Research publications

3 results
31.10.2023

Vernetzung von elektrogesponnenen Chitosan-Nanofasern mit Genipin für medizinische Anwendungen und Tissue Engineering

Fibres Nonwovens

Abstract

In dieser Studie haben wir ein Verfahren zur Herstellung von Chitosan-Nanofaservliesen vorgestellt. Außerdem wurde gezeigt, dass Genipin eine vielversprechende Alternative für das zytotoxische Glutaraldehyd zur Vernetzung von Chitosan ist. Obwohl die Filtration einen großen Einfluss auf die Viskosität der Lösung hat, gibt es keinen signifikanten Einfluss auf den Faserdurchmesser, aber auf die Struktur der Nanofasern in der Ausprägung von Kräuselung im Vergleich zu glatten Fasern. Der Einfluss dieser gekräuselten Fasern (nach der Filtration) auf die Zellproliferation und das Zellverhalten muss in zukünftigen Studien untersucht werden.

Die Waschversuche zeigen die Fähigkeit von Genipin, Chitosan erfolgreich zu vernetzen. Die Auswirkung der Quellung auf die mechanischen Eigenschaften der Membran muss für die weitere Verwendung ebenfalls noch untersucht werden. Schließlich wird die Leistung dieser vernetzten Nanofaservliese in In-vitro-Zelllebensfähigkeitstests und Proliferationstests in weiteren Studien geprüft.

Report

Abstract

In dieser Studie wird Genipin zur Vernetzung von Nanofasern verwendet, die aus einer Lösung von Chitosan und Polyethylenoxid (PEO) (Verhältnis 7:3) in 70 %-iger Essigsäure elektrogesponnen wurden. Genipin ist eine chemische Verbindung, die aus den Früchten der gardenis jasminoides ellis isoliert wird und mit freien Aminogruppen reagiert. Außerdem ist es 5.000 bis 10.000 Mal weniger zytotoxisch als Glutaraldehyd, der bisher am häufigsten verwendete Vernetzer für Chitosan. [SHH+99] Untersucht werden die Fasermorphologie, die mechanische Festigkeit, das Ergebnis der Fourier-Transformations-Infrarotspektroskopie (FTIR) und die Löslichkeit in einer wässrigen Lösung mittels gravimetrischer Messungen.

Es wurden erfolgreich Nanofasern hergestellt und dann teilweise mit Genipin vernetzt und die Vernetzung war erfolgreich. Ohne Vernetzung lösten sich die Fasern in wässriger Lösung auf, während vernetzte Fasern stabil gequollen sind. Nicht vernetzte Fasern haben einen Faserdurchmesser von 573 ± 81 nm, vernetzte 560 ± 96 nm. Nach dem Quellen betragen die Faserdurchmesser 901 ± 105 nm.

1. Einleitung

Mit einer hohen spezifischen Oberfläche, einer hohen Porosität und einer ähnlichen Größe wie die extrazelluläre Matrix (ECM) im menschlichen Körper haben elektrogesponnene Nanofasern vorteilhafte Eigenschaften für medizinische Anwendungen und Tissue Engineering [KC17]. Chitosan ist ein natürliches Biopolymer mit guter Biokompatibilität und biologischer Abbaubarkeit und weist ebenfalls Ähnlichkeiten mit der ECM auf. Nanofasern aus Chitosan wurden in der Vergangenheit bereits elektrogesponnen, welche in wässrigen Lösungen schlechte Eigenschaften (mechanische Festigkeit, Anfälligkeit für enzymatischen Abbau, Auflösen) zeigen. Die Vernetzung führt zur Kopplung von funktionellen Gruppen im Chitosan und damit zu einer Stabilisierung des Polymers, wodurch die oben genannten Einschränkungen in wässrigen Lösungen verringert werden. Der am häufigsten verwendete Vernetzer für Chitosan ist Glutaraldehyd, der eine sehr hohe Zytotoxizität aufweist und brüchige und schwächere Fasern erzeugt. [SHH+99] Ein weniger zytotoxischer Vernetzer ist Genipin, das bereits zur Vernetzung von Kollagen und Gelatine für medizinische Anwendungen verwendet wird. Genipin reagiert mit den freien Aminogruppen des Chitosans und erhöht die Stabilität in flüssigen Medien. [MFS+14]

Chitosan als natürliches Polymer unterliegt Schwankungen in der Materialqualität und im Molekulargewicht. Lösungen von Chitosan enthalten unlösliche Teile und Partikel, die einen Einfluss auf den Spinnprozess oder die gesponnene Nanofaser haben können. Daher wird in der vorliegenden Arbeit die Lösung filtriert und der Einfluss des Filtrationsprozesses auf den Spinnprozess, die Fasermorphologie und die mechanischen Eigenschaften bewertet. Außerdem wird der Einfluss von Genipin auf die Fasermorphologie und den Vernetzungserfolg untersucht.

2. Materialien und Methoden

Die Chitosan/PEO-Nanofasermembranen werden im Elektrospinnverfahren mit einer Anlage vom Typ Fluidnatek LE500 (Bioinicia SL, Valencia, Spanien) hergestellt. Für das Elektrospinnen und die Herstellung der Nanofasermembranen werden Chitosan (Molekulargewicht 100 - 300 kDa, Acros Organics, Geel, Belgien), Polyethylenoxid (900 kDa, Sigma-Aldrich Chemie GmbH, Taufkirchen, Deutschland), Essigsäure (99,9 %), phosphatgepufferte Salzlösung (PBS), Ethanol (≥ 99,8 %, vergällt, alle Carl Roth GmbH + Co. KG, Karlsruhe, Deutschland) und Genipin (Enzo Life Sciences GmbH, Lörrach, Deutschland) verwendet. Alle Chemikalien werden wie geliefert und ohne weitere Aufreinigung verwendet.

Die Fasern werden aus einer Lösung mit einer Massenkonzentration von 1,2 Gew.-% Chitosan und 2,8 Gew.-% PEO in 70 %-iger Essigsäure gesponnen. Chitosan und PEO werden getrennt voneinander unter ständigem Rühren 12 Stunden lang in dem genannten Lösungsmittel gelöst. Die Lösungen werden im genannten Verhältnis gemischt und 2 Stunden lang unter ständigem Rühren homogenisiert. Zur Vernetzung von Chitosan nach dem Spinnprozess wird der Lösung vor dem Spinnen Genipin zugesetzt. Es wird ein Verhältnis von Chitosan zu Genipin von 100:1 verwendet, und das Genipin wird separat in Ethanol unter ständigem Rühren 2 Stunden lang gelöst und dann zur Chitosan/PEO-Lösung hinzugefügt. Zur Filtration der Lösung werden Einwegspritzenfilter (Chromafil Xtra GF/ PTFE-45/25, Macherey-Nagel, Düren, Deutschland) verwendet.

Zur Vorbereitung des Spinnvorgangs wird die Spinnlösung in eine 5 mL Spritze (B. Braun Melsungen AG, Melsungen, Deutschland) gefüllt, die an eine einzelne Spinndüse angeschlossen ist. Die Polymerlösung wird mittels Spritzenpumpe mit einer Flussrate von 1 mL/h durch eine Hohlnadel mit einem Durchmesser von 0,4 mm (B. Braun Melsungen AG, Melsungen, Deutschland) extrudiert. Bei einer Spannung von +20 kV und -1 kV wird die Polymerlösung zu Fasern verstreckt und auf einer rotierenden Welle (Ø = 30 mm, Breite = 300 mm) mit einer Rotationsgeschwindigkeit von 100 U/min gesammelt. Der Spinnprozess wird bei 23 °C und einer Luftfeuchtigkeit von 30 % r.F. durchgeführt.

Das Waschverfahren zur Untersuchung der Löslichkeit in einer wässrigen Lösung besteht aus drei Schritten. Es werden jeweils 4 Proben von mit Genipin vernetzten und nicht vernetzten Vliesstoffen mit einer Größe von 20 mm x 20 mm verwendet. Die Proben werden vor und nach jedem Schritt gewogen. Zunächst werden die Proben 20 Minuten lang in Ethanol gewaschen. Dann werden sie in einem Vakuumtrockenschrank (VT 6025, Thermo Scientific TM, Waltham, Deutschland) 24 Stunden lang bei 40 °C getrocknet. Anschließend werden die Proben separat in 15 ml PBS-Lösung (9,55 g PBS/l dest. Wasser) für 24 h eingelegt und anschließend bei Raumtemperatur für 72 h getrocknet.

2.1 Viskosimetrie

Die Polymerlösungen, die im Elektrospinnverfahren verwendet werden sollen, werden auf ihre Viskosität hin untersucht. Im Allgemeinen verhalten sich Polymerlösungen als nicht-newtonsche Flüssigkeiten, d.h. die Viskosität ist abhängig von der Scherrate, bei der sie gemessen wird. Die Messungen der Viskosität werden mit einem RheolabQC (CC27, Anton Paar, Graz, Österreich) durchgeführt. Die Viskosität (mPa∙s) wird bei Scherraten zwischen 50 und 1500 1/s an 200 Einzelpunkten im Abstand von 1,2 Sekunden gemessen. Anschließend werden die Ergebnisse in einem Diagramm aufgetragen, das den Trend der Viskosität in Abhängigkeit von der Scherrate darstellt.

2.2 Lichtmikroskopie

Die Durchmesser der Nanofasern werden mit dem Lichtmikroskop gemessen (Software: Leica Application Suite, Version 3.8.0, Mikroskop: DM4000 M, Leica, Wetzlar, Deutschland).

​​​​​​​2.3 Fourier-Transformations-Infrarot-Spektroskopie

Das Vorhandensein von Chitosan nach dem Elektrospinnen und Waschen der Proben wird mit einem Nicolet iS 10 FTIR-Spektrometer und der Software OMNIC Specta (beide Thermo Scientific TM, Waltham, Deutschland) untersucht. Der Transmissionsmodus wurde im Bereich von 600 bis 4000 cm-1 verwendet.

​​​​​​​2.4 Statistische Analyse

Die Daten von mindestens drei Exemplaren werden als Mittelwert und Standardabweichung angegeben. Jeder Versuch wurde zwei- oder dreimal wiederholt. Die statistische Analyse erfolgte durch einen Zwei-Wege-ANOVA-Test mit SPSS für Windows Version 11.5. Ein p < 0,05 wird als statistisch signifikant angesehen.

3. Ergebnisse

Lösungs- und Scaffold-Eigenschaften

Vier verschiedene Vliese wurden durch Elektrospinnen hergestellt. Die Konzentrationen und Verhältnisse der Polymerlösungen und der geeigneten Lösungsmittel sind das Ergebnis vorangegangener Experimente mit faktoriellem Design. Konzentrationen von Essigsäure zwischen 5 und 90 %, Gesamtpolymerkonzentrationen von 2, 3 und 4 Gew.-% und Polymerverhältnisse von Chitosan zu PEO von 7:3, 1:1 und 3:7 wurden hinsichtlich Löslichkeit und Verarbeitbarkeit bewertet. Experimente mit niedrigen Polymerkonzentrationen oder höheren Chitosankonzentrationen führten zu einem nicht stabilen Spinnprozess oder zum Versprühen der Lösung. Im Hinblick auf die Prozessstabilität und die resultierende Fasermorphologie zeigten Polymerlösungen mit 4 Gew.-% und einem Chitosan/PEO-Verhältnis von 3:7 in 70 %-iger Essigsäure die besten Ergebnisse und wurden daher für diese Studie ausgewählt.

 

Abbildung 1:             Viskosität von Chitosan/PEO-Lösungen mit einer Polymerkonzentration von 4 Gew.-% und einem Verhältnis von 7:3 im filtrierten (grau) und ungefilterten (schwarz) Zustand. Nach der Filtration sinkt die Viskosität aufgrund des Ausschlusses von Teilchen mit höherem Molekulargewicht.

Die Viskosität der endgültigen Lösung unterschied sich deutlich zwischen dem gefilterten und dem ungefilterten Zustand. Bei der ungefilterten Lösung ist die Viskosität im Bereich zwischen einer Scherrate von 50 und 1500 1/s deutlich höher (siehe Abbildung 1). Bei einer Scherrate von 100 1/s hat die ungefilterte Lösung eine Viskosität von 1087 ± 13 mPas und die gefilterte Lösung 635 ± 23 mPas. Bei 1500 1/s sinken die Werte auf 385 ± 34 mPas bzw. 285 ± 5 mPas.

Die Faserdurchmesser der aus ungefilterten Lösungen hergestellten Nanofasern betragen 573 ± 81 nm und die der Nanofasern aus gefilterten Lösungen 441 ± 132 nm. Der Unterschied zwischen den beiden Gruppen ist nicht signifikant, zeigt aber einen Trend. Abbildung 2 zeigt einen Unterschied in der Faserstruktur. Fasern aus ungefilterten Lösungen zeigen gerade Fasern, während Fasern aus ungefilterten Lösungen gekräuselte Merkmale aufweisen.

 

Abbildung 2:         Lichtmikroskopische Aufnahmen von elektrogesponnenen Chitosan/PEO-Nanofasern aus ungefilterter (links) und gefilterter (rechts) Lösung.

FTIR wurde verwendet, um das Vorhandensein von Chitosan in den Nanofaservliesen nach dem Elektrospinnen und Veränderungen in der Struktur nach dem Filtrationsprozess zu zeigen. In Abbildung 3 zeigt die Kurve des Chitosanpulvers (gepunktet) charakteristische Banden von Chitosan in einem Wellenzahlbereich von 3100 bis 3400 cm-1. Diese sind auf N-H- und O-H-Streckschwingungen und intermolekulare Wasserstoffbrückenbindungen der Polysaccharidmoleküle zurückzuführen. Die Peaks bei 1583 und 1649 cm-1 zeigen NH2 (Amid II) bzw. C=O-NHR (Amid I) an. Der Peak im Wellenlängenbereich von 2800 bis 3000 cm-1 wird der CH2-Streckung zugeordnet. [CMH+08; RVM+11]

Die Kurven „ungefiltert“ und „gefiltert“ zeigen die Messungen der elektrogesponnenen Proben. Die Kurvenformen der gefilterten und ungefilterten Proben zeigen keine signifikanten Unterschiede in den Peaks. Demnach hat die Filtration der Chitosanlösung keinen Einfluss auf die chemischen Strukturen. Die charakteristischen Peaks von Chitosan sind in den Kurven der elektrogesponnenen Proben zu finden. Die Intensität der CH2-Streckung bei 2861 cm-1 nimmt mit dem Zusatz von PEO zu. In ähnlicher Weise werden Peakverschiebungen im Vergleich zu Chitosan beobachtet. Die Schwingungsbanden bei 1583, 1649 und 3348 cm-1 sind zu 1562, 1663 und 3353 cm-1 verschoben. Diese Peakverschiebungen sind auf die Abnahme der intermolekularen Wasserstoffbrückenbindungen von Chitosan und die Bildung neuer Wasserstoffbrückenbindungen zwischen Chitosan und PEO-Molekülen zurückzuführen [CMH+08]. Die FTIR-Ergebnisse zeigen, dass Chitosan in den elektrogesponnenen Vliesen vorhanden ist und dass es während der Filtration nicht entfernt oder beschädigt wird.

 

Abbildung 3:         FTIR-Ergebnisse für das reine Chitosan-Pulver und Chitosan/PEO-Nanofaservliese aus gefilterten und ungefilterten Spinnlösungen. Alle Kurven zeigen typische Peaks für Chitosan zwischen 3100 und 3400 cm-1. Leichte Verschiebung der Kurven für Fasern aufgrund des Einflusses von PEO auf Wasserstoffbrückenbindungen.

Löslichkeit in wässriger Lösung

Membranen ohne Genipin wurden während des Waschvorgangs vollständig aufgelöst. Sie konnten daher nicht weiter untersucht werden. Mit Genipin vernetzte Proben weisen nach dem Waschvorgang eine Farbänderung auf. Die Farbe ändert sich von einem hellen Weiß zu einem grün-blauen Farbton, wie in Abbildung 4 zu sehen ist. Dies ist auf die Chitosanderivate zurückzuführen, die durch die Reaktion von Genipin mit den Aminogruppen von Chitosan gebildet werden [MSS00].

 

Abbildung 4:         A) Chitosan/PEO-Nanofaser-Vliesstoff mit eingearbeitetem Genipin vor dem Waschvorgang, hellweiße Farbe. B) Chitosan/PEO-Nanofaservlies mit eingearbeitetem Genipin nach dem Waschvorgang, blau-grüne Verfärbung und leichte Verformung der Membran aufgrund der bei der Reaktion mit Genipin gebildeten Chitosanderivate.

Außerdem zeigen die Proben mit Genipin nach 24 Stunden in PBS und anschließender Trocknung eine Zunahme des Gewichts und des Faserdurchmessers, wie in Abbildung 5 dargestellt. Bei ungefilterten Proben beträgt die Gewichtsveränderung +33,9 ± 5,2 % und bei gefilterten Proben +46,2 ± 7,1 %.

 

Abbildung 5:         Links: Faserdurchmesser vor und nach dem Waschvorgang; Rechts: Massenänderung aufgrund der Quellung der Nanofasern

Der Faserdurchmesser im gequollenen Zustand beträgt bei ungefilterten Proben 901 ± 105 nm, was einer Zunahme von 60,9 ± 4,3 % entspricht. Bei gefilterten Proben beträgt der gequollene Durchmesser 705 ± 102 nm, was einer Zunahme von 52,2 ± 0,6 % entspricht.

 

Literaturliste

[CMH+08]          Chen, Zonggang; Mo, Xiumei; He, Chuanglong; Wang, Hongsheng
                            Intermolecular interactions in electrospun collagen–chitosan complex nanofibers
                            Carbohydrate Polymers. Bd. 72 (2008) H. 3, S. 410–418

[KC17]                 Kishan, Alysha P.; Cosgriff-Hernandez, Elizabeth M.
Recent advancements in electrospinning design for tissue engineering applications: A review Journal of biomedical materials research. Part A. Bd. 105 (2017) H. 10, S. 2892–2905

[MFS+14]           Mirzaei, Esmaeil; Faridi-Majidi, Reza; Shokrgozar, Mohammad Ali; Asghari Paskiabi, Farnoush

Genipin cross-linked electrospun chitosan-based nanofibrous mat as tissue engineering scaffold Nanomedicine Journal. Bd. 1 (2014) H. 3, S. 137–146

[MSS00]             Mi, Fwu-Long; Sung, Hsing-Wen; Shyu, Shin-Shing
Synthesis and characterization of a novel chitosan-based network prepared using naturally occurring crosslinker Journal of Polymer Science Part A: Polymer Chemistry. Bd. 38 (2000) H. 15, S. 2804–2814

[RVM+11]          Rakkapao, Natthida; Vao-soongnern, Visit; Masubuchi, Yuichi; Watanabe, Hiroshi
Miscibility of chitosan/poly(ethylene oxide) blends and effect of doping alkali and alkali earth metal ions on chitosan/PEO interaction
Polymer. Bd. 52 (2011) H. 12, S. 2618–2627

[SHH+99]           Sung, H. W.; Huang, R. N.; Huang, L. L.; Tsai, C. C.
In vitro evaluation of cytotoxicity of a naturally occurring cross-linking reagent for biological tissue fixation
Journal of biomaterials science. Polymer edition. Bd. 10 (1999) H. 1, S. 63–78

Authors: Schneiders, Thomas Vogel, Lisa Marie Gries, Thomas

ITA Institut für Textiltechnik der RWTH Aachen University, Otto-Blumenthal-Straße 1, 52074 Aachen

More entries from ITA Institut für Textiltechnik der RWTH Aachen University

06.03.2023

Technology Development for the Sustainable Production of High-purity Chitosan Filament Yarns with High Performance and Functionality (Chion)

Raw materials Fibres Yarns Sustainability

Abstract

In the IGF project 21168 BR ‘Chion’, a technology for the manufacturing of chitosan multifilament yarns from ionic liquids was developed, enabling the tailoring of the yarn properties regarding their performance and functionality in all process stages. The material costs, the field of application and the functionalities achievable by the multifilament yarns are defined by the raw material selection. By using ionic liquids, it was possible for the first time to process lower-cost chitosans in various qualities and degree of deacetylation < 90%, previously unavailable with conventional spinning processes. From the achieved and extensively evaluated project results, required process parameters for the successful transfer of the elaborated fundamentals to a pilot scale as well as the process development for the spinning of chitosan multifilament yarns with high performance and strengths up to 28 cN/tex on a pilot solvent wet spinning plant were derived and implemented. To demonstrate the textile processability of the multifilament yarns, textile demonstrators were successfully fabricated for the first time in conventional textile weaving, knitting or braiding processes on standard industrial textile machines.

Report

Introduction and Objective

In the 21st century, society's high level of interest in using products that are manufactured in a sustainable way and minimize environmental impact grows constantly. In this context, the textile and fiber industry has the opportunity to accelerate the development of organic products from renewable raw materials, such as chitin and chitosan, in order to respond to the social, national and international demand for organic products.

The biopolymer chitin and its derivative chitosan are versatile and well-known materials used in (bio-)medicine and pharmacy. However, they are rarely available as a pure textile product. Chitin is the second abundant biopolymer after cellulose with 1.5-105 t/a [1]. The semi-crystalline structure and stable network of molecular bonds limit the solubility of chitin significantly. Therefore, chitin derivative chitosan is being primarily addressed by research and material development. The chitosan class of materials demonstrates excellent biological and antibacterial properties as well as cell colonizability and biodegradability [2, 3]. In the last few years, considerable research efforts have been made to develop efficient chitosan products; nevertheless, the availability of pure chitosan multifilament yarns with long-term stability is currently extremely limited [4]. Likewise, a robust, scalable process for manufacturing of high-performance chitosan filament yarns is urgently needed, as current products are severely limited in terms of mechanical properties. Due to the natural provenance and variability of raw material properties, such as degree of deacetylation (DD), molecular weight (Mw), etc. There are still major challenges in producing of chitosan multifilament yarns using the acid- and alkali-dominated manufacturing processes established so far.

The aim of the IGF research project ‘Chion’ (21168 BR) was therefore to develop a robust wet-spinning process based on ionic solvents for manufacturing of multifilament yarns from 100 % chitosan with high performance and functionality.

Obtained Results

By using ionic liquids (IL), lower cost chitosans with lower Mw and DD < 90% became accessible to the wet-spinning process for the first time. A high content of acetamide groups in chitosan with low DD (< 90%) leads to the increase of intermolecular interactions, which resulted in improved mechanical performance with tensile strengths up to 28 cN/tex and proper textile processing of chitosan multifilament yarns. The extensive research of chitosan-IL-systems with different chitosan proveniences, Mw and DD 60 – 90% with imidazol-based IL was initially carried out on a laboratory scale for monofilaments. Based on the results, important process parameters and promising chitosan-IL combinations were obtained and the developed process was successfully transferred to the multifilament scale. A structural-mechanical adjustment of the properties of the chitosan multifilament yarns was a fundamental object of the research work: Each development step was systematically monitored by material and process characterizations and analyses. Further investigations included the solubility of chitosan in IL, viscosity studies, fiber morphology and geometry, chemical and physical material properties, crystallinity and degradation behavior, as well as on the influence of controlled fiber drawing during the spinning process according the adjustment of the textile-physical properties. By integrating acid- and temperature-sensitive agents into the spinning dope, the functionality of the chitosan multifilament yarns was demonstrated. As a result of the precise tailoring of the molecular fiber properties and the developed spinning process parameters, a robust, scalable wet-spinning process is now available for manufacturing of pure chitosan multifilament yarns in pilot scale. Finally, the textile processability of the chitosan multifilament yarns was investigated and demonstrated by knitting, weaving and braiding processes.

Investigation of the solubility of chitosan in IL and spinning dope preparation

Initially, the dissolving ability of IL for chitosan was investigated and evaluated. Through systematic experiments, 19 commercially available chitosan materials of different qualities (e.g. medical grade chitosan, industrial grade chitosan, etc.), provenance (e.g. shrimps, crabs, fungal-based chitosan), degree of DD (60 – 90%) and Mw were characterized and their solubility evaluated in promising imidazole-based ILs. It was demonstrated that especially short-chain ILs in combination with acetate anions possess excellent solubility for all investigated chitosans (Figure 1). From the results of the dissolution tests, promising chitosan-IL combinations were defined for further process development steps.

The preparation of the chitosan-IL spinning dopes (Figure 2, left) was carried out using thermal processing in solids concentrations of up to 8 wt.-% and was monitored and evaluated by rheological investigations as a function of the temperature and shear rate (Figure 2, right). To investigate the stability, processability and spinnability of the homogeneous chitosan-IL-solutions, the spinning dopes were processed into monofilaments on a laboratory scale. In particular, fiber formation was analyzed as a function of the chitosan raw materials and process parameters, such as solid content, temperature, diffusion rate and residence time in the coagulation medium. The obtained results demonstrated, that all investigated chitosan-IL-combinations can be processed into pure chitosan fibers. Therefore, it was successfully proved that ILs are a suitable and promising solvent for the manufacturing of chitosan multifilament yarns.

Wet-spinning of the chitosan multifilament yarns

In the following step, the basic methods developed on the laboratory scale were successfully transferred to a wet-spinning process on a pilot scale. The chitosan multifilament yarns were spun on the wet-spinning plant (Fourné Maschinenbau GmbH) of the ITM. The pilot spinning plant is specially designed for R&D process developments and enables, in particular, test trials with 2 – 60 liters of spinning dope.

For the spinning trials, chitosan-IL spinning dope was first filtered and degassed under specific temperature and pressure conditions. Different spinneret geometries were used for multifilament spinning, including 78 holes of 90 μm (90 µm/78f) and 24 holes of 160 μm (160 µm/12f), respectively. The prepared tempered spinning dope was extruded into a coagulation bath with deionized water as medium. Overall yarn counts of about 50 – 65 tex and filament diameters of about 30 – 50 µm were achieved depending on the spinneret geometry. In order to achieve tailored functionalities, such as high mechanical strength and crystallinity as well as improved molecular orientation, the influence of fiber drawing during the spinning process was systematically investigated. The produced yarns were analyzed for their mechanical and textile-physical properties and compared with conventionally produced acetic acid (AcOH) based chitosan yarns. The DD of the raw material has an important role in this context: a high content of acetamide groups in chitosan with low DD (< 90%) leads to an increase in intermolecular interactions, resulting in improved mechanical properties. The results obtained demonstrate a high functionality as well as significantly improved mechanical properties of the IL spun chitosan multifilament yarns compared to the conventional chitosan fibers (DD 90%) (Figure 3, right). By means of elaborated drawing parameters, tailor-made textile-physical properties, such as elasticity or tensile strength, can be adjusted according to defined requirements.

Textile processing of the chitosan multifilament yarns

During the final phase of the project, the textile processing of the chitosan multifilament yarns from IL into knitted and woven patterns and braids was successfully implemented (Figure 4). The technical processing of conventional chitosan yarns on textile machines has always been a challenge due to insufficient mechanical strength and knot tearing forces. Trouble-free processing in weaving, knitting or braiding processes without special yarn pretreatment or machine adaptations could not be realized so far using conventional chitosan multifilament yarns. In contrast, the chitosan multifilament yarn produced by IL offers sufficient mechanical stability and flexibility to be processed into knitted, woven or braided structures in conventional textile processes on standard industrial production machines. Additional yarn functionalization, such as sizing, further improves the processability of the material and the quality of the finished product.

Acknowledgement

The IGF project 21168 BR of the Research Association Forschungskuratorium Textil e.V. was funded by the Federal Ministry of Economics and Climate Protection via the AiF within the framework of the program for the promotion of joint industrial research (IGF) on the basis of a resolution of the German Bundestag. We would like to thank the above-mentioned institutions for providing the financial resources. Furthermore, we want to thank the member of the ‘Projektbegleitender Ausschuss’ (project accompanying committee) for their support during the project.

The complete publication is available as download.

Authors: Kuznik, Irina; Kruppke, Iris; Cherif, Chokri

Technische Universität Dresden
Fakultät Maschinenwesen
Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM)
01062 Dresden

https://tu-dresden.de/mw/itm

chitosan multifilament yarns

More entries from TU Dresden, Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik ITM

06.03.2023

Technologieentwicklung zur nachhaltigen Herstellung hochreiner Chitosanfilamentgarne mit hohem Leistungs- und Funktionsvermögen (CHION)

Raw materials Fibres Yarns Sustainability

Abstract

Das IGF Projekt 21168 BR „Chion“ umfasst eine Technologieentwicklung zur Herstellung von Chitosanmultifilamentgarnen, die ein Maßschneidern der Garneigenschaften hinsichtlich ihres Leistungs- und Funktionsvermögens in allen Prozessstufen ermöglicht. Dabei werden die Materialkosten, das Einsatzfeld sowie die im Multifilamentgarn erreichbaren Funktionalitäten zunächst durch die Rohmaterialauswahl definiert. Durch die Nutzung von ionischen Flüssigkeiten sind erstmalig kostengünstigere Chitosane in verschiedenen Qualitäten sowie Deacetylierungsgraden < 90 % für einen Lösungsmittelnassspinnprozess einsetzbar, die bisher mit konventionellen Spinnprozessen nicht verarbeitbar waren. Aus den erzielten und ausführlich ausgewerteten Projektergebnissen wurden notwendige Prozessparameter für die erfolgreiche Übertragung der erarbeiteten Grundlagen auf einen Technikumsmaßstab sowie dazugehörige Prozessentwicklung für die Erspinnung vom Chitosanmultifilamentgarn mit hohem Leistungsvermögen und Festigkeiten bis zu 28 cN/tex auf einer Pilot-Lösungsmittelnassspinnanlage abgeleitet und umgesetzt. Zum Nachweis der textilen Verarbeitbarkeit der erzeugten Multifilamentgarne aus 100 % Chitosan erfolgte eine erfolgreiche Umsetzung textiltechnischer Demonstratoren in konventionellen textilen Web-, Strick- oder Flechtprozessen auf industrieüblichen Textilmaschinen.

Report

Einleitung, Problemstellung und Zielsetzung

Im 21. Jh. wächst die hohe Bereitschaft der Gesellschaft, ökologische, ressourcen- und umweltschonend hergestellte Produkte zu verwenden, stets weiter. Hierbei hat die Textil- und Faserbranche die Chance, durch biobasierte Produkte auf Grundlage von nachwachsenden Rohstoffen, wie Chitin bzw. Chitosan, Entwicklungen voranzutreiben, um dem gesellschaftlichen, nationalen sowie internationalen Bedarf an biobasierten Produkten gerecht zu werden.

Das Biopolymer Chitin und sein Derivat Chitosan sind bereits vielseitig genutzte Rohstoffe in der (Bio-)Medizin und Pharmazie, die jedoch kaum als reines textiles Produkt verfügbar sind. Chitin ist mit 1,5·105 t/a das zweithäufigste natürlich vorkommende Biopolymer nach Cellulose [1]. Die halbkristalline Struktur und das stabile Netzwerk aus molekularen Bindungen limitieren jedoch die Löslichkeit von Chitin stark, weshalb vornehmlich das Chitinderivat Chitosan in der Forschung und Materialentwicklung untersucht wird. Die Materialklasse des Chitosans weist hervorragende biologische und antibakterielle Eigenschaften sowie Zellbesiedelbarkeit und Biodegradabilität auf [2, 3]. In den letzten Jahren wurden zwar beträchtliche Forschungsanstrengungen unternommen, um effiziente Chitosanprodukte zu entwickeln, dennoch ist die Verfügbarkeit reiner, langzeitstabiler Chitosanmultifilamentgarne aktuell stark eingeschränkt [4]. Ebenso wird ein robuster, adaptierbarer Prozess zur Erzeugung dieser leistungsstarken Garne dringend benötigt, da heutige Chitosanfilamentgarne hinsichtlich mechanischer Eigenschaften stark limitiert sind. Aufgrund der natürlichen Herkunft und der damit verbundenen Variabilität von Rohmaterialeigenschaften, wie bspw. Deacetylierungsgrad (DA), Molekulargewicht (MW), etc., bestehen nach wie vor große Herausforderungen, Chitosanmultifilamentgarne mittels der bisher entwickelten säure- und alkalidominierten Herstellungsprozesse zu erzeugen.

Das Ziel des IGF Projektes 21168 BR „Chion“ bestand deshalb darin, Multifilamentgarne aus 100 % Chitosan mit hohem Leistungs- und Funktionsvermögen auf Basis eines robusten Lösungsmittelnassspinnverfahrens mit ionischen Lösungsmitteln in reproduzierbarer Qualität und mit einstellbaren Eigenschaften zu erzeugen.

Erzielte Ergebnisse

Durch die Nutzung von ionischen Flüssigkeiten (ionic liquids, IL) werden erstmalig kostengünstigere Chitosane mit geringeren Mw bzw. niedrigen DA < 90 % dem Lösungsmittelnassspinnprozess zugänglich gemacht. Ein hoher Anteil an Acetamidgruppen bei Chitosan mit geringem DA führt zu einer Steigerung der intermolekularen Wechselwirkungen, wodurch ein erhöhtes Leistungsvermögen bis zu 28 cN/tex, sowie eine gute textiltechnische Verarbeitung der mittels IL hergestellter Chitosanmultifilamentgarne resultieren. Die komplexe Erforschung der Chitosan-IL-Systeme mit verschiedenen Chitosanqualitäten, MW sowie DA 60 – 90 % mit imidazolhaltigen IL erfolgte zunächst unter vereinfachten Randbedingungen für Monofilamente. Aus den Ergebnissen wurden wichtige Prozessparameter und aussichtsreiche Chitosan-IL-Kombinationen abgeleitet und der entwickelte Prozess auf den Multifilamentmaßstab übertragen. Eine strukturmechanische Einstellung der Eigenschaften der Chitosanmultifilamente war ein grundlegender Gegenstand der Forschungsarbeiten. Jeder Entwicklungsschritt wurde dabei von systematischen Material- und Prozesscharakterisierungen sowie Analysen begleitet. Systematische Untersuchungen erfolgten zur Löslichkeit von Chitosan in IL, Viskositätsstudien, Fasermorphologie sowie -geometrie, chemischen und physikalischen Materialeigenschaften, Kristallinität- und Degradationsverhalten sowie zum Einfluss einer zielgerichteten Verstreckung während des Spinnprozesses auf strukturmechanische Einstellung der textil-physikalischen Eigenschaften. Durch die Integration säure- und temperaturempfindlicher Modellwirkstoffe in die Spinnlösung wurde die Funktionalisierbarkeit der erzeugten Chitosanfilamentgarne nachgewiesen sowie die Bioaktivität und deren Beständigkeit im Koagulationsbad und am Garn erforscht. Im Ergebnis der gezielten Abstimmung der molekularen Eigenschaften des Chitosans und der erarbeiteten Spinnprozessparameter steht somit ein robuster, übertragbarer Lösungsmittelnassspinnprozess zur Erspinnung der Chitosanmultifilamentgarne im Technikumsmaßstab zur Verfügung. Zum Abschluss wurde die textile Verarbeitbarkeit der erzeugten Chitosanmultifilamentgarne in Strick-, Web- und Flechtprozessen untersucht und nachgewiesen.

Untersuchung des Lösungsvermögens von Chitosan in IL sowie Spinnlösungherstellung

Der erste Schritt der Forschungsarbeiten umfasste die Untersuchung und Bewertung des Lösungsvermögens ionischer Flüssigkeiten (IL) für Chitosan. Mittels systematischer Versuchsdurchführung wurden 19 kommerziell verfügbaren Materialien unterschiedlicher Qualitäten (z.B. medizinisches Chitosan, industrielles Chitosan, etc.), Provenienzen (z.B. Shrimps, Krabben, pilzbasiertes Chitosan), DA (60 – 90 %) sowie MW charakterisiert und deren Löslichkeit in aussichtsreichen imidazolhaltigen IL grundlegend analysiert und ausgewertet. Die erzielten Ergebnisse zeigen, dass besonders kurzkettige IL in Kombination mit Acetat-Anionen ein hervorragendes Lösungsvermögen für alle untersuchten Chitosane aufweisen (vgl. Abbildung 1), woraus eine Ableitung aussichtsreicher Chitosan-IL-Kombinationen für weitere Prozessentwicklungsschritte folgte.

Die Herstellung der Chitosan-IL-Spinnlösungen erfolgte mittels thermischer Unterstützung in Feststoffkonzentrationen bis zu 8 Gew.-% und wurde von rheologischen Untersuchungen in Abhängigkeit von den Parametern Temperatur und Scherrate begleitet und bewertet. Zur Untersuchung der Stabilität, Prozessierbarkeit sowie Spinnbarkeit der hergestellten homogenen Chitosan-IL-Lösungen wurden diese im Labormaßstab zu Monofilamenten verarbeitet. Umfangreiche Analysen umfassten dabei besonders Untersuchungen der Fadenbildung in Abhängigkeit von verwendeten Rohmaterialien sowie Prozessparametern, wie Feststoffgehalt, Temperatur und Verweilzeit im Koagulationsmedium, sowie des Diffusionsverhaltens und der resultierenden Fasereigenschaften. Die erarbeiteten Grundlagen bildeten dabei eine Basis für die Prozessentwicklung der Multifilamentgarnerspinnung aus IL. Die erzielten Ergebnisse zeigen, dass sich alle untersuchten Chitosan-IL-Kombinationen zu reinen Chitosanfasern verarbeiten lassen, und dienen somit als Nachweis, dass IL ein geeignetes und aussichtsreiches Lösungsmittel zur Herstellung von Chitosanmultifilamentgarnen darstellen.

Erspinnung der Chitosanmultifilamentgarne

Im nächsten Schritt der Forschungsarbeiten fand die erfolgreiche Übertragung der im Labor erarbeiteten Grundlagen auf einen Lösungsmittelnassspinnprozess im Technikumsmaßstab statt. Die Erspinnung der Chitosanmultifilamentgarne erfolgte dabei an der Lösungsmittelnassspinnanlage (Fourné Maschinenbau GmbH) des ITM. Die Pilot-Spinnanlage ist speziell für FuE-Prozessentwicklungen ausgelegt und ermöglicht u. a. Versuche mit 2 – 60 Liter Spinnlösung.

Für die Spinnversuche wurde die Chitosan-IL-Spinnlösung zunächst filtriert und unter bestimmten temperatur- und druckbedingten Konditionen entgast. Die Multifilamenterspinnung erfolgte mittels unterschiedlicher Spinndüsengeometrien, u.a. 78 Löcher à 90 μm (90 µm/78f) bzw. 24 Löcher à 160 μm (160 µm/12f). Die präparierte, temperierte Spinnlösung wurde in ein Koagulationsbad mit deionisiertem Wasser als Medium extrudiert. Die resultierenden Multifilamentgarne weisen Garnfeinheiten von ca. 50–65 tex sowie Filamentdurchmesser von ca. 30–50 µm in Abhängigkeit von der Düsengeometrie auf. Um maßgeschneiderte Funktionalitäten, wie hohe mechanische Festigkeiten und Kristallinitäten sowie verbesserte Molekülorientierung, zu erzielen, wurde der Einfluss des Faserverzugs während des Spinnprozesses systematisch untersucht und mittels gezielter Versuchsplanung effektive Verzugsparameter ausgearbeitet. Die prozessbegleitenden systematischen Untersuchungen umfassten dabei die Charakterisierung der mechanischen und textil-physikalischen Eigenschaften der mittels IL ersponnenen Garne sowie den Vergleich der erzielten Kennwerte mit konventionell hergestellten Chitosangarnen auf Essigsäurebasis (AcOH). Der DA des Rohmaterials spielt dabei eine besonders große Rolle: Ein hoher Anteil an Acetamidgruppen bei Chitosan mit geringem DA (< 90 %) führt zu einer Steigerung der intermolekularen Wechselwirkungen, woraus verbesserte mechanische Eigenschften resultieren. Die erzielten Ergebnisse weisen eine hohe Funktionalität sowie deutlich verbesserte Festigkeiten der mittels IL ersponnenen Chitosanmultifilamentgarne im Vergleich zu den konventionellen Chitosangarnen (DA 90 %) aus AcOH auf (vgl. Abbildung 3, rechts). Mittels erarbeiteten Verzugsparametern lassen sich zudem maßgeschneiderte textil-physikalische Eigenschaften, wie Elastizität oder Festigkeiten, je nach gestellten Anforderungen einstellen.

Textiltechnische Umsetzung der Chitosanmultifilamentgarne

Im letzten Schritt der Projektbearbeitung folgte die erfolgreiche textiltechnische Verarbeitung der Chitosanmultifilamentgarne aus IL zu Strick- und Webmustern sowie Geflechten (vgl. Abbildung 4). Die technische Verarbeitung von konventionellen Chitosangarnen auf Textilmaschinen stellte aufgrund unzureichender mechanischer Festigkeit und Knotenreisskräften bisher immer eine Herausforderung dar. Eine störungsfreie Verarbeitung in Web-, Strick- oder Flechtprozessen ohne eine spezielle Garnvorbehandlung bzw. Maschinenanpassungen konnte bisher für konventionelle Chitosanmultifilamentgarne nicht umgesetzt werden. Die mittels IL hergestelltes Chitosanmultifilamentgarne bieten dagegen die notwendige mechanische Stabilität sowie Flexibilität, um in konventionellen textilen Prozessen auf industrieüblichen Textilmaschinen zu Strick-, Web- oder Flechtstrukturen verarbeitet zu werden. Durch eine zusätzliche Garnfunktionalisierung, wie bspw. Schlichteauftrag, wird die Verarbeitbarkeit des Materials sowie die Qualität des Fertigproduktes noch zusätzlich verbessert.

Danksagung

Das IGF-Vorhaben 21168 BR der Forschungsvereinigung Forschungskuratorium Textil e.V. wurde über die AiF im Rahmen des Programms zur Förderung der industriellen Gemeinschaftsforschung (IGF) vom Bundesministerium für Wirtschaft und Klimaschutz aufgrund eines Beschlusses des Deutschen Bundestages gefördert. Wir danken den genannten Institutionen für die Bereitstellung der finanziellen Mittel. Darüber hinaus möchten wir den Mitgliedern des Projektbegleitenden Ausschusses für ihre Unterstützung während der Projektbearbeitung danken.

Die vollständige Veröffentlichung steht zum Download zur Verfügung.

Authors: Kuznik, Irina; Kruppke, Iris; Cherif, Chokri

Technische Universität Dresden
Fakultät Maschinenwesen
Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM)
01062 Dresden

https://tu-dresden.de/mw/itm

More entries from TU Dresden, Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik ITM