Research publications

11.06.2025

PE-based, spun-dyed and sustainable clothing made from organic raw materials

Fibres Yarns Knittings Recycling Sustainability Fashion

Abstract

The bioPEtex project in the BIOTEXFUTURE Innovation Space aims to develop sustainable clothing made from bio-based raw materials in the form of spun-dyed T-shirts. In an industry heavily dominated by fossil-based polymers such as polyester, bio-based polyethylene (bioPE), a bio-based polymer made from fermented starches or sugars, offers an environmentally friendly alternative. BioPE has the same properties as fossil-based PE and is fully recyclable. The use of spun-dyed bioPE also reduces energy and water consumption by 50 % and CO2 emissions by 60 %. The project involves the development of sustainably dyed compounds from bioPE for the spun-dyeing process and the development of multifilament yarns through melt spinning and false-twist texturing. The yarns are knitted on seamless machines and a T-shirt demonstrator is manufactured, which is finished with a sustainable elastic finish. The results will not only reduce the ecological footprint of the textile industry, but also promote innovative approaches to the circular economy.

Report

Introduction

The global annual man-made fibre production is growing steadily and is expected to exceed 100 million tonnes by 2030. Polyethylene terephthalate (PET) from the polyester (PES) family is the most widely used polymer, with an 80 % market share. Global clothing production alone almost doubled between 2000 and 2015. More than 80 % of all fibres produced are now used for clothing. Between 30 and 60 % of PET produced worldwide is used in clothing, i.e. approx. 18 to 36 million tonnes. This makes PET the most widely used material for clothing (as of 2021). The textile industry therefore faces enormous ecological challenges, particularly due to the high proportion of fossil raw materials used in textile production. Fossil-based polyesters account for around 52 % of the market and have a significant negative impact on the environment and resource consumption. Synthetic fibres in clothing are largely made from these fossil-based polyesters, the main component of which is PET, which is not yet 100 % bio-based. Clothing made from 100 % biopolymers has so far only been shown in studies and flagship projects, as it is too expensive for the mass market and not available in sufficient quantities. The bioPEtex project aims to establish 100 % bio-based polyethylene (bioPE) in the clothing market. The large-volume thermoplastic drop-in polymer is used to produce mono material, thermomechanically recyclable clothing. To achieve this, the challenge that PE is not produced for continuous fibre production and that there are no designated types for this purpose and no textile plant technology designed for the polymer must be solved. Based on preliminary work at the Institute für Textiltechnik (ITA), the current project status and Alberghini et al., it is foreseeable that the project will be successful. The consortium's expertise is ideally suited for rapid implementation. [Tex22; AHL+21; SB20Materials and Methods

In the scope of this project, commercially available bio-based polyethylenes are selected, procured and modified (see Figure 1).

Spinnable compounds made from BioPE are then developed. For subsequent spin dyeing in the melt spinning process, colour masterbatches with bio-based colour pigments are developed by our industry partner TECNARO GmbH, Ilsfeld, Germany, in order to realise a sustainable alternative to conventional dyeing with dyes. In addition, conventional dyeing of PE is challenging [BBO+13]. Various textured multifilament yarns with up to 100 filaments are developed from these bioPE compounds using melt spinning and texturing processes on a semi-industrial scale, so that a bio-based T-shirt can be manufactured. Until now, PE has only been used in the industry for staple fibres, highly drawn fibres for technical applications or for carbon fibres – but not yet as yarn in clothing [Fou99; Pei18; Wor17]. In addition to the elasticity provided by the meshes in the knitted fabric, innovative, pre-competitive, sustainable textile finishes are being tested and further developed.

Results

Initial results show promising progress in the processing of bioPE into spun-dyed yarns with suitable properties for textile applications. BioPE can be processed into multifilament yarns in stable melt spinning processes. Process development with dyed bioPE compounds is currently underway (see Figure 2).

The resulting partially oriented yarns (POY) with currently 96 filaments and a single filament titre of approx. 1 dtex have suitable properties for subsequent false-twist texturing (see Figure 3). Production speeds for melt spinning are currently in the industrial range (2,500 m/min). In a next step, yarns with 30 filaments and a higher single filament titre will be spun in order to give the resulting textile more stability in combination with the fine yarns.

Tensile strengths of approx. 20 cN/tex have been achieved to date, thus already meeting the target values derived from PET-POY. False-twist texturing on a laboratory scale (ITA) and on a semi-industrial scale (BB Engineering GmbH, Remscheid, Germany) has also been successful. The mechanical properties of the textured yarns (draw-textured yarn, DTY) are thus improved and the yarn volume and heat retention capacity are increased (see Figure 4). The close-up image of the DTY below shows that no tangling was introduced on a laboratory scale and that the yarn cohesion is therefore not yet ideal. However, the DTY can already be processed into a knitted fabric without any problems. These shortcomings are also remedied on a semi-industrial scale.

The resulting natural fibre-like, cool feel now makes it possible to use the yarn in textiles. Initial knitting trials with the lab-scale DTY have been successful at our industrial partner FALKE KGaA in Schmallenberg, Germany, once again confirming the cooling sensation when the textile is touched. Further yarns are being developed so that the next step can be to produce a T-shirt for sports applications using semi-industrial yarns and validate it as a demonstrator. The development of the bio-based elastic finish is also currently underway.

Summary

The bioPEtex project represents an innovative approach to producing sustainable clothing from bio-based materials. Targeted research and development aims to achieve both ecological and economic benefits. The results achieved could contribute to significantly reducing the ecological footprint of the textile industry and setting new standards for recyclability in the fashion industry. So far, developments with bio-based PE compounds have been successful, and smooth, partially oriented as well as textured yarns can be produced on a semi-industrial scale and processed into a cooling knit fabric. Validation as a demonstrator in the form of a seamless, bio-based T-shirt with elastic bio-based finishing is still pending in the further course of the project.

Acknowledgement

We thank the Federal Ministry of Research, Technology and Space for funding the Innovation Space BIOTEXFUTURE and the research project bioPEtex (031B1496). Furthermore, we would also like to thank everyone involved in this project for their contributions and commitment.

Bibliography

[AHL+21] Alberghini, M.; Hong, S.; Lozano, L. M.; Korolovych, V.; Huang, Y.; Signorato, F.; Zandavi, S. H.; Fucetola, C.; Uluturk, I.; Tolstorukov, M. Y.; Chen, G.; Asinari, P.; Osgood, R. M.; Fasano, M.; Boriskina, S. V.:
Sustainable polyethylene fabrics with engineered moisture transport for passive cooling
Nature Sustainability 4 (2021), H. 8, S. 715–724

[BBO+13] Baur, E.; Brinkmann, S.; Osswald, T. A.; Rudolph, N.; Schmachtenberg, E.; Saechtling, H.:
Saechtling Kunststoff Taschenbuch. 31. Ausgabe, [komplett überarb., aktualisiert und zum ersten Mal in Farbe]Aufl..- München: Hanser, 2013

[Fou99] Fourné, F.:
Synthetic Fibers. Hanser, München, 1999

[Pei18] Peijs, T.:
1.5 High Performance Polyethylene Fibers:
Comprehensive Composite Materials II: Elsevier, 2018, S. 86–126

[SB20] Siracusa, V.; Blanco, I.:
Bio-Polyethylene (Bio-PE), Bio-Polypropylene (Bio-PP) and Bio-Poly(ethylene terephthalate) (Bio-PET): Recent Developments in Bio-Based Polymers Analogous to Petroleum-Derived Ones for Packaging and Engineering Applications
Polymers 12 (2020), H. 8

[Tex22] Textile Exchange:
Preferred Fiber and Materials Market Report 2022
Burbank, California: 10/2022

[Wor17] Wortberg, G.:
Entwicklung polyethylenbasierter Precursoren für die thermochemische Stabilisierung zur Carbonfaserherstellung. Shaker Verlag, Dissertation
,

 

Authors: M. Ortega J. Langer R. Morgenroth M. van Haren G. Mourgas A. Langer T. Gries

ITA Institut für Textiltechnik der RWTH Aachen University, Otto-Blumenthal-Straße 1, 52074 Aachen, Germany

Clothtech SportTec Oekotech

More entries from ITA Institut für Textiltechnik der RWTH Aachen University

10.06.2025

PE-basierte, spinngefärbte und nachhaltige Kleidung aus Biorohstoffen

Fibres Yarns Knittings Recycling Sustainability Fashion

Abstract

Das Projekt BioPEtex im Innovationsraum BIOTEXFUTURE zielt darauf ab, nachhaltige Bekleidung aus biobasierten Rohstoffen in Form von spinngefärbten T-Shirts zu entwickeln. In einer Branche, die stark von fossilen Polymeren wie Polyester dominiert wird, bietet biobasiertes Polyethylen (BioPE), ein biobasierter Kunststoff aus fermentierten Stärken oder Zucker, eine umweltfreundliche Alternative. BioPE weist die gleichen Eigenschaften auf wie fossiles PE und ist vollständig recycelbar. Durch die Verwendung von spinngefärbtem BioPE können zudem der Energie- und Wasserverbrauch um 50 % gesenkt werden, während CO2-Emissionen um 60 % reduziert werden. Das Projekt umfasst die Entwicklung von nachhaltig eingefärbten Compounds aus BioPE für das Spinnfärbe-Verfahren sowie die Entwicklung von Multifilamentgarnen durch Schmelzspinnen und Falschdrahttexturierung. Die Garne werden auf Seamless-Maschinen verstrickt und ein T-Shirt-Demonstrator konfektioniert, welcher mit einer nachhaltigen elastischen Ausrüstung versehen wird. Die Ergebnisse werden nicht nur den ökologischen Fußabdruck der Textilindustrie verringern, sondern auch innovative Ansätze zur Kreislaufwirtschaft fördern.

Report

Einleitung

Die weltweite jährliche Chemiefaserproduktion wächst stetig und wird 2030 voraussichtlich 100 Mio. t überschreiten. Der Polyester (PES) Polyethylenterephthalat (PET) ist mit 80 % Marktanteil das meistgenutzte Polymer. Alleine die weltweite Kleidungsproduktion wurde zwischen 2000 und 2015 fast verdoppelt. Mittlerweile werden mehr als 80 % aller produzierten Fasern für Kleidung eingesetzt. Von weltweit produziertem PET werden 30 bis 60 % in Kleidung eingesetzt, also ca. 18 bis 36 Mio. t. So ist PET das meistgenutzte Material für Kleidung (Stand 2021). Die Textilindustrie steht somit vor enormen ökologischen Herausforderungen, insbesondere aufgrund des hohen Anteils an fossilen Rohstoffen in der Textilproduktion. Fossile Polyester machen etwa 52 % des Marktes aus und haben erhebliche negative Auswirkungen auf die Umwelt und den Ressourcenverbrauch. Kunstfasern in Bekleidung werden zum Großteil aus diesen fossilen Polyestern mit Hauptbestandteil Polyethylenterephthalat (PET) hergestellt, welches jedoch noch nicht zu 100 % biobasiert hergestellt wird. Kleidung aus 100 % Biopolymeren wird bisher nur in Studien und Leuchtturmprojekten gezeigt, da diese zu teuer für den Massenmarkt und nicht in ausreichender Menge vorhanden sind. Das Projekt bioPEtex verfolgt das Ziel, 100 % biobasiertes Polyethylen (BioPE) im Bekleidungsmarkt zu etablieren. Aus dem großvolumig vorhandenen thermoplastischen Drop-In-Polymer wird sortenreine und thermomechanisch recycelbare Kleidung hergestellt. Dazu muss das Defizit gelöst werden, dass PE nicht für die Endlosfaserherstellung produziert wird und es keine dafür ausgewiesenen Typen sowie keine auf das Polymer ausgelegte, textiltechnische Anlagetechnik gibt. Aufgrund von Vorarbeiten am Institut für Textiltechnik, dem aktuellen Projektstand und Alberghini et al. ist abzusehen, dass das Projekt erfolgreich sein wird. Die Expertise des Konsortiums ist für die schnelle Umsetzung bestens geeignet. [Tex22; AHL+21; SB20]

Material und Methoden

Im Rahmen des Projekts werden kommerziell verfügbare biobasierte Polyethylene ausgewählt, beschafft und modifiziert (vgl. Abbildung 1).

Anschließend werden spinnbare Compounds aus BioPE entwickelt. Für die nachfolgende Spinnfärbung im Schmelzspinnprozess werden durch den Industriepartner TECNARO GmbH, Ilsfeld, Farbmasterbatches mit biobasierten Farbpigmenten entwickelt, um eine nachhaltige Alternative zur konventionellen Färbung mit Farbstoffen zu realisieren. Zudem ist die konventionelle Anfärbung von PE herausfordernd [BBO+13]. Aus diesen BioPE-Compounds werden über Schmelzspinn- und Texturierprozesse im semi-industriellen Maßstab verschiedene texturierte Multifilamentgarne mit bis zu 100 Filamenten entwickelt, sodass ein biobasiertes T-Shirt konfektioniert werden kann. Bisher wird PE in der Industrie lediglich für Stapelfasern, hochverstreckte Fasern für technische Anwendungen oder für Carbonfasern eingesetzt – jedoch noch nicht als Garn in der Bekleidung [Fou99; Pei18; Wor17]. Zusätzlich zur Elastizität durch die Maschen im Gestrick werden innovative, vorwettbewerbliche, nachhaltige Textilausrüstungen getestet und weiterentwickelt.

Ergebnisse

Die ersten Ergebnisse zeigen vielversprechende Fortschritte bei der Verarbeitung von BioPE in spinngefärbten Garnen mit geeigneten Eigenschaften für textile Anwendungen. BioPE kann in stabilen Schmelzspinnprozessen zu Multifilamentgarnen verarbeitet werden. Die Prozessentwicklung mit gefärbten BioPE-Compounds wird zurzeit durchgeführt (vgl. Abbildung 2).

Die resultierenden teilverstreckten Garne (engl. Partially-Oriented Yarn, POY) mit aktuell 96 Filamenten und einem Einzelfilamenttiter von ca. 1 dtex weisen geeignete Eigenschaften für die anschließende Falschdrahttexturierung auf (vgl. Abbildung 3). Produktionsgeschwindigkeiten beim Schmelzspinnen befinden sich zurzeit im industriellen Bereich (2.500 m/min). In einem nächsten Schritt werden Garne mit 30 Filamenten mit höher Einzelfilamenttiter ausgesponnen, um dem resultierenden Textil in Kombination mit den feinen Garnen mehr Stabilität zu verleihen.

Zugfestigkeiten von ca. 20 cN/tex werden bisher erreicht und die angestrebten, von PET-POY abgeleiteten Zielwerte somit bereits erfüllt. Die Falschdrahttexturierung im Labor- (ITA) sowie im semi-industriellen Maßstab (BB Engineering GmbH, Remscheid) ist ebenfalls erfolgreich. Die mechanischen Garnkennwerte der texturierten Garne (engl. Draw-Textured Yarn, DTY) werden somit verbessert und das Garnvolumen sowie das Wärmerückhaltevermögen erhöht (vgl. Abbildung 4). In der Abbildung ist bei der Nahaufnahme des DTY zu sehen, dass im Labormaßstab keine Tangelung eingebracht wurde und der Garnzusammenhalt somit noch nicht ideal ist. Das DTY aus dem Labormaßstab lässt sich jedoch bereits ohne Probleme zu einem Gestrick verarbeiten. Im semi-industriellen Maßstab werden diese Defizite zudem behoben.

Mit dem resultierenden naturfaserähnlichen, kühlen Griff ist der Einsatz im Textil nun möglich. Erste Strickversuche mit dem Labor-DTY sind beim Industriepartner FALKE KGaA, Schmallenberg, erfolgreich und bestätigen erneut das kühlende Gefühl bei Berührung des Textils. Weitere Garne werden entwickelt, damit als nächster Schritt das T-Shirt für Sportanwendungen mit aus semi-industriellen Garnen produziert und als Demonstrator validiert werden kann. Die Entwicklung der biobasierten elastischen Ausrüstung erfolgt zurzeit ebenfalls.

Zusammenfassung

Das Projekt bioPEtex stellt einen innovativen Ansatz dar, um nachhaltige Bekleidung aus biobasierten Materialien herzustellen. Durch gezielte Forschung und Entwicklung sollen sowohl ökologische als auch ökonomische Vorteile realisiert werden. Die erzielten Ergebnisse könnten dazu beitragen, den ökologischen Fußabdruck der Textilindustrie erheblich zu verringern und neue Standards für Recyclingfähigkeit in der Modebranche zu setzen. Bisher sind die Entwicklungen mit biobasierten PE-Compounds erfolgreich und glatte teilverstreckte sowie texturierte Garne können im semi-industriellen Maßstab produziert und zu einem kühlenden Gestrick verarbeitet werden. Die Validierung als Demonstrator in Form eines seamless gestrickten, biobasierten T-Shirts mit elastischer biobasierter Ausrüstung steht im weiteren Projektverlauf noch aus.

Danksagung

Wir danken dem Bundesministerium für Forschung, Technologie und Raumfahrt (BMFTR) für die Förderung des Innovationsraums BIOTEXFUTURE und des Forschungsprojekts bioPEtex (FKZ: 031B1496). Zudem möchten wir allen Beteiligten in diesem Projekt für ihre Beiträge und ihr Engagement danken.

Literaturverzeichnis

  1. [AHL+21] Alberghini, M.; Hong, S.; Lozano, L. M.; Korolovych, V.; Huang, Y.; Signorato, F.; Zandavi, S. H.; Fucetola, C.; Uluturk, I.; Tolstorukov, M. Y.; Chen, G.; Asinari, P.; Osgood, R. M.; Fasano, M.; Boriskina, S. V.:
    Sustainable polyethylene fabrics with engineered moisture transport for passive cooling
    Nature Sustainability 4 (2021), H. 8, S. 715–724

    [BBO+13] Baur, E.; Brinkmann, S.; Osswald, T. A.; Rudolph, N.; Schmachtenberg, E.; Saechtling, H.:
    Saechtling Kunststoff Taschenbuch. 31. Ausgabe, [komplett überarb., aktualisiert und zum ersten Mal in Farbe]Aufl..- München: Hanser, 2013

    [Fou99] Fourné, F.:
    Synthetic Fibers. Hanser, München, 1999

    [Pei18] Peijs, T.:
    1.5 High Performance Polyethylene Fibers:
    Comprehensive Composite Materials II: Elsevier, 2018, S. 86–126

    [SB20] Siracusa, V.; Blanco, I.:
    Bio-Polyethylene (Bio-PE), Bio-Polypropylene (Bio-PP) and Bio-Poly(ethylene terephthalate) (Bio-PET): Recent Developments in Bio-Based Polymers Analogous to Petroleum-Derived Ones for Packaging and Engineering Applications
    Polymers 12 (2020), H. 8

    [Tex22] Textile Exchange:
    Preferred Fiber and Materials Market Report 2022
    Burbank, California: 10/2022

    [Wor17] Wortberg, G.:
    Entwicklung polyethylenbasierter Precursoren für die thermochemische Stabilisierung zur Carbonfaserherstellung. Shaker Verlag, Dissertation
    ,

Authors: Mathias Ortega J. Langer R. Morgenroth M. van Haren G. Mourgas A. Langer T. Gries

Institut für Textiltechnik der RWTH Aachen University, Otto-Blumenthal-Str. 1, 52074 Aachen

Clothtech Sporttech Oekotech

More entries from ITA Institut für Textiltechnik der RWTH Aachen University

15.05.2023

Google Lens in der Altkleidersortierung

Recycling Sustainability Circular economy Interior Textiles Fashion

Abstract

Die Textilindustrie steht vor enormen ökologischen Herausforderungen, die auf ein lineares Wertschöpfungsmodell zurückzuführen sind. Gegenwärtig fallen 7 bis 7,5 Millionen Tonnen textiler Reststoffe in der EU-27 und der Schweiz jährlich an - dies entspricht mehr als 15 Kilogramm pro Person. Die größte Quelle dafür sind entsorgte Kleidungsstücke und Heimtextilien von Verbrauchern - sie machen etwa 85 Prozent der gesamten textilen Reststoffe aus. Diese großen Mengen an textilen Reststoffen müssen sortiert und verarbeitet werden.

Google Lens ist eine Bilderkennungssoftware von Google, die auf maschinellem Lernen und künstlicher Intelligenz basiert. Mit Hilfe der Kamera eines Smartphones kann Google Lens Bilder von Objekten, Texten oder Landschaften erfassen, diese erkennen und interpretieren. Die Technologie ist in der Lage, eine Vielzahl von Objekten und Materialien zu identifizieren und auf entsprechende Webseiten zu verweisen.

In einer Versuchsreihe am Institut für Textiltechnik wurde der Einsatz von Google Lens in der Altkleidersortierung getestet. Dabei stand die Auswertung der Genauigkeit von Google Lens zur Erkennung von verschiedenen Merkmalen im Vordergrund. Insgesamt zeigen die Ausführungen in diesem Artikel, dass Google Lens noch keine adäquate Lösung für die automatisierte Auswertung in der Altkleidersortierung darstellt. Die Ausführungen zeigen allerdings auch Potentiale für die Weiterentwicklung der Technologie auf. Auch eine Kombination mit weiterer Sensorik (z. B. NIR) oder eigens entwickelten Algorithmen zur Bildauswertung ist vielversprechend.

Report

Abstract:

Die Textilindustrie steht vor enormen ökologischen Herausforderungen, die auf ein lineares Wertschöpfungsmodell zurückzuführen sind. Dieses kennzeichnet sich durch kurze Nutzungsdauern, eine geringe Wiederverwendungsquote und geringes Faser-zu-Faser Recycling der Textilien. So wird ein großer Teil der nicht wiederverwendbaren textilen Reststoffe deponiert oder energetisch verwertet. Die Alttextilien werden von Sortierbetrieben entweder für das Recycling oder für den Weiterverkauf vorbereitet. Hier benötigt es neue Technologien zur Merkmalserkennung von Textilien, um die manuellen Prozessschritte zu ersetzen und zu verbessern. Herausforderungen der bisher händischen Sortierung sind der Arbeitskräftemangel und die unzureichende Objektivität und Qualität der Sortierung. In diesem Artikel werden neue Lösungen zur Automatisierung der Merkmalserkennung ausgewertet.

Herausforderungen in der Altkleidersortierung

Gegenwärtig fallen 7 bis 7,5 Millionen Tonnen textiler Reststoffe in der EU-27 und der Schweiz jährlich an - dies entspricht mehr als 15 Kilogramm pro Person [HJL+22]. Die größte Quelle dafür sind entsorgte Kleidungsstücke und Heimtextilien von Verbrauchern - sie machen etwa 85 Prozent der gesamten textilen Reststoffe aus. Diese großen Mengen an textilen Reststoffen müssen sortiert und verarbeitet werden. Aktuell wird die von Verbrauchern aussortierte Kleidung in Altkleidercontainern entsorgt. Von dort aus werden sie in Sortierbetriebe transportiert, in denen jedes Kleidungsstück inspiziert und händisch in verschiedene Kategorien sortiert wird. Es wird beispielsweise zwischen Qualität oder Art des Materials unterschieden. Diese Schritte gilt es zu automatisieren, um die Anzahl der Fehlsortierungen zu reduzieren und die Limitationen der manuellen Sortierung zu überwinden. Die manuelle Sortierung von Altkleidern ist durch den Arbeitskräftemangel und die unzureichende Qualität stark limitiert. Es gibt erste Ansätze, um die Herausforderungen zur Merkmalserkennung der Textilien zu lösen. Durch Nahinfrarotspektroskopie kann beispielsweise das Material des Textils erkannt und identifiziert werden. Allerdings können mit der Technologie weitere wichtige Merkmale wie die Art des Kleidungsstücks, die Marke und der Zustand nicht analysiert werden. Für die Auswertung dieser Merkmale können allerdings Bildverarbeitungssysteme verwendet werden. Einen Ansatz für die Auswertung von Bildmerkmalen bietet die Software Google Lens.

Die Funktion von Google Lens

Google Lens ist eine Bilderkennungssoftware von Google, die auf maschinellem Lernen und künstlicher Intelligenz basiert. Mit Hilfe der Kamera eines Smartphones kann Google Lens Bilder von Objekten, Texten oder Landschaften erfassen, diese erkennen und interpretieren. Die Technologie ist in der Lage, eine Vielzahl von Objekten und Materialien zu identifizieren und auf entsprechende Webseiten zu verweisen. Die Suchergebnisse werden nach Relevanz und Ähnlichkeit mit dem Objekt auf dem Foto klassifiziert. [Taf21] Darüber hinaus kann Google Lens auch QR-Codes scannen und automatisch Webseiten öffnen, Adressen suchen und Termine in den Kalender eintragen. Die Software ist auch in der Lage, Texte in anderen Sprachen zu erkennen und zu übersetzen, was besonders nützlich für Reisende ist. Insgesamt bietet Google Lens eine schnelle und effektive Möglichkeit, visuelle Informationen zu interpretieren und zu nutzen, um den Benutzern eine bessere Erfahrung zu bieten. Diese Eigenschaften machen einen Einsatz von Google Lens in der Altkleidersortierung interessant. Die Software ist bereits mit einer großen Menge von Daten trainiert und ermöglicht einen gezielten Zugriff auf sämtliche im Internet vorhandene Informationen zu einem Kleidungsstück.

Google Lens für die Sortierung von Altkleidern

In einer Versuchsreihe am Institut für Textiltechnik wurde der Einsatz von Google Lens in der Altkleidersortierung getestet. Dabei stand die Auswertung der Genauigkeit von Google Lens zur Erkennung von verschiedenen Merkmalen im Vordergrund. In dem Versuch wurde die Informationsgewinnung durch den Einsatz von Google Lens in den folgenden sechs Merkmalen geprüft:

  • Typ des Textils bzw. Art der Bekleidung
  • Farbe
  • Material
  • Marke
  • Preisklasse
  • Geschlecht

Die Versuchsdurchführung ist in die folgenden drei Schritte aufgeteilt: Aufnahme von Bildern, Auswertung der Bilder mit Google Lens und Auswertung der fünf relevantesten Suchergebnisse hinsichtlich der sechs Merkmale. Die Aufnahme der Bilder erfolgt in einem statischen Versuchsaufbau. Die Textilien werden auf einem ebenen Untergrund ausgebreitet und von oben unter Beleuchtung fotografiert (siehe Abbildung 1). Für die Auswertung des Versuches werden die sechs Merkmale in definierte Ausprägungen eingeteilt (z. B. werden sechs Preisklassen definiert). Die Auswertung erfolgt anhand der ersten fünf von Google vorgeschlagenen Ergebnisse. Für die Vergleichbarkeit der Ergebnisse erfolgt eine Einteilung in ein Punktesystem: pro Textil wird je ein Punkt pro Merkmal und Treffer vergeben, wenn dieses Merkmal richtig erkannt wird, sodass pro Textil und Treffer maximal 6 Punkte zu vergeben sind. Ein Merkmal gilt als richtig erkannt, wenn die Information eindeutig aus dem Text auf der weitergeleiteten Webseite hervorgeht. Insgesamt werden 90 Textilien ausgewertet. Die Trefferquote wird als Quotient aus der erreichten Punktzahl und der maximal erreichbaren Punktzahl angegeben.

Zunächst erfolgt eine Auswertung des Einflusses des Alters eines Textils auf die Treffergenauigkeit: neuere Textilien erreichen eine Treffergenauigkeit von 32,96 %, wohingegen ältere Textilien (älter als 30 Jahre) eine Treffergenauigkeit von lediglich 22,58 % erreichen. Dieser Umstand ist auf die höhere Verfügbarkeit von Daten neuer Textilien zurückzuführen. Auch bei der Art der Textilien zeigen sich Unterschiede in der Auswertung: Heimtextilien weisen lediglich eine Trefferquote von 15,00 % auf, wohingegen Textilien in der Kategorie „Bluse/Hemd“ eine Trefferquote von 45,33 % aufweisen. Am besten wird die Art der Bekleidung erkannt (56,22 % Trefferquote), wohingegen die Marke nur zu 4,67 % erkannt wird. Dieser Umstand ist sowohl auf die große Ähnlichkeit verschiedener Marken als auch auf die teilweise nur geringe direkte Erkennbarkeit von Markennamen oder Logos zurückzuführen. Auch das Material wird nur zu ca. 13,11 % richtig erkannt, da dieses Merkmal nicht direkt visuell zu erkennen ist. Zuletzt bietet auch die Betrachtung der Unterschiede in Abhängigkeit der Relevanz der Treffer kein eindeutiges Ergebnis: beim ersten und relevantesten Treffer liegt die durchschnittliche Trefferquote bei 29,66 % und beim zweiten bis fünften Treffer ebenfalls zwischen 25,19 % und 32,09 %. Anzumerken ist allerdings, dass die Ergebnisse insgesamt nicht ausreichend sind. Für einen sinnvollen Einsatz der Technologie sind Trefferquoten von ca. 90-95 % erforderlich. So lässt sich insgesamt feststellen, dass Google Lens mit dem gewählten Versuchsaufbau und der gewählten Auswertelogik nicht für den Einsatz in der Altkleidersortierung geeignet ist.

 

Weiterentwicklung der Technologie

Eine Lösungsmöglichkeit zur Weiterentwicklung der Technologie liegt in der erweiterten Auswertung von Informationen. Zum Beispiel können zusätzlich auch Bilder auf der Webseite (z. B. Fotos von Etiketten) oder der Seitenquelltext ausgewertet werden. Außerdem ist die Einteilung der Merkmalskategorien kritisch zu prüfen, da diese einen erheblichen Einfluss auf die Auswertung hat. Weiterhin sind Änderungen am Versuchsaufbau denkbar: eine Lösung könnte z. B. in der Aufhängung von Textilien bestehen oder in der Änderung der Beleuchtung. Außerdem kann die Suche in Google Lens mit Texten verknüpft werden, sodass eine Suche näher eingegrenzt und mit zusätzlichen Sensoren verknüpft werden könnte. Diese Lösungsmöglichkeiten werden in weiteren Projekten und Versuchen am ITA weiterentwickelt.

Insgesamt zeigen die Ausführungen in diesem Artikel, dass Google Lens noch keine adäquate Lösung für die automatisierte Auswertung in der Altkleidersortierung darstellt. Die Ausführungen zeigen allerdings auch Potentiale für die Weiterentwicklung der Technologie auf. Auch eine Kombination mit weiterer Sensorik (z. B. NIR) oder eigens entwickelten Algorithmen zur Bildauswertung ist vielversprechend.

Bildunterschriften:

Abbildung 1: Aufbau des Versuches (eigene Darstellung)

Literatur:

[HJL+22]                       Hedrich, Saskia; Janmark, Jonatan; Langguth, Nikolai; Magnus, Karl-Hendrik; Strand, Moa:
Scaling textile recycling in Europe - turning textile waste into value: Juli 2022

[Taf21]                           Taffel, S.:
Google’s lens: computational photography and platform capitalism
Media, Culture & Society Band:43 (2021) H. 2, S. 237–25
5

Authors: Pohlmeyer, Florian* Johannsen, Hanna* Möbitz, Christian* Gries, Thomas* Kleinert, Tobias

*alle: Institut für Textiltechnik der RWTH Aachen University, Otto-Blumenthal-Str. 1, 52074 Aachen

Kleinert, Tobias (Lehrstuhl für Informations- und Automatisierungssysteme für die Prozess- und Werkstofftechnik der RWTH Aachen University, Turmstr. 46, 52064 Aachen)

More entries from ITA Institut für Textiltechnik der RWTH Aachen University

19.04.2023

Forschung am ITM der TU Dresden für eine Webtechnologie zur Fertigung neuer Thermogewebe

Fabrics Textile machinery Sustainability Smart Textiles Fashion

Abstract

Im Frühjahr des Jahres 2023 ist mit branchenübergreifender Beteiligung der Industrie das IGF-Projekt „Entwicklung einer Webtechnologie zur integralen Fertigung von Vlies-Thermogeweben mit Heizfunktion“ (IGF 22817 BR) am ITM angelaufen. Projektziel ist die Entwicklung eines einstufigen Webverfahrens zur Herstellung gekammerter Mehrlagengewebe mit integriertem Dämmmaterial.

Report

Sport- und Outdoorbekleidung sind heutzutage beliebter denn je, da immer mehr Menschen ihre Freizeitaktivitäten in der Natur verbringen möchten. Mit steigendem Interesse an Wandern, Skifahren und anderen Outdoor-Aktivitäten wächst auch die Nachfrage nach hochwertiger Ausrüstung, wie zum Beispiel Thermojacken und Schlafsäcken.

Solche isolierenden Thermostrukturen werden auch im Automobilbau zur Dachisolation verwendet. Diese mehrschichtigen Strukturen umfassen einen Ober- und Unterstoff sowie den dazwischenliegenden Dämmstoff. Zur Verbindung der Lagen werden Steppnähte eingesetzt, die die Lagen zueinander in Position halten. Durch das eingeschlossene Luftvolumen kann ein hoher Isolationsgrad erreicht werden, der jedoch im Bereich der Steppnähte durch die Komprimierung des Dämmstoffes und den in Wärmedurchgangsrichtung verlaufenden Steppfaden stark abnimmt. Die so entstehenden Kältebrücken reduzieren die Funktionalität der Produkte und begrenzen das Potenzial der Dämmstoffe stark. Darüber hinaus umfasst die Fertigung der Thermostrukturen mehrere teils komplexe zeit- und materialintensive Teilschritte. Zur Vermeidung beschriebener Kältebrücken und Vereinfachung des Herstellverfahrens wird in diesem Projekt die Entwicklung eines Webverfahrens angestrebt, dass die integrale Fertigung von Thermostrukturen erlaubt. Durch die Substitution des Ober- und Unterstoffs durch ein gekammertes Mehrlagengewebe mit Bindekette wird die Verbindung der Lagen ohne Steppnähte gewährleistet.

Eingebrachte Heizstrukturen sollen die Wärmewirkung zusätzlich erhöhen. Die Verwendung einer Jacquardmaschine bietet außerdem die Möglichkeit einer freien Musterung der Deckflächen, deren Designmöglichkeiten zurzeit durch den Steppnahtverlauf begrenzt werden.

Schwerpunkt des Projektes ist die Entwicklung einer industriell verwendbaren und KMU-gerechten Auslegungsmethodik für beschriebene Thermogewebe, wodurch bei individuellen Kundenanfragen schnell strukturelle, geometrische und materialseitige Vorgaben bereitgestellt werden. Ein weiterer Schwerpunkt ist die konstruktiv-technologische Entwicklung eines Webverfahrens inklusive Trenn-, Vorlage- und Verarbeitungsprozess des Dämmmaterials, die Entwicklung geeigneter Gewebebindungen und einem Konzept für einen produktspezifischen Warenabzug. Die integrale Fertigung der Thermostruktur an Funktionsmustern wird darauf aufbauend beispielhaft erprobt und bewertet.

Die Anwendungsfelder für integral gewebte Thermostrukturen reichen vom Funktionsbekleidungsbereich über den Tierbedarf in Form von z. B. Pferdedecken bis hin zu Isolationsanwendungen im Fahrzeugbau. Die Beteiligung der Industrie mit Vertretern verschiedener Branchen wie Smart Textiles, Vliesstoff-, Gewebe- und Garnherstellung, Softwareentwicklung, Fahrzeugbau und Textilhersteller zeigt den deutlichen Bedarf an solchen Innovationen.

Ziel des Projektes ist es, den Wärmedurchgangskoeffizienten von Thermostrukturen um ca. 20 % im Vergleich zu gesteppten Konstruktionen zu reduzieren. Damit soll ein deutlicher Wettbewerbsvorteil durch die stark verbesserte Performance von Outdoorbekleidung und Thermotextilien in verschiedene Branchen geschaffen werden. Die einstufige Fertigung ermöglicht zusätzlich die Einsparung von Herstellkosten. Mit den Projektergebnissen soll ein Beitrag zur Nachhaltigkeit und kosteneffizienten Fertigung von Thermostrukturen geleistet werden. Darüber hinaus wird eine Verbesserung in den Technologiesektoren Textilmaschinenbau und Weberei erreicht.

Das IGF-Vorhaben 2817 BR (Entwicklung einer Webtechnologie zur integralen Fertigung von Vlies-Thermogeweben mit Heizfunktion) der Forschungsvereinigung Forschungskuratorium Textil e.V. wird über die AiF im Rahmen des Programms zur Förderung der Industriellen Gemeinschaftsforschung (IGF) vom Bundesministerium für Wirtschaft und Klimaschutz aufgrund eines Beschlusses des Deutschen Bundestages gefördert.

Technische Universität Dresden
Fakultät Maschinenwesen
Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM)
01062 Dresden

https://tu-dresden.de/mw/itm

More entries from TU Dresden, Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik ITM