Research publications

3 results
10.06.2025

PE-basierte, spinngefärbte und nachhaltige Kleidung aus Biorohstoffen

Fibres Yarns Knittings Recycling Sustainability Fashion

Abstract

Das Projekt BioPEtex im Innovationsraum BIOTEXFUTURE zielt darauf ab, nachhaltige Bekleidung aus biobasierten Rohstoffen in Form von spinngefärbten T-Shirts zu entwickeln. In einer Branche, die stark von fossilen Polymeren wie Polyester dominiert wird, bietet biobasiertes Polyethylen (BioPE), ein biobasierter Kunststoff aus fermentierten Stärken oder Zucker, eine umweltfreundliche Alternative. BioPE weist die gleichen Eigenschaften auf wie fossiles PE und ist vollständig recycelbar. Durch die Verwendung von spinngefärbtem BioPE können zudem der Energie- und Wasserverbrauch um 50 % gesenkt werden, während CO2-Emissionen um 60 % reduziert werden. Das Projekt umfasst die Entwicklung von nachhaltig eingefärbten Compounds aus BioPE für das Spinnfärbe-Verfahren sowie die Entwicklung von Multifilamentgarnen durch Schmelzspinnen und Falschdrahttexturierung. Die Garne werden auf Seamless-Maschinen verstrickt und ein T-Shirt-Demonstrator konfektioniert, welcher mit einer nachhaltigen elastischen Ausrüstung versehen wird. Die Ergebnisse werden nicht nur den ökologischen Fußabdruck der Textilindustrie verringern, sondern auch innovative Ansätze zur Kreislaufwirtschaft fördern.

Report

Einleitung

Die weltweite jährliche Chemiefaserproduktion wächst stetig und wird 2030 voraussichtlich 100 Mio. t überschreiten. Der Polyester (PES) Polyethylenterephthalat (PET) ist mit 80 % Marktanteil das meistgenutzte Polymer. Alleine die weltweite Kleidungsproduktion wurde zwischen 2000 und 2015 fast verdoppelt. Mittlerweile werden mehr als 80 % aller produzierten Fasern für Kleidung eingesetzt. Von weltweit produziertem PET werden 30 bis 60 % in Kleidung eingesetzt, also ca. 18 bis 36 Mio. t. So ist PET das meistgenutzte Material für Kleidung (Stand 2021). Die Textilindustrie steht somit vor enormen ökologischen Herausforderungen, insbesondere aufgrund des hohen Anteils an fossilen Rohstoffen in der Textilproduktion. Fossile Polyester machen etwa 52 % des Marktes aus und haben erhebliche negative Auswirkungen auf die Umwelt und den Ressourcenverbrauch. Kunstfasern in Bekleidung werden zum Großteil aus diesen fossilen Polyestern mit Hauptbestandteil Polyethylenterephthalat (PET) hergestellt, welches jedoch noch nicht zu 100 % biobasiert hergestellt wird. Kleidung aus 100 % Biopolymeren wird bisher nur in Studien und Leuchtturmprojekten gezeigt, da diese zu teuer für den Massenmarkt und nicht in ausreichender Menge vorhanden sind. Das Projekt bioPEtex verfolgt das Ziel, 100 % biobasiertes Polyethylen (BioPE) im Bekleidungsmarkt zu etablieren. Aus dem großvolumig vorhandenen thermoplastischen Drop-In-Polymer wird sortenreine und thermomechanisch recycelbare Kleidung hergestellt. Dazu muss das Defizit gelöst werden, dass PE nicht für die Endlosfaserherstellung produziert wird und es keine dafür ausgewiesenen Typen sowie keine auf das Polymer ausgelegte, textiltechnische Anlagetechnik gibt. Aufgrund von Vorarbeiten am Institut für Textiltechnik, dem aktuellen Projektstand und Alberghini et al. ist abzusehen, dass das Projekt erfolgreich sein wird. Die Expertise des Konsortiums ist für die schnelle Umsetzung bestens geeignet. [Tex22; AHL+21; SB20]

Material und Methoden

Im Rahmen des Projekts werden kommerziell verfügbare biobasierte Polyethylene ausgewählt, beschafft und modifiziert (vgl. Abbildung 1).

Anschließend werden spinnbare Compounds aus BioPE entwickelt. Für die nachfolgende Spinnfärbung im Schmelzspinnprozess werden durch den Industriepartner TECNARO GmbH, Ilsfeld, Farbmasterbatches mit biobasierten Farbpigmenten entwickelt, um eine nachhaltige Alternative zur konventionellen Färbung mit Farbstoffen zu realisieren. Zudem ist die konventionelle Anfärbung von PE herausfordernd [BBO+13]. Aus diesen BioPE-Compounds werden über Schmelzspinn- und Texturierprozesse im semi-industriellen Maßstab verschiedene texturierte Multifilamentgarne mit bis zu 100 Filamenten entwickelt, sodass ein biobasiertes T-Shirt konfektioniert werden kann. Bisher wird PE in der Industrie lediglich für Stapelfasern, hochverstreckte Fasern für technische Anwendungen oder für Carbonfasern eingesetzt – jedoch noch nicht als Garn in der Bekleidung [Fou99; Pei18; Wor17]. Zusätzlich zur Elastizität durch die Maschen im Gestrick werden innovative, vorwettbewerbliche, nachhaltige Textilausrüstungen getestet und weiterentwickelt.

Ergebnisse

Die ersten Ergebnisse zeigen vielversprechende Fortschritte bei der Verarbeitung von BioPE in spinngefärbten Garnen mit geeigneten Eigenschaften für textile Anwendungen. BioPE kann in stabilen Schmelzspinnprozessen zu Multifilamentgarnen verarbeitet werden. Die Prozessentwicklung mit gefärbten BioPE-Compounds wird zurzeit durchgeführt (vgl. Abbildung 2).

Die resultierenden teilverstreckten Garne (engl. Partially-Oriented Yarn, POY) mit aktuell 96 Filamenten und einem Einzelfilamenttiter von ca. 1 dtex weisen geeignete Eigenschaften für die anschließende Falschdrahttexturierung auf (vgl. Abbildung 3). Produktionsgeschwindigkeiten beim Schmelzspinnen befinden sich zurzeit im industriellen Bereich (2.500 m/min). In einem nächsten Schritt werden Garne mit 30 Filamenten mit höher Einzelfilamenttiter ausgesponnen, um dem resultierenden Textil in Kombination mit den feinen Garnen mehr Stabilität zu verleihen.

Zugfestigkeiten von ca. 20 cN/tex werden bisher erreicht und die angestrebten, von PET-POY abgeleiteten Zielwerte somit bereits erfüllt. Die Falschdrahttexturierung im Labor- (ITA) sowie im semi-industriellen Maßstab (BB Engineering GmbH, Remscheid) ist ebenfalls erfolgreich. Die mechanischen Garnkennwerte der texturierten Garne (engl. Draw-Textured Yarn, DTY) werden somit verbessert und das Garnvolumen sowie das Wärmerückhaltevermögen erhöht (vgl. Abbildung 4). In der Abbildung ist bei der Nahaufnahme des DTY zu sehen, dass im Labormaßstab keine Tangelung eingebracht wurde und der Garnzusammenhalt somit noch nicht ideal ist. Das DTY aus dem Labormaßstab lässt sich jedoch bereits ohne Probleme zu einem Gestrick verarbeiten. Im semi-industriellen Maßstab werden diese Defizite zudem behoben.

Mit dem resultierenden naturfaserähnlichen, kühlen Griff ist der Einsatz im Textil nun möglich. Erste Strickversuche mit dem Labor-DTY sind beim Industriepartner FALKE KGaA, Schmallenberg, erfolgreich und bestätigen erneut das kühlende Gefühl bei Berührung des Textils. Weitere Garne werden entwickelt, damit als nächster Schritt das T-Shirt für Sportanwendungen mit aus semi-industriellen Garnen produziert und als Demonstrator validiert werden kann. Die Entwicklung der biobasierten elastischen Ausrüstung erfolgt zurzeit ebenfalls.

Zusammenfassung

Das Projekt bioPEtex stellt einen innovativen Ansatz dar, um nachhaltige Bekleidung aus biobasierten Materialien herzustellen. Durch gezielte Forschung und Entwicklung sollen sowohl ökologische als auch ökonomische Vorteile realisiert werden. Die erzielten Ergebnisse könnten dazu beitragen, den ökologischen Fußabdruck der Textilindustrie erheblich zu verringern und neue Standards für Recyclingfähigkeit in der Modebranche zu setzen. Bisher sind die Entwicklungen mit biobasierten PE-Compounds erfolgreich und glatte teilverstreckte sowie texturierte Garne können im semi-industriellen Maßstab produziert und zu einem kühlenden Gestrick verarbeitet werden. Die Validierung als Demonstrator in Form eines seamless gestrickten, biobasierten T-Shirts mit elastischer biobasierter Ausrüstung steht im weiteren Projektverlauf noch aus.

Danksagung

Wir danken dem Bundesministerium für Forschung, Technologie und Raumfahrt (BMFTR) für die Förderung des Innovationsraums BIOTEXFUTURE und des Forschungsprojekts bioPEtex (FKZ: 031B1496). Zudem möchten wir allen Beteiligten in diesem Projekt für ihre Beiträge und ihr Engagement danken.

Literaturverzeichnis

  1. [AHL+21] Alberghini, M.; Hong, S.; Lozano, L. M.; Korolovych, V.; Huang, Y.; Signorato, F.; Zandavi, S. H.; Fucetola, C.; Uluturk, I.; Tolstorukov, M. Y.; Chen, G.; Asinari, P.; Osgood, R. M.; Fasano, M.; Boriskina, S. V.:
    Sustainable polyethylene fabrics with engineered moisture transport for passive cooling
    Nature Sustainability 4 (2021), H. 8, S. 715–724

    [BBO+13] Baur, E.; Brinkmann, S.; Osswald, T. A.; Rudolph, N.; Schmachtenberg, E.; Saechtling, H.:
    Saechtling Kunststoff Taschenbuch. 31. Ausgabe, [komplett überarb., aktualisiert und zum ersten Mal in Farbe]Aufl..- München: Hanser, 2013

    [Fou99] Fourné, F.:
    Synthetic Fibers. Hanser, München, 1999

    [Pei18] Peijs, T.:
    1.5 High Performance Polyethylene Fibers:
    Comprehensive Composite Materials II: Elsevier, 2018, S. 86–126

    [SB20] Siracusa, V.; Blanco, I.:
    Bio-Polyethylene (Bio-PE), Bio-Polypropylene (Bio-PP) and Bio-Poly(ethylene terephthalate) (Bio-PET): Recent Developments in Bio-Based Polymers Analogous to Petroleum-Derived Ones for Packaging and Engineering Applications
    Polymers 12 (2020), H. 8

    [Tex22] Textile Exchange:
    Preferred Fiber and Materials Market Report 2022
    Burbank, California: 10/2022

    [Wor17] Wortberg, G.:
    Entwicklung polyethylenbasierter Precursoren für die thermochemische Stabilisierung zur Carbonfaserherstellung. Shaker Verlag, Dissertation
    ,

Authors: Mathias Ortega J. Langer R. Morgenroth M. van Haren G. Mourgas A. Langer T. Gries

Institut für Textiltechnik der RWTH Aachen University, Otto-Blumenthal-Str. 1, 52074 Aachen

Clothtech Sporttech Oekotech

More entries from ITA Institut für Textiltechnik der RWTH Aachen University

30.09.2022

DigiPEP: Components designed according to the load path

Composites Technical Textiles

Abstract

Developing components made of fibre-reinforced plastics, is often performed with the focus on the lightweight construction aspect. For this purpose, the occurring load cases are determined on the basis of the boundary conditions and forces. Afterwards, the component is designed accordingly. If this intention is taken even further, the method is usually assigned to the field of Tailored Textiles. Tailored Textiles are, as the term suggests, textiles that are manufactured to suit the application. This also includes the Tailored Fibre Placement (TFP) process. In this process, rovings can be laid down and stitched in a variable axial direction. With this type of placement, embroidery patterns can be created according to the load cases that occur in the moulded component. The process is thus extremely low in waste and can be used for local reinforcement in the form of inserts or as an entire component with an enormous lightweight construction approach. In combination with low acquisition and process costs, the process offers great potential, especially for SMEs.

Report

During the product engineering process (PEP) of fibre composite components made from TFP preforms, a large number of iterations is necessary to ensure the desired properties in the finished component. Especially the interaction of the different process steps from roving deposition, draping to infusion and the occurring interactions complicate the component design. In order to link the required design processes and thus reduce the number of iterations as much as possible, the Model Based Systems Engineering (MBSE) approach is used in the DigiPEP project (see Fig. 1). This approach makes it possible to integrate the different models and assign tasks to individual responsible persons. The overall aim is to create a model with a user interface that requires only the most important boundary conditions and decisions from the responsible person. Models for structural analysis, stick path design, topology optimisation, draping and failure analysis of the finished component are to be integrated into the model. Furthermore, a cost estimation as well as a form of life cycle analysis shall be enabled. The generated model will be validated by the design of a demonstrator component. This demonstrator component can be located in the field of future transport and production.

The two-year project is funded by the Federal Ministry of Economics and Climate Protection (BMWK) as part of the Lightweight Construction Technology Transfer Programme under funding number 03LB3063A. The following partners are involved in the project: EDAG Group, Digel Sticktech GmbH & Co. KG, ModuleWorks GmbH, Ph-MECHANIK GmbH & Co. KG, adesso SE.

Authors: Rebecca Emmerich, Till Quadflieg

ITA Institut für Textiltechnik an der RWTH Aachen University, Otto-Blumenthal-Strasse 1, 52074 Aachen, Germany

Sporttech Mobiltech

More entries from ITA Institut für Textiltechnik der RWTH Aachen University

29.09.2022

DigiPEP: Lastpfadgerecht-ausgelegte Bauteile

Composites Technical Textiles

Abstract

Bei Entwicklungen von Bauteilen aus faserverstärkten Kunststoffen steht häufig der Leichtbauaspekt im Vordergrund. Dazu werden die auftretenden Lastfälle anhand der Randbedingungen und Kräfte bestimmt und anschließend das Bauteil entsprechend ausgelegt. Wird dieser Ansatz noch weiter ausgereizt, so wird die Methode meist den Tailored Textiles zugeordnet. Tailored Textiles sind, wie es der Begriff bereits vermuten lässt, Textilien, die auf den Anwendungsfall abgestimmt hergestellt werden. Dazu gehört ebenfalls das Tailored Fibre Placement (TFP) Verfahren. Dabei können Rovings variabel-axial abgelegt und festgestickt werden. Durch diese Art der Ablage können Stickmuster gemäß den auftretenden Lastfällen im geformten Bauteil erstellt werden. Das Verfahren ist somit extrem verschnittarm und kann zur lokalen Verstärkung in Form von Inserts eingesetzt werden oder als gesamtes Bauteil mit einem enormen Leichtbauansatz verwendet werden. In Kombination mit geringen Anschaffungs- und Prozesskosten bietet das Verfahren besonders für KMU ein großes Potential.

Report

Während des Produktentstehungsprozesses (PEP) von Faserverbundbauteilen aus TFP-Preforms ist eine Vielzahl von Iterationen notwendig um die gewünschten Eigenschaften im fertigen Bauteil zu gewährleisten. Vor allem das Zusammenspiel der verschiedenen Prozessschritte von der Roving-Ablage, der Drapierung bis hin zur Infusion und die auftretenden Wechselwirkungen erschweren die Bauteilauslegung. Um die benötigten Auslegungsprozesse zu verknüpfen und so die Anzahl der Iterationen möglichst zu reduzieren wird im Rahmen des DigiPEP-Projektes der Model Based Systems Engineering (MBSE) Ansatz verwendet (siehe Abb. 1). Dieser Ansatz ermöglicht eine Integration der verschiedenen Modelle und eine Zuordnung der Aufgaben zu einzelnen Verantwortlichen. Insgesamt soll somit ein Modell mit einem User Interface entstehen, das nur die wichtigsten Randbedingungen und Entscheidungen von dem jeweiligen Verantwortlichen erfordert. In das Modell sollen Modelle zur Strukturanalyse, Stickpfadauslegung, Topologie-Optimierung, Drapierung und Versagensanalyse des fertigen Bauteils integriert werden. Darüber hinaus soll eine Kosteneinschätzung sowie eine Form der Lebenszyklusanalyse ermöglicht werden. Um die verschiedenen Modelle zu erzeugen und eine Datenbasis aufzubauen, wird u.a. das Ablageverhalten verschiedener Materialien untersucht sowie mechanische Prüfungen an Probenkörper durchgeführt. Dabei werden die Produktionsparameter variiert, um deren Einfluss auf die mechanischen Eigenschaften zu untersuchen. Diese Variation wird ebenfalls zur Untersuchung des Drapierverhaltens verwendet. Zur Repräsentation des Drapierverhaltens im Modell soll eine Datenbasis aus qualitativen Versuchen erzeugt und mittels Künstlicher Intelligenz in das MBSE-Modell integriert werden.

Das erzeugte Modell wird anhand der Auslegung eines Demonstrator-Bauteils validiert. Dieses Demonstrator-Bauteil stammt aus dem Bereich des zukünftigen Transportes und der Produktion der Zukunft. Das erzeugte MBSE-Modell soll durch das erstellte Userinterface einfach bedienbar sein. Als Einsatzgebiet zielt das Projekt besonders auf KMU ab, um für diese den Einsatz der TFP-Technologie zu vereinfachen und die Auslegung neuer Bauteile zu beschleunigen. Darüber hinaus wird angestrebt durch die Software eine grobe Kosten- sowie Nachhaltigkeitsabschätzung zu ermöglichen. Damit kann der Anwender vor der genaueren Planung bereits erste Aussagen gegenüber dem Kunden treffen.

Das auf zwei Jahre ausgelegte Projekt wird vom Bundesministerium für Wirtschaft und Klimaschutz (BMWK) im Rahmen des Technologietransferprogramms Leichtbau unter der Fördernummer 03LB3063A gefördert. An der Bearbeitung sind die folgenden Partner beteiligt: EDAG Group, Digel Sticktech GmbH & Co. KG, ModuleWorks GmbH, Ph-MECHANIK GmbH & Co. KG, adesso SE.

Authors: Rebecca Emmerich, Till Quadflieg

ITA Institut für Textiltechnik an der RWTH Aachen University, Otto-Blumenthal-Strasse 1, 52074 Aachen, Deutschland

Sporttech Mobiltech

More entries from ITA Institut für Textiltechnik der RWTH Aachen University