Textination Newsline

Reset
19 results
Empa researcher Edith Perret is developing special fibers that can deliver drugs in a targeted manner. Image EMPA
01.07.2024

Medical Fibers with "Inner Values"

Medical products such as ointments or syringes reach their limits when it comes to delivering medication locally – and above all in a controlled manner over a longer period of time. Empa researchers are therefore developing polymer fibers that can deliver active ingredients precisely over the long term. These "liquid core fibers" contain drugs inside and can be processed into medical textiles.

Medical products such as ointments or syringes reach their limits when it comes to delivering medication locally – and above all in a controlled manner over a longer period of time. Empa researchers are therefore developing polymer fibers that can deliver active ingredients precisely over the long term. These "liquid core fibers" contain drugs inside and can be processed into medical textiles.

Treating a wound or an inflammation directly where it occurs has clear advantages: The active ingredient reaches its target immediately, and there are no negative side effects on uninvolved parts of the body. However, conventional local administration methods reach their limits when it comes to precisely dosing active ingredients over a longer period of time. As soon as an ointment leaves the tube or the injection fluid flows out of the syringe, it is almost impossible to control the amount of active ingredient. Edith Perret from Empa's Advanced Fibers laboratory in St. Gallen is therefore developing medical fibers with very special "inner values": The polymer fibers enclose a liquid core with therapeutic ingredients. The aim: medical products with special capabilities, e.g. surgical suture material, wound dressings and textile implants that can administer painkillers, antibiotics or insulin precisely over a longer period of time. Another aim is to achieve individual, patient-specific dosage of the drug in the sense of personalized medicine.

Biocompatible and tailor-made
A decisive factor that turns a conventional textile fiber into a medical product is the material of the fiber sheath. The team chose polycaprolactone (PCL), a biocompatible and biodegradable polymer that is already being used successfully in the medical field. The fiber sheath encloses the valuable substance, such as a painkiller or an antibacterial drug, and releases it over time. Using a unique pilot plant, the researchers produced PCL fibers with a continuous liquid core by means of melt spinning. In initial lab tests, stable and flexible liquid-core fibers were produced. What's more, the Empa team had already successfully demonstrated, together with a Swiss industrial partner, that this process not only works in the lab but also on an industrial scale.

The parameters according to which the medical fibers release an enclosed agent were first investigated using fluorescent model substances and then with various drugs. "Small molecules such as the painkiller ibuprofen move gradually through the structure of the outer sheath," says Edith Perret. Larger molecules, on the other hand, are released at the two ends of the fibers.

Precisely controllable and effective in the long term
“Thanks to a variety of parameters, the properties of the medical fibers can be precisely controlled," explains the Empa researcher. After extensive analyses using fluorescence spectroscopy, X-ray technology and electron microscopy, the researchers were able to demonstrate, for instance, the influence of the sheath thickness and crystal structure of the sheath material on the release rate of the drugs from the liquid core fibers.

Depending on the active ingredient, the manufacturing process can also be adapted: Active ingredients that are insensitive to high temperatures during melt spinning can be integrated directly into the core of the fibers in a continuous process. For temperature-sensitive drugs, on the other hand, the team was able to optimize the process so that a placeholder initially fills the liquid core, which is replaced later on by the sensitive active ingredient.

One of the advantages of liquid core fibers is the ability to release the active ingredient from a reservoir over a longer period of time. This opens up a wide range of possible applications. With diameters of 50 to 200 micrometers, the fibers are large enough to be woven or knitted into robust textiles, for example. However, the medical fibers could also be guided inside the body to deliver hormones such as insulin, says Perret. Another advantage: Fibers that have released their medication can be refilled. The range of active ingredients that can be administered easily, conveniently and precisely using liquid core fibers is large. In addition to painkillers, anti-inflammatory drugs, antibiotics and even lifestyle preparations are conceivable.

In a next step, the researchers want to equip surgical suture material with antimicrobial properties. The new process will be used to fill various liquid core materials with antibiotics in order to suture tissue during an operation in such a way that wound germs have no chance of causing an infection. Empa researcher Perret is also convinced that future collaboration with clinical partners will form the basis for further innovative clinical applications.

Aiming for clinical partnerships
Advancing a new technology? Identifying innovative applications? Empa researcher Edith Perret is looking for interested clinicians who recognize the potential of drug delivery via liquid core fibers and want to become active in this field.

 

Source:

Dr. Andrea Six, EMPA

Co-friendly textiles without PFAS Image: Empa
22.04.2024

Co-friendly textiles without PFAS

Rain jackets, swimming trunks or upholstery fabrics: Textiles with water-repellent properties require chemical impregnation. Although fluorine-containing PFAS chemicals are effective, they are also harmful to human health and accumulate in the environment. Empa researchers are now developing a process with alternative substances that can be used to produce environmentally friendly water-repellent textile fibers. Initial analyses show: The "good" fibers repel water more effectively and dry faster than those of conventional products.

Rain jackets, swimming trunks or upholstery fabrics: Textiles with water-repellent properties require chemical impregnation. Although fluorine-containing PFAS chemicals are effective, they are also harmful to human health and accumulate in the environment. Empa researchers are now developing a process with alternative substances that can be used to produce environmentally friendly water-repellent textile fibers. Initial analyses show: The "good" fibers repel water more effectively and dry faster than those of conventional products.

If swimming trunks are to retain their shape after swimming and to dry quickly, they must combine two properties: They must be elastic and must not soak up water. Such a water-repellent effect can be achieved by treating the textiles with chemicals that give the elastic garment so-called hydrophobic properties. In the 1970s, new synthetic fluorine compounds began to be used for this purpose – compounds that seemed to offer countless application possibilities, but later turned out to be highly problematic. This is because these fluorocarbon compounds, PFAS for short, accumulate in the environment and are harmful to our health (see box). Empa researchers are therefore working with Swiss textile companies to develop alternative environmentally friendly processes that can be used to give fibers a water-repellent finish. Dirk Hegemann from Empa's Advanced Fibers laboratory in St. Gallen explains the Innosuisse-funded project: "We use so-called highly cross-linked siloxanes, which create silicone-like layers and – unlike fluorine-containing PFAS – are harmless."

Empa's plasma coating facilities range from handy table-top models to room-filling devices. For the coating of textile fibers, the siloxanes are atomized and activated in a reactive gas. They thereby retain their functional properties and enclose the textile fibers in a water-repellent coating that is only 30 nanometers thin. Fibers coated this way can then be processed into water-repellent textiles of all kinds, for example garments or technical textiles such as upholstery fabrics.

The advantage over conventional wet-chemical processes: Even with complex structured textiles, the seamless distribution of the hydrophobic substances is guaranteed right into all turns of the intertwined fibers. This is crucial, because even a tiny wettable spot would be enough for water to penetrate into the depths of a pair of swimming trunks, preventing the garment from drying quickly. "We have even succeeded in permanently impregnating more demanding, elastic fibers with the new process, which was previously not possible," says Hegemann.

Great interest from industry
In initial laboratory analyses, textiles made from the new fibers with an environmentally friendly coating are already performing slightly better than conventional PFAS-coated fabrics. They absorb less water and dry faster. However, the miraculous properties of the fluorine-free coating only really come into their own after the textiles have been washed several times: While the performance of conventional PFAS coatings in stretchy textiles declines considerably after repeated wash cycles, the fluorine-free fibers retain their water-repellent properties.

Hegemann and his team are now working on scaling up the fluorine-free laboratory process into efficient and economically viable industrial processes. "The industry is very interested in finding sustainable alternatives to PFAS," says Hegemann. The Swiss textile companies Lothos KLG, beag Bäumlin & Ernst AG and AG Cilander are already on board when it comes to developing environmentally friendly fluorine-free textiles. "This is a successful collaboration that combines materials, fiber technology and plasma coating and leads to an innovative, sustainable and effective solution," says Dominik Pregger from Lothos. And Bernd Schäfer, CEO of beag, adds: "The technology is environmentally friendly and also has interesting economic potential."

More information:
Empa PFAS Plasma Fibers
Source:

Dr. Andrea Six, EMPA

Empa researcher Simon Annaheim is working to develop a mattress for newborn babies. Image: Empa
11.03.2024

Medical textiles and sensors: Smart protection for delicate skin

Skin injuries caused by prolonged pressure often occur in people who are unable to change their position independently – such as sick newborns in hospitals or elderly people. Thanks to successful partnerships with industry and research, Empa scientists are now launching two smart solutions for pressure sores.

If too much pressure is applied to our skin over a long period of time, it becomes damaged. Populations at high risk of such pressure injuries include people in wheelchairs, newborns in intensive care units and the elderly. The consequences are wounds, infections and pain.

Skin injuries caused by prolonged pressure often occur in people who are unable to change their position independently – such as sick newborns in hospitals or elderly people. Thanks to successful partnerships with industry and research, Empa scientists are now launching two smart solutions for pressure sores.

If too much pressure is applied to our skin over a long period of time, it becomes damaged. Populations at high risk of such pressure injuries include people in wheelchairs, newborns in intensive care units and the elderly. The consequences are wounds, infections and pain.

Treatment is complex and expensive: Healthcare costs of around 300 million Swiss francs are incurred every year. "In addition, existing illnesses can be exacerbated by such pressure injuries," says Empa researcher Simon Annaheim from the Biomimetic Membranes and Textiles laboratory in St. Gallen. According to Annaheim, it would be more sustainable to prevent tissue damage from occurring in the first place. Two current research projects involving Empa researchers are now advancing solutions: A pressure-equalizing mattress for newborns in intensive care units and a textile sensor system for paraplegics and bedridden people are being developed.

Optimally nestled at the start of life
The demands of our skin are completely different depending on age: In adults, the friction of the skin on the lying surface, physical shear forces in the tissue and the lack of breathability of textiles are the main risk factors. In contrast, the skin of newborns receiving intensive care is extremely sensitive per se, and any loss of fluid and heat through the skin can become a problem. "While these particularly vulnerable babies are being nursed back to health, the lying situation should not cause any additional complications," says Annaheim. He thinks conventional mattresses are not appropriate for newborns with very different weights and various illnesses. Annaheim's team is therefore working with researchers from ETH Zurich, the Zurich University of Applied Sciences (ZHAW) and the University Children's Hospital Zurich to find an optimal lying surface for babies' delicate skin. This mattress should be able to adapt individually to the body in order to help children with a difficult start in life.

In order to do this, the researchers first determined the pressure conditions in the various regions of the newborn's body. "Our pressure sensors showed that the head, shoulders and lower spine are the areas with the greatest risk of pressure sores," says Annaheim. These findings were incorporated into the development of a special kind of air-filled mattress: With the help of pressure sensors and a microprocessor, its three chambers can be filled precisely via an electronic pump so that the pressure in the respective areas is minimized. An infrared laser process developed at Empa made it possible to produce the mattress from a flexible, multi-layered polymer membrane that is gentle on the skin and has no irritating seams.

After a multi-stage development process in the laboratory, the first small patients were allowed to lie on the prototype mattress. The effect was immediately noticeable when the researchers filled the mattress with air to varying degrees depending on the individual needs of the babies: Compared to a conventional foam mattress, the prototype reduced the pressure on the vulnerable parts of the body by up to 40 percent.

Following this successful pilot study, the prototype is now being optimized in the Empa labs. Simon Annaheim and doctoral student Tino Jucker will soon be starting a larger-scale study with the new mattress with the Department of Intensive Care Medicine & Neonatology at University Children's Hospital Zurich.

Intelligent sensors prevent injuries
In another project, Empa researchers are working on preventing so-called pressure ulcer tissue damage in adults. This involves converting the risk factors of pressure and circulatory disorders into helpful warning signals.

If you lie in the same position for a long time, pressure and circulatory problems lead to an undersupply of oxygen to the tissue. While the lack of oxygen triggers a reflex to move in healthy people, this neurological feedback loop can be disrupted in people with paraplegia or coma patients, for example. Here, smart sensors can help to provide early warning of the risk of tissue damage.

In the ProTex project, a team of researchers from Empa, the University of Bern, the OST University of Applied Sciences and Bischoff Textil AG in St. Gallen has developed a sensor system made of smart textiles with associated data analysis in real time. "The skin-compatible textile sensors contain two different functional polymer fibers," says Luciano Boesel from Empa's Biomimetic Membranes and Textiles laboratory in St. Gallen. In addition to pressure-sensitive fibers, the researchers integrated light-conducting polymer fibers (POFs), which are used to measure oxygen. "As soon as the oxygen content in the skin drops, the highly sensitive sensor system signals an increasing risk of tissue damage," explains Boesel. The data is then transmitted directly to the patient or to the nursing staff. This means, for instance, that a lying person can be repositioned in good time before the tissue is damaged.

Patented technology
The technology behind this also includes a novel microfluidic wet spinning process developed at Empa for the production of POFs. It allows precise control of the polymer components in the micrometer range and smoother, more environmentally friendly processing of the fibers. The microfluidic process is one of three patents that have emerged from the ProTex project to date.

Another product is a breathable textile sensor that is worn directly on the skin. The spin-off Sensawear in Bern, which emerged from the project in 2023, is currently pushing ahead with the market launch. Empa researcher Boesel is also convinced: "The findings and technologies from ProTex will enable further applications in the field of wearable sensor technology and smart clothing in the future."

Source:

Dr. Andrea Six, Empa

Researchers led by Bernd Nowack have investigated the release of nanoparticles during the washing of polyester textiles. Image: Empa Image: Empa
14.02.2024

Release of oligomers from polyester textiles

When nanoplastics are not what they seem ... Textiles made of synthetic fibers release micro- and nanoplastics during washing. Empa researchers have now been able to show: Some of the supposed nanoplastics do not actually consist of plastic particles, but of water-insoluble oligomers. The effects they have on humans and the environment are not yet well-understood.

Plastic household items and clothing made of synthetic fibers release microplastics: particles less than five millimetres in size that can enter the environment unnoticed. A small proportion of these particles are so small that they are measured in nanometers. Such nanoplastics are the subject of intensive research, as nanoplastic particles can be absorbed into the human body due to their small size – but, as of today, little is known about their potential toxicity.

When nanoplastics are not what they seem ... Textiles made of synthetic fibers release micro- and nanoplastics during washing. Empa researchers have now been able to show: Some of the supposed nanoplastics do not actually consist of plastic particles, but of water-insoluble oligomers. The effects they have on humans and the environment are not yet well-understood.

Plastic household items and clothing made of synthetic fibers release microplastics: particles less than five millimetres in size that can enter the environment unnoticed. A small proportion of these particles are so small that they are measured in nanometers. Such nanoplastics are the subject of intensive research, as nanoplastic particles can be absorbed into the human body due to their small size – but, as of today, little is known about their potential toxicity.

Empa researchers from Bernd Nowack's group in the Technology and Society laboratory have now joined forces with colleagues from China to take a closer look at nanoparticles released from textiles. Tong Yang, first author of the study, carried out the investigations during his doctorate at Empa. In earlier studies, Empa researchers were already able to demonstrate that both micro- and nanoplastics are released when polyester is washed. A detailed examination of the released nanoparticles released has now shown that not everything that appears to be nanoplastic at first glance actually is nanoplastic.

To a considerable extent, the released particles were in fact not nanoplastics, but clumps of so-called oligomers, i.e. small to medium-sized molecules that represent an intermediate stage between the long-chained polymers and their individual building blocks, the monomers. These molecules are even smaller than nanoplastic particles, and hardly anything is known about their toxicity either. The researchers published their findings in the journal Nature Water.

For the study, the researchers examined twelve different polyester fabrics, including microfiber, satin and jersey. The fabric samples were washed up to four times and the nanoparticles released in the process were analyzed and characterized. Not an easy task, says Bernd Nowack. "Plastic, especially nanoplastics, is everywhere, including on our devices and utensils," says the scientist. "When measuring nanoplastics, we have to take this 'background noise' into account."

Large proportion of soluble particles
The researchers used an ethanol bath to distinguish nanoplastics from clumps of oligomers. Plastic pieces, no matter how small, do not dissolve in ethanol, but aggregations of oligomers do. The result: Around a third to almost 90 percent of the nanoparticles released during washing could be dissolved in ethanol. "This allowed us to show that not everything that looks like nanoplastics at first glance is in fact nanoplastics," says Nowack.

It is not yet clear whether the release of so-called nanoparticulate oligomers during the washing of textiles has negative effects on humans and the environment. "With other plastics, studies have already shown that nanoparticulate oligomers are more toxic than nanoplastics," says Nowack. "This is an indication that this should be investigated more closely." However, the researchers were able to establish that the nature of the textile and the cutting method – scissors or laser – have no major influence on the quantity of particles released.

The mechanism of release has not been clarified yet either – neither for nanoplastics nor for the oligomer particles. The good news is that the amount of particles released decreases significantly with repeated washes. It is conceivable that the oligomer particles are created during the manufacturing of the textile or split off from the fibers through chemical processes during storage. Further studies are also required in this area.

Nowack and his team are focusing on larger particles for the time being: In their next project, they want to investigate which fibers are released during washing of textiles made from renewable raw materials and whether these could be harmful to the environment and health. "Semi-synthetic textiles such as viscose or lyocell are being touted as a replacement for polyester," says Nowack. "But we don't yet know whether they are really better when it comes to releasing fibers."

Source:

Empa

Bild von Tumisu auf Pixabay
06.12.2023

Antimicrobial coating: Bacteria, stay out!

Hospital germs and pathogens are not always transmitted directly from person to person. They can also spread via germ-contaminated surfaces and objects. Empa researchers, together with the chemical company BASF, Spiez Laboratory and the Technical University of Berlin, have now developed coated textiles that inhibit or even kill pathogens. They could be used as antimicrobial curtains in hospitals in the future.

Hospital germs and pathogens are not always transmitted directly from person to person. They can also spread via germ-contaminated surfaces and objects. Empa researchers, together with the chemical company BASF, Spiez Laboratory and the Technical University of Berlin, have now developed coated textiles that inhibit or even kill pathogens. They could be used as antimicrobial curtains in hospitals in the future.

Countless times a day, patients, visitors and medical staff in hospitals touch surfaces of all kinds. Door handles, railings or elevator buttons can serve as transport vehicles for pathogens such as hospital germs or viruses. Smooth surfaces are comparatively easy to clean after contamination. With porous structures such as textiles, however, this is not that simple. Empa researchers have solved this problem together with experts from BASF, Spiez Laboratory and the Technical University of Berlin: A coating process can now be used to treat fabrics in such a way that bacterial and viral pathogens are killed or inhibited in their growth. In hospitals, the coated textiles could be used in future as antimicrobial curtains between patient beds, for example.

Active for months
"We were looking for a process that reliably prevents germs from contaminating textiles that come into contact with a large number of people during use," explains Peter Wick from Empa's Particles-Biology Interactions laboratory in St. Gallen. In this way, chains of infection could be interrupted in which multi-resistant bacteria or viral pathogens, for example, settle on hospital curtains and can then be spread by people.

The researchers ultimately developed a coating process in which a benzalkonium chloride-containing disinfectant was evenly applied to hospital curtains. After optimizing parameters such as concentration, exposure time, processing pressure and drying, the coating adhered stably to the textile surface. But did the coated textiles also exhibit a germicidal effect? This was to be shown by analyzing the antimicrobial activity of the first fabric samples.

"The results of the laboratory tests were very encouraging," says Wick. When the bacterial cultures of some typical problem germs were incubated with the fabric samples, the coated textiles inhibited the growth of staphylococci and pseudomonas bacteria, for example. "The hospital germs were significantly reduced or even killed after just ten minutes of exposure," says the Empa researcher. Moreover, the coating was also active against viral pathogens: Over 99 percent of the viruses were killed by the coated fabric samples.

Another advantage: The coatings remained effective even after several months of storage. This allows production in stock. With the new process, other textiles, filters or cleaning utensils could also be quickly and safely treated with antimicrobials in the future, for example in the event of an epidemic, emphasizes Empa researcher Wick.

Source:

EMPA

Swijin Inage Swijin
20.06.2023

Innovative sportswear: Swim and run without changing

Just in time for summer: The Swiss start-up Swijin is launching a new sportswear category with its SwimRunner – a sports bra together with matching bottoms that works as both swimwear and running gear and dries in no time. The innovative product was developed together with Empa researchers in an Innosuisse project. The SwimRunner can be tested this weekend at the Zurich City Triathlon.
 
A quick dip after jogging without having to change clothes? Swijin (pronounced Swie-Djin), a new Swiss TechTex start-up, is launching its first product, the SwimRunner: a sports bra and bottoms that function as both swimwear and running gear and dry in a flash.

Just in time for summer: The Swiss start-up Swijin is launching a new sportswear category with its SwimRunner – a sports bra together with matching bottoms that works as both swimwear and running gear and dries in no time. The innovative product was developed together with Empa researchers in an Innosuisse project. The SwimRunner can be tested this weekend at the Zurich City Triathlon.
 
A quick dip after jogging without having to change clothes? Swijin (pronounced Swie-Djin), a new Swiss TechTex start-up, is launching its first product, the SwimRunner: a sports bra and bottoms that function as both swimwear and running gear and dry in a flash.

For the first time, this innovation enables women to make a smooth transition between land and water sports without having to change clothes. For example, hikers and runners can easily go into the water to cool off. Stand-up paddlers wearing the SwimRunner enjoy unrestricted freedom of movement and at the same time sufficient support, both on the board and in the water.
Science to boost sports performance
 
What appears to be a relatively simple requirement at first glance has turned out to be an extremely complex product to develop. As part of an Innosuisse project, Swijin collaborated with the Empa Biomimetic Membranes and Textiles laboratory in St. Gallen. Led by Empa engineer Martin Camenzind, the researchers first defined the requirements for the material and cut of the sports bra. "During development, we faced three main challenges: On the one hand, the product had to meet the requirements of a heavy-duty sports bra on land. At the same time, it had to maintain the compression of a swimsuit in the water – and do so with a very short drying time," says Camenzind.

Since no comparable garment exists on the market yet, the team also developed new tests for evaluating the high-performance textile. "Moreover, we designed a mannequin: a model of the female torso that can be used to measure the mechanical properties of bras," explains the researcher. In addition to scientific findings, the product development process also incorporated a great deal of expertise from sports physiologists, textile engineers, industry specialists, designers and, of course, female athletes.

Highest demands
Many of these athletes come from the swimrun scene. Swimrun is a fast-growing adventure sport that originated in the skerry gardens of Sweden. Unlike triathletes, who start out by swimming, then bike, and finally run, swimrunners switch back and forth between trail running and open water swimming throughout the race. The intensity of this sport provided Swijin with the optimal conditions for product development – and gave its name to the first collection, SwimRunner. "The feedback from female athletes was one of the deciding factors for the success of the product. They often swim and run for six to seven hours at a stretch. When they were satisfied with our prototypes, we knew: The SwimRunner is ready for market," says Swijin founder Claudia Glass.

The product idea first came to Claudia Glass while she was on vacation on Mallorca. During her morning runs, she longed to be able to take a quick dip in the sea. "Sports bras, however, are not designed for swimming," the founder explains. "They soak up the water and never seem to dry because of their thick compression material. Last summer, I wore the SwimRunner prototype all day. In the morning, I ran to Lake Zurich with my dog and jumped in. When I got back home, I could have just sat down at my desk and started working – I was completely dry and felt very comfortable."

Design and sustainability
The young company makes a point of combining engineering and design. Swijin's creative director, Valeria Cereda, is based in the center of the world's fashion capital, Milan, and infuses her experience with luxury brands into Swijin's aesthetic. But as a former competitive swimmer, she is also focused on functionality.

Swijin's high-performance products can only be realized with synthetic materials. The young company is determined to reduce the environmental impact of its products to a minimum. The tight supply chain keeps the CO2 footprint low. The materials of the SwimRunner are 100% made in the EU and designed for quality.

Traditional garment labels only provide information about where the garment was made. Swijin is working with supplier Avery Dennison to provide all products with a Digital Identity Label. This gives consumers detailed information about the entire value chain, right down to the textile manufacturer's investment in reducing its carbon footprint and the use of the water-based, solvent-free logo. Swijin packages all materials in Cradle-to-Cradle Gold certified packaging, which is produced by Voegeli AG in Emmental.

Furthermore, Swijin proactively addresses the challenges at the end of the product life cycle. In order to come one step closer to a truly circular economy for functional textiles, Swijin participates in the Yarn-to-Yarn® pilot project of Rheiazymes AG as a lighthouse partner. This biotech solution uses microorganisms and enzymes to generate new starting materials directly from used textiles in a climate-neutral way. When customers return end-of-life Swijin products – for which the company offers incentives – the high-quality monomers can be returned to the supply chain in their original quality: true circularity.

"As an emerging brand, we have both the obligation and the luxury of choosing partners whose vision and values align with our own," says Claudia Glass. "I had a clear understanding of what kind of brand I would buy, but I couldn't find it anywhere. With Swijin, we feel obligated to actually make our values a reality."

Source:

Claudia Glass, Anna Ettlin, EMPA

sports Photo Pixabay
21.03.2023

3D-printed insoles measure sole pressure directly in the shoe

  • For sports and physiotherapy alike

Researchers at ETH Zurich, Empa and EPFL are developing a 3D-printed insole with integrated sensors that allows the pressure of the sole to be measured in the shoe and thus during any activity. This helps athletes or patients to determine performance and therapy progress.

In elite sports, fractions of a second sometimes make the difference between victory and defeat. To optimize their performance, athletes use custom-made insoles. But people with musculoskeletal pain also turn to insoles to combat their discomfort.

  • For sports and physiotherapy alike

Researchers at ETH Zurich, Empa and EPFL are developing a 3D-printed insole with integrated sensors that allows the pressure of the sole to be measured in the shoe and thus during any activity. This helps athletes or patients to determine performance and therapy progress.

In elite sports, fractions of a second sometimes make the difference between victory and defeat. To optimize their performance, athletes use custom-made insoles. But people with musculoskeletal pain also turn to insoles to combat their discomfort.

Before specialists can accurately fit such insoles, they must first create a pressure profile of the feet. To this end, athletes or patients have to walk barefoot over pressure-sensitive mats, where they leave their individual footprints. Based on this pressure profile, orthopaedists then create customised insoles by hand. The problem with this approach is that optimisations and adjustments take time. Another disadvantage is that the pressure-sensitive mats allow measurements only in a confined space, but not during workouts or outdoor activities.

Now an invention by a research team from ETH Zurich, Empa and EPFL could greatly improve things. The researchers used 3D printing to produce a customised insole with integrated pressure sensors that can measure the pressure on the sole of the foot directly in the shoe during various activities.

“You can tell from the pressure patterns detected whether someone is walking, running, climbing stairs, or even carrying a heavy load on their back – in which case the pressure shifts more to the heel,” explains co-project leader Gilberto Siqueira, Senior Assistant at Empa and at ETH Complex Materials Laboratory. This makes tedious mat tests a thing of the past. The invention was recently featured in the journal Scientific Reports.

One device, multiple inks
These insoles aren’t just easy to use, they’re also easy to make. They are produced in just one step – including the integrated sensors and conductors – using a single 3D printer, called an extruder.

For printing, the researchers use various inks developed specifically for this application. As the basis for the insole, the materials scientists use a mixture of silicone and cellulose nanoparticles.
Next, they print the conductors on this first layer using a conductive ink containing silver. They then print the sensors on the conductors in individual places using ink that contains carbon black. The sensors aren’t distributed at random: they are placed exactly where the foot sole pressure is greatest. To protect the sensors and conductors, the researchers coat them with another layer of silicone.

An initial difficulty was to achieve good adhesion between the different material layers. The researchers resolved this by treating the surface of the silicone layers with hot plasma.
As sensors for measuring normal and shear forces, they use piezo components, which convert mechanical pressure into electrical signals. In addition, the researchers have built an interface into the sole for reading out the generated data.

Running data soon to be read out wirelessly
Tests showed the researchers that the additively manufactured insole works well. “So with data analysis, we can actually identify different activities based on which sensors responded and how strong that response was,” Siqueira says.

At the moment, Siqueira and his colleagues still need a cable connection to read out the data; to this end, they have installed a contact on the side of the insole. One of the next development steps, he says, will be to create a wireless connection. “However, reading out the data hasn’t been the main focus of our work so far.”

In the future, 3D-printed insoles with integrated sensors could be used by athletes or in physiotherapy, for example to measure training or therapy progress. Based on such measurement data, training plans can then be adjusted and permanent shoe insoles with different hard and soft zones can be produced using 3D printing.

Although Siqueira believes there is strong market potential for their product, especially in elite sports, his team hasn’t yet taken any steps towards commercialisation.

Researchers from Empa, ETH Zurich and EPFL were involved in the development of the insole. EPFL researcher Danick Briand coordinated the project, and his group supplied the sensors, while the ETH and Empa researchers developed the inks and the printing platform. Also involved in the project were the Lausanne University Hospital (CHUV) and orthopaedics company Numo. The project was funded by the ETH Domain’s Advanced Manufacturing Strategic Focus Areas programme.

Source:

Peter Rüegg, ETH Zürich

A shirt that monitors breathing. Bild EMPA
28.12.2022

Wearables for healthcare: sensors to wear

Stylish sensors to wear 
With sensors that measure health parameters and can be worn on the body, we do let technology get very close to us. A collaboration between Empa and designer Laura Deschl, sponsored by the Textile and Design Alliance (TaDA) of Eastern Switzerland, shows that medical monitoring of respiratory activity, for example, can also be very stylish – as a shirt.
 
With sensors that measure health parameters and can be worn on the body, we do let technology get very close to us. A collaboration between Empa and designer Laura Deschl, sponsored by the Textile and Design Alliance (TaDA) of Eastern Switzerland, shows that medical monitoring of respiratory activity, for example, can also be very stylish – as a shirt.

Stylish sensors to wear 
With sensors that measure health parameters and can be worn on the body, we do let technology get very close to us. A collaboration between Empa and designer Laura Deschl, sponsored by the Textile and Design Alliance (TaDA) of Eastern Switzerland, shows that medical monitoring of respiratory activity, for example, can also be very stylish – as a shirt.
 
With sensors that measure health parameters and can be worn on the body, we do let technology get very close to us. A collaboration between Empa and designer Laura Deschl, sponsored by the Textile and Design Alliance (TaDA) of Eastern Switzerland, shows that medical monitoring of respiratory activity, for example, can also be very stylish – as a shirt.

The desire for a healthy lifestyle has triggered a trend towards self-tracking. Vital signs should be available at all times, for example to consistently measure training effects. At the same time, among the continuously growing group of people over 65, the desire to maintain performance into old age is stronger than ever. Preventive, health-maintaining measures must be monitored if they are to achieve the desired results. The search for measurement systems that reliably determine the corresponding health parameters is in full swing. In addition to the leisure sector, medicine needs suitable and reliable measurement systems that enable efficient and effective care for an increasing number of people in hospital and at home. After all, the increase in lifestyle diseases such as diabetes, cardiovascular problems or respiratory diseases is putting a strain on the healthcare system.

Researchers led by Simon Annaheim from Empa's Biomimetic Membranes and Textiles laboratory in St. Gallen are therefore developing sensors for monitoring health status, for example for a diagnostic belt based on flexible sensors with electrically conductive or light-conducting fibers. However, other, less technical properties can be decisive for the acceptance of continuous medical monitoring by patients. For example, the sensors must be comfortable to wear and easy to handle – and ideally also look good.

This aspect is addressed by a cooperation between the Textile and Design Alliance, or TaDA for short, in eastern Switzerland and Empa. The project showed how textile sensors can be integrated into garments. In addition to technical reliability and a high level of comfort, another focus was on the design of the garments. The interdisciplinary TaDA designer Laura Deschl worked electrically conductive fibers into a shirt that change their resistance depending on how much they are stretched. This allows the shirt to monitor how much the subjects' chest and abdomen rise and fall while they breathe, allowing conclusions to be drawn about breathing activity. Continuous monitoring of respiratory activity is of particular interest for patients during the recovery phase after surgery and for patients who are being treated with painkillers. Such a shirt could also be helpful for patients with breathing problems such as sleep apnea or asthma. Moreover, Deschl embroidered electrically conductive fibers from Empa into the shirt, which are needed to connect to the measuring device and were visually integrated into the shirt's design pattern.

The Textile and Design Alliance is a pilot program of the cultural promotion of the cantons of Appenzell Ausserrhoden, St.Gallen and Thurgau to promote cooperation between creative artists from all over the world and the textile industry. Through international calls for proposals, cultural workers from all disciplines are invited to spend three months working in the textile industry in eastern Switzerland. The TaDA network comprises 13 cooperation partners – textile companies, cultural, research and educational institutions – and thus offers the creative artists direct access to highly specialized know-how and technical means of production in order to work, research and experiment on their textile projects on site. This artistic creativity is in turn made available to the partners as innovative potential.

Photo: Marlies Thurnheer
25.10.2022

Textile Electrodes for Medtech Applications

  • Successful financing round for Empa spin-off Nahtlos

Nahtlos, an Empa spin-off, has received 1 million Swiss francs in a first round of financing from a network of business angels from Switzerland and Liechtenstein and from the Startfeld Foundation. With this funding, Nahtlos aims to drive the market entry of its newly developed textile-based electrode for medical applications.

  • Successful financing round for Empa spin-off Nahtlos

Nahtlos, an Empa spin-off, has received 1 million Swiss francs in a first round of financing from a network of business angels from Switzerland and Liechtenstein and from the Startfeld Foundation. With this funding, Nahtlos aims to drive the market entry of its newly developed textile-based electrode for medical applications.

Over the past two years, Nahtlos, an Empa spin-off, has developed novel textile-based electrodes for recording heart activity (electrocardiogram, ECG) – for example, to detect atrial fibrillation – and for electrostimulation therapies, for example, to preserve the muscle mass in paralyzed patients. Textile-based electrodes enable gentle and skin-friendly application, even if the electrodes have to be worn for several days or even weeks. The textile electrode is thus the first alternative to the gel electrode, which was developed 60 years ago and is still considered the standard for medical applications today.

Nahtlos founder and former Empa researcher Michel Schmid and co-founder and business economist José Näf have further developed the textile-based technology, which was developed and patented at Empa in various projects funded by Innosuisse, among others. The goal was to produce a product for long-term medical applications that reliably records ECG signals for up to several weeks, achieves a high level of patient acceptance and is cost-effective for the healthcare provider. Today, the patent for textile-based electrode technology is owned by Nahtlos after reaching a milestone.

Financing by business angels and Startfeld Foundation
Schmid and Näf were looking for investors to certify their product, set up production and develop the market – and recently found what they were looking for: In a seed financing round, the two young entrepreneurs were able to acquire 1 million Swiss francs from business angels from Switzerland and Liechtenstein as well as from the Startfeld Foundation. Nahtlos was supported in setting up its company by Startfeld, the start-up promotion arm of Switzerland Innovation Park Ost (SIP Ost), in the form of coaching, consulting and early-stage financing. Nahtlos is also based in the Innovation Park Ost, where innovations are initiated and accelerated through collaboration between start-ups, companies, universities and research institutions.

Together with Empa and Nahtlos, SIP Ost was present at OLMA this year. Visitors could learn live and on the spot about Empa's research activities in the field of Digital Health as well as about the Nahtlos technology and its textile electrodes for health monitoring.

(c) Empa
05.04.2022

In the heat of the wound: Smart bandage

A bandage that releases medication as soon as an infection starts in a wound could treat injuries more efficiently. Empa researchers are currently working on polymer fibers that soften as soon as the environment heats up due to an infection, thereby releasing antimicrobial drugs.

It is not possible to tell from the outside whether a wound will heal without problems under the dressing or whether bacteria will penetrate the injured tissue and ignite an inflammation. To be on the safe side, disinfectant ointments or antibiotics are applied to the wound before the dressing is applied. However, these preventive measures are not necessary in every case. Thus, medications are wasted and wounds are over-treated.

A bandage that releases medication as soon as an infection starts in a wound could treat injuries more efficiently. Empa researchers are currently working on polymer fibers that soften as soon as the environment heats up due to an infection, thereby releasing antimicrobial drugs.

It is not possible to tell from the outside whether a wound will heal without problems under the dressing or whether bacteria will penetrate the injured tissue and ignite an inflammation. To be on the safe side, disinfectant ointments or antibiotics are applied to the wound before the dressing is applied. However, these preventive measures are not necessary in every case. Thus, medications are wasted and wounds are over-treated.

Even worse, the wasteful use of antibiotics promotes the emergence of multi-resistant germs, which are an immense problem in global healthcare. Empa researchers at the two Empa laboratories Biointerfaces and Biomimetic Membranes and Textiles in St. Gallen want to change this. They are developing a dressing that autonomously administers antibacterial drugs only when they are really needed.

The idea of the interdisciplinary team led by Qun Ren and Fei Pan: The dressing should be "loaded" with drugs and react to environmental stimuli. "In this way, wounds could be treated as needed at exactly the right moment," explains Fei Pan. As an environmental stimulus, the team chose a well-known effect: the rise in temperature in an infected, inflamed wound.

Now the team had to design a material that would react appropriately to this increase in temperature. For this purpose, a skin-compatible polymer composite was developed made of several components: acrylic glass (polymethyl methacrylate, or PMMA), which is used, for example, for eyeglass lenses and in the textile industry, and Eudragit, a biocompatible polymer mixture that is used, for example, to coat pills. Electrospinning was used to process the polymer mixture into a fine membrane of nanofibers. Finally, octenidine was encapsulated in the nanofibers as a medically active component. Octenidine is a disinfectant that acts quickly against bacteria, fungi and some viruses. In healthcare, it can be used on the skin, on mucous membranes and for wound disinfection.

Signs of inflammation as triggers
As early as in the ancient world, the Greek physician Galen described the signs of inflammation. The five Latin terms are still valid today: dolor (pain), calor (heat), rubor (redness), tumor (swelling) and functio laesa (impaired function) stand for the classic indications of inflammation. In an infected skin wound, local warmth can be as high as five degrees. This temperature difference can be used as a trigger: Suitable materials change their consistency in this range and can release therapeutic substances.

Shattering glove
"In order for the membrane to act as a "smart bandage" and actually release the disinfectant when the wound heats up due to an infection, we put together the polymer mixture of PMMA and Eudragit in such a way that we could adjust the glass transition temperature accordingly," says Fei Pan. This is the temperature, at which a polymer changes from a solid consistency to a rubbery, toughened state. Figuratively, the effect is often described in reverse: If you put a rubber glove in liquid nitrogen at –196 degrees, it changes its consistency and becomes so hard that you can shatter it like glass with one blow.

The desired glass transition temperature of the polymer membrane, on the other hand, was in the range of 37 degrees. When inflammation kicks in and the skin heats up above its normal temperature of 32 to 34 degrees, the polymer changes from its solid to a softer state. In laboratory experiments, the team observed the disinfectant being released from the polymer at 37 degrees – but not at 32 degrees. Another advantage: The process is reversible and can be repeated up to five times, as the process always "switches itself off" when it cools down. Following these promising initial tests, the Empa researchers now want to fine-tune the effect. Instead of a temperature range of four to five degrees, the smart bandage should already switch on and off at smaller temperature differences.

Smart and unsparing
To investigate the efficacy of the nanofiber membranes against wound germs, further laboratory experiments are now in the pipeline. Team leader Qun Ren has long been concerned with germs that nestle in the interface between surfaces and the environment, such as on a skin wound. "In this biological setting, a kind of no man's land between the body and the dressing material, bacteria find a perfect biological niche," says the Empa researcher. Infectious agents such as staphylococci or Pseudomonas bacteria can cause severe wound healing disorders. It was precisely these wound germs that the team allowed to become acquainted with the smart dressing in the Petri dish. And indeed: The number of bacteria was reduced roughly 1000-fold when octenidine was released from the smart dressing. "With octenidine, we have achieved a proof of principle for controlled drug release by an external stimulus," said Qun Ren. In future, she said, the technology could be applied to other types of drugs, increasing the efficiency and precision in their dosage.

The smart dressing
Empa researchers are working in interdisciplinary teams on various approaches to improve medical wound treatment. For example, liquid sensors on the outside of the dressing are to make it visible when a wound is healing poorly by changing their color. Critical glucose and pH values serve as biomarkers.

To enable bacterial infections to be contained directly in the wound, the researchers are also working on a polymer foam loaded with anti-inflammatory substances and on a skin-friendly membrane made of plant material. The cellulose membrane is equipped with antimicrobial protein elements and kills bacteria extremely efficiently in laboratory tests.

Moreover, digitalization can achieve more economical and efficient dosages in wound care: Empa researchers are developing digital twins of the skin that allow control and prediction of the course of a therapy using real-time modeling.

Further information:
Prof. Dr. Katharina
Maniura Biointerfaces
Phone +41 58 765 74 47
Katharina.Maniura@empa.ch

Prof. Dr. René Rossi
Biomimetic Membranes and Textiles
Phone +41 58 765 77 65
Rene.rossi@empa.ch

Source:

EMPA, Andrea Six

Photo: pixabay
15.02.2022

Advanced Fibers: When damaged ropes change color

High-performance fibres that have been exposed to high temperatures usually lose their mechanical properties undetected and, in the worst case, can tear precisely when lives depend on them. For example, safety ropes used by fire brigades or suspension ropes for heavy loads on construction sites. Empa researchers have now developed a coating that changes color when exposed to high temperatures through friction or fire.

The firefighter runs into the burning building and systematically searches room by room for people in need of rescue. Attached to him is a safety rope at the other end of which his colleagues are waiting outside in front of the building. In an emergency - should he lose consciousness for any reason - they can pull him out of the building or follow him into the building for rescue. However, if this rope has been exposed to excessive heat during previous operations, it may tear apart. This means danger to life!

High-performance fibres that have been exposed to high temperatures usually lose their mechanical properties undetected and, in the worst case, can tear precisely when lives depend on them. For example, safety ropes used by fire brigades or suspension ropes for heavy loads on construction sites. Empa researchers have now developed a coating that changes color when exposed to high temperatures through friction or fire.

The firefighter runs into the burning building and systematically searches room by room for people in need of rescue. Attached to him is a safety rope at the other end of which his colleagues are waiting outside in front of the building. In an emergency - should he lose consciousness for any reason - they can pull him out of the building or follow him into the building for rescue. However, if this rope has been exposed to excessive heat during previous operations, it may tear apart. This means danger to life!

And up to now there has been no way of noticing this damage to the rope. 2021 a team of researchers from Empa and ETH Zurich has developed a coating which changes color due to the physical reaction with heat, thus clearly indicating whether a rope will continue to provide the safety it promises in the future.

Researchers from ETH Zurich and Empa developed a coating system in 2018 as part of a Master's thesis, which the Empa team was now able to apply to fibers. "It was a process involving several steps," says Dirk Hegemann from Empa's Advances Fibers lab. The first coatings only worked on smooth surfaces, so the method first had to be adapted so that it would also work on curved surfaces. Empa has extensive know-how in the coating of fibers - Hegemann and his team have already developed electrically conductive fibers in the past. The so-called sputtering process has now also been successfully applied to the latest coating.

Three layers are required to ensure that the fiber actually changes color when heated. The researchers apply silver to the fibre itself, in this case PET (i.e. polyester) and VectranTM, a high-tech fibre. This serves as a reflector - in other words, as a metallic base layer. This is followed by an intermediate layer of titanium nitrogen oxide, which ensures that the silver remains stable. And only then follows the amorphous layer that causes the color change: Germanium-antimony tellurium (GST), which is just 20 nanometers thick. When this layer is exposed to elevated temperatures, it crystallizes, changing the color from blue to white. The colour change is based on a physical phenomenon known as interference. Two different waves (e.g. light) meet and amplify or weaken each other. Depending on the chemical composition of the temperature-sensitive layer, this color change can be adjusted to a temperature range between 100 and 400 degrees and thus adapted to the mechanical properties of the fiber type.

Tailor-made solutions
The possible areas of application for the colour-changing fibres are still open, and Hegemann is currently looking for possible project partners. In addition to safety equipment for firefighters or mountaineers, the fibres can also be used for load ropes in production facilities, on construction sites, etc. In any case, research on the subject is far from complete. At present, it is not yet possible to store the fibers for long periods of time without losing their functionality. "Unfortunately, the phase-change materials oxidize over the course of a few months," says Hegemann. This means that the corresponding phase change - crystallization - no longer takes place, even with heat, and the rope thus loses its "warning signal". In any case, it has been proven that the principle works, and durability is a topic for future research, says Hegemann. "As soon as the first partners from industry register their interest in our own products, the fibers can be further optimized according to their needs".

Information:
Dr. Dirk Hegemann
Advanced Fibers
Tel. +41 58 765 7268
Dirk.Hegemann@empa.ch

More information:
Empa Fibers Ropes temperature
Source:

EMPA, Andrea Six

(c) Empa
08.02.2022

Early detection of dementia with a textile belt

Alzheimer's and other dementias are among the most widespread diseases today. Diagnosis is complex and can often only be established with certainty late in the course of the disease. A team of Empa researchers, together with clinical partners, is now developing a new diagnostic tool that can detect the first signs of neurodegenerative changes using a sensor belt.

Forgetfulness and confusion can be signs of a currently incurable ailment: Alzheimer's disease. It is the most common form of dementia that currently affect around 50 million people worldwide. It mainly afflicts older people. The fact that this number will increase sharply in the future is therefore also related to the general increase in life expectancy.

Alzheimer's and other dementias are among the most widespread diseases today. Diagnosis is complex and can often only be established with certainty late in the course of the disease. A team of Empa researchers, together with clinical partners, is now developing a new diagnostic tool that can detect the first signs of neurodegenerative changes using a sensor belt.

Forgetfulness and confusion can be signs of a currently incurable ailment: Alzheimer's disease. It is the most common form of dementia that currently affect around 50 million people worldwide. It mainly afflicts older people. The fact that this number will increase sharply in the future is therefore also related to the general increase in life expectancy.

If dementia is suspected, neuropsychological examinations, laboratory tests and demanding procedures in the hospital are required. However, the first neurodegenerative changes in the brain occur decades before a reduced cognitive ability becomes apparent. Currently, these can only be detected by expensive or invasive procedures. These methods are thus not suitable for extensive early screenings on a larger scale. Empa researchers are working with partners from the Cantonal Hospital and the Geriatric Clinic in St. Gallen on a non-invasive diagnostic method that detects the early processes of dementia.

Signs in the unconscious
For the new method, the researchers Patrick Eggenberger and Simon Annaheim from Empa's Biomimetic Membranes and Textiles lab in St. Gallen relied on a sensor belt that has already been used successfully for ECG measurements and has now been equipped with sensors for other relevant parameters such as body temperature and gait pattern. This is because long before memory starts to deteriorate in dementia, subtle changes appear in the brain, which are expressed through unconscious bodily reactions.

These changes can only be recorded precisely when measurements are taken over a longer period of time, though. "It should be possible to integrate the long-term measurements into everyday life," explains Simon Annaheim. Skin-friendly and comfortable monitoring systems are essential for measurements that are suitable for everyday use. The diagnostic belt is therefore based on flexible sensors with electrically conductive or light-conducting fibers as well as sensors for motion and temperature measurement.

To enable such long-term measurements to be used for monitoring neurocognitive health, the researchers are integrating the collected data into in-house developed mathematical models. The goal: an early warning system that can estimate the progression of cognitive impairment. Another advantage is that the data measurements can be integrated into telemonitoring solutions and can thus improve patient care in their familiar environment.

Suspicious monotony
The human body is able to keep its temperature constant in a range of 1 degree Celsius. The values naturally oscillate in the course of the day. This daily rhythm changes with age and is conspicuous in neurodegenerative diseases such as dementia or Parkinson's disease. In Alzheimer's patients, for example, the core body temperature is elevated by up to 0.2 degrees Celsius. At the same time, the spikes in daily temperature fluctuations are dampened.

In a study, the researchers have now been able to show that altered skin temperature readings measured with the sensor belt actually provide an indication of the cognitive performance of test subjects – and can do so well before dementia develops. The test subjects in the study included healthy people with or without mild brain impairment. This mild cognitive impairment (MCI) does not represent a disability in everyday life, but it is considered a possible precursor to Alzheimer's disease. The subjects took part in long-term measurements and neuropsychological tests. It was found that a lower body temperature, which fluctuated more throughout the day, was linked to a better cognitive performance. In individuals with MCI, body temperature varied less and was slightly elevated overall.

The heartbeat is also subject to natural variations that show how our nervous system adapts to sudden challenges. The small silence between two heartbeats, about one second in duration, has great significance for our health: If this pause always remains the same, our nervous system is not at its best.

A study by researchers from ETH Zurich determined that poorer measurements in older, healthy people can be improved within six months through cognitive-motor dance training. In these "exergames," the test subjects imitated sequences of steps from a video. In contrast, participants who instead only trained in straight lines on a treadmill, but also trained their memory, benefited less.

"The point is to intervene early with appropriate training as soon as the first negative signs can be measured," says Patrick Eggenberger. "With our sensor system, any improvements in cognitive performance can be tracked through movement-based forms of therapy." Studies with long-term monitoring will now be used to clarify how the sensor measurements can be used to predict the progression of mild brain disorders.

Further information
Dr. Simon Annaheim
Biomimetic Membranes and Textiles   
Phone +41 58 765 77 68
Simon.Annaheim@empa.ch

More information:
Empa Membrane Medical & Healthcare
Source:

EMPA, Andrea Six

Photo: pixabay, Hilary Clark
01.02.2022

Cotton Fibers 2.0: Fireproof and comfortable

A new chemical process developed by Empa turns cotton into a fire-resistant fabric, that nevertheless retains the skin-friendly properties of cotton.

Conventional flame retardant cotton textiles suffer from release of formaldehyde and are uncomfortable to wear. Empa scientists managed to circumvent this problem by creating a physically and chemically independent network of flame retardants inside the fibers. This approach retains the inherently positive properties of cotton fibers, which account for three-quarters of the world's demand for natural fibers in clothing and home textiles. Cotton is skin-friendly because it can absorb considerable amounts of water and maintain a favorable microclimate on the skin.

A new chemical process developed by Empa turns cotton into a fire-resistant fabric, that nevertheless retains the skin-friendly properties of cotton.

Conventional flame retardant cotton textiles suffer from release of formaldehyde and are uncomfortable to wear. Empa scientists managed to circumvent this problem by creating a physically and chemically independent network of flame retardants inside the fibers. This approach retains the inherently positive properties of cotton fibers, which account for three-quarters of the world's demand for natural fibers in clothing and home textiles. Cotton is skin-friendly because it can absorb considerable amounts of water and maintain a favorable microclimate on the skin.

For firefighters and other emergency service personnel, protective clothing provides the most important barrier. For such purposes, cotton is mainly used as an inner textile layer that needs additional properties: For example, it must be fireproof or protect against biological contaminants. Nevertheless, it should not be hydrophobic, which would create an uncomfortable microclimate. These additional properties can be built into the cotton fibers by suitable chemical modifications.

Durability vs. toxicity
"Until now, it has always taken a compromise to make cotton fireproof," says Sabyasachi Gaan, a chemist and polymer expert who works at Empa's Advanced Fibers lab. Wash-durable flame retardant cotton in industry is produced by treating the fabric with flame retardants, which chemically links to the cellulose in the cotton. Currently, the textile industry has no other choice than to utilize formaldehyde-based chemicals – and formaldehyde is classified as a carcinogen. This has been an unsolved problem for decades. While formaldehyde-based flame retardant treatments are durable, they have additional drawbacks: The -OH groups of cellulose are chemically blocked, which considerably reduces the capability of cotton to absorb water, which results in an uncomfortable textile.

Gaan knows the chemistry of cotton fibers well and has spent many years at Empa developing flame retardants based on phosphorus chemistry that are already used in many industrial applications. Now he has succeeded in finding an elegant and easy way to anchor phosphorous in form of an independent network inside the cotton.

Independent network between cotton fibers
Gaan and his colleagues Rashid Nazir, Dambarudhar Parida and Joel Borgstädt utilized a tri-functional phosphorous compound (trivinylphosphine oxide), which has the capability of reacting only with specifically added molecules (nitrogen compounds like piperazin) to form its own network inside cotton. This makes the cotton permanently fire-resistant without blocking the favorable -OH groups. In addition, the physical phosphine oxide network also likes water. This flame retardant treatment does not include carcinogenic formaldehyde, which would endanger textile workers during textile manufacturing. The phosphine oxide networks, thus formed, does not wash out: After 50 launderings, 95 percent of the flame retardant network is still present in the fabric.

To render additional protective functionalities to the flame retardant cotton developed at Empa, the researchers also incorporated in situ generated silver nanoparticles inside the fabric. This works nicely in a one-step process together with generating the phosphine oxide networks. Silver nanoparticles provide the fiber with antimicrobial properties and survive 50 laundry cycles, too.

A high-tech solution from the pressure cooker
"We have used a simple approach to fix the phosphine oxide networks inside the cellulose," Gaan says. "For our lab experiments, we first treated the cotton with an aqueous solution of phosphorus and nitrogen compounds and then steamed it in a readily available pressure cooker to facilitate the crosslinking reaction of the phosphorus and the nitrogen molecules." The application process is compatible with equipment used in the textile industry. "Steaming textiles after dyeing, printing and finishing is a normal step in textile industry. So it doesn't require an additional investment to apply our process," states the Empa chemist.

Meanwhile, this newly developed phosphorus chemistry and its application is protected by a patent application. "Two important hurdles remain," Gaan says. "For future commercialization we need to find a suitable chemical manufacturer who can produce and supply trivinylphosphine oxide. In addition, trivinylphosphine oxide has to be REACH-registered in Europe."

Contact:
Dr. Sabyasachi Gaan
Advanced Fibers
Phone: +41 58 765 7611
sabyasachi.gaan@empa.ch
 
Contact:
Prof. Dr. Manfred Heuberger
Advanced Fibers
Phone: +41 58 765 7878
manfred.heuberger@empa.ch

A gel that releases drugs
The novel phosphorus chemistry can also be used to develop other materials, e.g. to make hydrogels that can release drugs upon changes in pH. Such gels could find application in treating wounds that heal slowly. In such wounds, the pH of the skin surface increases and the new phosphorus-based gels can be triggered to release medication or a dye that alerts doctors and nurses to the problem. Empa has also patented the production of such hydrogels.

Source:

EMPA, Rainer Klose

(c) Schoeller Textil AG
18.01.2022

A jacket from a jacket from a jacket ...

Manufacture, wear, wash, incinerate: This typical life cycle of garments, which pollutes the environment, is to be changed in the future – towards principles of circular economy with recycling at its core. Using an outdoor jacket made from PET bottles and recycled materials, Empa researchers have investigated whether the product actually delivers what the idea promises.

At first glance, it's a normal rain jacket: three layers of polyester, a lining on the inside, a water vapor-permeable membrane on top and water-repellent fabric on the outside, with a hood. But the zipper makes you wonder. Instead of ending at collar height, it pulls up over the forehead ... – who would pull it that far?

Manufacture, wear, wash, incinerate: This typical life cycle of garments, which pollutes the environment, is to be changed in the future – towards principles of circular economy with recycling at its core. Using an outdoor jacket made from PET bottles and recycled materials, Empa researchers have investigated whether the product actually delivers what the idea promises.

At first glance, it's a normal rain jacket: three layers of polyester, a lining on the inside, a water vapor-permeable membrane on top and water-repellent fabric on the outside, with a hood. But the zipper makes you wonder. Instead of ending at collar height, it pulls up over the forehead ... – who would pull it that far?

The explanation is given by Annette Mark from textile manufacturer BTK Europe, who contributed to this product. The zipper is intended to be an eye-catcher – and is primarily for recycling: Sewn tight with a thread that dissolves in boiling water, it is easier to remove than two fasteners. "Pull once and you're done," says the expert on textiles and recycling. The light green color is also due to recycling: The raw material, a granule made from a mixture of different but single-variety textiles, is dark green – and melting and spinning out the material for new yarns lightens it.

Circular economy within textile industry
Magnetic buttons, seams, hems: Every detail of the jacket follows the Design2Recycle approach, as it says on the Wear2wear website. Six companies from Europe's textile industry have joined forces in this consortium to promote circular economy. After all, more than 70 percent of all textiles produced worldwide end up in landfills or incinerators without being recycled.

How can circular economy be acheived in this industry? A team from Empa's Technology and Society lab took a closer look at the jacket and its environmental impact using life cycle analyses over a four-year period of use; including washing it three times. The candidates: a jacket produced without circular economy methods, the "starter version" of the jacket available since 2019 in blue – with an outer layer made of polyester derived from used PET bottles – and the green version from the subsequent recycling process, in which unavoidable material losses are replaced by new polyester.

The researchers' analyses show that the recycled products perform better – in eleven environmental risk categories, including global warming, toxicity to ecosystems and water scarcity. There are strikingly large advantages in air pollution, for example, because fewer pollutants are released without incineration, as well as in water scarcity, especially for the green jacket after the first recycling "loop," for which PET bottles are no longer used.

Other insights from the analyses: In terms of greenhouse effect, the maximum benefit is a good 30 percent. And the use of PET bottles does not bring any major ecological benefits. What is decisive, on the other hand, is the number of recycling cycles to produce new jackets: The balance improves from jacket to jacket – provided the quality of the polyester remains high enough.

In practice, this is challenging, as Mark explains: "Depending on the origin, the raw material sometimes differs significantly." If the fibers have been coated with certain additives, the nozzles of the spinning machines can become clogged. And in general, the quality decreases with the number of recycling cycles: more irregular structures of the yarn and lower strength.

Annette Mark's conclusion on the Empa analyses: "very realistic" and useful for improvements. "The cooperation was very good," she says, "full transparency and no compromises." The researchers also found the collaboration fruitful. "Open collaboration between science and industry is enormously important," says former team member Gregor Braun, who has since left Empa and now works as a consultant for sustainability. "Sustainability and circular economy can work well together."

Will the jacket become a market success? "The textile industry is in a state of upheaval. A rethinking is taking place right now that we shouldn't miss," says Annette Mark. But large corporations that are already developing similar products "have completely different options." After all, talks are underway with a sportswear manufacturer – for a fleece jacket, for which the Empa findings could also be useful.

Microplastic fibers from textiles
Textiles made of polyester are making the headlines because of the release microplastic fibers – for instance, during washing – which is sometimes considered a threat to humans and the environment. Empa experts have studied the formation and release of microplastic fibers. Their results: Fibers are released primarily at the fabric's edges. Their formation and release depends, among other things, on the type of fiber, surface treatment and the type of cutting. Compared to other textiles, significantly fewer fibers are released from laser-cut textiles during washing. Empa is conducting studies with industrial partners to further reduce the formation of these fibers during textile production. In Swiss wastewater treatment plants, however, microfibers are largely removed from wastewater and incinerated with the sludge.

More information:
Empa PET Recycling polyester
Source:

EMPA, Norbert Raabe

(c) Claudia Bitzer
05.01.2021

Telling good Stories - PR Challenges of the medium-sized Textile Industry

Interview with Claudia Bitzer, Owner Bitzer PR, Albstadt

The past year was not only a big economic challenge for many companies, but also in terms of communication - whether in advertising or in PR topics - new ground had to be broken. Contact restrictions up to a strict lockdown, the cancellation of many trade fairs, congresses or other event formats made it necessary to rethink.

Textination discussed it with Claudia Bitzer, owner of the PR agency of the same name in Albstadt, Baden-Württemberg. Her customers include medium-sized companies from the textile and clothing industry as well as machinery manufacturers, public clients and the media.

Interview with Claudia Bitzer, Owner Bitzer PR, Albstadt

The past year was not only a big economic challenge for many companies, but also in terms of communication - whether in advertising or in PR topics - new ground had to be broken. Contact restrictions up to a strict lockdown, the cancellation of many trade fairs, congresses or other event formats made it necessary to rethink.

Textination discussed it with Claudia Bitzer, owner of the PR agency of the same name in Albstadt, Baden-Württemberg. Her customers include medium-sized companies from the textile and clothing industry as well as machinery manufacturers, public clients and the media.

With your PR agency based in Albstadt, you have also been busy in the textile industry for a good 5 years. If you had to introduce yourself in 100 words to someone who doesn't know you: Why did you decide to become your own boss after working for an agency, and what distinguishes your work?
Actually, self-employment gave me a call: An acquaintance suggested that I take over the communication for his employer, a textile machine manufacturer in the Alb, as a freelancer. When I was on the phone, I had our ten-day-old son in my arms. I was also a PR consultant at Ketchum in Stuttgart. Because I was curious, I got to grips with the matter over the next few months. With success: The textile machines have turned out to be surprisingly tangible products, after all, they make the clothes that we wear on our bodies every day. From this my access to the textile industry developed, which I would call my home base today.

Because I serve various companies along the textile chain, I have an overall view of the industry and can offer overarching stories with different perspectives. I also have a weakness for complex, "dusty" topics, regardless of the industry. I can delve in them with devotion in order to present them vividly. That's why I would call myself a content specialist.

In addition to German, English, Spanish and French, you speak Swabian fluently. Why is it important to have regional roots when you work for export-oriented companies in the textile industry in Baden-Württemberg?
You got that about fluent Swabian from my website, right? (Laughs) But yes, it is very helpful if you can feel whether "gschwind" – Swabian for “pretty fast” - tolerates a delay or has to be dealt with immediately.

I think the Swabian is really important in terms of the mentality behind it. I grew up in the Alb, my father ran a medium-sized company of his own. I understand many things without a customer having to explain them to me.

For example, modesty in relation to one's own person. Especially in long-established family businesses, the owners play an important role. They bear a great responsibility, both in the company and at their location. Nevertheless, the focus is always on the entrepreneurial performance, the product that, manufactured somewhere in the Swabian province, can keep up with the German, European or global competition. That doesn't happen by itself, but requires courage, entrepreneurial spirit and a great deal of openness to new things, and that fascinates me. I also often notice that by the passion, that these leading family businesses bring with them, I am carried away.

Breaking new ground means being willing to make decisions, overcoming fears - and thus also having the courage to fail. Not every project can succeed. In retrospect, which entrepreneurial decision are you particularly glad to have made?
Apart from being self-employed? The first corona lockdown with home schooling and closed daycare centers was a big challenge. On the one hand, I was relieved that it became quieter on the customer side between the end of March and the beginning of June, otherwise it would not have been feasible either professionally or in terms of family. On the other hand, this silence scared me and I often asked myself whether self-employment was the right way to go.

In early summer, when the situation on all sides had stabilized somewhat, I tackled the problem head on: I looked for co-working spaces and took extensive further training in online marketing. Being honest, of course, these were business decisions. Fortunately, they are already paying off, even if I may sit alone in the office for now.

Is there any work you are particularly proud of? Which story moved you beyond normal and which thematic challenges do you love?
One project that I fondly remember is the communication referring to a repdigit anniversary one of my clients was celebrating. For this, I first put 111 years of the company’s history down on paper in weeks, no, months of archive work. Because I had delved so deeply into the subject, I came up with many ideas for the messages of the anniversary celebration. Fortunately, the client was quickly convinced. At some point we had a signet, a slogan and a really good story for the anniversary. Incidentally, we still benefit from the numerous proof points we worked out for the occasion in our product and corporate communications today.

In addition, the project has naturally deepened the relationship with this client. I also work closely with the advertising agency that accompanied the anniversary communication. I consider such long-term partnerships as a great asset.

Have the messages you want or need to communicate for your clients changed in Corona times? And what was the focus of your work in 2020?
Unsurprisingly, the focus of work in 2020 was on online communication. For almost all of my customers we will start planning and implementing new measures in this area in the coming year.

As for the messages, little has altered. This is certainly due to the fact that the meta-topics have remained the same. Take sustainability, definitely a long-running favorite in the textile industry, and the sub-topic regionality. In contrast to previous crises, the Corona pandemic has not sidelined these approaches, but intensified them because it has shown us how dependent we are on production abroad. The same applies to the issues of transparency and quality.

Precisely because the themes have stayed the same, the crucial part for me is to find a unique story within these permanent themes so as not to disappear into the big river. That requires empathy, creativity - and a good portion of diligence.

Moving away from the simple advertising message to storytelling - what recommendation would you give medium-sized companies in general regarding their communication for the coming year? Are there any special features that the textile industry in particular should consider?
I think that will go in the direction of "We are still there, and even stronger than before". After all, the crisis demanded a lot from everyone. But it is always a productive phase, because when it comes to a head, it forces us to develop further that otherwise would not have been initiated or at least would have been initiated later. Therefore, it can represent a turning point, definitely for the better.

Take digitization, which is the most obvious approach: the crisis has given rise to a boost in this area; the online shop was or is to be expanded, the service is to become more digital.

Apart from that, there are certain individual changes in every company that the crisis has brought about. You can have the courage to name and tell them, because these are stories that interest everyone.

Goodbye Facebook - good morning TikTok. Which social media platforms do you recommend to your clients and under what conditions should medium-sized companies get involved?
TikTok has so far been more of a topic that I discuss with my daughter, who is almost 12 years old. But seriously: I recently read in a study published by Hootsuite that at the beginning of 2020, less than ten percent of Germans were using TikTok. On Facebook, the user share is still over 60 percent. For that reason alone, we shouldn't simply dismiss Facebook.

When I discuss the topic of social media with my clients, it is important for me not to think from the channels. Sure, it's tempting, but other questions should be asked at the beginning: What is the long-term goal of the social media activities? What resources are available - and what budgets? By now it is well known that social media is an extensive field of activity in its own right, which ties up corresponding resources. In medium-sized businesses, where I rarely have access to a multi-headed marketing team, a solid strategy is the be-all and end-all. It must be very, very clear which target groups are to be addressed. Then I can talk about channels and choose the most important ones. This almost certainly includes LinkedIn and Xing, as well as Instagram and Facebook, the latter especially in an international environment. By the way, the evaluation is just as important, it tends to fall behind. The relationship between measured values and corporate goals is anything but trivial.

Trade fairs, events, press conferences and meetings - these have almost completely fallen by the wayside in 2020. How important do you consider face-to-face communication to be in the long term, and which channels and measures do you recommend to your customers to compensate for these losses?
Face-to-face contact remains important! Of course, we all realised last year that not every event has to be a face-to-face event. A video conference saves time and money and, with the right discipline, can be just as effective as a face-to-face meeting. Many service cases can also be solved by video telephony, no one has to travel around. I am therefore convinced that we will not return to the meeting in person culture we had before Corona, even if this will be possible again at some point.

That's why I advise my clients to take advantage of the digital opportunities that are opening up everywhere. At the moment, everyone is still a beginner, you can only learn. Take virtual trade fairs: This is a fundamentally different approach than the classic presence fair. There is no need for a large trade fair team that is ready from 6 a.m. to 8 p.m. There are no press appointments either. It is much more important to contact the visitors directly, i.e., to collect leads, to group the visitors and to stay in touch with them after the event by providing them with tailor-made content. Speaking of content: at the latest with such online events, it becomes clear how diverse content must be prepared. To pick up customers in the virtual space, you need graphics, videos, animations and much more.

Nevertheless, it will not work without direct, physical contact. I remain convinced that people buy from people. Video conferences work particularly well when the participants already know each other from real life. And the textile industry in particular thrives on haptics. I can never feel a yarn or a fabric digitally. Nor can I feel the production speed of a machine. With every revolution there is a slight breeze. You can't get that digitally.

 

The interview was conducted by Ines Chucholowius, CEO Textination GmbH

Cell cultures or microorganisms can already replace many animal experiments. This is even more successful if the technologies are integrated into suitable data models. Photo: EMPA
04.08.2020

Nanosafety Research without Animal Testing

  • Risk analyses for nanoparticles

In order to reduce the number of animal experiments in research, alternative methods are being sought. This is a particular challenge if the safety of substances that have hardly been studied is to be ensured, for instance, the completely new class of nanomaterials. To accomplish just that, Empa researchers are now combining test tube experiments with mathematical modelling.

  • Risk analyses for nanoparticles

In order to reduce the number of animal experiments in research, alternative methods are being sought. This is a particular challenge if the safety of substances that have hardly been studied is to be ensured, for instance, the completely new class of nanomaterials. To accomplish just that, Empa researchers are now combining test tube experiments with mathematical modelling.

They are already in use in, say, cosmetics and the textile industry: Nanoparticles in sun blockers protect us from sunburn, and clothing with silver nanoparticles slows down bacterial growth. But the use of these tiny ingredients is also linked to the responsibility of being able to exclude negative effects for health and the environment. Nanoparticles belong to the still poorly characterized class of nanomaterials, which are between one and 100 nanometers in size and have a wide range of applications, for example in exhaust gas catalytic converters, wall paints, plastics and in nanomedicine. As new and unusual as nanomaterials are, it is still not clear whether or not they pose any risks to humans or the environment.

This is where risk analyses and life cycle assessments (LCA) come into play, which used to rely strongly on animal experiments when it came to determining the harmful effects of a new substance, including toxicity. Today, research is required to reduce and replace animal experiments wherever possible. Over the past 30 years, this approach has led to a substantial drop in animal testing, particularly in toxicological tests. The experience gained with conventional chemicals cannot simply be transferred to novel substances such as nanoparticles, however. Empa scientists are now developing new approaches, which should allow another substantial reduction in animal testing while at the same time enabling the safe use of nanomaterials.

"We are currently developing a new, integrative approach to analyze the risks of nanoparticles and to perform life cycle assessments," says Beatrice Salieri from Empa's Technology and Society lab in St. Gallen. One new feature, and one which differs from conventional analyses, is that, in addition to the mode of action of the substance under investigation, further data is included, such as the exposure and fate of a particle in the human body, so that a more holistic view is incorporated into the risk assessment.

These risk analyses are based on the nanoparticles' biochemical properties in order to develop suitable laboratory experiments, for example with cell cultures. To make sure the results from the test tube ("in vitro") also apply to the conditions in the human body ("in vivo"), the researchers use mathematical models ("in silico"), which, for instance, rely on the harmfulness of a reference substance. "If two substances, such as silver nanoparticles and silver ions, act in the very same way, the potential hazard of the nanoparticles can be calculated from that," says Salieri.

But for laboratory studies on nanoparticles to be conclusive, a suitable model system must first be developed for each type of nanoparticle. "Substances that are inhaled are examined in experiments with human lung cells," explains Empa researcher Peter Wick who is heading the "Particles-Biology Interactions" lab in St. Gallen. On the other hand, intestinal or liver cells are used to simulate digestion in the body.

This not only determines the damaging dose of a nanoparticle in cell culture experiments, but also includes all biochemical properties in the risk analysis, such as shape, size, transport patterns and the binding – if any – to other molecules. For example, free silver ions in a cell culture medium are about 100 times more toxic than silver nanoparticles bound to proteins. Such comprehensive laboratory analyses are incorporated into so-called kinetic models, which, instead of a snapshot of a situation in the test tube, can depict the complete process of particle action.

Finally, with the aid of complex algorithms, the expected biological phenomena can be calculated from these data. "Instead of 'mixing in' an animal experiment every now and then, we can determine the potential risks of nanoparticles on the basis of parallelisms with well-known substances, new data from lab analyses and mathematical models," says Empa researcher Mathias Rösslein. In future, this might also enable us to realistically represent the interactions between different nanoparticles in the human body as well as the characteristics of certain patient groups, such as elderly people or patients with several diseases, the scientist adds.

As a result of these novel risk analyses for nanoparticles, the researchers also hope to accelerate the development and market approval of new nanomaterials. They are already being applied in the "Safegraph" project, one of the projects in the EU's "Graphene Flagship" initiative, in which Empa is involved as a partner. Risk analyses and LCA for the new "wonder material" graphene are still scarce. Empa researchers have recently been able to demonstrate initial safety analyses of graphene and graphene related materials in fundamental in vitro studies. In this way, projects such as Safegraph can now better identify potential health risks and environmental consequences of graphene, while at the same time reducing the number of animal experiments.

More information:
Empa nano particles
Source:

EMPA

Foto: Pixabay
07.04.2020

Natural textile sector responds to Corona with creativity and cooperation

While you can read everywhere that the fashion industry is on the verge of collapse and is demanding funding from the government, many textile and leather companies with an ethical background are actively and jointly working on creative solutions so to avoid closing.
It is now becoming clear that smaller sustainability pioneers have some advantages over the retail giants and big brands. Flexibility, a strong connection between suppliers and customers and credibility are now paying off.

While you can read everywhere that the fashion industry is on the verge of collapse and is demanding funding from the government, many textile and leather companies with an ethical background are actively and jointly working on creative solutions so to avoid closing.
It is now becoming clear that smaller sustainability pioneers have some advantages over the retail giants and big brands. Flexibility, a strong connection between suppliers and customers and credibility are now paying off.

Mobility is trump card
The precarious economic situation in the stationary retail sector forces companies to take new and creative paths. Close and emphatic customer loyalty and the flexibility of smaller shopkeepers pave the way. And the ideas and measures are manifold. Some redirect their goods to online trading, offer a delivery service.  Life videos from the shops, which present and explain the goods, or participation campaigns for consumers are further examples. Manufacturers and brands are also rethinking. For example, some companies are producing face masks to cushion the decline in sales somewhat, while others are shifting the short-term production focus to basic products that are easy to market online.
 
Supply chain safety
The leather and textile industry are currently not only facing the problem of falling sales. The fragile global markets, which supply raw materials and services for large corporations, are currently becoming a threat. If the economies in China and Bangladesh come to a standstill, the German fashion market will no longer be able to obtain sufficient goods in the short term. Companies that produce in Germany or in other economically stable countries are now at an advantage.  Some of the companies that purchase raw materials from abroad are already ordering them for the next production cycle, on the one hand to give the supplier a certain amount of security, and on the other hand to be prepared for the post Corona era.

Community spirit
An ethical business practice does not only mean acting in an environmentally and socially responsible manner with regard to supply chains. Credibility, trust and empathy are just as important now if the fashion industry does not want to lose itself in price dumping and fierce competition. The press talks about billion-dollar cancellations, corona bargains and bankruptcies. Many IVN members show that there is another way. Suppliers tell us that they are holding back orders until the end of April in order to give the trade some financial leeway. Retailers usually at least consult with their suppliers if they are unable to call up a complete order. Retailers with online shops spontaneously take in goods from friendly brands, even if the products do not fit into the company's own portfolio. Brands advertise their customers' sales channels in social media, orders are bundled. People talk to each other - the customer with the supplier, but also competitors with competitors.

Slow fashion
Conventional fashion is subject to extremely fast cycles - "fast fashion" is the keyword. To a lesser extent, the fashion industry at least follows the seasonal seasons. Currently, the spring collection is hanging in the shops and cannot be sold in June. This is no different for sustainable fashion. However, the fashion trends are less pronounced, so that the current merchandise can still be worn next spring. The sustainable consumer attaches somewhat less importance to the fashion aspect and green fashion is fashionable but also tends to be more timeless than conventional fashion.

The mood
Naturally, companies from the natural fashion scene are now also forced to reduce their operating costs if they want to survive. This means short-time work, and if the situation continues for a longer period of time, this will certainly include layoffs. And of course, all niche market players are also deeply concerned. But whoever we have spoken to so far, we hear stories of opportunity, gratitude and activity.
Some see an opportunity in involuntary pauses - for example, this forced pause is certainly beneficial to climate protection. There is a very real chance also, that the fashion cycle can now be shifted back a month and thus be brought back into line with the real situation.

Many IVN members are grateful, for example, that they are based in Germany. The health care system is at least still stable at present and the black zero enables our government to set up a rescue fund. Many are also grateful for the solidarity and trust that is shown to them. From the end consumer to the business partner to the landlord, who would rather reduce or suspend a rent claim than lose a long-term tenant.
The mood is battered, but not yet in the basement. It is to be hoped that everyone will soon be able to resume their economic activities in the normal framework and that the privileges and advantages enjoyed by the sustainable fashion industry will be sufficient to ensure that everyone comes through this crisis as unscathed as possible.

 

Source:

Internationaler Verband der Naturtextilwirtschaft e.V.

(c) Messe Frankfurt Exhibition GmbH
30.04.2019

SUSTAINABILITY A MAJOR TOPIC AT TECHTEXTIL AND TEXPROCESS

"Sustainability at Techtextil" and "Sustainability at Texprocess" are the two topics by which these leading international trade fairs for technical textiles and non-wovens, and for the processing of textile and flexible materials, will be explicitly turning their focus for the first time onto their exhibitors' approaches to sustainability. To this will be added a broad complementary programme on this topic. Among those contributing will be major players in the industry, such as Kering, Lenzing and Zalando.

"Sustainability at Techtextil" and "Sustainability at Texprocess" are the two topics by which these leading international trade fairs for technical textiles and non-wovens, and for the processing of textile and flexible materials, will be explicitly turning their focus for the first time onto their exhibitors' approaches to sustainability. To this will be added a broad complementary programme on this topic. Among those contributing will be major players in the industry, such as Kering, Lenzing and Zalando.

Fibres made of recycled polyester, bio-based high-tech textiles, waterconserving dyeing and finishing processes, functional and work clothing, using little or no solvents and adhesives: in the field of technical textiles, and when processing textile and flexible materials, more and more firms are adopting approaches to greater sustainability. Through "Sustainability and Techtextil" and "Sustainability at Texprocess" the leading international trade fairs, from 14 to 17 May, will be demonstrating exactly these approaches taken by their exhibitors. In addition, numerous event formats will be taking up the topic of sustainability at both fairs.

Fair guide for selected exhibitors
In the run-up to Techtextil and Texprocess exhibitors at both fairs were able to submit their approaches and evidence of their work on every aspect of sustainability to the fairs' organisers. An independent, international jury of experts on sustainability assessed the submissions, in accordance with the relevance and validity of current national and international product-sustainability labels, such as currently mainly Bluesign, Cradle-to-Cradle, EU Eco Label, ISO 14001, GOTS, GRS as well as SteP by Oeko-Tex.

Overall, 47 firms were selected, including 44 exhibitors at Techtextil and three at Texprocess. Visitors who are interested will find the selected firms in their own Fair Guide, which will be available at the Fair, via filter function under "Sustainability" in the online visitor search facility, and on both fairs' apps. In addition, the exhibitors so selected will be publicizing their participation at their exhibition stands.

Members of the international jury of experts: Chairman: Max Gilgenmann, Consulting Service International Ltd. (Germany and China); Claudia Som, Empa (Switzerland); Jan Laperre, Centexbel (Belgium); Heike Illing-Günther, Textile Institute of Saxony (Sächsisches Textilinstitut e.V., Germany); Karla Magruder, Fabrikology (USA); Lauren Zahringer, SAC Social Apparel Coalition (Netherlands).

Techtextil Forum featuring theme of sustainability
Taking "Towards sustainability" as its motto, the Techtextil Forum on 14 May between 11 a.m. and 3 p.m. will be providing a series of contributions devoted exclusively to sustainable textile innovations. Chaired by Braz Costa, managing director of the Portuguese technology centre CITEVE, among the topics on the programme will be: textile recycling (TWD Fibres, Velener Textil), sustainable construction with wool (Minet S.A., Romania), sustainable textile coatings (Centexbel), biopolymers (RWTH Aachen University), traceability of GMO-free cotton (Hohenstein Institute) and low-cost, bio-based carbon fibres (Jules Verne Research Institute, France).

Techtextil Innovation Award
For the first time the Techtextil Innovation Award will be presented to two firms in the category of sustainability. The winners will be announced and the awards presented on the first day of the fair during the opening ceremony. During the whole time of the fair visitors will also be able to find out about the prize-winners and their award-winning projects at the Techtextil Innovation Award Exhibition Area in Hall 4.2.

Texprocess Forum with branch of Fashionsustain Conference
Through a branch of Fashionsustain Berlin, Messe Frankfurt's conference on every aspect of sustainable textile innovations, the Texprocess Forum on the morning of the 14 May will be devoted exclusively to the theme of sustainability in the textile and fashion industries in all its aspects. The first keynote, "Sustainable innovation – a matter of survival", will come from Micke Magnusson, co-founder of the Swedish start-up We are Spindye. Next, posing the question "Is Sustainability the Key to Textile Innovations?", will come a discussion by leaders in the industry such as Clariant Plastics and Coatings, Indorama, Lenzing, Perpetual Global, Procalçado S.A., Kering und Zalando. Fashionsustain will be chaired among others by Karla Magruder, founder of Fabrikology International.

Innovation Roadshow features sustainable footwear production
Next at the Fashionsustain Conference fibre manufacturer Lenzing, knitting-machinery producer Santoni and shoe-component manufacturer Procalçado S.A. will be presenting the Innovation Roadshow, entitled "The Future of Eco-Conscious Footwear Manufacturing." The roadshow will be supported by the Messe Frankfurt Texpertise Network. It will feature examples of the sustainable production process of a shoe, thus demonstrating how a fundamental change to sustainability can already be a reality in the fashion and textile industries today. The panel will be chaired by Marte Hentschel, founder of Sourcebook, the B2B network for the fashion industry.

EuroShop 2017 © Messe Duesseldorf / ctillmann
18.10.2016

EUROSHOP 2017 – DISPLAY MANNEQUINS: REAL MOOD BOOSTERS!

  • Visual marketing increases in importance for offline retail in view of e-Commerce competitors
  • Display mannequins are in focus for this
  • Emotionalising is decisive
  • Individuality and flexibility are also demanded
  • There is a shift towards semi-abstract mannequins with regional and genre differences
  • Proportion of customised mannequins is rising
  • Sustainability remains an issue

EuroShop is one of those trade fairs always teeming with visual highlights. Guaranteed to present a special treat here is, of course, the Visual Merchandising Hall, the exhibition place of display mannequins and store window decorations. March 2017 will see Hall 11 of Düsseldorf Exhibition Centre (instead of Hall 4 previously), become a POS experience guaranteed to attract plenty of attention.

  • Visual marketing increases in importance for offline retail in view of e-Commerce competitors
  • Display mannequins are in focus for this
  • Emotionalising is decisive
  • Individuality and flexibility are also demanded
  • There is a shift towards semi-abstract mannequins with regional and genre differences
  • Proportion of customised mannequins is rising
  • Sustainability remains an issue

EuroShop is one of those trade fairs always teeming with visual highlights. Guaranteed to present a special treat here is, of course, the Visual Merchandising Hall, the exhibition place of display mannequins and store window decorations. March 2017 will see Hall 11 of Düsseldorf Exhibition Centre (instead of Hall 4 previously), become a POS experience guaranteed to attract plenty of attention. After all, in view of the e-Commerce competition, visual marketing and the resulting emotional, personalised appearance will become more and more important for bricks-and-mortar retailers. “Consumers’ emotional needs will become the overriding theme for EuroShop,” says Andreas Gesswein, CEO of Genesis Display from Auetal, with conviction.

Display mannequins hold special emotionalising potential. It is not by chance that Düsseldorf visual artist Domagoj Mrsic once presented them as “super heroes” in one of his stagings - as Superman and Wonder Woman, Batman and Catwoman, Spiderman and Spiderwoman. Provided the displays are done well mannequins are in a way real heroes. With their appearance, their posture, gestures and mimics they can really breathe life into shop windows and in-store decorations, serve as sales-promoting tools or arouse empathy, interest and curiosity. And if they are not just headless and very abstract they even give retail stores and brands a profile and signature style. With the power of their poses they send out a clear signal as to which target group is addressed, which degree of fashion and price range is served. Moreover, when arranged in groups, they can serve as story-tellers for passers-by. Unforgettable was the “Ugly’s” line of mannequins by supplier Hans Boodt, which mimicked “real-life” men rather than V-shaped boys with six packs. It included both a long, tall one and a short, fat one dressed in passion-killing underwear. “The new generation of mannequins will say more about the brand. They will participate in communicating more about each brand’s essential values and set them apart from the competition”, says Jean-Marc Mesguich, CEO of Window France headquartered in Carros.

The portfolio offered by the display mannequin industry is wide and varied: in addition to top-model lookalikes it features plus-size beauties, Europeans, Africans and Asians, the afore-mentioned super heroes and funny common people. Kissing couples feature alongside sumo wrestlers. In line with the motto "don't take yourself too seriously", vendors have long also included dogs and cats; and even chameleons since many mannequins prove to be true artists of disguise. “Cameleon”, for example, is a patented concept of Window France: Hundreds of eyes and lips are available to chose from, eye-lashes can be glued on, wigs attached/detached, different make-ups applied or the whole face can be replaced with the help of magnets – in brief, all it takes to ensure a constantly refreshed POS appearance. Add to this what is by now a huge range of colours and materials: surfaces from velvet and rubber are just as common these days as are metallic varnishes or concrete and copper coatings.     

In view of what has been presented over the past few years you may wonder what might come next. Although the majority of fashion retailers and brands have not nearly exploited the full potential already available today. In the past few years abstract mannequins were in highest demand. “They are fit for many applications and easy to handle, since no wigs or make-up have to be styled,” says Andreas Gesswein (Genesis Display) accounting for reasons and adds: “But they are also easier to copy and therefore available in every price segment.” In practice, efficiency sometimes clearly “overrides” emotion. “But when stores do not stand out with the image they project they do not prompt shoppers to enter either,” says Jean-Marc Mesguich (Window France). And for EuroShop 2017 Window France will definitely have far more in store than “exciting variations of the abstract theme”.

Faces are back again

The fact is: just like the fashion they are wearing, display mannequins follow trends. Triggered by a desire to cut a sharper profile and stronger expression, industry insiders have seen a trend towards semi-abstract mannequins. “A face is at least alluded to. Mannequins are less neutral and it becomes visible: Retailers want to make a statement again showing their true colours. There is a trend towards addressing target groups with a more high-profile message,” explains Cornel Klugmann, Country Manager for the D-A-CH region at Hans Boodt from the Dutch city of Zwijndrecht. Monica Ceruti, in charge of PR & Communication at Almax from Mariano Comense/Italy, agrees: “It is true that demand for abstract mannequins continues to be high but there is a clear trend towards more realistic facial characteristics. This includes such details as the application of eyelashes or wigs. And dynamic postures are also getting more popular again.”

Andreas Gesswein (Genesis Display) remarks: “Especially in the luxury segment we are registering stronger demand for more realistic mannequins with faces and emotional facial expressions that brands are looking for to stand out from the rest.” A trend that Jean-Marc Mesguich (Window France) confirms: “The Haute Couture brands have already abandoned the egghead in exchange for something that will have more impact and - more importantly - get people talking about their brand.” He adds: “The growing trend of viewing fashion and fashion windows online is pushing brands to make more attractive windows and to change their displays on a more regular basis.”

The days of faceless “eggheads” seem to be over. And above and beyond this? “The look and feel is becoming more and more high-end. White and grey are replacing darker shades, glossy replaces matt and aspirational looks with more charisma are more in demand,” says Cornel Klugmann (Hans Boodt). Monica Ceruti (Almax) sees great potential in “handcrafted looks”. This means torsos with and without arms with different materials for the individual components – pedestal, torso and head – and wood as well as metallic surfaces all set the tone here. Sabrina Ciofi from Design Office La Rosa from Palazzolo Milanese/Italy summarises the “principal themes of tomorrow” as follows: “Customers demand high product quality, the right price, maximum after-sales service and high product flexibility and/or diversity.” This statement should be valid across national borders. Otherwise she says despite all the globalisation: “There are as many trends as there are markets.” Monica Ceruti (Almax) concretized: “In Europe and the USA the differences are not fundamental. In the Middle East, however, mannequins without realistic traits continue to be in demand for religious and cultural reasons. This applies especially to female display mannequins.”

Customised becomes cheaper

Producers report that the percentage of customised mannequins is generally rising. These display mannequins are individually and exclusively manufactured to customers’ specifications. In this way retail companies and brands can stand out from their competitors and consistently leverage their CI. At Hans Boodt, for example, the proportion of customised mannequins is now said to be as high as 75%. And thanks to cost-cutting process optimisation it is expected to rise even further. Like Window France these Dutch vendors have now discovered 3D printing which can serve their purposes and their buyers. While in the past prototypes used to be elaborately modelled by sculptors in clay, these can now be “printed” in a time and cost-saving manner. “On top of this, the process is even more true to life and detailed,” delights Cornel Klugmann (Hans Boodt). Graphic designers create the desired mannequins with CAD systems where all the details can be freely configured. Then the files are uploaded to the printer that puts them into practice 1:1. “We can respond to trends so much faster and at the end of the day also design more new collections each year”, Klugmann explains further benefits. Jean-Marc Mesguich (Window France) adds: “Thanks to 3D we can create mannequins that really correspond to each and every brand and every brand’s precise image, to be perfectly in-sync with their public. This is an important evolution in the role that mannequins play.”

Alongside process optimisation sustainability remains important for the sector. “The fashion sector is now highly aware of this topic and attaches importance to its suppliers also complying with the relevant criteria,” explains Monica Ceruti (Almax).   The other market players polled also share this view. For La Rosa, whose mannequins are exclusively designed and manufactured in Italy, sustainability is an integral part of quality. By their own accounts, the Italians have analysed the whole life cycle of their mannequins with a view to minimising their ecological footprint. Almost half of the polystyrene used, they say, is recycled which saves substantial amounts of crude oil and carbon dioxide emissions. On top of this, La Rosa takes back its products after use and re-introduces them into the material cycle. Production operations work with a carbon-capture system, the cooling towers use process water, energy is generated by the company’s own PV park. Andreas Gesswein (Genesis Display) also underscores the importance of this topic: “Our customers focus on trust, honesty and partnership-based cooperation. And this includes providing evidence of sustainability rather than copying other peoples’ marketing straplines. In cooperation with Dupont Tate and Lyle BioProducts we have increased the percentage of biomass in our mannequins even further over the past few years, just the same way we constantly check and optimise our materials, packaging and transport routes for sustainability.” Hans Boodt is also opting for an interesting avenue. The company currently studies whether ocean plastics could be used as a raw material for production.

EuroShop as an opportunity of the future

The display mannequin market is and will be in motion – both on the supply and demand sides. “There are customers who buy their mannequins cheaply online and others who are interested in top quality, professional consulting and holistic visual-merchandising concepts,” explain Andreas Gesswein (Genesis Display) and Cornel Klugmann (Hans Boodt). There should be no doubt about who they expect to be more successful. Andreas Gesswein: “The challenges are enormous. 2016 has been especially challenging for fashion retailers, also in Asia and the USA. Companies are faced with changed market and shopper behaviours. EuroShop 2017 will therefore probably be one of the most important ones since the fair's inception.” Jean-Marc Mesguich emphasizes: “I think that it is essential to be present at EuroShop. For both suppliers and clients. It is a sure way of exchanging views and helps pave the way forward for both parties. This year we are at a turning point in the market, so it will be even more useful for everyone.” Cornel Klugmann also recommends retail representatives to visit the trade fair: “Our innovative power is the opportunity for the future.”
 
EuroShop 2017 will be open to visitors daily from Sunday 5 March 2017 to Thursday 9 March 2015, 10:00 am to 6:00 pm. A day ticket is EUR 70 (EUR 50 for an e-ticket, purchased online in advance), 2-day ticket EUR 90 (e-ticket: EUR 70) and a 4-day ticket EUR 150 (e-ticket: EUR 130). Entrance tickets include free trips to and from EuroShop on all trains, buses and trams within the networks of the VRR transport authority (Verkehrsverbund-Rhein-Ruhr).