Textination Newsline

Reset
98 results
Image AI generated, Pixabay
22.10.2024

NABU Study: Textile recycling has huge potential

In Germany, only 26 per cent of used textiles are recycled, mostly into cleaning rags and insulation material. The vast majority is exported to other countries or incinerated. High-quality recycling of used fibres into new textile fibres is still in its infancy. This also applies to Germany. So far, the majority of recycled used textiles have been made into cleaning cloths, fleece fabrics and insulation materials. Recycled textile fibres that replace fibres made from cotton or petroleum in new textiles are rare.
 

In Germany, only 26 per cent of used textiles are recycled, mostly into cleaning rags and insulation material. The vast majority is exported to other countries or incinerated. High-quality recycling of used fibres into new textile fibres is still in its infancy. This also applies to Germany. So far, the majority of recycled used textiles have been made into cleaning cloths, fleece fabrics and insulation materials. Recycled textile fibres that replace fibres made from cotton or petroleum in new textiles are rare.
 
A variety of approaches are needed to reduce the significant environmental impacts of textile production. The priorities are to extend the useful life of textiles and to change the way we consume them. However, the recycling of used textiles that can no longer be reused must also be expanded in terms of both quantity and quality. The Oeko-Institut has therefore been commissioned by NABU to analyse the obstacles to and potential for textile recycling in Germany and In addition to clothing, textiles include home textiles such as bed linen and curtains, as well as technical textiles used, for example, in car manufacturing or in medicine.

High-quality textile recycling alone is not financially viable; rather, a legal framework is needed to promote it in the future. ‘We don't need more cleaning rags,’ says Anna Hanisch, NABU expert on circular economy, ‘Our study shows that there is great potential for higher-quality recycling so that old textiles can be turned into new textiles again. To achieve this, fibre-to-fibre recycling must be expanded. The prerequisite for this is automatic sorting by fibre composition. This is because non-reusable used textiles must be sorted before recycling. This is currently done by hand. A technical solution is what makes recycling economically viable in the first place.’
 
The mechanical recycling that has been used most of the time so far shortens the fibres, so that only a few recycled fibres are suitable for use in new textiles. For this reason, depolymerisation processes are being developed. These require more energy and chemicals, but enable higher-quality recycled fibres for new textiles. According to NABU, extended producer responsibility is necessary to finance and establish these processes. This would have to supplement the EU's mandatory separate collection of used textiles, which will come into force in 2025.

In order to reduce the environmental impact associated with textile production, various approaches are needed: the priority should be to use textiles for longer. However, recycling used textiles that can no longer be used is also part of the solution and must be expanded in terms of both quantity and quality.

Technologically, all approaches have their merits for certain mass flows in order to increase the recycling and use of recycled materials from used textiles in new products. The technologies complement each other. After sorting for reuse, recycling processes should be prioritised as follows:

  1. First mechanical recycling, as it requires the least energy.
  2. Then comes solvent-based processing and depolymerisation, which require a similar amount of effort.
  3. Finally, there is feedstock recycling, which consumes the most resources.

Hanisch: ‘A circular economy starts with the design. For example, in order for textiles to be recycled, they should contain as few different materials as possible. To achieve this, we need ambitious ecodesign requirements for textiles. The focus here must be on durability and recyclability. Above all, however, incentives are needed to reuse recycled raw materials from old textiles. So far, this has hardly happened voluntarily.’   

Texcare Messe Frankfurt (c) Messe Frankfurt
06.09.2024

Circular economy long established in the textile care industry

The professional rental service for linen and workwear is a textbook example of a circular, sustainable business model, which uses hard-wearing textiles instead of lower-quality or disposable products (reduce), optimises their useful life through professional care / repairs (reuse) and develops solutions to re-purpose them after they have reached the end of their useful life (recycle).

The professional rental service for linen and workwear is a textbook example of a circular, sustainable business model, which uses hard-wearing textiles instead of lower-quality or disposable products (reduce), optimises their useful life through professional care / repairs (reuse) and develops solutions to re-purpose them after they have reached the end of their useful life (recycle).

With its ‘Green Deal’, the European Commission has, inter alia, initiated the transformation of the garment-manufacturing industry from a business model of short-lived consumption to a more sustainable, circular system. By 2030, fast fashion will be replaced increasingly by textile products that have a longer life cycle and thus contribute to reducing environmental pollution. To achieve this goal, textiles must be more durable, reusable, repairable, fibre-to-fibre recyclable and have a greater proportion of recycled fibres. For the textile-service sector, the circularity requirements defined in Brussels have long been standard practice because hiring out professional workwear and protective clothing, as well as hotel and hospital linen, mop covers and other items, requires precisely these characteristics, i.e., the fabrics must be durable, washable – and therefore reusable – and easy to repair. Thanks to these qualities, rental linen can remain in the service cycle for a long time and has thus become established as a sustainable alternative to outright purchasing.

Laundry in the circular system
The textile-rental service offers a variety of systems tailored to the needs of different groups of customers. Workwear and protective clothing is stocked by textile-service laundries in a wide range of sizes, so that each customer's employees can be supplied with a suitable outfit. This is then labelled and made available to the individual wearer. If the employee leaves the customer's employ, the garments are taken back and – provided they are in good condition – reused as replacement clothing. In the case of workwear in the healthcare sector, as well as bed linen, table linen and towelling, a pool solution is more common. A laundry pool comprises similar textiles that are supplied without being assigned to a specific customer or wearer, which significantly reduces the quantity of textiles used.

Local textile cleaning is another major area of commercial textile care that also helps extend the life of textiles with a wide range of goods being professionally processed on behalf of private and commercial customers by such businesses. High-quality outerwear and underwear, premium home textiles, delicate down jackets or heavily soiled workwear are all restored to a clean, fresh and usable condition. And if stains prove particularly stubborn even after cleaning, a specialist company can re-colour the goods, thus ensuring they can be reused.

The recycling benefits of textile rental services
Besides the two main requirements of ‘reuse’ and ‘repair’, the sector is also working hard on the recycling of old textiles, as called for by the EU textile strategy. Several workwear manufacturers have developed their own returns models, whereby customers can hand back their old workwear when buying new items. The old workwear is then reused or recycled by partner organisations. Large companies, including Deutsche Telekom and Ikea, have also introduced a centralised returns and recycling system for discarded workwear. Indeed, the furniture giant has even created its own home textiles line using old workwear. However, the easiest way to implement a system of this kind is to use a rental service, as the goods are always returned to the specialist company and sorted there. In other words, the used laundry is collected in one place after washing, where it forms a large volume of similar discarded textiles, which greatly simplifies both the collection logistics and the recycling process. These favourable conditions have already led to the establishment of an initial initiative in which several textile service companies pool their waste hotel linen and channel it into industrial cotton-to-pulp recycling. Whether individual or joint initiatives, this is a testament to the industry's commitment to the development of solutions for ‘waste materials’.

Textile upcycling for designer items
Solutions for rejected textiles are more varied than simply recycling them. For example, Sweden's Fristads company offers a repair service for its workwear. The British department store chain John Lewis goes one step further. In a field trial, customers can hand in their garments to selected stores for cleaning and repair. The garments are processed by Johnsons, a laundry and dry-cleaning chain belonging to the Timpson Group. Designers have also recognised second-life opportunities for discarded workwear and contract textiles. For example, they apply elaborate decorations to items from their collections or take them apart and reassemble them. The creatively enhanced goods are then returned to the market as designer items. There are also recycling solutions for large contract textiles, which are converted into bags or cosmetic accessories or, after a colour-changing process, into small batches of aprons. However, the effect of such concepts on reducing textile waste is as small as their diversity. Only the established second-hand model is able to return larger quantities to the economic cycle.

The pros and cons of recycled materials
While the textile-care industry is unanimous in its support for the requirements of the EU textile strategy and is contributing solutions, it disagrees on increasing the proportion of recycled fibres in its products. Although there are already numerous workwear collections and hotel-linen ranges that meet the requirements from Brussels, some of the products do not, however, meet the durability requirements because the fibre quality deteriorates with each recycling stage. Therefore, many contract-textile manufacturers still rely exclusively on virgin, brand-new fibre materials to ensure durability in industrial laundering. Texcare International offers the industry the perfect setting to discuss this conflict of objectives in depth.

Source:

Messe Frankfurt

Atacama desert Photo by Fernando Rodrigues on Unsplash
23.07.2024

Reducing environmental & health impacts of global trade of 2nd hand clothes

The rise of fast-fashion, marked by rapid turnover of collections, has led to a sevenfold increase in the global trade of used clothing in the last 4 decades. With more than 80% of all purchased clothing items globally (62% in the EU) being disposed of as general garbage, which is incinerated or landfilled, this represents a massive waste of resources, causing severe environmental and health impacts. A report recently published by UNECE and the United Nations Economic Commission for Latin America and the Caribbean (ECLAC) contains an in-depth analysis of second-hand clothing trade between Europe and Chile, offers policy recommendations to the industry, exporting and importing countries to remedy this situation.

The rise of fast-fashion, marked by rapid turnover of collections, has led to a sevenfold increase in the global trade of used clothing in the last 4 decades. With more than 80% of all purchased clothing items globally (62% in the EU) being disposed of as general garbage, which is incinerated or landfilled, this represents a massive waste of resources, causing severe environmental and health impacts. A report recently published by UNECE and the United Nations Economic Commission for Latin America and the Caribbean (ECLAC) contains an in-depth analysis of second-hand clothing trade between Europe and Chile, offers policy recommendations to the industry, exporting and importing countries to remedy this situation.

According to UN Comtrade data, in 2021 the European Union (30%), China (16%), and the United States (15%) were the leading exporters of discarded clothes, while Asia (28%, predominantly Pakistan), Africa (19%, especially Ghana and Kenya), and Latin America (16%, mainly Chile and Guatemala) were the leading importers.  

This has been facilitated by the advent of low-cost synthetic fibres and by trade liberalization that allowed the offshoring of production to countries with low-wage labour. Large proportions of clothing are made from difficult-to-separate blended fibres, making opportunities for economic reuse and recycling rare, particularly in developed countries.

“When did we normalize throwing clothes away?”, questions Lily Cole, Climate Activist and Advisor to UNECE. “As the world, mostly the Global North, has produced and consumed fashion at an unrelenting rate, a handful of countries, mainly in the Global South, have become cemeteries for the world’s unloved clothes. While visiting the Atacama Desert, my attention was brought to the textile mountains and the shifting cultural, economic, and political landscapes that birthed them. Consumer awareness is very helpful, yet, ultimately, we need policies to curb systemic trends, which is why this report and its recommendations are so necessary.”

Europe: sorting and recycling capacities lag behind  
In Europe only 15-20% of disposed textiles are collected, usually through containers, door-to-door collection and donations. About half of the collected textiles are downcycled to be used as, for example, insulation, filling, and single-use industrial wipes. Only 1% is recycled into higher value outputs such as new clothing, while the remainder is exported to developing countries.  

Of the 55% of collected clothes that are reusable, only 5 percentage points have a value on second-hand markets in the EU, while 50 percentage points have a value on export markets.  

The European Union has thus tripled its exports of used clothes over the past 2 decades, from 550,000 to 1.7 million tons. Europe, including the United Kingdom, accounts now for more than a third of global used clothing exports, and this share could continue to grow as collection rates are expected to rise.  

A design-led circular economy approach to clothing is still in its infancy. The EU Circular Economy Action Plan (CEAP) was adopted in 2020, the EU Strategy for Sustainable and Circular Textiles was adopted in 2022, and the EU Ecodesign for Sustainable Products Regulation was adopted in 2023. However, these policies are still to bear fruit in the form of large-scale upstream solutions to the problems of textile waste. 

“The used clothes global market is constantly growing, and with it, its negative impacts. The textile industry has a key responsibility to adopt more sustainable practices, exporters and importers to adopt relevant policy decisions to foster traceability, circularity and sustainability. UN/CEFACT policy recommendations and standards will support this transition. And of course, we all have a role to play, as consumers, to make sustainable choices,” stressed UNECE Executive Secretary Tatiana Molcean.

The case of Chile: mountains of used clothes visible from the moon  
Most countries in Latin America (including Argentina, Brazil, Colombia, Mexico, and Peru) have introduced clothing import bans to protect their national textile and fashion industries and avoid the threats posed by clothing dumps.

By contrast, Chile levies zero tariffs, and applies no quantity restrictions in imports, only requiring shipments to be sanitised (by fumigation). It has thus become one of the top 10 importers in the world, and the first in Latin America, receiving 126,000 tons of textiles in 2021. 40% of these entered the country through the northern port of Iquique, where they are manually sorted, primarily by women, and separated into first, second, and third quality.

75% of all imported used clothes were deemed non-reusable, 30,000 tons of which are covering today 30 hectares of the Atacama desert, generating pollution and creating hazard to local communities’ health. At the same time, trade in second-hand garments also provides employment and formal and informal income for national and migrant populations in established stores and open-air markets across the country, and this must be factored in when redefining public policies.

“To address the environmental and social issues of used textile trade, the EU and Chile must work together on creating robust regulatory frameworks. A partnership between the European Union and Chile could pioneer innovative approaches to regulate and reduce the impact of second-hand textile trade, including by setting global standards for the trade of used textiles, focusing on sustainability and social responsibility." Highlights UNECLAC Executive Secretary, Mr. José Manuel Salazar-Xirinachs.  

Multifold recommendations
The report contains a series of recommendations to the textile industry, exporters and importers.   

To exporting countries

  • Make circular economy considerations central to the design of clothing, with mandatory targets for fibre composition that improve quality, durability, repairability, and recyclability  
  • Introduce an Extended Producer Responsibility (EPR) system holding producers responsible for the products they manufacture  
  • Develop more sorting and recycling plants, through financial incentives  
  • Develop minimum EU criteria for second-hand clothing exports through the use of digital product passports (DPPs)  
  • Run awareness-raising campaigns to encourage consumers to make more informed choices about their clothes

To importing countries – the example of Chile

  • Improve customs procedures & administrative measures at the port of Iquique to ensure digital traceability of flows of used clothing and textile based on the UN/CEFACT traceability standard   
  • Establish a Circular Economy Strategy for Textiles  
  • Set-up public-private alliances for recycling projects through tax extension schemes and funds to support entrepreneurship, innovation, and job creation for vulnerable groups, particularly in the Tarapacá region  
  • Improve the legal framework for waste management   
  • Implement a Regional Solid Waste Control Plan, involving inspections of sanitary landfills, clean points, and dumps to increase the enforcement capacity of regional health authorities  
  • Accelerate the adoption of the Chilean draft law on environmental quality of soils.

The report also recommends making changes to international trade agreements, such as the2023 Interim Trade Agreement between the EU and Chile, which includes a chapter on Trade and Sustainable Development, to step up bilateral cooperation, and using it as a template for other bilateral trade agreements between the EU and other countries.   

Download the Executive Summary

Source:

United Nations Economic Commission for Europe

Nordic cooperation on circular innovation focusing on workwear Photo: Sven, pixabay
16.04.2024

Nordic cooperation on circular innovation focusing on workwear

The University of Borås, Aalborg University Business School and Circular Innovation Lab have just started the 'North-South Circular Value Chains Within Textiles' project - an explorative project that aims at bridging textile brands in the Nordics with a strong focus on sustainability with innovative producers in the South.

Focus areas are Circular Value Chains (CVCs), Circular and resource-efficient textiles economy, Workwear and technical clothing, Sectors such as construction, energy, electronics and IT, plastics, textiles, retail and metals.

Made possible by a grant from the Interreg ÖKS programme, the first step is to create a specific economic, legal and technological framework allowing Scandinavian workwear companies to enter into close collaboration on circular solutions in the overall textile value chain and to prepare, and adapt their global value chains to the upcoming EU regulations on circular economy.

The University of Borås, Aalborg University Business School and Circular Innovation Lab have just started the 'North-South Circular Value Chains Within Textiles' project - an explorative project that aims at bridging textile brands in the Nordics with a strong focus on sustainability with innovative producers in the South.

Focus areas are Circular Value Chains (CVCs), Circular and resource-efficient textiles economy, Workwear and technical clothing, Sectors such as construction, energy, electronics and IT, plastics, textiles, retail and metals.

Made possible by a grant from the Interreg ÖKS programme, the first step is to create a specific economic, legal and technological framework allowing Scandinavian workwear companies to enter into close collaboration on circular solutions in the overall textile value chain and to prepare, and adapt their global value chains to the upcoming EU regulations on circular economy.

Recently, the consortium partners convened for an initial meeting at The Swedish School of Textiles to discuss the project framework, which is a feasibility study intended to lead to a multi-year project involving workwear companies in the Öresund-Kattegat-Skagerrak (ÖKS) region, including their supply chains in Asia.

Kim Hjerrild, Strategic Partnerships Lead at the Danish think tank Circular Innovation Lab, Copenhagen, explained: "The goal is to assist workwear producers in Denmark, Sweden, and Norway in becoming more sustainable through circular product design, production, and service concepts. We are pleased to have The Swedish School of Textiles lead the project as they have a strong tradition of collaborating with textile companies."

Complex branch
The decision to focus specifically on workwear stems from it being a complex part of the textile industry, demanding strict standards, certifications, safety aspects, and specific functions depending on the application area, such as specific high-performance environments, healthcare, and hospitality. "To future-proof their operations, companies need to become more resource efficient and circular by producing durable and long lasting workwear that can be repaired and reused. Additionally, they must reduce their carbon footprint per product, as well as minimize problematic chemical usage, and increasingly use recycled materials" explained Kim Hjerrild.

Wants to provide companies with tools and knowledge
Apoorva Arya, founder and CEO of Circular Innovation Lab, elaborates: "Our first and primary goal is to equip Scandinavian workwear companies with tools and knowledge in order to comply with the upcoming EU directives and policies. This includes regulations on product-specific design requirements to labour conditions for employees, human rights, all the way from production to third-party suppliers. Ensuring these companies, especially their suppliers, can transition to a circular supply chain, and navigate the legislative landscape, while guaranteeing competitiveness in the global market."

Focus on new structures
Rudrajeet Pal, Professor of Textile Management at The Swedish School of Textiles, is pleased that the university can be the coordinator of the project. "From the perspective of my research group, this
is incredibly interesting given the focus on the examination and development of ‘new’ supply chain and business model structures that would enable sustainable value generation in textile enterprises, industry, and for the environment and society at large. We have conducted several projects where such global north-south value chain focus is eminent, and this time particularly in workwear companies’ value chain between Scandinavia and Asia. We are delighted to contribute expertise and our experience of working internationally."

About the pre-project North-South Circular Value Chains Within Textiles, NSCirTex
The project aims to support the circular transition in the Nordics by setting up a shared governance model to enable pre-competitive collaboration and the design of circular value chains between Scandinavian workwear companies in the ÖKS-region and producers in India, Bangladesh, Vietnam, and Türkiye.

The next step is to achieve a multi-year main project where workwear companies with their suppliers in Asian countries, can test tailored models for shared governance as a way to develop practical circular solutions, such as post-consumer recycling, circular material procurement, develop safe and resource efficient circular products, enhance social sustainability and due diligence, among others. The main project will thus develop solutions to reduce material footprint, and resource usage while generating both commercial viability and prepare for new regulation, reporting, and accountability.

Partners in this feasibility study: University of Borås, Aalborg University Business School, and Circular Innovation Lab. The feasibility study is funded by the EU through the Interreg Öresund-Kattegat-Skagerrak European Regional Development Fund.

Source:

University of Borås, Solveig Klug

textile waste AI generated image: Pete Linforth, Pixabay
02.04.2024

The Future of Circular Textiles: New Cotton Project completed

In a world first for the fashion industry, in October 2020 twelve pioneering players came together to break new ground by demonstrating a circular model for commercial garment production. Over more than three years, textile waste was collected and sorted, and regenerated into a new, man-made cellulosic fiber that looks and feels like cotton – a “new cotton” – using Infinited Fiber Company’s textile fiber regeneration technology.
 

In a world first for the fashion industry, in October 2020 twelve pioneering players came together to break new ground by demonstrating a circular model for commercial garment production. Over more than three years, textile waste was collected and sorted, and regenerated into a new, man-made cellulosic fiber that looks and feels like cotton – a “new cotton” – using Infinited Fiber Company’s textile fiber regeneration technology.
 
The pioneering New Cotton Project launched in October 2020 with the aim of demonstrating a circular value chain for commercial garment production. Through-out the project the consortium worked to collect and sort end-of-life textiles, which using pioneering Infinited Fiber technology could be regenerated into a new man-made cellulosic fibre called Infinna™ which looks and feels just like virgin cotton. The fibres were then spun into yarns and manufactured into different types of fabric which were designed, produced, and sold by adidas and H&M, making the adidas by Stella McCartney tracksuit and a H&M printed jacket and jeans the first to be produced through a collaborative circular consortium of this scale, demonstrating a more innovative and circular way of working for the fashion industry.
 
As the project completes in March 2024, the consortium highlights eight key factors they have identified as fundamental to the successful scaling of fibre-to-fibre recycling.

The wide scale adoption of circular value chains is critical to success
Textile circularity requires new forms of collaboration and open knowledge exchange among different actors in circular ecosystems. These ecosystems must involve actors beyond traditional supply chains and previously disconnected industries and sectors, such as the textile and fashion, waste collection and sorting and recycling industries, as well as digital technology, research organisations and policymakers. For the ecosystem to function effectively, different actors need to be involved in aligning priorities, goals and working methods, and to learn about the others’ needs, requirements and techno-economic possibilities. From a broader perspective, there is also a need for a more fundamental shift in mindsets and business models concerning a systemic transition toward circularity, such as moving away from the linear fast fashion business models. As well as sharing knowledge openly within such ecosystems, it also is important to openly disseminate lessons learnt and insights in order to help and inspire other actors in the industry to transition to the Circular Economy.

Circularity starts with the design process
When creating new styles, it is important to keep an end-of-life scenario in mind right from the beginning. As this will dictate what embellishments, prints, accessories can be used. If designers make it as easy as possible for the recycling process, it has the bigger chance to actually be feedstock again. In addition to this, it is important to develop business models that enable products to be used as long as possible, including repair, rental, resale, and sharing services.

Building and scaling sorting and recycling infrastructure is critical
In order to scale up circular garment production, there is a need for technological innovation and infrastructure development in end-of-use textiles collection, sorting, and the mechanical pre-processing of feedstock. Currently, much of the textiles sorting is done manually, and the available optical sorting and identification technologies are not able to identify garment layers, complex fibre blends, or which causes deviations in feedstock quality for fibre-to-fibre recycling. Feedstock preprocessing is a critical step in textile-to-textile recycling, but it is not well understood outside of the actors who actually implement it. This requires collaboration across the value chain, and it takes in-depth knowledge and skill to do it well. This is an area that needs more attention and stronger economic incentives as textile-to-textile recycling scales up.

Improving quality and availability of data is essential
There is still a significant lack of available data to support the shift towards a circular textiles industry. This is slowing down development of system level solutions and economic incentives for textile circulation. For example, quantities of textiles put on the market are often used as a proxy for quantities of post-consumer textiles, but available data is at least two years old and often incomplete. There can also be different textile waste figures at a national level that do not align, due to different methodologies or data years. This is seen in the Dutch 2018 Mass Balance study reports and 2020 Circular Textile Policy Monitoring Report, where there is a 20% difference between put on market figures and measured quantities of post-consumer textiles collected separately and present in mixed residual waste. With the exception of a few good studies such as Sorting for Circularity Europe and ReFashion’s latest characterization study, there is almost no reliable information about fibre composition in the post-consumer textile stream either. Textile-to-textile recyclers would benefit from better availability of more reliable data. Policy monitoring for Extended Producer Responsibility schemes should focus on standardising reporting requirements across Europe from post-consumer textile collection through their ultimate end point and incentivize digitization so that reporting can be automated, and high-quality textile data becomes available in near-real time.

The need for continuous research and development across the entire value chain
Overall, the New Cotton Project’s findings suggest that fabrics incorporating Infinna™ fibre offer a more sustainable alternative to traditional cotton and viscose fabrics, while maintaining similar performance and aesthetic qualities. This could have significant implications for the textile industry in terms of sustainability and lower impact production practices. However, the project also demonstrated that the scaling of fibre-to-fibre recycling will continue to require ongoing research and development across the entire value chain. For example, the need for research and development around sorting systems is crucial. Within the chemical recycling process, it is also important to ensure the high recovery rate and circulation of chemicals used to limit the environmental impact of the process. The manufacturing processes also highlighted the benefit for ongoing innovation in the processing method, requiring technologies and brands to work closely with manufacturers to support further development in the field.

Thinking beyond lower impact fibres
The New Cotton Project value chain third party verified LCA reveals that the cellulose carbamate fibre, and in particular when produced with a renewable electricity source, shows potential to lower environmental impacts compared to conventional cotton and viscose. Although, it's important to note that this comparison was made using average global datasets from Ecoinvent for cotton and viscose fibres, and there are variations in the environmental performance of primary fibres available on the market. However, the analysis also highlights the importance of the rest of the supply chain to reduce environmental impact. The findings show that even if we reduce the environmental impacts by using recycled fibres, there is still work to do in other life cycle stages. For example; garment quality and using the garment during their full life span are crucial for mitigating the environmental impacts per garment use.
          
Citizen engagement
The EU has identified culture as one of the key barriers to the adoption of the circular economy within Europe. An adidas quantitative consumer survey conducted across three key markets during the project revealed that there is still confusion around circularity in textiles, which has highlighted the importance of effective citizen communication and engagement activities.

Cohesive legislation
Legislation is a powerful tool for driving the adoption of more sustainable and circular practices in the textiles industry. With several pieces of incoming legislation within the EU alone, the need for a cohesive and harmonised approach is essential to the successful implementation of policy within the textiles industry. Considering the link between different pieces of legislation such as Extended Producer Responsibility and the Ecodesign for Sustainable Products Regulation, along with their corresponding timeline for implementation will support stakeholders from across the value chain to prepare effectively for adoption of these new regulations.

The high, and continuously growing demand for recycled materials implies that all possible end-of-use textiles must be collected and sorted. Both mechanical and chemical recycling solutions are needed to meet the demand. We should also implement effectively both paths; closed-loop (fibre-to-fibre) and open -loop recycling (fibre to other sectors). There is a critical need to reconsider the export of low-quality reusable textiles outside the EU. It would be more advantageous to reuse them in Europe, or if they are at the end of their lifetime recycle these textiles within the European internal market rather than exporting them to countries where demand is often unverified and waste management inadequate.

Overall, the learnings spotlight the need for a holistic approach and a fundamental mindset shift in ways of working for the textiles industry. Deeper collaboration and knowledge exchange is central to developing effective circular value chains, helping to support the scaling of innovative recycling technologies and increase availability of recycled fibres on the market. The further development and scaling of collecting and sorting, along with the need to address substantial gaps in the availability of quality textile flow data should be urgently prioritised. The New Cotton Project has also demonstrated the potential of recycled fibres such as Infinna™ to offer a more sustainable option to some other traditional fibres, but at the same time highlights the importance of addressing the whole value chain holistically to make greater gains in lowering environmental impact. Ongoing research and development across the entire value chain is also essential to ensure we can deliver recycled fabrics at scale in the future.

The New Cotton Project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 101000559.

 

Source:

Fashion for Good

Image: Udo Jandrey
22.03.2024

New model for sustainable structures of textile-reinforced concrete

By reinforcing concrete with textiles instead of steel, it is possible to use less material and create slender, lightweight structures with a significantly lower environmental impact. The technology to utilise carbon fibre textiles already exists, but it has been challenging, among other things, to produce a basis for reliable calculations for complex and vaulted structures. Researchers from Chalmers University of Technology, in Sweden, are now presenting a method that makes it easier to scale up analyses and thus facilitate the construction of more environmentally friendly bridges, tunnels and buildings.

By reinforcing concrete with textiles instead of steel, it is possible to use less material and create slender, lightweight structures with a significantly lower environmental impact. The technology to utilise carbon fibre textiles already exists, but it has been challenging, among other things, to produce a basis for reliable calculations for complex and vaulted structures. Researchers from Chalmers University of Technology, in Sweden, are now presenting a method that makes it easier to scale up analyses and thus facilitate the construction of more environmentally friendly bridges, tunnels and buildings.

"A great deal of the concrete we use today has the function to act as a protective layer to prevent the steel reinforcement from corroding. If we can use textile reinforcement instead, we can reduce cement consumption and also use less concrete − and thus reduce the climate impact," says Karin Lundgren, who is Professor in Concrete Structures at the Department of Architecture and Civil Engineering at Chalmers.

Cement is a binder in concrete and its production from limestone has a large impact on the climate. One of the problems is that large amounts of carbon dioxide that have been sequestered in the limestone are released during production. Every year, about 4.5 billion tonnes of cement are produced in the world and the cement industry accounts for about 8 percent of global carbon dioxide emissions. Intensive work is therefore underway to find alternative methods and materials for concrete structures.

Reduced carbon footprint with thinner constructions and alternative binders
By using alternative binders instead of cement, such as clay or volcanic ash, it is possible to further reduce carbon dioxide emissions. But so far, it is unclear how well such new binders can protect steel reinforcement in the long term.

"You could get away from the issue of corrosion protection, by using carbon-fibres as reinforcement material instead of steel, because it doesn't need to be protected in the same way. You can also gain even more by optimising thin shell structures with a lower climate impact," says Karin Lundgren.

In a recently published study in the journal Construction and Building Materials, Karin Lundgren and her colleagues describe a new modelling technique that was proved to be reliable in analyses describing how textile reinforcement interacts with concrete.

"What we have done is to develop a method that facilitates the calculation work of complex structures and reduces the need for testing of the load-bearing capacity," says Karin Lundgren.

One area where textile reinforcement technology could significantly reduce the environmental impact is in the construction of arched floors. Since the majority of a building’s climate impact during production comes from the floor structures, it is an effective way to build more sustainably. A previous research study from the University of Cambridge shows that textile reinforcement can reduce carbon dioxide emissions by up to 65 percent compared to traditional solid floors.

Method that facilitates calculations
A textile reinforcement mesh consists of yarns, where each yarn consists of thousands of thin filaments (long continuous fibres). The reinforcement mesh is cast into concrete, and when the textile-reinforced concrete is loaded, the filaments slip both against the concrete and against each other inside the yarn. A textile yarn in concrete does not behave as a unit, which is important when you want to understand the composite material's ability to carry loads. The modelling technique developed by the Chalmers researchers describes these effects.

"You could describe it as the yarn consisting of an inner and an outer core, which is affected to varying degrees when the concrete is loaded. We developed a test and calculation method that describes this interaction. In experiments, we were able to show that our way of calculating is reliable enough even for complex structures," says Karin Lundgren.

The work together with colleagues is now continuing to develop optimisation methods for larger structures.

"Given that the United Nations Environment Programme (UNEP) expects the total floor area in the world to double over the next 40 years due to increased prosperity and population growth, we must do everything we can to build as resource-efficiently as possible to meet the climate challenge," says Karin Lundgren.

Source:

Chalmers | Mia Halleröd Palmgren

Converting CO2 to Solid Carbon Nanofibers (c) Zhenhua Xie/Brookhaven National Laboratory and Columbia University; Erwei Huang/Brookhaven National Laboratory
22.01.2024

Converting CO2 to Solid Carbon Nanofibers

Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material.

Scientists at the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory and Columbia University have developed a way to convert carbon dioxide (CO2), a potent greenhouse gas, into carbon nanofibers, materials with a wide range of unique properties and many potential long-term uses. Their strategy uses tandem electrochemical and thermochemical reactions run at relatively low temperatures and ambient pressure. As the scientists describe in the journal Nature Catalysis, this approach could successfully lock carbon away in a useful solid form to offset or even achieve negative carbon emissions.

Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material.

Scientists at the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory and Columbia University have developed a way to convert carbon dioxide (CO2), a potent greenhouse gas, into carbon nanofibers, materials with a wide range of unique properties and many potential long-term uses. Their strategy uses tandem electrochemical and thermochemical reactions run at relatively low temperatures and ambient pressure. As the scientists describe in the journal Nature Catalysis, this approach could successfully lock carbon away in a useful solid form to offset or even achieve negative carbon emissions.

“You can put the carbon nanofibers into cement to strengthen the cement,” said Jingguang Chen, a professor of chemical engineering at Columbia with a joint appointment at Brookhaven Lab who led the research. “That would lock the carbon away in concrete for at least 50 years, potentially longer. By then, the world should be shifted to primarily renewable energy sources that don’t emit carbon.”

As a bonus, the process also produces hydrogen gas (H2), a promising alternative fuel that, when used, creates zero emissions.

Capturing or converting carbon?
The idea of capturing CO2 or converting it to other materials to combat climate change is not new. But simply storing CO2 gas can lead to leaks. And many CO2 conversions produce carbon-based chemicals or fuels that are used right away, which releases CO2 right back into the atmosphere.

“The novelty of this work is that we are trying to convert CO2 into something that is value-added but in a solid, useful form,” Chen said.

Such solid carbon materials—including carbon nanotubes and nanofibers with dimensions measuring billionths of a meter—have many appealing properties, including strength and thermal and electrical conductivity. But it’s no simple matter to extract carbon from carbon dioxide and get it to assemble into these fine-scale structures. One direct, heat-driven process requires temperatures in excess of 1,000 degrees Celsius.

“It’s very unrealistic for large-scale CO2 mitigation,” Chen said. “In contrast, we found a process that can occur at about 400 degrees Celsius, which is a much more practical, industrially achievable temperature.”

The tandem two-step
The trick was to break the reaction into stages and to use two different types of catalysts—materials that make it easier for molecules to come together and react.

“If you decouple the reaction into several sub-reaction steps you can consider using different kinds of energy input and catalysts to make each part of the reaction work,” said Brookhaven Lab and Columbia research scientist Zhenhua Xie, lead author on the paper.

The scientists started by realizing that carbon monoxide (CO) is a much better starting material than CO2 for making carbon nanofibers (CNF). Then they backtracked to find the most efficient way to generate CO from CO2.

Earlier work from their group steered them to use a commercially available electrocatalyst made of palladium supported on carbon. Electrocatalysts drive chemical reactions using an electric current. In the presence of flowing electrons and protons, the catalyst splits both CO2 and water (H2O) into CO and H2.

For the second step, the scientists turned to a heat-activated thermocatalyst made of an iron-cobalt alloy. It operates at temperatures around 400 degrees Celsius, significantly milder than a direct CO2-to-CNF conversion would require. They also discovered that adding a bit of extra metallic cobalt greatly enhances the formation of the carbon nanofibers.

“By coupling electrocatalysis and thermocatalysis, we are using this tandem process to achieve things that cannot be achieved by either process alone,” Chen said.

Catalyst characterization
To discover the details of how these catalysts operate, the scientists conducted a wide range of experiments. These included computational modeling studies, physical and chemical characterization studies at Brookhaven Lab’s National Synchrotron Light Source II (NSLS-II)—using the Quick X-ray Absorption and Scattering (QAS) and Inner-Shell Spectroscopy (ISS) beamlines—and microscopic imaging at the Electron Microscopy facility at the Lab’s Center for Functional Nanomaterials (CFN).

On the modeling front, the scientists used “density functional theory” (DFT) calculations to analyze the atomic arrangements and other characteristics of the catalysts when interacting with the active chemical environment.

“We are looking at the structures to determine what are the stable phases of the catalyst under reaction conditions,” explained study co-author Ping Liu of Brookhaven’s Chemistry Division who led these calculations. “We are looking at active sites and how these sites are bonding with the reaction intermediates. By determining the barriers, or transition states, from one step to another, we learn exactly how the catalyst is functioning during the reaction.”

X-ray diffraction and x-ray absorption experiments at NSLS-II tracked how the catalysts change physically and chemically during the reactions. For example, synchrotron x-rays revealed how the presence of electric current transforms metallic palladium in the catalyst into palladium hydride, a metal that is key to producing both H2 and CO in the first reaction stage.

For the second stage, “We wanted to know what’s the structure of the iron-cobalt system under reaction conditions and how to optimize the iron-cobalt catalyst,” Xie said. The x-ray experiments confirmed that both an alloy of iron and cobalt plus some extra metallic cobalt are present and needed to convert CO to carbon nanofibers.

“The two work together sequentially,” said Liu, whose DFT calculations helped explain the process.

“According to our study, the cobalt-iron sites in the alloy help to break the C-O bonds of carbon monoxide. That makes atomic carbon available to serve as the source for building carbon nanofibers. Then the extra cobalt is there to facilitate the formation of the C-C bonds that link up the carbon atoms,” she explained.

Recycle-ready, carbon-negative
“Transmission electron microscopy (TEM) analysis conducted at CFN revealed the morphologies, crystal structures, and elemental distributions within the carbon nanofibers both with and without catalysts,” said CFN scientist and study co-author Sooyeon Hwang.

The images show that, as the carbon nanofibers grow, the catalyst gets pushed up and away from the surface. That makes it easy to recycle the catalytic metal, Chen said.

“We use acid to leach the metal out without destroying the carbon nanofiber so we can concentrate the metals and recycle them to be used as a catalyst again,” he said.

This ease of catalyst recycling, commercial availability of the catalysts, and relatively mild reaction conditions for the second reaction all contribute to a favorable assessment of the energy and other costs associated with the process, the researchers said.

“For practical applications, both are really important—the CO2 footprint analysis and the recyclability of the catalyst,” said Chen. “Our technical results and these other analyses show that this tandem strategy opens a door for decarbonizing CO2 into valuable solid carbon products while producing renewable H2.”

If these processes are driven by renewable energy, the results would be truly carbon-negative, opening new opportunities for CO2 mitigation.

Source:

Brookhaven National Laboratory

Bakery Pexels at Pixabay
08.01.2024

BakeTex: Textile baking mat supports bakeries in saving energy

The ongoing energy crisis is increasingly pushing the bakery trade to its limits. Bakeries everywhere are having to close because they can no longer afford the sharp rise in the cost of electricity and gas. The use of energy-efficient ovens and the optimisation of production processes are important components that help to save energy. Researchers at the Fraunhofer Application Centre for Textile Fibre Ceramics TFK in Münchberg have now developed another building block: a textile baking base.
 
In bakeries, trays are normally used as a base for the baked goods in combination with baking paper or flour, which not only leads to large amounts of waste, but also to health problems (baker's asthma). The baking trays are also heavy and their mass increases the energy consumption in the oven, as they have to be heated with every baking process.

The ongoing energy crisis is increasingly pushing the bakery trade to its limits. Bakeries everywhere are having to close because they can no longer afford the sharp rise in the cost of electricity and gas. The use of energy-efficient ovens and the optimisation of production processes are important components that help to save energy. Researchers at the Fraunhofer Application Centre for Textile Fibre Ceramics TFK in Münchberg have now developed another building block: a textile baking base.
 
In bakeries, trays are normally used as a base for the baked goods in combination with baking paper or flour, which not only leads to large amounts of waste, but also to health problems (baker's asthma). The baking trays are also heavy and their mass increases the energy consumption in the oven, as they have to be heated with every baking process.

With this in mind, the Bavarian Research Foundation approved a research project in 2021 to develop an alternative to conventional baking trays, which was successfully completed in 2023. The project partners were the Fraunhofer Application Centre for Textile Fibre Ceramics TFK from Münchberg, Fickenschers Backhaus GmbH from Münchberg and Weberei Wilhelm Zuleeg GmbH from Helmbrechts.

The aim of the project was to develop an energy-saving, pollutant-free and reusable textile baking mat with an integrated non-stick effect for use in industrial bakeries. Lightweight and heat-resistant textiles offer the potential to lower the preheating temperature in the oven and thus reduce energy consumption.
 
In a first step, a thin para-aramid fabric made of 120 g/m² long staple fibre yarn was therefore produced and stretched on a metallic frame. "The leno weave proved to be particularly suitable for the weave. Its characteristic lattice structure ensures that the textile is not only light but also permeable to air," says Silke Grosch from the Fraunhofer Application Centre TFK.

"In addition, by fixing the threads in place, the fabric cannot warp during washing and retains its shape for a long time." Finally, a full-surface silicone coating ensures that the baked goods do not stick to the baking base. This means that the previously necessary baking paper and flour layer can be dispensed with. To ensure that the rolls come out of the oven just as crispy and brown as with a standard baking tray, only the baking programme needs to be adjusted. Another key advantage of the textile baking tray is that it can be folded and therefore stored in a space-saving manner.

In the course of the fourth industrial revolution (Industry 4.0), the baking tray will be equipped with intelligent additional functions. On the one hand, the production data in the bakery can be determined using RFID chips or QR codes, and on the other hand, baked goods can be advertised in a targeted manner using customised branding.

Prof. Dr Frank Ficker, Head of the Fraunhofer Application Centre TFK, sums up: "With the textile baking base, we have developed a contemporary and resource-saving product together with our project partners that is characterised by its low weight and high flexibility. Together with the potential energy savings, this makes it interesting for many bakeries."

The Fraunhofer Application Centre for Textile Fibre Ceramics TFK in Münchberg specialises in the development, manufacture and testing of textile ceramic components. It is part of the Fraunhofer Centre for High Temperature Lightweight Construction HTL in Bayreuth, a facility of the Fraunhofer Institute for Silicate Research ISC with headquarters in Würzburg.

Source:

Fraunhofer Application Centre for Textile Fibre Ceramics
Translation Textination

Silk Provides the Building Blocks to Transform Modern Medicine Photo: Jenna Schad
31.10.2023

Silk Provides the Building Blocks to Transform Modern Medicine

Tufts researchers harness protein from silk to make virus-sensing gloves, surgical screws that dissolve in your body, and other next-generation biomedical materials

About a mile northwest of Tufts’ Medford/Somerville campus, on the fourth floor of a refurbished woolen factory, there is a shrine to silk. Glass vases filled with silkworm cocoons and washed silk fibers sit artfully on a shelf across from a colorful drawing of the life cycle of Bombyx mori, the domesticated silk moth. Farther in, more cocoons in wall-mounted cases border a large, close-up image of silk fibers, and displays hold dozens of prototypes made from silk, including smart fabrics, biosensors, a helmet that changes color upon impact, and potential replacements for materials like leather, plastic, and particle board.

Tufts researchers harness protein from silk to make virus-sensing gloves, surgical screws that dissolve in your body, and other next-generation biomedical materials

About a mile northwest of Tufts’ Medford/Somerville campus, on the fourth floor of a refurbished woolen factory, there is a shrine to silk. Glass vases filled with silkworm cocoons and washed silk fibers sit artfully on a shelf across from a colorful drawing of the life cycle of Bombyx mori, the domesticated silk moth. Farther in, more cocoons in wall-mounted cases border a large, close-up image of silk fibers, and displays hold dozens of prototypes made from silk, including smart fabrics, biosensors, a helmet that changes color upon impact, and potential replacements for materials like leather, plastic, and particle board.

The only things missing are the silkworms themselves, but Fiorenzo Omenetto, the director of Silklab and the Frank C. Doble Professor of Engineering at Tufts, said they will be arriving soon. The lab is building a terrarium so that visitors can view the animals.
“We’re going to have a celebration of silkworms and moths,” Omenetto said.

Silk has been cultivated and harvested for thousands of years. It is best known for the strong, shimmering fabric that can be woven from its fibers, but it also has a long history of use in medicine to dress injuries and suture wounds. At Silklab, Omenetto and his colleagues are building on silk’s legacy, proving that this ancient fiber could help create the next generation of biomedical materials.

Silk moth caterpillars, known as silkworms, extrude a single sticky strand of silk from their mouths to form cocoons, which are harvested by silk farmers to make silk thread. At its core, silk is a mixture of two proteins: fibroin, which provides the fiber’s structure, and sericin, which binds it together. With a few steps in the lab, Tufts researchers can remove the sericin and dissolve the fibers, turning a dry cocoon into a fibroin-filled liquid.

“Nature builds structural proteins that are very tough and very strong,” Omenetto said. “Your bricks are these fibroin proteins floating in water. From there, you can build whatever you want.”
Starting with shipments of dried cocoons from silk farms, Omenetto and his colleagues have been able to create gels, sponges, clear plastic-like sheets, printable inks, solids that look like amber, dippable coatings, and much more.

“Each of the materials that you make can contain all these different functions, and there’s only 24 hours in a day,” Omenetto said with a laugh. “This is why I don’t sleep.”

Biocompatible and Biodegradable
When Omenetto arrived at Tufts almost two decades ago, his research was focused on lasers and optics—silk wasn’t in the picture. But a chance conversation with David Kaplan, the Stern Family Professor of Engineering and chair of the biomedical engineering department, set him on a new path.

Kaplan, who has been working with silk since the early ’90s, was designing a silk scaffold that would help rebuild a person’s cornea, allowing cells to grow between the layers. He needed a way to ensure that the growing cells would have enough oxygen and showed the small, transparent sheet to Omenetto, who was immediately intrigued by the material. Omenetto was able to use his lab’s lasers to put tiny holes in Kaplan’s silk cornea. More collaborations quickly followed.
“We’ve worked together incessantly since then,” Kaplan said.

One of those lines of research has been finding ways to use silk to help repair and regrow bone, blood vessels, nerves, and other tissue. Silk is biocompatible, meaning it doesn’t cause harm in the body and breaks down in predictable ways. With the right preparation, silk materials can provide necessary strength and structure while the body is healing.

“You can mold and shape silk to whatever you need, and it will hold that volume while the native tissue regrows into the space and the silk material degrades,” Kaplan said. “Eventually it’s 100 percent gone, and you’re back to your normal tissue.”

Some of this work has already been approved for use by the U.S. Food and Drug Administration. A company called Sofregen, which spun out of Kaplan and Omenetto’s research, is using an injectable silk-based gel to repair damaged vocal cords, the tissues that regulate air flow and help us speak.

On their own, sturdy silk structures can keep their size, shape, and function for years before degrading. But in some instances, such as those involving surgical screws and plates intended for use in rapidly growing children, this pace would be too slow. The researchers had to find a way to speed up the time it takes for dense silk biomaterials to break down. They introduced an enzyme that our bodies produce naturally into the silk to hasten the breakdown process. The idea is that the enzyme would sit dry and inactive within the silk device until the structure is installed in a person, then the device would hydrate and activate the enzyme to digest the material more rapidly.

“We can titer in just the right amount of enzyme to make a screw go away in a week, a month, a year,” Kaplan said. “We have control over the process.”

Currently, Kaplan and his lab are working on other small, degradable medical devices that would help cut down on the number of surgeries that patients need. Ear tubes, for example, are often surgically implanted to help alleviate chronic ear infections and then need to be surgically removed. Kaplan and his colleagues have designed silk-based ear tubes that degrade on their own and can even carry antibiotics.

“As someone with a daughter who went through six surgeries on her ear, I know how helpful this could be,” Kaplan said.

Source:

Laura Castañón, Tufts University, Massachusetts USA

offshore windpark Nicholas Doherty, unsplash
17.10.2023

Pyrolysis processes promise sustainable recycling of fiber composites

Wind turbines typically operate for 20 to 30 years before they are undergoing dismantling and recycling. However, the recycling of fiber composites, especially from the thick-walled rotor blade parts, has been inadequate until now. The prevailing methods involve thermal or mechanical recycling. For a sustainable and holistic recycling process, a research consortium led by Fraunhofer IFAM is pooling their expertise to recover the fibers through pyrolysis. Subsequent surface treatment and quality testing of the recyclates allow for them to be used again in industry.

Wind turbines typically operate for 20 to 30 years before they are undergoing dismantling and recycling. However, the recycling of fiber composites, especially from the thick-walled rotor blade parts, has been inadequate until now. The prevailing methods involve thermal or mechanical recycling. For a sustainable and holistic recycling process, a research consortium led by Fraunhofer IFAM is pooling their expertise to recover the fibers through pyrolysis. Subsequent surface treatment and quality testing of the recyclates allow for them to be used again in industry.

Today, the vast majority of wind turbines can already be recycled cleanly. In the case of rotor blades, however, recycling is only just beginning. Due to the 20-year operation period and the installation rates, the blade volume for recycling will be increasing in the coming years and decades. In 2000, for example, around 6,000 wind turbines were erected in Germany, which now need to be fed into a sustainable recycling process. In 2022, about 30,000 onshore and offshore wind turbines with a capacity of 65 gigawatts were in operation in Germany alone.

As wind energy is the most important cornerstone for a climate-neutral power supply, the German government has set itself the goal of further increasing its wind energy capacity by 2030 by installing larger and more modern turbines. Rotor blades will become longer, the proportion of carbon fibers used will continue to increase - and so will the amount of waste. In addition, the existing material mix in rotor blades is expected to increase in the future and precise knowledge of the structure of the components will become even more important for recycling. This underscores the urgency of developing sustainable processing methods, especially for recycling the thick-walled fiber composites in the rotor blades.

Economic and ecological recycling solution for fiber composites on the horizon
Rotor blades of wind turbines currently up for recycling consist of more than 85 percent of glass- and carbon-fiber-reinforced thermosets (GFRP/CFRP). A large proportion of these materials is found in the flange and root area and within the fiber-reinforced straps as thick-walled laminates with a wall thicknesses of up to 150 mm. Research into high-quality material fiber recycling as continuous fibers is of particular importance, not only because of the energy required for carbon fiber production. This is where the project "Pyrolysis of thick-walled fiber composites as a key innovation in the recycling process for wind turbine rotor blades" – "RE SORT" for short – funded by the German Federal Ministry of Economics and Climate Protection comes in. The aim of the project team is the complete recycling by means of pyrolysis.

A prerequisite for high-quality recycling of fiber composites is the separation of the fibers from the mostly thermoset matrix. Although pyrolysis is a suitable process for this purpose, it has not yet gained widespread adoption. Within the project, the project partners are therefore investigating and developing pyrolysis technologies that make the recycling of thick-walled fiber composite structures economically feasible and are technically different from the recycling processes commonly used for fiber composites today. Both quasi-continuous batch and microwave pyrolysis are being considered.

Batch pyrolysis, which is being developed within the project, is a pyrolysis process in which the thermoset matrix of thick fiber composite components is slowly decomposed into oily and especially gaseous hydrocarbon compounds by external heating. In microwave pyrolysis, energy is supplied by the absorption of microwave radiation, resulting in internal rapid heat generation. Quasi-continuous batch pyrolysis as well as microwave pyrolysis allow the separation of pyrolysis gases or oils. The planned continuous microwave pyrolysis also allows for the fibers to be preserved and reused in their full length.

How the circular economy succeeds - holistic utilization of the recycled products obtained
In the next step, the surfaces of the recovered recycled fibers are prepared by means of atmospheric plasmas and wet-chemical coatings to ensure their suitability for reuse in industrial applications. Finally, strength tests can be used to decide whether the recycled fibers will be used again in the wind energy industry or, for example, in the automotive or sporting goods sectors.

The pyrolysis oils and pyrolysis gases obtained in batch and microwave pyrolysis are evaluated with respect to their usability as raw materials for polymer synthesis (pyrolysis oils) or as energy sources for energy use in combined heat and power (CHP) plants (pyrolysis gases).

Both quasi-continuous batch pyrolysis and continuous-flow microwave pyrolysis promise economical operation and a significant reduction in the environmental footprint of wind energy. Therefore, the chances for a technical implementation and utilization of the project results are very good, so that this project can make a decisive contribution to the achievement of the sustainability and climate goals of the German Federal Government.

Source:

Fraunhofer-Institut für Fertigungstechnik und Angewandte Materialforschung IFAM

Carbon U Profil (c) vombaur GmbH & Co. KG
19.09.2023

"After all, a spaceship is not made off the peg."

Interview with vombaur - pioneers in special textiles
Technical narrow textiles, custom solutions, medium-sized textile producer and development partner for filtration textiles, composite textiles and industrial textiles: vombaur. Digitalisation, sustainability, energy prices, pioneering work and unbroken enthusiasm – Textination spoke to two passionate textile professionals: Carl Mrusek, Chief Sales Officer (CSO), and Johannes Kauschinger, Sales Manager for Composites and Industrial Textiles, at vombaur GmbH, which, as well as JUMBO-Textil, belongs to the Textation Group.
 

Interview with vombaur - pioneers in special textiles
Technical narrow textiles, custom solutions, medium-sized textile producer and development partner for filtration textiles, composite textiles and industrial textiles: vombaur. Digitalisation, sustainability, energy prices, pioneering work and unbroken enthusiasm – Textination spoke to two passionate textile professionals: Carl Mrusek, Chief Sales Officer (CSO), and Johannes Kauschinger, Sales Manager for Composites and Industrial Textiles, at vombaur GmbH, which, as well as JUMBO-Textil, belongs to the Textation Group.
 
If you look back at your history and thus to the beginnings of the 19th century, you will see a ribbon manufactory and, from 1855, a production of silk and hat bands. Today you produce filtration textiles, industrial textiles and composites textiles. Although you still produce narrow textiles today, the motto "Transformation as an opportunity" seems to be a lived reality at vombaur.
 
Carl Mrusek, Chief Sales Officer: Yes, vombaur has changed a few times in its almost 220-year history.  Yet the company has always remained true to itself as a narrow textiles manufacturer. This testifies to the willingness of the people in the company to change and to their curiosity. Successful transformation is a joint development, there is an opportunity in change. vombaur has proven this many times over the past almost 220 years: We have adapted our product portfolio to new times, we have built new factory buildings and new machinery, we have introduced new materials and developed new technologies, we have entered into new partnerships – as most recently as part of the Textation Group. We are currently planning our new headquarters. We are not reinventing ourselves, but we will go through a kind of transformation process with the move into the brand new, climate-friendly high-tech space.

 

Could you describe the challenges of this transformation process?
 
Johannes Kauschinger, Sales Manager for Composites and Industrial Textiles: A transformation usually takes place technically, professionally, organisationally and not least – perhaps even first and foremost – culturally. The technical challenges are obvious. Secondly, in order to manage and use the new technologies, appropriate expertise is needed in the company. Thirdly, every transformation entails new processes, teams and procedures have to be adapted. And finally, fourthly, the corporate culture also changes. Technology can be procured, expertise acquired, the organisation adapted. Time, on the other hand, cannot be bought. I therefore consider the greatest challenge to be the supply of human resources: In order to actively shape the transformation and not be driven by development, we need sufficient skilled workers.

 

Visiting your website, the claim "pioneering tech tex" immediately catches the eye. Why do you see your company as a pioneer, and what are vombaur's groundbreaking or pioneering innovations?

Carl Mrusek: With our unique machine park, we are pioneers for seamless circular woven textiles. And as a development partner, we break new ground with every order. We are always implementing new project-specific changes: to the end products, to the product properties, to the machines. It happens regularly that we adapt a weaving machine for a special seamless woven shaped textile, sometimes even develop a completely new one.
 
With our young, first-class and growing team for Development and Innovation led by Dr. Sven Schöfer, we repeatedly live up to our promise of "pioneering tech tex" by developing special textile high-tech solutions with and for our customers. At the same time, we actively explore new potentials. Most recently with sustainable materials for lightweight construction and research into novel special filtration solutions, for example for the filtration of microplastics. A state-of-the-art textile technology laboratory is planned for this team in the new building.

 

The development of technical textiles in Germany is a success story. From a global perspective, we manage to succeed with mass-produced goods only in exceptional cases. How do you assess the importance of technical textiles made in Germany for the success of other, especially highly technological industries?

Carl Mrusek: We see the future of industry in Europe in individually developed high-tech products. vombaur stands for high-quality, reliable and durable products and made-to-order products. And it is precisely this – custom-fit products, instead of surplus and throwaway goods – that is the future for sustainable business in general.

 

What proportion of your production is generated by being project-based as opposed to a standard range, and to what extent do you still feel comfortable with the term "textile producer"?

Johannes Kauschinger: Our share of special solutions amounts to almost 90 percent. We develop technical textile solutions for our customers' current projects. For this purpose, we are in close contact with the colleagues from our customers' product development departments. Especially in the field of composite textiles, special solutions are in demand. This can be a component for space travel – after all, a spaceship is not manufactured off the peg. We also offer high-quality mass-produced articles, for example in the area of industrial textiles, where we offer round woven tubulars for conveyor belts. In this sense, we are a textile producer, but more than that: we are also a textile developer.

 

In August, Composites Germany presented the results of its 21st market survey. The current business situation is viewed very critically, the investment climate is becoming gloomier and future expectations are turning negative. vombaur also has high-strength textile composites made of carbon, aramid, glass and hybrids in its portfolio. Do you share the assessment of the economic situation as reflected in the survey?

Carl Mrusek: We foresee a very positive development for vombaur because we develop in a very solution-oriented way and offer our customers genuine added value. This is because future technologies in particular require individual, reliable and lightweight components. This ranges from developments for the air taxi to wind turbines. Textiles are a predestined material for the future. The challenge here is also to offer sustainable and recyclable solutions with natural raw materials such as flax and recycled and recyclable plastics and effective separation technologies.

 

There is almost no company nowadays that does not use the current buzzwords such as climate neutrality, circular economy, energy efficiency and renewable energies. What is your company doing in these areas and how do you define the importance of these approaches for commercial success?

Carl Mrusek: vombaur pursues a comprehensive sustainability strategy. Based on the development of our mission statement, we are currently working on a sustainability declaration. Our responsibility for nature will be realised in a very concrete and measurable way through our new building with a green roof and solar system. In our product development, the high sustainability standards – our own and those of our customers – are already flowing into environmentally friendly and resource-saving products and into product developments for sustainable projects such as wind farms or filtration plants.

 

Keyword digitalisation: medium-sized businesses, to which vombaur belongs with its 85 employees, are often scolded for being too reluctant in this area. How would you respond to this accusation?

Johannes Kauschinger:

We often hear about the stack crisis at the present time. Based on this, we could speak of the stack transformation. We, the small and medium-sized enterprises, are transforming ourselves in a number of different dimensions at the same time: Digital transformation, climate neutrality, skilled labour market and population development, independence from the prevailing supply chains. We are capable of change and willing to change. Politics and administration could make it a bit easier for us in some aspects. Key words: transport infrastructure, approval times, energy prices. We do everything we can on our side of the field to ensure that small and medium-sized enterprises remain the driving economic force that they are.

 

 

How do you feel about the term shortage of skilled workers? Do you also take unconventional paths to find and retain talent and skilled workers in such a specialised industry? Or does the problem not arise?

Carl Mrusek: Of course, we are also experiencing a shortage of skilled workers, especially in the industrial sector. But the development was foreseeable. The topic played a major role in the decision to move together with our sister company JUMBO-Textil under the umbrella of the Textation Group. Recruiting and promoting young talent can be better mastered together – for example with cross-group campaigns and cooperations.

 

If you had to describe a central personal experience that has shaped your attitude towards the textile industry and its future, what would it be?

Johannes Kauschinger: A very good friend of my family pointed out to me that we live in an area with a very active textile industry, which at the same time has problems finding young talents. I visited two companies for an interview and already on the tour of each company, the interaction of people, machines and textiles up to the wearable end product was truly impressive. In addition, I was able to learn a profession with a very strong connection to everyday life. To this day, I am fascinated by the wide range of possible uses for textiles, especially in technical applications, and I have no regrets whatsoever about the decision I made back then.

Carl Mrusek: I came into contact with the world of textiles and fashion at a young age. I still remember the first time I went through the fully integrated textile production of a company in Nordhorn with my father Rolf Mrusek. Since then, the subject has never left me. Even before I started my studies, I had made a conscious decision to pursue a career in this industry and to this day I have never regretted it, on the contrary. The diversity of the special solutions developed in the Textation Group fascinates me again and again.

 

vombaur is a specialist for seamless round and shaped woven narrow textiles and is known throughout the industry as a development partner for filtration textiles, composite textiles and industrial textiles made of high-performance fibres. Technical narrow textiles from vombaur are used for filtration – in the food and chemical industries, among others. As high-performance composite materials, they are used, for example, in aircraft construction or medical technology. For technical applications, vombaur develops specially coated industrial textiles for insulation, reinforcement or transport in a wide range of industrial processes – from precision mechanics to the construction industry. The Wuppertal-based company was founded in 1805. The company currently employs 85 people.

Sectors

  • Aviation & Automotive
  • Sports & Outdoor   
  • Construction & Water Management
  • Safety & Protection   
  • Chemistry & Food
  • Plant construction & electronics   
  • Medicine & Orthopaedics

 

Heimtextil Trends 24/25 © SPOTT trends & business for Heimtextil
12.09.2023

Heimtextil Trends 24/25: New Sensitivity

Under the theme "New Sensitivity", textile transformation is the focus of Heimtextil Trends 24/25. Three approaches show ways to a more sensitive world of textiles: the plant-based production of textiles, the support of textile cycles by technology and the bioengineered use of natural ingredients. In addition, Future Materials curates regenerative materials and designs.
 
After last year's focus on circular solutions, Heimtextil Trends 24/25 will once again shed light on transformative textile innovations.
Under the title "New Sensitivity," the focus is on innovations and changes in the composition of textiles, in addition to aesthetic aspects. "In this context, sensitivity means considering the impact on the environment when making a decision or creating a product. Understanding how natural ecosystems work and prioritising balance as the default are key," says Anja Bisgaard Gaede, Founder of SPOTT trends & business.

Under the theme "New Sensitivity", textile transformation is the focus of Heimtextil Trends 24/25. Three approaches show ways to a more sensitive world of textiles: the plant-based production of textiles, the support of textile cycles by technology and the bioengineered use of natural ingredients. In addition, Future Materials curates regenerative materials and designs.
 
After last year's focus on circular solutions, Heimtextil Trends 24/25 will once again shed light on transformative textile innovations.
Under the title "New Sensitivity," the focus is on innovations and changes in the composition of textiles, in addition to aesthetic aspects. "In this context, sensitivity means considering the impact on the environment when making a decision or creating a product. Understanding how natural ecosystems work and prioritising balance as the default are key," says Anja Bisgaard Gaede, Founder of SPOTT trends & business.

How does New Sensitivity translate into something concrete in the lifestyle industry, and what does having a sensitive approach to design and products mean? Also the adoption of Artificial General Intelligence (AGI) is transforming current times. AGI has the potential to bring innovative solutions and help tackle significant challenges, also in the textile industry. However, AGI can have the opposite effect on society. AGI needs the mindset of New Sensitivity that helps simplify complexity, expand creativity, and find unseen solutions, also within the world of textiles.
     
"With Heimtextil Trends 24/25: New Sensitivity, we encourage the textile industry to approach the future with thoughtfulness and consideration. Specifically, we see this change in three different trends for a more sensitive world of textiles: biotechnical, plant-based and technological," Bisgaard Gaede continues.

Plant-based: textiles made from plant crops or plant by-products
Plant-based textiles mean that the fibres are derived from something that grows rather than being synthetically produced. The sustainable advantage of plant-based textiles is that their origin is natural and, therefore, more able to recirculate in existing ecosystems. They can be divided into two groups. The first group of textiles are made from plant crops. New resilient crops like cactus, hemp, abaca, seaweed, and rubber offer new sustainable textile solutions. Because of mechanical extraction, they can grow despite climate changes and require fewer chemicals in their development. The second group consists of textiles made of plant by-products which are leftover raw materials from production such as banana, olive, persimmon and hemp.

Technological: technology and technical solutions transforming textiles
Technology can support the transformation of textiles through the use of different methods: upcycling and recycling of textiles, textile construction, and textile design. Due to decades of production, textiles are now a material available in abundance. Developing technologies for recycling textile waste and methods for upcycling textiles increases the circular usage of existing textiles. Furthermore, old textile construction techniques also offer pathways to sustainable solutions: For instance, using knitting technology for furniture upholstery produces less fabric waste; alternatively, weaving technique allows the creation of several colours using only a few coloured yarns. Textile Design Thinking is another method that addresses critical issues such as energy usage and durability of natural fibres and enhances these through technological textile advancement.

Bio-engineered: engineered to enhance bio-degrading
To a certain degree, bio-engineered textiles represent a fusion of plant-based and technological textiles. Bio-engineering bridges nature and technology and transforms the way textiles are made. They can be divided into two directions: fully bio-engineered and bio-degradable textiles. In the production of fully bio-engineered textiles nature-inspired strategies are adopted. Instead of growing plants and extracting their fibres, textiles are made from the protein, carbohydrates, or bacteria in corn, grass, and cane sugar. Manufacturing involves a bio-molecular process that creates filaments which are made into yarn. The sustainable advantage of bio-engineered textiles is that they can have some of the same functionalities as synthetically produced textiles, while still being biodegradable because of their natural origin. Biodegradable fibres can be added to conventional textiles like polyester to enhance the conventional textiles’ ability to revert to materials found in nature and hence biodegrade in natural environments such as water or soil. Although not biodegrading completely, these bio-enhanced textiles will biodegrade up to 93 % compared to conventional textiles.

Heimtextil Trends 24/25: new colourways
A sensitive approach to colouring methods is expressed by a dynamic yet subtle colour palette created through natural pigments deriving from the earth, as traditional colouring processes are brought to the next level through innovative bioengineering technology. In pursuit of creating colours that evoke emotions in our senses while at the same time respecting our values in protecting the environment, we see colour bacteria growing pigments generating hues with great richness and depth.
               
This New Sensitivity includes acceptance of natural colour flows, as colours may fade with time or morph into new colourways. The colourways for Heimtextil Trends 24/25 were inspired by natural colours deriving from avocado seeds, algae, living bacteria, antique pigments such as raw sienna, and bio-engineered indigo and cochineal. The high black component in most colours allows for widespread application and a greater variety of combinations. The punchy saturated accents enhance our senses as they lift our spirits. In contrast, the grounding neutrals in different shades of grey, terra and even dark purple allow for calmness and tranquillity.

Future Materials: regenerative design
How are regenerative textiles and materials defined? Regenerative design is dedicated to developing holistic creative practices that restore or renew resources, have a positive impact on the environment, and encourage communities to thrive. For Heimtextil 2024, design futures consultancy FranklinTill is curating a global showcase of cutting-edge textiles and materials to illustrate the principles of regenerative design and recognize pioneering designers, producers and manufacturers who are at the forefront of regenerative design.
The Trend Space at Heimtextil in Frankfurt, Germany, January 9-12, 2023, will showcase these pioneering solutions in an inspiring way. In addition, Heimtextil Trends will offer visitors orientation and insights into the future of home and contract textiles in the form of workshops, lectures and other interactive formats.

Source:

Heimtextil, Messe Frankfurt

Photo unsplash.com
05.09.2023

Ananas Anam and TENCEL™ collaborate with Calvin Klein

The search for better, planet-friendly footwear material reveals a solution in one unlikely ingredient: pineapple leaves. This unique textile ingredient is the recent focus of the latest footwear design collaboration between Ananas Anam, TENCEL™ and Calvin Klein, launching Calvin Klein’s first-ever trainer featuring a knitted upper made of PIÑAYARN® blended with TENCEL™ Lyocell fibers.

Known as “The Sustainable Knit Trainer”, the trainers are a timeless closet staple, available in classic colors such as black and off-white and etched with the signature Calvin Klein logo. The PIÑAYARN® knit upper, made of 70% TENCEL™ Lyocell and 30% Anam PALF™ pineapple leaf fiber, is both from botanic origin and bio-based.

The search for better, planet-friendly footwear material reveals a solution in one unlikely ingredient: pineapple leaves. This unique textile ingredient is the recent focus of the latest footwear design collaboration between Ananas Anam, TENCEL™ and Calvin Klein, launching Calvin Klein’s first-ever trainer featuring a knitted upper made of PIÑAYARN® blended with TENCEL™ Lyocell fibers.

Known as “The Sustainable Knit Trainer”, the trainers are a timeless closet staple, available in classic colors such as black and off-white and etched with the signature Calvin Klein logo. The PIÑAYARN® knit upper, made of 70% TENCEL™ Lyocell and 30% Anam PALF™ pineapple leaf fiber, is both from botanic origin and bio-based.

As the fashion sector has begun to realize the negative environmental effects of synthetic materials, a lot of brands have turned towards plant-based materials such as PIÑAYARN®. Using a low-impact manufacturing process, PIÑAYARN® is derived from pineapple leaf waste and involves a water-free spinning process. The addition of TENCEL™ Lyocell, a fiber made from wood pulp obtained from responsibly managed forests and produced using a solvent spinning process that recycles both the solvent and water at a recovery rate of more than 99%, offers full traceability of the TENCEL™ fiber in the final blended yarn.

Melissa Braithwaite, PIÑAYARN® Product Development Manager at Ananas Anam said “The inspiration for PIÑAYARN® came from the need to provide the textile industry with an alternative to overused, often polluting, conventional fibers, such as cotton or polyester. We have an abundance of available raw material within our business, and broadening our product offering means we can valorize more waste, increasing our positive impact on the environment and society.”

Indeed, as the consumer demand for more eco-responsible textile products and footwear grows, so too has the popularity of wood-based fibers as a material alternative. Ananas Anam and TENCEL™’s collaboration with Calvin Klein has been a success in that the physical characteristics and planet-conscious benefits of both PIÑAYARN® and TENCEL™ fibers complement each other perfectly, creating a blended material that is soft and usable for various woven and knitted applications.

For material developers like Ananas Anam seeking the ideal fiber blend partner to create PIÑAYARN®, TENCEL™ Lyocellfibers are celebrated for their versatility and ability to be blended with a wide range of textiles such as hemp, linen and of course Anam PALF™ pineapple leaf fiber, to enhance the aesthetics, performance and functionality of fabrics. Additionally, beyond being used in shoe uppers, TENCEL™ Lyocell fibers can be used in every part of the shoe including the upper fabric, lining, insoles, padding, laces, zipper and sewing thread. TENCEL™ Lyocell can also be used in powder form for use in the outsoles of shoes.

“We are extremely excited about this collaboration with Ananas Anam for the launch of The Sustainable Knit Trainer by Calvin Klein, an eco-responsible and planet-friendly shoe for conscious consumers. This partnership is the perfect example of our commitment to provide education and expertise to support anyone who chooses to improve the environmental and social credentials of their products by using more responsible materials,” said Nicole Schram, Global Business Development Manager at Lenzing.

Source:

Lenzing AG

chemical protective suits Photo: Pixabay, Alexander Lesnitsky
31.07.2023

DITF: Newly developed concept for chemical protective suits

A newly developed concept for chemical protective suits is designed to make use more comfortable and safer for the user. New materials and an improved design increase wearer comfort. The integration of sensor technology enables the monitoring of vital functions.

In the event of hazards from chemical, biological or radioactive substances, chemical protective suits (CSA) protect people from physical contact. CSAs consist of breathing apparatus, head protection, carrying frames and the suit itself. This adds up to a weight of around 25 kg. The construction of a multi-coated fabric makes the CSA stiff and provides for considerable restrictions in freedom of movement. As a result, the emergency forces are exposed to significant physical stress. For this reason, the total deployment time when using a CSA is limited to 30 minutes.

A newly developed concept for chemical protective suits is designed to make use more comfortable and safer for the user. New materials and an improved design increase wearer comfort. The integration of sensor technology enables the monitoring of vital functions.

In the event of hazards from chemical, biological or radioactive substances, chemical protective suits (CSA) protect people from physical contact. CSAs consist of breathing apparatus, head protection, carrying frames and the suit itself. This adds up to a weight of around 25 kg. The construction of a multi-coated fabric makes the CSA stiff and provides for considerable restrictions in freedom of movement. As a result, the emergency forces are exposed to significant physical stress. For this reason, the total deployment time when using a CSA is limited to 30 minutes.

In a joint project with various companies, institutes and professional fire departments, work is currently underway to completely redesign both the textile material composite and the hard components and connecting elements between the two. The goal is a so-called "AgiCSA", which offers significantly more comfort for the emergency forces due to its lighter and more flexible construction. The DITF subproject focuses on the development of a more individually adaptable, body-hugging suit on the one hand, and on the integration of sensors that serve the online monitoring of important body functions of the emergency personnel on the other.

At the beginning of the project, the DITF received support from the Esslingen Fire Department. They provided a complete CSA that is used as standard today. This could be tested at the DITF for its wearing properties. The researchers in Denkendorf are investigating where there is a need for optimization to improve ergonomic wearing comfort.

The aim is to construct a chemical- and gas-tight suit that fits relatively closely to the body. It quickly became clear that it was necessary to move away from the previous concept of using woven fabrics as the basic textile material and think in terms of elastic knitted fabrics. In implementing this idea, the researchers were helped by recent developments in the field of knitted fabric technology in the form of spacer fabrics. By using spacer textiles, many of the requirements placed on the base substrate can be met very well.

Spacer textiles have a voluminous, elastic structure. From a wide range of usable fiber types and three-dimensional design features, a 3 mm thick spacer textile made of a polyester pile yarn and a flame-retardant fiber blend of aramid and viscose was selected for the new CSA. This textile is coated on both sides with fluorinated or butyl rubber. This gives the textile a barrier function that prevents the penetration of toxic liquids and gases. The coating is applied to the finished suit by a newly developed spraying process. The advantage of this process over the conventional coating process is that the desired elasticity of the suit is retained.

Another innovation is the integration of a diagonal zipper. This makes it easier to put on and take off the suit. Whereas this was previously only possible with the help of another person, the new suit can in principle be put on by the emergency responder alone. The new design is modeled on modern dry suits with diagonal, gas-tight zippers.
The new AgiSCA also features integrated sensors that allow the transmission and monitoring of the vital and environmental data of the emergency worker as well as their location via GPS data. These additional functions significantly enhance operational safety.

For the hard components, i.e. the helmet and the backpack for the compressed air supply, lightweight carbon fiber-reinforced composite materials from Wings and More GmbH & Co. KG are used.
The first demonstrators are available and are available to the project partners for testing purposes. The combination of current textile technology, lightweight construction concepts and IT integration in textiles has led to a comprehensive improvement of a high-tech product in this project.
 
BMBF project "Development of a chemical protection suit with increased mobility for more efficient operational concepts through increased autonomy of the emergency forces (AgiCSA)".
The project addresses the objectives of the Federal Government's framework program "Research for Civil Security 2018-2023 and the funding measure "SME-innovative: Research for Civil Security" of July 3, 2018.

 

Source:

DITF Deutsche Institute für Textil- und Faserforschung

Thread-like pumps can be woven into clothes (c) LMTS EPFL
27.06.2023

Thread-like pumps can be woven into clothes

Ecole Polytechnique Fédérale de Lausanne (EPFL) researchers have developed fiber-like pumps that allow high-pressure fluidic circuits to be woven into textiles without an external pump. Soft supportive exoskeletons, thermoregulatory clothing, and immersive haptics can therefore be powered from pumps sewn into the fabric of the devices themselves.

Many fluid-based wearable assistive technologies today require a large and noisy pump that is impractical – if not impossible – to integrate into clothing. This leads to a contradiction: wearable devices are routinely tethered to unearable pumps. Now, researchers at the Soft Transducers Laboratory (LMTS) in the School of Engineering have developed an elegantly simple solution to this dilemma.

Ecole Polytechnique Fédérale de Lausanne (EPFL) researchers have developed fiber-like pumps that allow high-pressure fluidic circuits to be woven into textiles without an external pump. Soft supportive exoskeletons, thermoregulatory clothing, and immersive haptics can therefore be powered from pumps sewn into the fabric of the devices themselves.

Many fluid-based wearable assistive technologies today require a large and noisy pump that is impractical – if not impossible – to integrate into clothing. This leads to a contradiction: wearable devices are routinely tethered to unearable pumps. Now, researchers at the Soft Transducers Laboratory (LMTS) in the School of Engineering have developed an elegantly simple solution to this dilemma.

“We present the world’s first pump in the form of a fiber; in essence, tubing that generates its own pressure and flow rate,” says LMTS head Herbert Shea. “Now, we can sew our fiber pumps directly into textiles and clothing, leaving conventional pumps behind.” The research has been published in the journal Science.

Lightweight, powerful…and washable
Shea’s lab has a history of forward-thinking fluidics. In 2019, they produced the world’s first stretchable pump.

“This work builds on our previous generation of soft pump,” says Michael Smith, an LMTS post-doctoral researcher and lead author of the study. “The fiber format allows us to make lighter, more powerful pumps that are inherently more compat-ible with wearable technology.”

The LMTS fiber pumps use a principle called charge injection electrohydrodynamics (EHD) to generate a fluid flow without any moving parts. Two helical electrodes embedded in the pump wall ionize and accelerate molecules of a special non-conductive liquid. The ion movement and electrode shape generate a net forward fluid flow, resulting in silent, vibration-free operation, and requiring just a palm-sized power supply and battery.

To achieve the pump’s unique structure, the researchers developed a novel fabrication technique that involves twisting copper wires and polyurethane threads together around a steel rod, and then fusing them with heat. After the rod is removed, the 2 mm fibers can be integrated into textiles using standard weaving and sewing techniques.

The pump’s simple design has a number of advantages. The materials required are cheap and readily available, and the manufacturing process can be easily scaled up. Because the amount of pressure generated by the pump is directly linked to its length, the tubes can be cut to match the application, optimizing performance while minimizing weight. The robust design can also be washed with conventional detergents.

From exoskeletons to virtual reality
The authors have already demonstrated how these fiber pumps can be used in new and exciting wearable technologies. For example, they can circulate hot and cold fluid through garments for those working in extreme temperature environments or in a therapeutic setting to help manage inflammation; and even for those looking to optimize athletic performance.

“These applications require long lengths of tubing anyway, and in our case, the tubing is the pump. This means we can make very simple and lightweight fluidic circuits that are convenient and comfortable to wear,” Smith says.

The study also describes artificial muscles made from fabric and embedded fiber pumps, which could be used to power soft exoskeletons to help patients move and walk.

The pump could even bring a new dimension to the world of virtual reality by simulating the sensation of temperature. In this case, users wear a glove with pumps filled with hot or cold liquid, allowing them to feel temperature changes in response to contact with a virtual object.

Pumped up for the future
The researchers are already looking to improve the performance of their device. “The pumps already perform well, and we’re confident that with more work, we can continue to make improvements in areas like efficiency and lifetime,” says Smith. Work has already started on scaling up the production of the fiber pumps, and the LMTS also has plans to embed them into more complex wearable devices.

“We believe that this innovation is a game-changer for wearable technology,” Shea says.

More information:
EPFL Fibers exoskeleton wearables
Source:

Celia Luterbacher, School of Engineering | STI

Photo: Unsplash
13.06.2023

The impact of textile production and waste on the environment

  • With fast fashion, the quantity of clothes produced and thrown away has boomed.

Fast fashion is the constant provision of new styles at very low prices. To tackle the impact on the environment, the EU wants to reduce textile waste and increase the life cycle and recycling of textiles. This is part of the plan to achieve a circular economy by 2050.

Overconsumption of natural resources
It takes a lot of water to produce textile, plus land to grow cotton and other fibres. It is estimated that the global textile and clothing industry used 79 billion cubic metres of water in 2015, while the needs of the EU's whole economy amounted to 266 billion cubic metres in 2017.

To make a single cotton t-shirt, 2,700 litres of fresh water are required according to estimates, enough to meet one person’s drinking needs for 2.5 years.

  • With fast fashion, the quantity of clothes produced and thrown away has boomed.

Fast fashion is the constant provision of new styles at very low prices. To tackle the impact on the environment, the EU wants to reduce textile waste and increase the life cycle and recycling of textiles. This is part of the plan to achieve a circular economy by 2050.

Overconsumption of natural resources
It takes a lot of water to produce textile, plus land to grow cotton and other fibres. It is estimated that the global textile and clothing industry used 79 billion cubic metres of water in 2015, while the needs of the EU's whole economy amounted to 266 billion cubic metres in 2017.

To make a single cotton t-shirt, 2,700 litres of fresh water are required according to estimates, enough to meet one person’s drinking needs for 2.5 years.

The textile sector was the third largest source of water degradation and land use in 2020. In that year, it took on average nine cubic metres of water, 400 square metres of land and 391 kilogrammes (kg) of raw materials to provide clothes and shoes for each EU citizen.

Water pollution
Textile production is estimated to be responsible for about 20% of global clean water pollution from dyeing and finishing products.

Laundering synthetic clothes accounts for 35% of primary microplastics released into the environment. A single laundry load of polyester clothes can discharge 700,000 microplastic fibres that can end up in the food chain.

The majority of microplastics from textiles are released during the first few washes. Fast fashion is based on mass production, low prices and high sales volumes that promotes many first washes.

Washing synthetic products has caused more than 14 million tonnes of microplastics to accumulate on the bottom of the oceans. In addition to this global problem, the pollution generated by garment production has a devastating impact on the health of local people, animals and ecosystems where the factories are located.

Greenhouse gas emissions
The fashion industry is estimated to be responsible for 10% of global carbon emissions – more than international flights and maritime shipping combined.

According to the European Environment Agency, textile purchases in the EU in 2020 generated about 270 kg of CO2 emissions per person. That means textile products consumed in the EU generated greenhouse gas emissions of 121 million tonnes.

Textile waste in landfills and low recycling rates
The way people get rid of unwanted clothes has also changed, with items being thrown away rather than donated. Less than half of used clothes are collected for reuse or recycling, and only 1% of used clothes are recycled into new clothes, since technologies that would enable clothes to be recycled into virgin fibres are only now starting to emerge.

Between 2000 and 2015, clothing production doubled, while the average use of an item of clothing has decreased.

Europeans use nearly 26 kilos of textiles and discard about 11 kilos of them every year. Used clothes can be exported outside the EU, but are mostly (87%) incinerated or landfilled.

The rise of fast fashion has been crucial in the increase in consumption, driven partly by social media and the industry bringing fashion trends to more consumers at a faster pace than in the past.

The new strategies to tackle this issue include developing new business models for clothing rental, designing products in a way that would make re-use and recycling easier (circular fashion), convincing consumers to buy fewer clothes of better quality (slow fashion) and generally steering consumer behaviour towards more sustainable options.

Work in progress: the EU strategy for sustainable and circular textiles
As part of the circular economy action plan, the European Commission presented in March 2022 a new strategy to make textiles more durable, repairable, reusable and recyclable, tackle fast fashion and stimulate innovation within the sector.

The new strategy includes new ecodesign requirements for textiles, clearer information, a Digital Product Passport and calls companies to take responsibility and act to minimise their carbon and environmental footprints

On 1 June 2023, MEPs set out proposals for tougher EU measures to halt the excessive production and consumption of textiles. Parliament’s report calls for textiles to be produced respecting human, social and labour rights, as well as the environment and animal welfare.

Existing EU measures to tackle textile waste
Under the waste directive approved by the Parliament in 2018, EU countries are obliged to collect textiles separately by 2025. The new Commission strategy also includes measures to, tackle the presence of hazardous chemicals, calls producers have to take responsibility for their products along the value chain, including when they become wasteand help consumers to choose sustainable textiles.

The EU has an EU Ecolabel that producers respecting ecological criteria can apply to items, ensuring a limited use of harmful substances and reduced water and air pollution.

The EU has also introduced some measures to mitigate the impact of textile waste on the environment. Horizon 2020 funds Resyntex, a project using chemical recycling, which could provide a circular economy business model for the textile industry.

A more sustainable model of textile production also has the potential to boost the economy. "Europe finds itself in an unprecedented health and economic crisis, revealing the fragility of our global supply chains," said lead MEP Huitema. "Stimulating new innovative business models will in turn create new economic growth and the job opportunities Europe will need to recover."

sports Photo Pixabay
21.03.2023

3D-printed insoles measure sole pressure directly in the shoe

  • For sports and physiotherapy alike

Researchers at ETH Zurich, Empa and EPFL are developing a 3D-printed insole with integrated sensors that allows the pressure of the sole to be measured in the shoe and thus during any activity. This helps athletes or patients to determine performance and therapy progress.

In elite sports, fractions of a second sometimes make the difference between victory and defeat. To optimize their performance, athletes use custom-made insoles. But people with musculoskeletal pain also turn to insoles to combat their discomfort.

  • For sports and physiotherapy alike

Researchers at ETH Zurich, Empa and EPFL are developing a 3D-printed insole with integrated sensors that allows the pressure of the sole to be measured in the shoe and thus during any activity. This helps athletes or patients to determine performance and therapy progress.

In elite sports, fractions of a second sometimes make the difference between victory and defeat. To optimize their performance, athletes use custom-made insoles. But people with musculoskeletal pain also turn to insoles to combat their discomfort.

Before specialists can accurately fit such insoles, they must first create a pressure profile of the feet. To this end, athletes or patients have to walk barefoot over pressure-sensitive mats, where they leave their individual footprints. Based on this pressure profile, orthopaedists then create customised insoles by hand. The problem with this approach is that optimisations and adjustments take time. Another disadvantage is that the pressure-sensitive mats allow measurements only in a confined space, but not during workouts or outdoor activities.

Now an invention by a research team from ETH Zurich, Empa and EPFL could greatly improve things. The researchers used 3D printing to produce a customised insole with integrated pressure sensors that can measure the pressure on the sole of the foot directly in the shoe during various activities.

“You can tell from the pressure patterns detected whether someone is walking, running, climbing stairs, or even carrying a heavy load on their back – in which case the pressure shifts more to the heel,” explains co-project leader Gilberto Siqueira, Senior Assistant at Empa and at ETH Complex Materials Laboratory. This makes tedious mat tests a thing of the past. The invention was recently featured in the journal Scientific Reports.

One device, multiple inks
These insoles aren’t just easy to use, they’re also easy to make. They are produced in just one step – including the integrated sensors and conductors – using a single 3D printer, called an extruder.

For printing, the researchers use various inks developed specifically for this application. As the basis for the insole, the materials scientists use a mixture of silicone and cellulose nanoparticles.
Next, they print the conductors on this first layer using a conductive ink containing silver. They then print the sensors on the conductors in individual places using ink that contains carbon black. The sensors aren’t distributed at random: they are placed exactly where the foot sole pressure is greatest. To protect the sensors and conductors, the researchers coat them with another layer of silicone.

An initial difficulty was to achieve good adhesion between the different material layers. The researchers resolved this by treating the surface of the silicone layers with hot plasma.
As sensors for measuring normal and shear forces, they use piezo components, which convert mechanical pressure into electrical signals. In addition, the researchers have built an interface into the sole for reading out the generated data.

Running data soon to be read out wirelessly
Tests showed the researchers that the additively manufactured insole works well. “So with data analysis, we can actually identify different activities based on which sensors responded and how strong that response was,” Siqueira says.

At the moment, Siqueira and his colleagues still need a cable connection to read out the data; to this end, they have installed a contact on the side of the insole. One of the next development steps, he says, will be to create a wireless connection. “However, reading out the data hasn’t been the main focus of our work so far.”

In the future, 3D-printed insoles with integrated sensors could be used by athletes or in physiotherapy, for example to measure training or therapy progress. Based on such measurement data, training plans can then be adjusted and permanent shoe insoles with different hard and soft zones can be produced using 3D printing.

Although Siqueira believes there is strong market potential for their product, especially in elite sports, his team hasn’t yet taken any steps towards commercialisation.

Researchers from Empa, ETH Zurich and EPFL were involved in the development of the insole. EPFL researcher Danick Briand coordinated the project, and his group supplied the sensors, while the ETH and Empa researchers developed the inks and the printing platform. Also involved in the project were the Lausanne University Hospital (CHUV) and orthopaedics company Numo. The project was funded by the ETH Domain’s Advanced Manufacturing Strategic Focus Areas programme.

Source:

Peter Rüegg, ETH Zürich

Vadim Zharkov: https://youtu.be/x9gCrhIPaPM
28.02.2023

‘Smart’ Coating Could Make Fabrics into Protective Gear

Precisely applied metal-organic technology detects and captures toxic gases in air.

A durable copper-based coating developed by Dartmouth researchers can be precisely integrated into fabric to create responsive and reusable materials such as protective equipment, environmental sensors, and smart filters, according to a recent study.
 
The coating responds to the presence of toxic gases in the air by converting them into less toxic substances that become trapped in the fabric, the team reports in Journal of the American Chemical Society.

Precisely applied metal-organic technology detects and captures toxic gases in air.

A durable copper-based coating developed by Dartmouth researchers can be precisely integrated into fabric to create responsive and reusable materials such as protective equipment, environmental sensors, and smart filters, according to a recent study.
 
The coating responds to the presence of toxic gases in the air by converting them into less toxic substances that become trapped in the fabric, the team reports in Journal of the American Chemical Society.

The findings hinge on a conductive metal-organic technology, or framework, developed in the laboratory of corresponding author Katherine Mirica, an associate professor of chemistry. First reported in JACS in 2017, the framework was a simple coating that could be layered onto cotton and polyester to create smart fabrics the researchers named SOFT—Self-Organized Framework on Textiles. Their paper demonstrated that SOFT smart fabrics could detect and capture toxic substances in the surrounding environment.

For the newest study, the researchers found that—instead of the simple coating reported in 2017—they can precisely embed the framework into fabrics using a copper precursor that allows them to create specific patterns and more effectively fill in the tiny gaps and holes between threads.

The researchers found that the framework technology effectively converted the toxin nitric oxide into nitrite and nitrate, and transformed the poisonous, flammable gas hydrogen sulfide into copper sulfide. They also report that the framework’s ability to capture and convert toxic materials withstood wear and tear, as well as standard washing.
 
The versatility and durability the new method provides would allow the framework to be applied for specific uses and in more precise locations, such as a sensor on protective clothing, or as a filter in a particular environment, Mirica said.

“This new method of deposition means that the electronic textiles could potentially interface with a broader range of systems because they’re so robust,” she said. “This technological advance paves the way for other applications of the framework’s combined filtration and sensing abilities that could be valuable in biomedical settings and environmental remediation.”
The technique also could eventually be a low-cost alternative to technologies that are cost prohibitive and limited in where they can be deployed by needing an energy source, or—such as catalytic converters in automobiles—rare metals, Mirica said.
 
“Here we’re relying on an Earth-abundant matter to detoxify toxic chemicals, and we’re doing it without any input of outside energy, so we don’t need high temperature or electric current to achieve that function,” Mirica said.

Co-first author Michael Ko, initially observed the new process in 2018 as he attempted to deposit the metal-organic framework onto thin-film copper-based electrodes, Mirica said. But the copper electrodes would be replaced by the framework.

“He wanted it on top of the electrodes, not to replace them,” Mirica said. “It took us four years to figure out what was happening and how it was beneficial. It’s a very straightforward process, but the chemistry behind it is not and it took us some time and additional involvement of students and collaborators to understand that.”

The team discovered that the metal-organic framework “grows” over copper, replacing it with a material with the ability to filter and convert toxic gases, Mirica said. Ko and co-author Lukasz Mendecki, a postdoctoral scholar in the Mirica Group from 2017-18, investigated methods for applying the framework material to fabric in specific designs and patterns.

Co-first author Aileen Eagleton, who is also in the Mirica Group, finalized the technique by optimizing the process for imprinting the metal-organic framework onto fabric, as well as identifying how its structure and properties are influenced by chemical exposure and reaction conditions.

Future work will focus on developing new multifunctional framework materials and scaling up the process of embedding the metal-organic coatings into fabric, Mirica said.

Source:

Dartmouth / Textination

Photo: Bcomp
22.11.2022

Made in Switzerland: Is Flax the New Carbon?

  • Bcomp wins BMW Group Supplier Innovation Award in the category “Newcomer of the Year”

The sixth BMW Group Supplier Innovation Awards were presented at the BMW Welt in Munich on 17 November 2022. The coveted award was presented in a total of six categories: powertrain & e-mobility, sustainability, digitalisation, customer experience, newcomer of the year and exceptional team performance.

Bcomp won the BMW Group Supplier Innovation Award in the Newcomer of the Year category. Following a successful collaboration with BMW M Motorsport for the new BMW M4 GT4 that extensively uses Bcomp’s powerRibs™ and ampliTex™ natural fibre solutions and BMW iVentures recently taking a stake in Bcomp as lead investor in the Series B round, this award is another major step and recognition on the path to decarbonizing mobility.

  • Bcomp wins BMW Group Supplier Innovation Award in the category “Newcomer of the Year”

The sixth BMW Group Supplier Innovation Awards were presented at the BMW Welt in Munich on 17 November 2022. The coveted award was presented in a total of six categories: powertrain & e-mobility, sustainability, digitalisation, customer experience, newcomer of the year and exceptional team performance.

Bcomp won the BMW Group Supplier Innovation Award in the Newcomer of the Year category. Following a successful collaboration with BMW M Motorsport for the new BMW M4 GT4 that extensively uses Bcomp’s powerRibs™ and ampliTex™ natural fibre solutions and BMW iVentures recently taking a stake in Bcomp as lead investor in the Series B round, this award is another major step and recognition on the path to decarbonizing mobility.

“Innovations are key to the success of our transformation towards electromobility, digitalisation and sustainability. Our award ceremony recognises innovation and cooperative partnership with our suppliers – especially in challenging times,” said Joachim Post, member of the Board of Management of BMW AG responsible for Purchasing and Supplier Network at the ceremony held at BMW Welt in Munich.

BMW first started to work with Bcomp’s materials in 2019 when they used high-performance natural fibre composites in the BMW iFE.20 Formula E car. From this flax fibre reinforced cooling shaft, the collaboration evolved and soon after, the proprietary ampliTex™ and powerRibs™ natural fibre solutions were found successfully substituting selected carbon fibre components in DTM touring cars from BMW M Motorsport. By trickling down and expanding into other vehicle programs, such developments highlight the vital role that BMW M Motorsports plays as a technology lab for the entire BMW Group. This continues in the form of the latest collaboration with Bcomp to include a higher proportion of renewable raw materials in the successor of the BMW M4 GT4.

With the launch of the new BMW M4 GT4, it will be the serial GT car with the highest proportion of natural fibre components. Bcomp’s ampliTex™ and powerRibs™ flax fibre solutions can be found throughout the interior on the dashboard and centre console, as well as on bodywork components such as the hood, front splitter, doors, trunk, and rear wing. Aside from the roof, there are almost no carbon fibre reinforced plastic (CFRP) components that were not replaced by the renewable high-performance flax materials. “Product sustainability is increasing in importance in the world of motorsport too,” says Franciscus van Meel, Chairman of the Board of Management at BMW M GmbH.

Bcomp is a leading solutions provider for natural fibre reinforcements in high performance applications from race to space.

The company started as a garage project in 2011 with a mission to create lightweight yet high performance skis. The bCores™ were launched and successfully adopted by some of the biggest names in freeride skiing. The founders, material science PhDs from École Polytechnique Fédérale de Lausanne (EPFL), used flax fibres to reinforce the balsa cores and improve shear stiffness. Impressed by the excellent mechanical properties of flax fibres, the development to create sustainable lightweighting solutions for the wider mobility markets started.

Flax is an indigenous plant that grows naturally in Europe and has been part of the agricultural history for centuries. It requires very little water and nutrients to grow successfully. In addition, it acts as a rotational crop, thus enhancing harvests on existing farmland. Neither cultivation nor processing of the flax plants requires any chemicals that could contaminate ground water and harvesting is a completely mechanical process. After harvesting the entire flax plant can be used for feed, to make oil and its fibres are especially used for home textiles and clothing. The long fibre that comes from the flax plant possesses very good mechanical properties and outstanding damping properties in relation to its density, making it especially suited as a natural fibre reinforcement for all kinds of polymers.

The harvesting and processing of flax takes place locally in the rural areas it was grown in. Using European flax sourced through a well-established and transparent supply chain it allows to support the economic and social structure in rural areas thanks to the large and skilled workforce required to sustain the flax production. When it comes to the production of technical products like the powerRibs™ reinforcement grid, Bcomp is investing in local production capacities close to its headquarters in the city of Fribourg, Switzerland, thus creating new jobs and maintaining technical know-how in the area. The production is built to be as efficient as possible and with minimal environmental impact and waste.

Further strengthening the local economy, Bcomp aims to hire local companies for missions and with the headquarters being located in Fribourg’s “Blue Factory” district, Bcomp can both benefit from and contribute to the development of this sustainable and diverse quarter.

Source:

Bcomp; BMW Group

Foto: Lalit Kumar, Unsplash
29.03.2022

The man-made fibers industry at the turning point of time

"You don't tear down a house before the new one is ready for occupancy."

Textination talked to the Managing Director of the Industrievereinigung Chemiefaser e.V., Dr. Wilhelm Rauch, about his assessment of the turning point that the man-made fibers industry is currently facing. What are the risks and threats, and what needs to change in order to remain a competitive player on the global market.

"You don't tear down a house before the new one is ready for occupancy."

Textination talked to the Managing Director of the Industrievereinigung Chemiefaser e.V., Dr. Wilhelm Rauch, about his assessment of the turning point that the man-made fibers industry is currently facing. What are the risks and threats, and what needs to change in order to remain a competitive player on the global market.

US President Joe Biden has called his Russian counterpart Vladimir Putin a war criminal in connection with the invasion of Ukraine. The United Nations' highest court, the International Court of Justice in The Hague, has ordered Russia to immediately end its war against Ukraine. How do you personally assess Russia's behavior?
Dr. Rauch:
With family roots in the Rhineland, Central and East Germany, I grew up at a time when, as a result of the division of Europe, families were separated and people were ruthlessly shot in the middle of Germany who wanted to cross the inner-German demarcation line towards the West. Since 1989, the fall of the Iron Curtain has led us into a period that lasted more than 30 years and allowed us, at least in Europe, to experience an era of peaceful coexistence between the great power blocs, intensive trade relations and prosperous states.

It is more than shocking to see today how Russia is trying to turn back the wheel of history in Europe with a brutality that the youngest generation growing up in Europe has fortunately not had to experience so far, and it brings back the worst memories of the Cold War, which everyone hoped would never return. If today in Ukraine even facilities for the peaceful use of nuclear energy are fired upon, a dimension has been reached that one does not want to extrapolate any further. In addition to the unspeakable human suffering caused, which we can only begin to alleviate by accepting Ukrainian refugees, in the long term all trust in political promises is being gambled away, which, however, is essential both for peaceful coexistence and for economic cooperation. We are facing a reordering of the world in which supply relationships and dependencies with or on autocratic states must be evaluated much more sensitively for each individual case.

The economic consequences of the Russia-Ukraine conflict are becoming increasingly clear. The Association of German Chambers of Commerce and Industry (DIHK) is correcting its forecast for 2022, but does not yet see a recession. What are your expectations for the industry in the current fiscal year?
Dr. Rauch:
The man-made fibers industry has been severely affected by the SARS-CoV-2 pandemic in the last two years. Planned investments were first postponed and then finally abandoned. By the end of 2022, three man-made fibers producers will close their doors in Germany compared to 2019. The industry started the current year on a very hopeful note, although previous issues such as REACH and, above all, energy costs were already increasing in severity before the Russia-Ukraine war. The economic consequences of the war will have a negative impact both directly in the form of increased energy prices and indirectly through changes in international competitive conditions.

What do the war in Ukraine and the economic sanctions against Russia entail for the upstream supply chains of the manmade fiber industry?
Dr. Rauch:
The immediate upstream supply chains will not be affected much by this war at first. However, we must expect supply chains in other industries to be disrupted. If, for example, certain raw materials or products are no longer available, this can have a noticeable impact, starting with logistics (mobility) and extending to components in production technology facilities. An example of this is the availability of cable harnesses, which were previously produced in Ukraine and are indispensable in many electronic components for man-made fibers production.

What is the relevance of Ukraine and Russia as sales markets for IVC member companies?
Dr. Rauch:
If we take the last year before the outbreak of the SARS-CoV-2 pandemic as the reference year, exports to Ukraine and the Russian Federation account for around 1.6% of total exports of man-made fibers from Germany. On average, a loss of sales to these countries can be tolerated, although it should not be forgotten that in individual cases - depending on a company's product portfolio - the impact can be quite significant. Looking beyond the horizon, it is not only the direct exports of man-made fibers to the war region that are of significance, but also deliveries of products in which man-made fibers are processed. Here, there are now interrupted supply relationships that result in order losses for the man-made fibers industry.

Certain industries are particularly affected by the consequences - what does this mean for the man-made fibers sector as a supplier industry?
Dr. Rauch:
Wherever production is cut back along the downstream value chain in which man-made fibers were used, the effects will be noticeable with a temporal delay. This applies, for example, to deliveries to the automotive sector, where the production of new vehicles comes to a standstill due to a lack of components originating from Ukraine.

How are exploding energy prices and the gas embargo affecting man-made fibers producers in the DACH region?
Dr. Rauch:
Even before the Russia-Ukraine war, European energy costs were already at a level that hit our members hard. For example, European gas costs currently rose by ten times from approx. 12 EUR/MWh to approx. 120 EUR/MWh as a result of the war, while in the USA they "only" rose by two and a half times from approx. 8 EUR/MWh to approx. 18 EUR/MWh. The situation is similar for electricity prices in Germany in particular, which have also risen by a factor of 10 from an already high level. Further price increases in Europe cannot be ruled out, but are more likely. Against this background, moderate adjustments in man-made fibers prices are only a drop in the bucket. A market development with virtually exploding energy costs cannot be reliably depicted by any company, nor can it be priced in such a way as to cover costs.

As the industry association of the man-made fibers industry, what do you think of "Freeze for Peace" or a stop to all Russian gas and raw material imports?
Dr. Rauch:
In Germany in particular, we have deliberately made ourselves dependent on Russian gas, contrary to all international warnings, by defining it as necessary for the bridge technology of electricity generation that we will need after the shutdown of coal- and nuclear-based power plants, before the availability of a sufficient amount of so-called "green" energy is assured. Gas is also needed for heating purposes and as a raw material, so it takes on the function of an all-rounder.

A boycott-related import stop would not only have serious negative consequences for the man-made fibers sector, but for the entire German industry and the majority of private households. As I mentioned at the beginning, it is the order of the day to help alleviate human suffering by taking in Ukrainian refugees. But this is not the end of the crisis. It must be assumed that the war situation will not be resolved in the near future. However, in order to cope with a protracted crisis situation, our economic strength must be maintained in order to be able to cope with the challenges ahead. An import freeze would be counterproductive in this respect. Since, due to the latest developments, gas deliveries are now to be paid for in rubles, there is rather a risk that Russia, for its part, will stop gas deliveries. In their effect, the two scenarios do not differ. The only thing that is certain is the fact that the availability of Russian gas to Europe is no longer guaranteed. Ultimately, the Russian demand to switch payments to rubles, which is not only aimed at revaluing the ruble, makes it clear that Russia is not dependent on Europe as a buyer of its gas. This would mean that a "freeze for peace" would lead to nothing. In the Far East, there is already a potential buyer of Russian gas to obtain it cheaply and safely, and which is also a major competitor of the European chemical fiber industry: China.

Are agreements with the United Arab Emirates and Qatar a good substitute solution for gas and oil supplies from Russia?
Dr. Rauch:
It is not a question of evaluating a measure in the sense of good or bad, but of whether it appears suitable in this particular situation to reduce unilateral dependencies on an aggressor before sustainable solutions are available in sufficient quantity. In this respect, there should initially be no ideological barriers in the measures to be examined for feasibility. The agreements concluded with the United Arab Emirates and Qatar after certainly careful political scrutiny are individual decisions and represent only one piece in the mosaic among many.

Does the saying "First we had bad luck, then we were not lucky at all" apply to the current economic performance of the industry - or: how do you assess the influence of the Corona pandemic and the war situation in this respect?
Dr. Rauch:
Both the SARS-CoV-2 pandemic and the Russia-Ukraine war are events with a global character. While the first event affected all countries equally sooner or later, the impact of the Russia-Ukraine war must be assessed in a more differentiated manner. The consequences of the war primarily affect companies in Europe, and there in particular those countries which - as mentioned above - have placed themselves in unilateral dependencies like Germany. This does not apply to the man-made fibers industry in particular. Although there are many fellow sufferers in other industries, this does not improve the situation, of course.

What does the industry expect from the political leaders in Berlin and Brussels in the future?
Dr. Rauch:
The wish list can be fixed to a few core elements:
In the long term, we need a supply of energy and raw materials that is not based on the dependence of a few autocratic states. On the way there, against the backdrop of the Russia-Ukraine war, previous exit scenarios from coal and nuclear energy must be reconsidered without prejudice with regard to their timeline. Or to put it more concisely: You don't tear down a house before the new one is ready for occupancy.

But energies from renewable raw materials must also be offered at prices that allow global competitiveness. According to a study by DECHEMA and FutureCamp, the chemical industry has calculated a price of 4 ct/kWh (including all taxes and fees). We are miles away from this today.

The revision of REACH must not lead to further bureaucracy and requirements that tie up capacity in companies. What we need in Europe is not dotting the i on Maslow's hierarchy of needs, but to ensure that we do not slide down the levels step by step and that the i dot floats in the air without an "i".

European economic policy must focus on the international competitiveness of European industry. It is not sufficient to consider and regulate the European Union only from the point of view of the internal market. The planned carbon border mechanism is such an example. It is intended to impose customs duties on imports that carry a high CO2 burden. This may protect the domestic market, but it does nothing at all to help export-oriented European industry such as the man-made fibers sector on the international world market, because European production costs remain too high by global standards despite the carbon border taxes.

The European Commission must increasingly recognize the European industry and with it the man-made fibers industry as problem solvers. Man-made fibers are indispensable as products for the energy turnaround (rotor blades for wind turbines), lightweight construction in mobility (lightweight car bodies in composite systems), sustainable road construction (geotextiles to reinforce the road surface and increase its service life), reduction of steel-reinforced concrete and thus cement, sand and gravel (reinforcement with high-tensile man-made fibers) and medical products (medical masks, bandaging materials, stents).

In Europe, we again need more market economy and no small-scale regulations that are adapted again and again and proliferate into an impenetrable thicket.

With all the wishes to politicians mentioned above, let me finally mention the following with regard to the current situation: In 1961, after the Berlin Wall was built, Russian and American tanks faced each other at Checkpoint Charlie at a distance of less than 50 meters, ready to fire.

A year later, in October 1962, nuclear-equipped American and Russian naval units met head-on in the Cuban Missile Crisis. Both John F. Kennedy and Nikita S. Khrushchev - bitter rivals in the contest of political systems - were sensible enough at the time not to let the situation escalate.

At present, I wish our national, European and transatlantic politicians’ unconditional determination in the defense of our free democratic values, but I also appeal to all politicians worldwide to take to heart one of Albert Einstein's fundamental perceptions: "I don't know what weapons will be used in the Third World War. But I can tell you what they'll use in the Fourth - rocks!"

Source:

Textination

The Interview was conducted by Ines Chucholowius, CEO Textination GmbH