwar; Cherif, Chokri

Technische Universität Dresden
Fakultät Maschinenwesen
Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM)
01062 Dresden

https://tu-dresden.de/mw/itm

More entries from TU Dresden, Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik ITM

16.01.2023

Leistungsfähigkeit und Nachhaltigkeit steigern durch den Einsatz von verbundgerecht profilierten Textilbetonbewehrungen

Fibres Yarns Knittings Textile machinery Sustainability Technical Textiles

Abstract

Am ITM der TU Dresden wurden neuartige, verbundoptimierte Bewehrungsgarne auf Basis der Flecht- und Tränkumformtechnik simulationsgestützt entwickelt, die bis zu 500 % höhere Verbundkräfte im Beton als Garne ohne Profilierung übertragen können. Die Profil- und Flechtgarne weisen bereits bei einer Verbundlänge von nur 50 mm eine vollständige Verankerung auf. Mit der am ITM entwickelten Tränkumformtechnik konnten tetraederförmige Profilgarne gefertigt werden, die aufgrund der patentierten Tetraedergeometrie das zugmechanische Leistungpotential der Carbonfasern nahezu vollständig ausnutzen können. Weiterhin wurde im Zuge der Flechtgarnentwicklung eine neue Flechtstruktur entwickelt, welche die nahezu vollständige Eliminierung der Strukturdehnung unter Last ermöglichte. Somit war die Fertigung von profilierten Bewehrungsgarnen mit sehr hohen zugmechanischen Eigenschaften möglich. Darüber hinaus wurde die Multiaxial-Kettenwirktechnik derart weiterentwickelt, dass die neuartigen Bewehrungsgarne (Profil- und Flechtgarne) schädigungsfrei zu gitterförmigen Textilbetonbewehrungen mit verbundoptimierter Profilierung verarbeitet werden können. Daraus ergibt sich eine deutlich höhere Materialeffizienz der Textilbewehrung, sodass bisher notwendige unverhältnismäßige Überdimensionierungen und große Überlappungslängen deutlich reduziert werden können. Dies ist insbesondere in Anbetracht der energieintensiven Herstellung von Carbonfasern und damit für den Nachhaltigkeitsanspruch der zukunftsweisenden Carbonbetontechnologie von enormer Bedeutung, um das Bauen der Zukunft ressourcenschonend und nachhaltig zu gestalten.

Die erzielten Projektergebnisse stellen zudem einen wesentlichen Beitrag zur Herstellung von extrem belastbaren Textilbetonstrukturen mit deutlich besseren Verbundeigenschaften dar, sodass für die Bauindustrie perspektivisch neue Möglichkeiten zur Bauteilfertigung im Bereich der Sanierung und des Neubaus entstehen.

Report

Abstract
Ressourcenschonend Bauen und dennoch ein hohes Leistungspotential ausschöpfen, ist das überhaupt möglich? Am Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM) der TU Dresden wurden im Rahmen des Forschungsprojektes IGF 21375 BR verbundgerecht profilierte Textilbetonbewehrungen sowie die dazugehörigen Fertigungstechnologien entwickelt, die genau dies ermöglichen. Auf Basis der Flecht- und Tränkumformtechnik wurden neuartig profilierte Bewehrungsgarne simulationsgestützt entwickelt, die analog zu gerippten Stahlbewehrungen einen sehr hohen Verbund mit der Betonmatrix aufweisen und das hohe Leistungspotential der Carbonfasern hinsichtlich der zugmechanischen Eigenschaften ausnutzen. Damit kann die notwendige Verbundlänge für eine vollständige Kraftübertragung zwischen Textilbewehrung und Beton auf wenige Zentimeter reduziert, und somit bis zu 80 % der bauteilabhängigen Überdimensionierung der Textilbewehrung eingespart werden. Die Weiterentwicklung der Multiaxial-Kettenwirktechnik zur anforderungsgerechten und faserschonenden Verarbeitung der profilierten, konsolidierten Garne zu gitterförmigen Bewehrungsstrukturen ermöglicht die Fertigung von profilierten Textilbetonbewehrungen mit höchsten Verbundeigenschaften für den Einsatz in Carbonbeton-Bauteilen mit maximaler Material- und Ressourceneffizienz.

Ausgangssituation und Problemstellung
Bekannterweise ist der Klimawandel die größte Herausforderung des 21. Jahrhunderts, welcher nur durch eine konsequente Einsparung von Ressourcen und CO2-Emmision erfolgreich bewältigt werden kann. Da die Baubranche mit einem Anteil von ca. 38 % der weltweiten CO2-Emission, insbesondere aufgrund des enormen Zementverbrauchs, einen erheblichen Beitrag zur bisherigen Klimaerwärmung hat [1], ist ein Wandel zu mehr Energie- und Ressourceneffizienz sowie einem wachsenden Nachhaltigkeitsbewusstsein zwingend erforderlich. Im Zuge dessen etabliert sich insbesondere der ressourceneffiziente Carbonbeton, bestehend aus einer korrosionsbeständigen Textilbewehrung in Kombination mit einer deutlich reduzierten Betondeckung, im Bauwesen als überzeugende Alternative zum konventionellen Stahlbeton zunehmend [2,3].  

Aufgrund der hohen Tragfähigkeiten der textilen Bewehrung bei kleineren notwendigen Betonquerschnitten kommt jedoch dem Verbund zwischen Textil und Beton eine außerordentlich große Bedeutung zu. Bisher lag der Fokus der F&E auf der Entwicklung von Tränkungsmitteln und zugehöriger Tränkungssysteme zur Verbesserung des stoffschlüssigen Haftverbundes mit der Betonmatrix [4]. Damit lassen sich jedoch nur geringe Kräfte mit einem Schubfluss von etwa 5-40 N/mm übertragen, eine effiziente Ausnutzung der textilen Bewehrung ist nicht möglich. Signifikante Verbesserungen zur Übertragung der Verbundkräfte versprechen Lösungen mit einer Profilierung der Garnoberfläche [5]. Daher wurden im Rahmen des IGF-Forschungsprojektes 21375 am ITM der TU Dresden neuartige Technologie zur kontinuierlichen und reproduzierbaren Herstellung profilierter textiler Hochleistungsgarne und deren Weiterverarbeitung zu Bewehrungsstrukturen entwickelt. Diese neuartigen, profilierten Bewehrungen zeichnen sich dadurch aus, dass diese im Betonverbund deutlich höhere Kräfte übertragen können [6,7]. Zur Generierung einer Profilierung auf Garnebene wurden Lösungen auf Basis der Flechttechnik und mittels tränkumformtechnischer Verfahren simulationsgestützt entwickelt und umgesetzt. Die Prämissen waren eine unnachgiebige Profilgebung mit garnaxial symmetrischem Aufbau, damit eine gleichmäßige und hohe Lastübertragung gewährleistet ist. Die Herstellung gitterartiger Bewehrungsstrukturen, bestehend aus den profilierten Bewehrungsgarnen, erfolgte durch die Weiterentwicklung der Multiaxial-Kettenwirktechnik. Diese wurde entsprechend der notwendigen Anpassungsmaßnahmen zur schädigungsarmen und anforderungsgerechten Weiterverarbeitung der profilierten Bewehrungsgarne zu Gitterstrukturen hinsichtlich der bestehenden Teilprozesse (Garnzuführung, Schusslegung, Maschenbildung, Tränkung und Aufwicklung) modular weiterentwickelt.

Entwicklung der neuartig profilierten Bewehrungsgarne
Für die anforderungsgerechte Entwicklung von profilierten Bewehrungsgarnen für Betonanwendungen erfolgte eine simulationsgestützte Garnentwicklung auf Basis der Flecht- und Tränkumformtechnik. Die wesentliche Herausforderung bestand insbesondere darin, profilierte Garne mit minimaler Strukturdehnung zu realisieren, sodass beim Versagen der Betonmatrix bei ca. 0,2 % Dehnung eine initiale Kraftübertragung der Textilbewehrung ermöglicht wird und die Rissbreiten minimiert werden [3]. Hierzu wurde eine neuartige Flechtstruktur mit einem Varioflechter entwickelt. Darüber hinaus wurde der Flechtprozess derart weiterentwickelt, dass eine ondulationsarme Vorstabilisierung der Flechtgarnstruktur während des Flechtprozesses ermöglicht wird und dennoch eine textile Weiterverarbeitbarkeit gewährleistet ist. Im Ergebnis wurden neuartige Varioflechtgarne sowie konventionelle Packungsflechtgarne bestehend aus Carbonfasern mit nahezu eliminierter Strukturdehnung, minimaler Faserschädigung und anforderungsgerechter Vorstabilisierung der Garnstruktur realisiert (siehe Tabelle 1).

...

Leistungspotential der neuartigen profilierten Bewehrungsgarne
Die neuentwickelten profilierten Bewehrungsgarne zeichnen sich durch nahezu unveränderte zugmechanische Eigenschaften, jedoch bis zu 500 % höhere Verbundeigenschaften im Vergleich zu Carbonrovings ohne Profilierung bzw. aus Referenztextilien extrahierten Rovings aus (siehe Abbildung 1). Zudem weisen sie keine erkenntliche Strukturdehnung auf, sodass eine initiale Kraftübertragung ohne zusätzliche Rissöffnung nach dem Versagen der Betonmatrix möglich ist. Jedoch konnte eine Verbundsteigerung um über 500 % von ca. 20 N/mm der Carbonrovings ohne Profil auf über 100 N/mm der profilierten Bewehrungsgarne erzielt werden, womit eine signifikante Steigerung der Materialeffizienz einhergeht (siehe Abbildung 1). Hierbei zeichnen sich insbesondere die Varioflechtgarne durch sehr hohe Verbundsteifigkeiten aus, die für eine initiale Kraftübertragung von besonderem Interesse sind. Die Packungsflechtgarne sowie die Profilgarne mit Tetraeder-Geometrie haben annähernd gleiche Verbundeigenschaften. Die Verbundsteifigkeit ist im Vergleich zu den Varioflechtgarnen etwas geringer, jedoch ist deren Fertigung produktiver.

...

Weiterentwicklung des Flächenbildungsprozesses
Zur Verarbeitung der neuartig profilierten Bewehrungsgarne zu einer gitterförmigen Bewehrungsstruktur wurde eine am ITM vorhandene Biaxial-Kettenwirkmaschine des Typs Malimo 14022 sowie die entsprechenden Teilprozesse (Garnzuführung, Schusslegung, Maschenbildung, Tränkung und Aufwicklung) angepasst und weiterentwickelt, sodass einerseits die vorstabilisierten Flechtgarne sowie die konsolidierten tetraederförmigen Profilgarne weiterverarbeitbar sind. Hierzu wurde insbesondere der Schusslegungsprozess dahingegen modifiziert, dass ein neuartiger Schussfadenführer für die Schusslegung der vorstabilisierten Flechtgarne entwickelt wurde. Die biegesteifen Profilgarne können nicht mit dem konventionellen Schusslegungsverfahren verarbeitet werden, sodass ein neuartiges Stabablagesystem bestehend aus eine Schussstab-Magazin-Speicher und einer Welle mit Profilwalzen entwickelt wurde (siehe Abbildung 2). Die vorkonfektionierten Schussstäbe wurden über das Stabablagesystem vereinzelt in eine mit neuen Halteelemente modifizierte Transportkette eingelegt.

...

Danksagung
Das IGF-Vorhaben 21375 BR der Forschungsvereinigung Forschungskuratorium Textil e. V. wurde über die AiF im Rahmen des Programms zur Förderung der Industriellen Gemeinschaftsforschung (IGF) vom Bundesministerium für Wirtschaft und Klimaschutz aufgrund eines Beschlusses des Deutschen Bundestages gefördert. Der Schlussbericht und weiterführende Informationen sind am Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik der TU Dresden erhältlich.

Die vollständige Veröffentlichung steht zum Download zur Verfügung.

Authors: Penzel, Paul; Hahn, Lars; Abdkader, Anwar; Cherif, Chokri

Technische Universität Dresden
Fakultät Maschinenwesen
Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM)
01062 Dresden

https://tu-dresden.de/mw/itm

More entries from TU Dresden, Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik ITM