Textination Newsline

Reset
45 results
First polo shirt made from triple-recycled cellulose fiber Photo Thüringisches Institut für Textil- und Kunststoff-Forschung e.V.
17.06.2025

Expo 2025 in Osaka: First polo shirt made from triple-recycled cellulose fiber

At the world exhibition in Japan, the Thuringian research institute TITK Rudolstadt presented a polo shirt made from triple-recycled cellulose fiber. The fiber used is also TITK's innovation Lyohemp® – the first Lyocell fiber made from hemp pulp.

At the world exhibition in Japan, the Thuringian research institute TITK Rudolstadt presented a polo shirt made from triple-recycled cellulose fiber. The fiber used is also TITK's innovation Lyohemp® – the first Lyocell fiber made from hemp pulp.

TITK's managing director, Benjamin Redlingshöfer, wore the polo shirt at the Expo in Osaka on June 17. During the Thuringia Country Days, he was interviewed on stage by presenter Marco Schreyl. Redlingshöfer proudly showed off his polo shirt with the “300% Recycling” print. This means that the shirt is made from a fiber that has undergone three consecutive recycling processes for the first time. And it did so so well that it could be easily processed into a fashionable polo shirt with excellent wearing comfort. “With our 300% recycled fiber, we are demonstrating that closed textile recycling loops are feasible thanks to our technology,” says Redlingshöfer. “This innovation proves that we can take recycling in the textile industry to a whole new level.” 

When textiles are recycled at all, it often involves what is known as downcycling. This means that the originally high-quality textile fibers are used to manufacture lower-quality textile products as part of material recycling. The fiber-to-fiber recycling pursued at TITK, however, aims to produce a recycled fiber from a high-quality textile fiber with the same high level of quality and the same good usage properties. But even in these recycling loops, only 20 to 40 percent of recycled materials are often mixed with a larger proportion of virgin grade material. 

“TITK has now impressively demonstrated that not only is 100 percent recycling of cellulose fibers possible, but that this process can even be used three times in a row without compromising the desired characteristics of the fiber, such as a pleasant, soft feel, a slight sheen, and very good, uniform dyeability,” says Redlingshöfer. 

Recycling process also applicable to cotton
The result is a fully-fledged, sustainable product that now sets the standard for future recycling processes in the clothing industry. This will enable the consumption of new virgin-grade fibers to be drastically reduced in the future. This outstanding innovation was achieved thanks to a further adaptation of the very robust Lyocell process established at the institute – specifically in terms of pulp extraction and pretreatment, says Redlingshöfer. “In principle, this recycling loop can also be applied to cotton fibers as the raw material.” TITK invites industry partners to work together on the further development and implementation of these technologies. 

Under the banner of the Demonstration and Innovation Center for Textile Circular Economy (DICE), which was founded at the Rudolstadt institute and is currently under construction, developments in the holistic recycling of textiles are already being driven forward. TITK researchers are now transferring findings from the Lyohemp® recycling project to so-called polycotton textiles, whereby the two material streams of synthetic and cellulosic fibers are additionally separated in order to then recombine them into a material quality suitable for fiber spinning (fiber-to-fiber recycling).

“However,” adds the institute director, “we cannot rely solely on technological solutions to absolve us of our responsibility to use our resources responsibly.” For good reason, the RRR rule often cited in the circular economy has two additional Rs before recycling: reduce and reuse – in other words, consume less and reuse more. Redlingshöfer: “Only in combination with a more conscious use of our raw materials will we be able to make a significant contribution to practical sustainability.” 

Source:

Thüringisches Institut für Textil- und Kunststoff-Forschung e.V.

Photo by FlyD on Unsplash
04.02.2025

Sustainable Textiles – The Way Forward

High dependence on fossil carbon, associated high carbon footprint, low recycling rates and microplastics: several solutions are emerging.

The evolution of the demand for textile fibres from 1960 to the present day shows how the textile industry found itself in this dilemma. In 1960, around 95% of textile fibres were of natural origin, from bio-based carbon, and there was no problem with microplastics, all fibres were biodegradable.

High dependence on fossil carbon, associated high carbon footprint, low recycling rates and microplastics: several solutions are emerging.

The evolution of the demand for textile fibres from 1960 to the present day shows how the textile industry found itself in this dilemma. In 1960, around 95% of textile fibres were of natural origin, from bio-based carbon, and there was no problem with microplastics, all fibres were biodegradable.

The explosion in demand – 650% between 1960 and 2023 – could only be met by synthetic fibres from the chemical and plastics industries. Their share grew from 3% in 1960 to 68% in 2023 and from less than 700,000 tonnes to 85 million tonnes/year (The Fiber Year 2024). The new fibres covered a wide range of properties, could even achieve previously unknown properties and, above all, thanks to a powerful and innovative chemical and plastics industry, production volumes could be rapidly increased and comparatively low prices realised.
 
At the same time, sustainability has declined, the carbon footprint of the textiles has increased significantly and the issue of microplastics requires solutions.

The first step would be to significantly increase the proportion of renewable fibres, as this is the only way to reduce dependence on fossil carbon, especially in the form of crude oil, and thus reduce the carbon footprint. But how can this be done? As defined by the Renewable Carbon Initiative, renewable carbon comes from biomass, CO2 and recycling: From carbon above ground. This addresses the core problem of climate change, which is extracting and using additional fossil carbon from the ground that will end up in the atmosphere.
 
What can cotton, bast fibres and wool contribute?
Cotton fibre production can hardly be increased, it is stagnating between 20 and max. 25 million tonnes/year. Cultivated areas can hardly be expanded, and existing areas are salinized by the irrigation required. With the exception of about 1% organic cotton, significant amounts of pesticides are used. The market share of “preferred” cotton – defined by a list of recognized programmes – will fall from 27% of total cotton production in 2019/20 to 24% in 2020/21, after years of growth. (Textile Exchange, October 2022: Preferred Fiber & Materials Market Report) Bast fibres such as jute (75%), flax, hemp, ramie or kenaf would require a huge boost in technology development and capacity investment and will nevertheless probably remain more expensive than cotton, simply because bast fibres are much more complicated to process, e.g. separating the fibre from the stalk, which is not necessary for cotton as a fruit fibre. As a source of cellulose fibre, bast fibres will remain more expensive than wood.

Although bast fibres are more sustainable than many other fibres, there is unlikely to be a major change – unless China focuses on bast fibres as a substitute for cotton. Plans to do so have been put on hold due to technological problems.

The importance of man-made cellulosic fibres (MMCFs) or simply cellulose fibres
Cellulose fibre production has been growing steadily over the last decades, reaching an all-time high of nearly 8 million tonnes in 2023, and is expected to grow further to 11 million tonnes in 2030. Cellulosic fibres are the only bio-based and biodegradable fibres that cover a wider range of properties and applications and can rapidly increase their capacity. The raw materials can be virgin wood as well as all types of cellulosic waste streams from forestry, agriculture, cotton processing waste, textile waste and paper waste. Increasing the share of cellulosic fibres will therefore play a crucial role in solving the sustainability challenges of the textile industry.

The production of MMCFs includes viscose, lyocell, modal, acetate and cupro. The market share of FSC and/or PEFC certified MMCF increased from 55–60% in 2020 to 60–65% of all MMCF in 2021. The market share of “recycled MMCFs” increased to an estimated share of 0.5%. Much research and development is underway. As a result, the volumes of recycled MMCFs are expected to increase significantly in the coming years. (Textile Exchange, October 2022: Preferred Fiber & Materials Market Report)

The CEPI study “Forest-Based Biorefineries: Innovative Bio-Based Products for a Clean Transition” (renewable-carbon.eu/publications/product/innovative-bio-based-products-for-a-clean-transition-pdf/) identified 143 biorefineries in Europe, of which 126 are operational and 17 are planned. Most of them are based on chemical pulping (67%) – the precursor of cellulose fibres. Most biorefineries are located in Sweden, Finland, Germany, Portugal and Austria. But there are already biorefineries in operation or planned in 18 different European countries.

The global report “Is there enough biomass to defossilise the Chemicals and Derived Materials Sector by 2050?” (upcoming publication end of February 2025, available here: renewablecarbon.eu/publications) shows particularly high growth in dissolving/chemical pulp (from 9 in 2020 to 44 million tonnes in 2050; growth of 406%), cellulose fibres (from 7 in 2020 to 38 million tonnes in 2050; growth of 447%) and cellulose derivatives (from 2 in 2020 to 6 million tonnes in 2050; growth of 190%).

Biosynthetics – Bio-based and CO2-based Synthetic Fibres
To further reduce the share of fossil-based synthetic fibres, bio-based polymer fibres (also called “biosynthetics”) are an excellent option because of their wide range of properties – only the implementation will take decades as the share today is only below 0.5%. There are many options, such as polyester fibres (PLA, PTT, PEF, PHA), polyolefin fibres (PE/PP), bio-based PA fibres from castor oil. PTT, for example, is well established in the US carpet market and PLA in the hygiene market. They are all bio-based, but only a few are also biodegradable (PLA, PHA).
 
Biosynthetics are one of many applications of bio-based polymers. In general, 17 bio-based polymers are currently commercially available with an installed capacity of over 4 million tonnes in 2023. Ten of these bio-based polymers are used as biosynthetics. resulting in the production of over one million tonnes of biosynthetics (nova report: Bio-based Building Blocks and Polymers – Global Capacities, Production and Trends 2023–2028, renewable-carbon.eu/publications/product/bio-based-buildingblocks-and-polymers-global-capacities-production-and-trends-2023-2028-short-version/).

In principle, many fibres can also be made from CO2, but here the technology and capacity needs to be developed, perhaps in parallel with the production of sustainable aviation fuels from CO2, which will become mandatory.

Circular Economy – Recycling of Textile Waste & Fibre-to-Fibre Recycling
The textile industry is at a pivotal moment, where sustainability is no longer an option but a necessity. As the environmental impact of textile production and disposal becomes increasingly clear, the pressure to adopt circular economy principles is growing.

One promising solution is fibre-to-fibre recycling, a process that converts used textiles into new, highquality fibres, effectively closing the waste loop. While significant progress has been made in the European Union, challenges remain, particularly in scaling up technologies, lack of collection systems and handling of mixed fibre textiles. Europe currently generates approximately 6.95 (1.25 + 5.7) million tonnes of textile waste per year, of which only 1.95 million tonnes is collected separately and 1.02 million tonnes is treated by recycling or backfilling.
 
The recycling of textiles reduces the demand for virgin fibres and the textile footprint. The share of recycled fibres increased slightly from 8.4% in 2020 to 8.9% in 2021, mainly due to an increase in bottlebased PET fibres. However, in 2021, less than 1% of the global fibre market will come from pre- and post-consumer recycled textiles (Textile Exchange, October 2022: Preferred Fiber & Materials Market Report). New regulations from Brussels for closed-loop recycling, especially bottle-to-bottle recycling, could threaten the use of bottle-based PET fibres in the textile industry. This would mean a reduction in recycling rates in the textile industry until the logistics and technologies are in place to recycle textiles on a large scale. This will be necessary to contribute to the circular economy. Several research projects are underway to find solutions and first pilot implementations are available.

The Future of Sustainable Textiles
The sustainable textile industry of the future will be built on a foundation of cotton fibres and fast-growing cellulose fibres, later strongly supported by bio- and CO2-based synthetic fibres (“biosynthetics”), and high recycling rates for all types of fibres. This combination can eventually replace most fossil-based synthetic fibres by 2050.

To get the latest information on cellulose fibres, the nova-Institute organises the “Cellulose Fibres Conference” every year, which will take place next time in Cologne on 12 and 13 March 2025 – this year for the first time with biosynthetics.

Source:

Michael Carus and Dr. Asta Partanen, nova-Institute (Germany)

ISPO Awards (c) Messe München
03.12.2024

ISPO 2024: Awarded Innovations & Tomorrow’s Newcomers

ISPO Munich, the world’s leading trade fair for the sports industry and the world’s largest sports business event, is about to begin and will soon present the prestigious ISPO Awards to the most innovative products and newcomers of tomorrow. The ISPO Awards are regarded as a global driving force for the sports industry. Showcasing the latest trends and innovations in product design, materials and digital solutions, these awards set new standards for the future of the sports industry.

The best products of 2024 will be honoured at ISPO Munich in December and can be seen at the ISPO Award area in Hall B1 from 3 to 5 December 2024. At the same time, newcomers to the sports and outdoor industry will be given a stage at ISPO Brandnew, the largest start-up competition in the sports business, where they will present their innovative products in exciting live pitches during ISPO Munich. The grand finale will take place on the second day of the event on the Main Stage.

ISPO Munich, the world’s leading trade fair for the sports industry and the world’s largest sports business event, is about to begin and will soon present the prestigious ISPO Awards to the most innovative products and newcomers of tomorrow. The ISPO Awards are regarded as a global driving force for the sports industry. Showcasing the latest trends and innovations in product design, materials and digital solutions, these awards set new standards for the future of the sports industry.

The best products of 2024 will be honoured at ISPO Munich in December and can be seen at the ISPO Award area in Hall B1 from 3 to 5 December 2024. At the same time, newcomers to the sports and outdoor industry will be given a stage at ISPO Brandnew, the largest start-up competition in the sports business, where they will present their innovative products in exciting live pitches during ISPO Munich. The grand finale will take place on the second day of the event on the Main Stage.

The ISPO Award seal of quality is given to sports products with a particularly high level of innovation, thus providing a curated overview of the most important trends in the industry. For the brands, innovations are enormously important and indispensable, whether in the textile sector, where much has changed in terms of materials, or in the integration of AI into all sub-sectors of the sporting goods industry. An expert jury of business professionals and regularly changing, sports-loving retail consumers from the ISPO Collaborators Club will review the submitted product innovations in advance and award prizes to the ones that meet the relevant criteria.

The submitted products make it possible to identify and observe trends. In 2024, the spectrum of trends continues to include sustainability in relation to textile innovations, the circular economy and recycling, as well as retail consumers’ desire for multipurpose use of diverse products. The integration of technology and the ever-growing role of AI numbers among the most exciting observations.

SUSTAINABILITY AS THE STANDARD
New EU legislation has led to an acceleration in the development of sustainable, functional materials. At this year’s ISPO Award jury meetings, numerous exciting material innovations were observed, especially in the textile sector. Progress in chemical treatments, such as PFC-free DWRs and textiles, is also remarkable. “Sustainability is increasingly becoming the norm, which means that consumers are coming to expect it as standard”, says juror and textile expert Dr Regina Henkel. “Progress is visible, for example, in the use of mono-materials or bio-based fabrics such as wool-Tencel blends”, which are used, for example, in this year’s ISPO Award winner Icebreaker with the Merino Blend 800 RealFleece Classic Pile LS Zip.

The ISPO Award entries also make it obvious that the performance of sustainable products made from recycled fibres has improved markedly so that the functionality of these products is now fully on a par with non-recycled items. Nevertheless, recycling will not be the solution to all future challenges, which is why manufacturers are increasingly incorporating into their collections natural fibres and biodegradable sports textiles, either in pure form or as a blend.

MULTI-USE REMAINS A TOP TREND
The trend towards multifunctional products reflects consumers’ desire for practical solutions. Particularly in Asia, multifunctional hardware products are perceived positively, while in Europe the focus is on textiles for multifunctional use. “High-quality, high-performance materials and designs are being adapted as everyday fashion, thus appealing to a broader target group”, explains trade journalist Dr Martina Wengenmeir, who is also one of the ISPO Award’s jurors. The “urban outdoor” trend is continuing and multipurpose products are also coming into focus in the area of commitment. One example of this is the Outdoor Backpack 45L from Peak Design, which combines fashionable and multifunctional design with full performance.

ISPO Award juror Dr Wengenmeir has identified another trend: “There is a growing focus on technical sports products designed specifically for women. These include football shoes with a design that is genuinely their own. This development goes beyond simple adjustments and includes well-thought-out designs in terms of fit and functionality.” These also include the BettHer - Bra Antishock+: the bra relies on a patented thermoplastic gel technology that provides excellent shock absorption and protection during intense activities.

INTEGRATION OF TECHNOLOGY
A trend from Asia that is also arriving in Europe is the integration of technology into clothing, for example through sensors and warmth apps. The personalisation of garments using technologies such as AI and sensor technology for temperature regulation is regarded as a potential growth area, despite concerns about sustainability.

Technology is also playing an increasingly important role for brick-and-mortar retailers, for example, when it comes to analysing the right product for the customer. Treadmills for running analysis are well known, but this year’s ISPO Award winner, the Skimulator, is a patented world first for a perfect fit of ski boots. This state-of-the-art simulator precisely simulates slope gradients, thus enabling the perfect fit of the ski boot.

ISPO BRANDNEW AWARD
ISPO Munich also provides a stage for the most innovative and creative newcomers in the sports and outdoor industry. Previous ISPO Brandnew winners include pioneering brands from all over the world that have redefined the boundaries of their respective fields with innovative materials, cutting-edge technology and sustainable action. Four start-ups each from the categories “Outdoor & Adventure & Snowsports”, “Performance, Body & Mind (physical product)”, “Sustainability” and “Sports Technology & Platforms” will pitch their ideas live on the main stage. A sneak peek at the innovations on show includes: BreezeLabs, which monitors breathing patterns during exercise; no normal coffee, coffee in a tube; and the AeroGraph Puffer Jacket, a weather-insulating jacket. The winner will be announced in the grand finale on the second day of the fair (4 December 2024).

Source:

Messe München

PhD scholar Nayanatara Ruppegoda Gamage (left) and Dr Chamila Gunasekara with concrete samples made using textiles. Credit: RMIT University
19.11.2024

Carpet fibres stop concrete cracking

Engineers in Australia have found a way to make stronger and crack-resistant concrete with scrap carpet fibres, rolling out the red carpet for sustainability in the construction sector.

The research team is engaging with partners including Textile Recyclers Australia, Godfrey Hirst Australia and councils in Victoria to conduct field studies of on-ground slabs made of reclaimed textiles.

Lead researcher Dr Chamila Gunasekara from RMIT University said the team had developed a technique using waste carpet fibres to reduce early-age shrinkage cracking in concrete by up to 30%, while also improving the concrete’s durability.

This research addresses a major challenge in the construction sector, as the annual cost of repair for cracks in reinforced concrete structures in Australia is about A$8 billion. In the US, the cost is estimated at US$76 billion per year.

Engineers in Australia have found a way to make stronger and crack-resistant concrete with scrap carpet fibres, rolling out the red carpet for sustainability in the construction sector.

The research team is engaging with partners including Textile Recyclers Australia, Godfrey Hirst Australia and councils in Victoria to conduct field studies of on-ground slabs made of reclaimed textiles.

Lead researcher Dr Chamila Gunasekara from RMIT University said the team had developed a technique using waste carpet fibres to reduce early-age shrinkage cracking in concrete by up to 30%, while also improving the concrete’s durability.

This research addresses a major challenge in the construction sector, as the annual cost of repair for cracks in reinforced concrete structures in Australia is about A$8 billion. In the US, the cost is estimated at US$76 billion per year.

Publishing their latest results in the Construction and Building Materials journal, the team has shown that waste carpet material can be used to improve concrete.

With state-of-the-art textile research facilities at RMIT, the team of civil engineers and textile researchers has also been able to use other discarded textiles including clothing fabrics to make concrete stronger.

“Cracking in early-age concrete slabs is a long-standing challenge in construction projects that can cause premature corrosion, not only making a building look bad but also risking its structural integrity and safety,” said Gunasekara, an ARC DECRA fellow from the School of Engineering.

“Scrap carpet fibres can be used to increase concrete’s strength by 40% in tension and prevent early cracking, by reducing shrinkage substantially.”

Laboratory concrete samples have been created using the various textile materials and shown to meet Australian Standards for engineering performance and environmental requirements.

Addressing a big waste challenge
The disposal of carpets and other textiles including discarded fabrics poses an enormous environmental challenge, Gunasekara said.

“Australia is the second largest consumer of textiles per person in the world, after the US. The average Australian purchases 27kg of new clothing and textiles every year, and discards 23kg into landfill,” he said.

“Burning carpet waste releases various toxic gases, creating environmental concerns.”

Dr Shadi Houshyar, a textile and material scientist at RMIT, said firefighting clothes waste also posed a challenge, as the same qualities that made these materials ideal for firefighting also made them difficult to recycle.

“Up to 70% of textile waste would be suitable for conversion into usable fibres, presenting an opportunity in the materials supply chain,” said Houshyar, from the School of Engineering.  

Working with industry and government to support the recycling of waste
Field trials conducted with support from industry and local government partners will help capture the unexpected conditions encountered in real-world construction projects.

The ARC Industrial Transformation Research Hub for Transformation of Reclaimed Waste Resources to Engineered Materials and Solutions for a Circular Economy (TREMS) and an early-career research grant will fund the field trials as well as computational modelling. TREMS is led by Professor Sujeeva Setunge from RMIT.

The team is collaborating with Professor Andrzej Cwirzen Luleå University of Technology in Sweden on computational modelling.

Source:

Will Wright, RMIT University

Image AI generated, Pixabay
22.10.2024

NABU Study: Textile recycling has huge potential

In Germany, only 26 per cent of used textiles are recycled, mostly into cleaning rags and insulation material. The vast majority is exported to other countries or incinerated. High-quality recycling of used fibres into new textile fibres is still in its infancy. This also applies to Germany. So far, the majority of recycled used textiles have been made into cleaning cloths, fleece fabrics and insulation materials. Recycled textile fibres that replace fibres made from cotton or petroleum in new textiles are rare.
 

In Germany, only 26 per cent of used textiles are recycled, mostly into cleaning rags and insulation material. The vast majority is exported to other countries or incinerated. High-quality recycling of used fibres into new textile fibres is still in its infancy. This also applies to Germany. So far, the majority of recycled used textiles have been made into cleaning cloths, fleece fabrics and insulation materials. Recycled textile fibres that replace fibres made from cotton or petroleum in new textiles are rare.
 
A variety of approaches are needed to reduce the significant environmental impacts of textile production. The priorities are to extend the useful life of textiles and to change the way we consume them. However, the recycling of used textiles that can no longer be reused must also be expanded in terms of both quantity and quality. The Oeko-Institut has therefore been commissioned by NABU to analyse the obstacles to and potential for textile recycling in Germany and In addition to clothing, textiles include home textiles such as bed linen and curtains, as well as technical textiles used, for example, in car manufacturing or in medicine.

High-quality textile recycling alone is not financially viable; rather, a legal framework is needed to promote it in the future. ‘We don't need more cleaning rags,’ says Anna Hanisch, NABU expert on circular economy, ‘Our study shows that there is great potential for higher-quality recycling so that old textiles can be turned into new textiles again. To achieve this, fibre-to-fibre recycling must be expanded. The prerequisite for this is automatic sorting by fibre composition. This is because non-reusable used textiles must be sorted before recycling. This is currently done by hand. A technical solution is what makes recycling economically viable in the first place.’
 
The mechanical recycling that has been used most of the time so far shortens the fibres, so that only a few recycled fibres are suitable for use in new textiles. For this reason, depolymerisation processes are being developed. These require more energy and chemicals, but enable higher-quality recycled fibres for new textiles. According to NABU, extended producer responsibility is necessary to finance and establish these processes. This would have to supplement the EU's mandatory separate collection of used textiles, which will come into force in 2025.

In order to reduce the environmental impact associated with textile production, various approaches are needed: the priority should be to use textiles for longer. However, recycling used textiles that can no longer be used is also part of the solution and must be expanded in terms of both quantity and quality.

Technologically, all approaches have their merits for certain mass flows in order to increase the recycling and use of recycled materials from used textiles in new products. The technologies complement each other. After sorting for reuse, recycling processes should be prioritised as follows:

  1. First mechanical recycling, as it requires the least energy.
  2. Then comes solvent-based processing and depolymerisation, which require a similar amount of effort.
  3. Finally, there is feedstock recycling, which consumes the most resources.

Hanisch: ‘A circular economy starts with the design. For example, in order for textiles to be recycled, they should contain as few different materials as possible. To achieve this, we need ambitious ecodesign requirements for textiles. The focus here must be on durability and recyclability. Above all, however, incentives are needed to reuse recycled raw materials from old textiles. So far, this has hardly happened voluntarily.’   

Recycling can avoid large quantities of greenhouse gas emissions. Image: © Fraunhofer UMSICHT
08.10.2024

Closing new loops with recycling

Recycling protects resources. This is confirmed by the latest study, which Fraunhofer UMSICHT prepared on behalf of Interzero. In 2023, the circular economy service provider avoided a total of 1.2 million tonnes of greenhouse gas emissions by recycling about 2.5 million tonnes of recyclable materials. At the same time, Interzero, together with its customers, was able to save over 11.1 million tonnes of primary resources.
 
To ensure that the transformation to a circular economy is successful, new cycles must also be established for material groups that have so far been given little consideration.
 

Recycling protects resources. This is confirmed by the latest study, which Fraunhofer UMSICHT prepared on behalf of Interzero. In 2023, the circular economy service provider avoided a total of 1.2 million tonnes of greenhouse gas emissions by recycling about 2.5 million tonnes of recyclable materials. At the same time, Interzero, together with its customers, was able to save over 11.1 million tonnes of primary resources.
 
To ensure that the transformation to a circular economy is successful, new cycles must also be established for material groups that have so far been given little consideration.
 
The recycling of raw materials is an effective lever for climate protection and ensures that Germany and Europe remain future-proof as places to live and do business. The study ‘resources SAVED by recycling’ proves that: Interzero was able to avoid a total of 1.2 million tonnes of greenhouse gas emissions in 2023 by recycling around 2.5 million tonnes of recyclable materials. At the same time, Interzero and its customers saved over 11.1 million tonnes of primary resources. Fraunhofer UMSICHT has been monitoring the environmental impact of recycling for Interzero for more than 15 years. The research institute's annual life cycle assessment proves the sustainable impact of recycling. ‘On the one hand, our studies provide a strategic basis for decision-making for sustainable action, and on the other hand, we also offer expertise in the process of transformation to a circular economy,’ explains Dr. Markus Hiebel, Head of Sustainability and Participation at Fraunhofer UMSICHT.
 
Textile recycling not yet well established
A complete transformation to a circular economy must include all material groups. Unlike packaging recycling, for example, textile recycling is still in its infancy: around 92 million tonnes of textiles are thrown away every year worldwide. So far, however, only one per cent of the material stream goes into fibre-to-fibre recycling and thus back into the production cycle.

Time is of the essence, because new EU regulations such as the separate collection requirement from 2025 or the planned extended producer responsibility (EPR) for textiles, as well as the German government's National Circular Economy Strategy (NKWS), are increasing the pressure to act.

‘When it comes to textiles as valuable materials, it is clear what enormous ecological potential lies in recycling – and why it is imperative to promote the circular transformation of the economy at all levels’, says Dr Axel Schweitzer, Chairman and Shareholder of Interzero. ‘This applies in particular to recyclable materials that are not yet consistently recycled. We want to work with the industry to close the textile loop and use our experience as an established system service provider to develop a holistic concept for take-back, sorting and recycling,’ emphasises Dr. Axel Schweitzer.

Plastics are an important component of textiles. Due to their property profile, plastics in particular are very important for the German economy and are being examined comprehensively in the Fraunhofer Cluster of Excellence Circular Plastics Economy CCPE, which is coordinated by Fraunhofer UMSICHT. Whether bioplastics, additives used for this purpose, compounding, or mechanical and chemical recycling, the Fraunhofer CCPE combines the expertise of six Fraunhofer institutes and industrial partners for the transition from a linear to a circular plastics economy. The entire life cycle of plastic products is considered.

Source:

Fraunhofer UMSICHT / Interzero

TheDigitalArtist, Pixabay
09.09.2024

“Used textiles recycling at risk of collapse”

The recycling of used textiles is facing a potential collapse. Industry experts agree that the current crisis is more serious than the COVID-19 crisis at the time.

In the case of Covid-19, there was a foreseeable period of a few months, after which the industry recovered quite quickly and the effect of pent-up demand caused prices to return to a normal level within a short period of time.
 
“We now have a completely different situation that threatens the existence of many of the established used textile recyclers in the industry,” says Stefan Voigt, Chairman of the bvse's Textile Recycling Association (FTR).
 
The global market for used textiles has been in a deep crisis for some time, which has now reached a level that can only be described as a free fall. Since the spring, the prices for original collected goods no longer cover the enormous costs for container provision, collection and administration.

The recycling of used textiles is facing a potential collapse. Industry experts agree that the current crisis is more serious than the COVID-19 crisis at the time.

In the case of Covid-19, there was a foreseeable period of a few months, after which the industry recovered quite quickly and the effect of pent-up demand caused prices to return to a normal level within a short period of time.
 
“We now have a completely different situation that threatens the existence of many of the established used textile recyclers in the industry,” says Stefan Voigt, Chairman of the bvse's Textile Recycling Association (FTR).
 
The global market for used textiles has been in a deep crisis for some time, which has now reached a level that can only be described as a free fall. Since the spring, the prices for original collected goods no longer cover the enormous costs for container provision, collection and administration.

The price of original goods traded on the market has now reached an all-time low, causing existential hardship for many market participants.

The sale of original and sorted goods has become almost impossible. The loss of established market players has destroyed supply chains that have been tried and tested for years, and stocks of original and sorted goods have reached unprecedented record levels. Some market participants are forced to replace the usual sales business with bartering.

According to industry information, downstream players in the recycling chain, such as shredding and spinning mills, are also under pressure and have made massive staff cuts. The production of cleaning cloths has also reached an all-time low. Due to the relocation of production abroad and reduced domestic production, demand for cleaning cloths has fallen and prices have slipped to a very low level.

Consumer behavior and international markets exacerbate the crisis
Due to the generally high cost burden on the population, the consumption of textiles has collapsed. The negative trend of consuming low-quality fast fashion is now being reinforced by ultra-fast fashion of even poorer quality. This has disastrous effects on value creation within the recycling chain for used textiles.

“During the sorting process, increasingly large quantities of relatively new textiles are being found that are already so defective that they are no longer suitable for further use and therefore have to be fed into the recycling process,” explains Voigt. However, there is no money to be made here either, as the same cost structures apply to this part of the original goods as to wearable goods and the recycling process is also very cost-intensive.

Industry calls for the introduction of an EPR system
Until now, the recycling of the proportion of sorted goods has been subsidised by the proceeds from wearable goods, but this system has not worked for some time. The industry is desperately waiting for the introduction of a national EPR system for textiles in order to stabilise costs.

The EU Commission's recently published draft of the revised EU Waste Framework Directive provides for the introduction of a system of extended producer responsibility for textiles. The existing collection and recycling structures in Germany, which enable the separate collection of used textiles close to the public, are to play a central role in this.

The draft of the National Circular Economy Strategy (NKWS) of the Federal Ministry for the Environment, Nature Conservation, Nuclear Safety and Consumer Protection (BMUV) also emphasises the importance of the national recycling industry for used textiles. Without it, the establishment of a closed-loop system for textiles would not be feasible.

Crisis not limited to Germany
The crisis has also made ripples internationally. Countries such as the Netherlands, traditionally the largest buyer of used textiles from Germany, have already addressed the crisis in the national media. Almost 250 companies there are involved in the collection, sorting and international marketing of used textiles.

Around 60 per cent of the original goods are recycled as sustainable clothing after sorting, meaning that the industry is reliant on stable markets in which recycling proceeds can be generated. But this is precisely the problem. ‘Due to the effects of the Russian war of aggression in Ukraine, the Eastern European market can only be served in fragments,’ explains Voigt.

In addition, despite its potential, the African market is currently facing enormous challenges because there is practically no money left in the system, he adds, explaining the concerns he receives from many interviewees in the industry: ‘The enormous drop in the value of many currencies in various African countries    means that it is becoming increasingly difficult for African customers to buy urgently needed second-hand clothing for hard currency,’ Voigt continues.

For example, the currency in the extremely important African market of Ghana has lost roughly 20 per cent against the euro over the last six months of 2024. In addition, the transfer of foreign currency now takes up to two months, meaning that it now takes up to six months to return the proceeds of realisation.

In addition, the African market is increasingly dominated by Chinese influence. ‘The actually better quality of high-quality used European second-hand clothing can hardly compete with new Asian goods,’ reports Voigt. Ultra fast fashion from China is flooding the market with extremely low prices, making it increasingly difficult to market sorted, second-hand clothing.

In addition to economic problems, there are also logistical challenges. ‘Our customers are reporting increasing difficulties in obtaining the necessary visas for a business visit to Europe within an acceptable waiting period,’ explains Voigt. The waiting time for an appointment at the consulate can currently be up to two months.

Call for short-term measures
In order to prevent the system from collapsing in the short term, Voigt believes that the usual remuneration structures for local authorities and providers of parking spaces for collection containers need to be reconsidered. ‘Recycling revenues have not been realised for some time now, so they can no longer be paid out or must be adjusted to the current situation,’ says Voigt.

The industry expects the current crisis to last even longer. ‘Not everyone will survive,’ predicts Voigt. Many collection areas are already being offered on the open market and various collection capacities are being cancelled without replacement. The future of the used textile recycling industry remains uncertain and there is no end to the crisis in sight.

More information:
textile waste textile recycling
Source:

bvse-Bundesverband Sekundärrohstoffe und Entsorgung e.V.

Texcare Messe Frankfurt (c) Messe Frankfurt
06.09.2024

Circular economy long established in the textile care industry

The professional rental service for linen and workwear is a textbook example of a circular, sustainable business model, which uses hard-wearing textiles instead of lower-quality or disposable products (reduce), optimises their useful life through professional care / repairs (reuse) and develops solutions to re-purpose them after they have reached the end of their useful life (recycle).

The professional rental service for linen and workwear is a textbook example of a circular, sustainable business model, which uses hard-wearing textiles instead of lower-quality or disposable products (reduce), optimises their useful life through professional care / repairs (reuse) and develops solutions to re-purpose them after they have reached the end of their useful life (recycle).

With its ‘Green Deal’, the European Commission has, inter alia, initiated the transformation of the garment-manufacturing industry from a business model of short-lived consumption to a more sustainable, circular system. By 2030, fast fashion will be replaced increasingly by textile products that have a longer life cycle and thus contribute to reducing environmental pollution. To achieve this goal, textiles must be more durable, reusable, repairable, fibre-to-fibre recyclable and have a greater proportion of recycled fibres. For the textile-service sector, the circularity requirements defined in Brussels have long been standard practice because hiring out professional workwear and protective clothing, as well as hotel and hospital linen, mop covers and other items, requires precisely these characteristics, i.e., the fabrics must be durable, washable – and therefore reusable – and easy to repair. Thanks to these qualities, rental linen can remain in the service cycle for a long time and has thus become established as a sustainable alternative to outright purchasing.

Laundry in the circular system
The textile-rental service offers a variety of systems tailored to the needs of different groups of customers. Workwear and protective clothing is stocked by textile-service laundries in a wide range of sizes, so that each customer's employees can be supplied with a suitable outfit. This is then labelled and made available to the individual wearer. If the employee leaves the customer's employ, the garments are taken back and – provided they are in good condition – reused as replacement clothing. In the case of workwear in the healthcare sector, as well as bed linen, table linen and towelling, a pool solution is more common. A laundry pool comprises similar textiles that are supplied without being assigned to a specific customer or wearer, which significantly reduces the quantity of textiles used.

Local textile cleaning is another major area of commercial textile care that also helps extend the life of textiles with a wide range of goods being professionally processed on behalf of private and commercial customers by such businesses. High-quality outerwear and underwear, premium home textiles, delicate down jackets or heavily soiled workwear are all restored to a clean, fresh and usable condition. And if stains prove particularly stubborn even after cleaning, a specialist company can re-colour the goods, thus ensuring they can be reused.

The recycling benefits of textile rental services
Besides the two main requirements of ‘reuse’ and ‘repair’, the sector is also working hard on the recycling of old textiles, as called for by the EU textile strategy. Several workwear manufacturers have developed their own returns models, whereby customers can hand back their old workwear when buying new items. The old workwear is then reused or recycled by partner organisations. Large companies, including Deutsche Telekom and Ikea, have also introduced a centralised returns and recycling system for discarded workwear. Indeed, the furniture giant has even created its own home textiles line using old workwear. However, the easiest way to implement a system of this kind is to use a rental service, as the goods are always returned to the specialist company and sorted there. In other words, the used laundry is collected in one place after washing, where it forms a large volume of similar discarded textiles, which greatly simplifies both the collection logistics and the recycling process. These favourable conditions have already led to the establishment of an initial initiative in which several textile service companies pool their waste hotel linen and channel it into industrial cotton-to-pulp recycling. Whether individual or joint initiatives, this is a testament to the industry's commitment to the development of solutions for ‘waste materials’.

Textile upcycling for designer items
Solutions for rejected textiles are more varied than simply recycling them. For example, Sweden's Fristads company offers a repair service for its workwear. The British department store chain John Lewis goes one step further. In a field trial, customers can hand in their garments to selected stores for cleaning and repair. The garments are processed by Johnsons, a laundry and dry-cleaning chain belonging to the Timpson Group. Designers have also recognised second-life opportunities for discarded workwear and contract textiles. For example, they apply elaborate decorations to items from their collections or take them apart and reassemble them. The creatively enhanced goods are then returned to the market as designer items. There are also recycling solutions for large contract textiles, which are converted into bags or cosmetic accessories or, after a colour-changing process, into small batches of aprons. However, the effect of such concepts on reducing textile waste is as small as their diversity. Only the established second-hand model is able to return larger quantities to the economic cycle.

The pros and cons of recycled materials
While the textile-care industry is unanimous in its support for the requirements of the EU textile strategy and is contributing solutions, it disagrees on increasing the proportion of recycled fibres in its products. Although there are already numerous workwear collections and hotel-linen ranges that meet the requirements from Brussels, some of the products do not, however, meet the durability requirements because the fibre quality deteriorates with each recycling stage. Therefore, many contract-textile manufacturers still rely exclusively on virgin, brand-new fibre materials to ensure durability in industrial laundering. Texcare International offers the industry the perfect setting to discuss this conflict of objectives in depth.

Source:

Messe Frankfurt

Oyster mushroom Image: Andre Mouton, Pixabay
02.09.2024

Fungal Mycelium as the Basis for Sustainable Products

Fungi have more to offer than meets the eye. Their thread-like cells, which grow extensively and out of sight underground like a network of roots, offer huge potential for producing sustainable, biodegradable materials. Researchers at the Fraunhofer Institute for Applied Polymer Research IAP in Potsdam Science Park are using this mycelium to develop a wide range of recyclable products, from wallets and insulation to packaging.

Flexible mycelium materials in different thicknesses can be used as upholstery material, insulation board or alternatives to leather.

Fungi have more to offer than meets the eye. Their thread-like cells, which grow extensively and out of sight underground like a network of roots, offer huge potential for producing sustainable, biodegradable materials. Researchers at the Fraunhofer Institute for Applied Polymer Research IAP in Potsdam Science Park are using this mycelium to develop a wide range of recyclable products, from wallets and insulation to packaging.

Flexible mycelium materials in different thicknesses can be used as upholstery material, insulation board or alternatives to leather.

To most of us, fungi look like a curved cap and a stem. However, the largest part of the organism consists of a network of cell filaments called mycelium, which mainly spreads below ground and can reach significant proportions. This finely branched network has been underutilized until now. However, for researchers at the Fraunhofer Institute for Applied Polymer Research IAP in Potsdam, mycelium represents a pioneering raw material with the potential to replace petroleum-based products with natural, organic mycelium composites. Organic residues from regional agricultural and forestry activities are used as the substrate for the fungal cultures. In various projects, the researchers are using mycelium-based materials to produce insulation, packaging, and animal-free alternatives to leather products.

Mycelium-based materials from regional agricultural residues
“Faced with climate change and dwindling fossil raw materials, there is an urgent need for biodegradable materials that can be produced with lower energy consumption,” says Dr. Hannes Hinneburg, a biotechnologist at Fraunhofer IAP. Together with his team, he is using mycelium — for instance, from edible mushrooms or bracket fungi such as the oyster mushroom or tinder fungus — to transform locally available plant residues into sustainable materials. “The mycelium has properties that can be used to produce environmentally friendly, energy-efficient materials, since the growth of the fungi takes place under ambient conditions and CO2 remains stored in the residues. When cellulose and other organic residues decompose, a compact, three-dimensional network forms, enabling a self-sustaining structure to develop,” explains Hinneburg. This produces a material that is a complex compound with an organic substrate such as cereal residues, wood chips, hemp, reeds, rape or other agricultural residues. These substances are a source of nutrients for the fungus and are permeated entirely by a fine network of mycelia during the metabolic process. This produces a fully organic composite that can be made into the required shape and stabilized through thermal treatment. “First, you mix water together with agricultural residues such as straw, wood chips and sawdust to form a mass. Once the level of humidity and particle size have been determined, and the subsequent heat treatment to kill off competing germs has been completed, the substrate is ready. It provides food for the fungi and is mixed with the mycelium. Following a growth phase of around two to three weeks in the incubator, the mixture will produce, depending on the formulation and process used, a substance similar to leather or a composite that can be processed further,” says Hinneburg, summarizing the production process. No light is required for this process — a bonus as far as energy efficiency is concerned.

Versatile applications: strength and elasticity can be specifically configured
The fungal materials can be cultivated with a wide range of properties. Depending on the application, they can be hard-wearing, stretchable, tear-resistant, impermeable, elastic, soft and fluffy, or open-pored. The result is determined by the combination of the type of fungus and agricultural residues, plus variable parameters such as temperature and humidity. The duration of mycelial growth also influences the end product. The versatility of the material means it can take on a huge variety of forms, from thick blocks to wafer-thin layers, and be used in a multitude of scenarios. This makes it possible to use fungi-based materials for textile upholstery, packaging, furniture, bags or insulation boards for interiors. When used as a construction material, the fungus primarily functions as a biological adhesive since a wide range of organic particles are joined together via the mycelium.

“The many positive properties of the material, heat-insulating, electrically insulating, moisture-regulating and fire-resistant, enable an important step toward circular and climate-positive construction,” says Hinneburg, one of whose current projects involves developing a novel polystyrene alternative for thermal insulation. In another project, he is working alongside the Institute for Food and Environmental Research and Agro Saarmund e.G. to produce environmentally friendly, mycelium-based packaging trays from residues and raw materials sourced from local agricultural and forestry activities. In work he has done with designers, he has also developed the base material for animal-free alternatives to leather products such as bags and wallets. As the mycelium-based materials look similar to their leather counterparts, they can be used to complement leather items in certain areas.

Developing industrial processes
In Europe, only a few companies are currently developing mycelium-based materials for commercial use. The challenges in this area include access to biogenic residues, the ability to ensure consistent product quality and the means to scale up activities efficiently.

To address these challenges, the researchers are using a newly developed roll-to-roll method, for which they have already created a prototype. This method offers significant advantages over standard manufacturing processes involving boxes and shelving systems: By using a standardized, continuous production method under controlled process conditions (such as temperature and humidity), the researchers can ensure that the mycelium-based products have consistent material properties. What’s more, resources can be used more efficiently, and production can be scaled to an industrial level. “This is crucial in order to meet growing industry demand for sustainable materials and to become less dependent on petroleum in the long term. Production can also be improved further by using innovative technologies such as artificial intelligence to optimize the combination of residues and types of fungi,” says Hinneburg.

Source:

Fraunhofer Institute for Applied Polymer Research IAP

Neste provides renewable Neste RE, a raw material for polymers and chemicals made from bio-based materials. Source: Neste
06.08.2024

First polyester supply chain from sustainable feedstock

A consortium of seven companies across five countries has jointly established a supply chain for more sustainable polyester fiber. Instead of fossil materials, renewable and bio-based materials as well as carbon capture and utilization (CCU*) will be used in the manufacturing of polyester fibers for The North Face brand in Japan. The consortium parties are Goldwin, in the role of project owner, Mitsubishi Corporation, Chiyoda Corporation (all three from Japan), SK geo centric (South Korea), Indorama Ventures (Thailand), India Glycols (India) and Neste.

Neste will provide renewable Neste RE™ as one of the required ingredients for polyester production. The polyester fiber produced in the project is planned to be used by Goldwin for a part of The North Face products, including sports uniforms, in July 2024. After that, the launch of further Goldwin products and brands will be considered.

A consortium of seven companies across five countries has jointly established a supply chain for more sustainable polyester fiber. Instead of fossil materials, renewable and bio-based materials as well as carbon capture and utilization (CCU*) will be used in the manufacturing of polyester fibers for The North Face brand in Japan. The consortium parties are Goldwin, in the role of project owner, Mitsubishi Corporation, Chiyoda Corporation (all three from Japan), SK geo centric (South Korea), Indorama Ventures (Thailand), India Glycols (India) and Neste.

Neste will provide renewable Neste RE™ as one of the required ingredients for polyester production. The polyester fiber produced in the project is planned to be used by Goldwin for a part of The North Face products, including sports uniforms, in July 2024. After that, the launch of further Goldwin products and brands will be considered.

The seven companies apply a mass balancing approach to ensure credible traceability of material streams throughout the supply chain and will jointly continue to proactively promote the defossilization of materials to contribute to a more sustainable society.

Neste (NESTE, Nasdaq Helsinki) uses science and innovative technology to transform waste and other resources into renewable fuels and circular raw materials. The company creates solutions for combating climate change and accelerating a shift to a circular economy. Being the world’s leading producer of sustainable aviation fuel (SAF) and renewable diesel and a forerunner in developing renewable and circular feedstock solutions for polymers and chemicals, the company aims to help its customers to reduce their greenhouse gas emissions by at least 20 million tons annually by 2030.

The company’s ambition is to make the Porvoo oil refinery in Finland the most sustainable refinery in Europe. Neste is committed to reaching carbon-neutral production by 2035, and will reduce the carbon emission intensity of sold products by 50% by 2040. Neste has also set high standards for biodiversity, human rights and the supply chain. The company has consistently been included in the CDP and the Global 100 lists of the world’s most sustainable companies. In 2023, Neste's revenue stood at EUR 22.9 billion

Source:

Neste

Atacama desert Photo by Fernando Rodrigues on Unsplash
23.07.2024

Reducing environmental & health impacts of global trade of 2nd hand clothes

The rise of fast-fashion, marked by rapid turnover of collections, has led to a sevenfold increase in the global trade of used clothing in the last 4 decades. With more than 80% of all purchased clothing items globally (62% in the EU) being disposed of as general garbage, which is incinerated or landfilled, this represents a massive waste of resources, causing severe environmental and health impacts. A report recently published by UNECE and the United Nations Economic Commission for Latin America and the Caribbean (ECLAC) contains an in-depth analysis of second-hand clothing trade between Europe and Chile, offers policy recommendations to the industry, exporting and importing countries to remedy this situation.

The rise of fast-fashion, marked by rapid turnover of collections, has led to a sevenfold increase in the global trade of used clothing in the last 4 decades. With more than 80% of all purchased clothing items globally (62% in the EU) being disposed of as general garbage, which is incinerated or landfilled, this represents a massive waste of resources, causing severe environmental and health impacts. A report recently published by UNECE and the United Nations Economic Commission for Latin America and the Caribbean (ECLAC) contains an in-depth analysis of second-hand clothing trade between Europe and Chile, offers policy recommendations to the industry, exporting and importing countries to remedy this situation.

According to UN Comtrade data, in 2021 the European Union (30%), China (16%), and the United States (15%) were the leading exporters of discarded clothes, while Asia (28%, predominantly Pakistan), Africa (19%, especially Ghana and Kenya), and Latin America (16%, mainly Chile and Guatemala) were the leading importers.  

This has been facilitated by the advent of low-cost synthetic fibres and by trade liberalization that allowed the offshoring of production to countries with low-wage labour. Large proportions of clothing are made from difficult-to-separate blended fibres, making opportunities for economic reuse and recycling rare, particularly in developed countries.

“When did we normalize throwing clothes away?”, questions Lily Cole, Climate Activist and Advisor to UNECE. “As the world, mostly the Global North, has produced and consumed fashion at an unrelenting rate, a handful of countries, mainly in the Global South, have become cemeteries for the world’s unloved clothes. While visiting the Atacama Desert, my attention was brought to the textile mountains and the shifting cultural, economic, and political landscapes that birthed them. Consumer awareness is very helpful, yet, ultimately, we need policies to curb systemic trends, which is why this report and its recommendations are so necessary.”

Europe: sorting and recycling capacities lag behind  
In Europe only 15-20% of disposed textiles are collected, usually through containers, door-to-door collection and donations. About half of the collected textiles are downcycled to be used as, for example, insulation, filling, and single-use industrial wipes. Only 1% is recycled into higher value outputs such as new clothing, while the remainder is exported to developing countries.  

Of the 55% of collected clothes that are reusable, only 5 percentage points have a value on second-hand markets in the EU, while 50 percentage points have a value on export markets.  

The European Union has thus tripled its exports of used clothes over the past 2 decades, from 550,000 to 1.7 million tons. Europe, including the United Kingdom, accounts now for more than a third of global used clothing exports, and this share could continue to grow as collection rates are expected to rise.  

A design-led circular economy approach to clothing is still in its infancy. The EU Circular Economy Action Plan (CEAP) was adopted in 2020, the EU Strategy for Sustainable and Circular Textiles was adopted in 2022, and the EU Ecodesign for Sustainable Products Regulation was adopted in 2023. However, these policies are still to bear fruit in the form of large-scale upstream solutions to the problems of textile waste. 

“The used clothes global market is constantly growing, and with it, its negative impacts. The textile industry has a key responsibility to adopt more sustainable practices, exporters and importers to adopt relevant policy decisions to foster traceability, circularity and sustainability. UN/CEFACT policy recommendations and standards will support this transition. And of course, we all have a role to play, as consumers, to make sustainable choices,” stressed UNECE Executive Secretary Tatiana Molcean.

The case of Chile: mountains of used clothes visible from the moon  
Most countries in Latin America (including Argentina, Brazil, Colombia, Mexico, and Peru) have introduced clothing import bans to protect their national textile and fashion industries and avoid the threats posed by clothing dumps.

By contrast, Chile levies zero tariffs, and applies no quantity restrictions in imports, only requiring shipments to be sanitised (by fumigation). It has thus become one of the top 10 importers in the world, and the first in Latin America, receiving 126,000 tons of textiles in 2021. 40% of these entered the country through the northern port of Iquique, where they are manually sorted, primarily by women, and separated into first, second, and third quality.

75% of all imported used clothes were deemed non-reusable, 30,000 tons of which are covering today 30 hectares of the Atacama desert, generating pollution and creating hazard to local communities’ health. At the same time, trade in second-hand garments also provides employment and formal and informal income for national and migrant populations in established stores and open-air markets across the country, and this must be factored in when redefining public policies.

“To address the environmental and social issues of used textile trade, the EU and Chile must work together on creating robust regulatory frameworks. A partnership between the European Union and Chile could pioneer innovative approaches to regulate and reduce the impact of second-hand textile trade, including by setting global standards for the trade of used textiles, focusing on sustainability and social responsibility." Highlights UNECLAC Executive Secretary, Mr. José Manuel Salazar-Xirinachs.  

Multifold recommendations
The report contains a series of recommendations to the textile industry, exporters and importers.   

To exporting countries

  • Make circular economy considerations central to the design of clothing, with mandatory targets for fibre composition that improve quality, durability, repairability, and recyclability  
  • Introduce an Extended Producer Responsibility (EPR) system holding producers responsible for the products they manufacture  
  • Develop more sorting and recycling plants, through financial incentives  
  • Develop minimum EU criteria for second-hand clothing exports through the use of digital product passports (DPPs)  
  • Run awareness-raising campaigns to encourage consumers to make more informed choices about their clothes

To importing countries – the example of Chile

  • Improve customs procedures & administrative measures at the port of Iquique to ensure digital traceability of flows of used clothing and textile based on the UN/CEFACT traceability standard   
  • Establish a Circular Economy Strategy for Textiles  
  • Set-up public-private alliances for recycling projects through tax extension schemes and funds to support entrepreneurship, innovation, and job creation for vulnerable groups, particularly in the Tarapacá region  
  • Improve the legal framework for waste management   
  • Implement a Regional Solid Waste Control Plan, involving inspections of sanitary landfills, clean points, and dumps to increase the enforcement capacity of regional health authorities  
  • Accelerate the adoption of the Chilean draft law on environmental quality of soils.

The report also recommends making changes to international trade agreements, such as the2023 Interim Trade Agreement between the EU and Chile, which includes a chapter on Trade and Sustainable Development, to step up bilateral cooperation, and using it as a template for other bilateral trade agreements between the EU and other countries.   

Download the Executive Summary

Source:

United Nations Economic Commission for Europe

Nordic cooperation on circular innovation focusing on workwear Photo: Sven, pixabay
16.04.2024

Nordic cooperation on circular innovation focusing on workwear

The University of Borås, Aalborg University Business School and Circular Innovation Lab have just started the 'North-South Circular Value Chains Within Textiles' project - an explorative project that aims at bridging textile brands in the Nordics with a strong focus on sustainability with innovative producers in the South.

Focus areas are Circular Value Chains (CVCs), Circular and resource-efficient textiles economy, Workwear and technical clothing, Sectors such as construction, energy, electronics and IT, plastics, textiles, retail and metals.

Made possible by a grant from the Interreg ÖKS programme, the first step is to create a specific economic, legal and technological framework allowing Scandinavian workwear companies to enter into close collaboration on circular solutions in the overall textile value chain and to prepare, and adapt their global value chains to the upcoming EU regulations on circular economy.

The University of Borås, Aalborg University Business School and Circular Innovation Lab have just started the 'North-South Circular Value Chains Within Textiles' project - an explorative project that aims at bridging textile brands in the Nordics with a strong focus on sustainability with innovative producers in the South.

Focus areas are Circular Value Chains (CVCs), Circular and resource-efficient textiles economy, Workwear and technical clothing, Sectors such as construction, energy, electronics and IT, plastics, textiles, retail and metals.

Made possible by a grant from the Interreg ÖKS programme, the first step is to create a specific economic, legal and technological framework allowing Scandinavian workwear companies to enter into close collaboration on circular solutions in the overall textile value chain and to prepare, and adapt their global value chains to the upcoming EU regulations on circular economy.

Recently, the consortium partners convened for an initial meeting at The Swedish School of Textiles to discuss the project framework, which is a feasibility study intended to lead to a multi-year project involving workwear companies in the Öresund-Kattegat-Skagerrak (ÖKS) region, including their supply chains in Asia.

Kim Hjerrild, Strategic Partnerships Lead at the Danish think tank Circular Innovation Lab, Copenhagen, explained: "The goal is to assist workwear producers in Denmark, Sweden, and Norway in becoming more sustainable through circular product design, production, and service concepts. We are pleased to have The Swedish School of Textiles lead the project as they have a strong tradition of collaborating with textile companies."

Complex branch
The decision to focus specifically on workwear stems from it being a complex part of the textile industry, demanding strict standards, certifications, safety aspects, and specific functions depending on the application area, such as specific high-performance environments, healthcare, and hospitality. "To future-proof their operations, companies need to become more resource efficient and circular by producing durable and long lasting workwear that can be repaired and reused. Additionally, they must reduce their carbon footprint per product, as well as minimize problematic chemical usage, and increasingly use recycled materials" explained Kim Hjerrild.

Wants to provide companies with tools and knowledge
Apoorva Arya, founder and CEO of Circular Innovation Lab, elaborates: "Our first and primary goal is to equip Scandinavian workwear companies with tools and knowledge in order to comply with the upcoming EU directives and policies. This includes regulations on product-specific design requirements to labour conditions for employees, human rights, all the way from production to third-party suppliers. Ensuring these companies, especially their suppliers, can transition to a circular supply chain, and navigate the legislative landscape, while guaranteeing competitiveness in the global market."

Focus on new structures
Rudrajeet Pal, Professor of Textile Management at The Swedish School of Textiles, is pleased that the university can be the coordinator of the project. "From the perspective of my research group, this
is incredibly interesting given the focus on the examination and development of ‘new’ supply chain and business model structures that would enable sustainable value generation in textile enterprises, industry, and for the environment and society at large. We have conducted several projects where such global north-south value chain focus is eminent, and this time particularly in workwear companies’ value chain between Scandinavia and Asia. We are delighted to contribute expertise and our experience of working internationally."

About the pre-project North-South Circular Value Chains Within Textiles, NSCirTex
The project aims to support the circular transition in the Nordics by setting up a shared governance model to enable pre-competitive collaboration and the design of circular value chains between Scandinavian workwear companies in the ÖKS-region and producers in India, Bangladesh, Vietnam, and Türkiye.

The next step is to achieve a multi-year main project where workwear companies with their suppliers in Asian countries, can test tailored models for shared governance as a way to develop practical circular solutions, such as post-consumer recycling, circular material procurement, develop safe and resource efficient circular products, enhance social sustainability and due diligence, among others. The main project will thus develop solutions to reduce material footprint, and resource usage while generating both commercial viability and prepare for new regulation, reporting, and accountability.

Partners in this feasibility study: University of Borås, Aalborg University Business School, and Circular Innovation Lab. The feasibility study is funded by the EU through the Interreg Öresund-Kattegat-Skagerrak European Regional Development Fund.

Source:

University of Borås, Solveig Klug

textile waste AI generated image: Pete Linforth, Pixabay
02.04.2024

The Future of Circular Textiles: New Cotton Project completed

In a world first for the fashion industry, in October 2020 twelve pioneering players came together to break new ground by demonstrating a circular model for commercial garment production. Over more than three years, textile waste was collected and sorted, and regenerated into a new, man-made cellulosic fiber that looks and feels like cotton – a “new cotton” – using Infinited Fiber Company’s textile fiber regeneration technology.
 

In a world first for the fashion industry, in October 2020 twelve pioneering players came together to break new ground by demonstrating a circular model for commercial garment production. Over more than three years, textile waste was collected and sorted, and regenerated into a new, man-made cellulosic fiber that looks and feels like cotton – a “new cotton” – using Infinited Fiber Company’s textile fiber regeneration technology.
 
The pioneering New Cotton Project launched in October 2020 with the aim of demonstrating a circular value chain for commercial garment production. Through-out the project the consortium worked to collect and sort end-of-life textiles, which using pioneering Infinited Fiber technology could be regenerated into a new man-made cellulosic fibre called Infinna™ which looks and feels just like virgin cotton. The fibres were then spun into yarns and manufactured into different types of fabric which were designed, produced, and sold by adidas and H&M, making the adidas by Stella McCartney tracksuit and a H&M printed jacket and jeans the first to be produced through a collaborative circular consortium of this scale, demonstrating a more innovative and circular way of working for the fashion industry.
 
As the project completes in March 2024, the consortium highlights eight key factors they have identified as fundamental to the successful scaling of fibre-to-fibre recycling.

The wide scale adoption of circular value chains is critical to success
Textile circularity requires new forms of collaboration and open knowledge exchange among different actors in circular ecosystems. These ecosystems must involve actors beyond traditional supply chains and previously disconnected industries and sectors, such as the textile and fashion, waste collection and sorting and recycling industries, as well as digital technology, research organisations and policymakers. For the ecosystem to function effectively, different actors need to be involved in aligning priorities, goals and working methods, and to learn about the others’ needs, requirements and techno-economic possibilities. From a broader perspective, there is also a need for a more fundamental shift in mindsets and business models concerning a systemic transition toward circularity, such as moving away from the linear fast fashion business models. As well as sharing knowledge openly within such ecosystems, it also is important to openly disseminate lessons learnt and insights in order to help and inspire other actors in the industry to transition to the Circular Economy.

Circularity starts with the design process
When creating new styles, it is important to keep an end-of-life scenario in mind right from the beginning. As this will dictate what embellishments, prints, accessories can be used. If designers make it as easy as possible for the recycling process, it has the bigger chance to actually be feedstock again. In addition to this, it is important to develop business models that enable products to be used as long as possible, including repair, rental, resale, and sharing services.

Building and scaling sorting and recycling infrastructure is critical
In order to scale up circular garment production, there is a need for technological innovation and infrastructure development in end-of-use textiles collection, sorting, and the mechanical pre-processing of feedstock. Currently, much of the textiles sorting is done manually, and the available optical sorting and identification technologies are not able to identify garment layers, complex fibre blends, or which causes deviations in feedstock quality for fibre-to-fibre recycling. Feedstock preprocessing is a critical step in textile-to-textile recycling, but it is not well understood outside of the actors who actually implement it. This requires collaboration across the value chain, and it takes in-depth knowledge and skill to do it well. This is an area that needs more attention and stronger economic incentives as textile-to-textile recycling scales up.

Improving quality and availability of data is essential
There is still a significant lack of available data to support the shift towards a circular textiles industry. This is slowing down development of system level solutions and economic incentives for textile circulation. For example, quantities of textiles put on the market are often used as a proxy for quantities of post-consumer textiles, but available data is at least two years old and often incomplete. There can also be different textile waste figures at a national level that do not align, due to different methodologies or data years. This is seen in the Dutch 2018 Mass Balance study reports and 2020 Circular Textile Policy Monitoring Report, where there is a 20% difference between put on market figures and measured quantities of post-consumer textiles collected separately and present in mixed residual waste. With the exception of a few good studies such as Sorting for Circularity Europe and ReFashion’s latest characterization study, there is almost no reliable information about fibre composition in the post-consumer textile stream either. Textile-to-textile recyclers would benefit from better availability of more reliable data. Policy monitoring for Extended Producer Responsibility schemes should focus on standardising reporting requirements across Europe from post-consumer textile collection through their ultimate end point and incentivize digitization so that reporting can be automated, and high-quality textile data becomes available in near-real time.

The need for continuous research and development across the entire value chain
Overall, the New Cotton Project’s findings suggest that fabrics incorporating Infinna™ fibre offer a more sustainable alternative to traditional cotton and viscose fabrics, while maintaining similar performance and aesthetic qualities. This could have significant implications for the textile industry in terms of sustainability and lower impact production practices. However, the project also demonstrated that the scaling of fibre-to-fibre recycling will continue to require ongoing research and development across the entire value chain. For example, the need for research and development around sorting systems is crucial. Within the chemical recycling process, it is also important to ensure the high recovery rate and circulation of chemicals used to limit the environmental impact of the process. The manufacturing processes also highlighted the benefit for ongoing innovation in the processing method, requiring technologies and brands to work closely with manufacturers to support further development in the field.

Thinking beyond lower impact fibres
The New Cotton Project value chain third party verified LCA reveals that the cellulose carbamate fibre, and in particular when produced with a renewable electricity source, shows potential to lower environmental impacts compared to conventional cotton and viscose. Although, it's important to note that this comparison was made using average global datasets from Ecoinvent for cotton and viscose fibres, and there are variations in the environmental performance of primary fibres available on the market. However, the analysis also highlights the importance of the rest of the supply chain to reduce environmental impact. The findings show that even if we reduce the environmental impacts by using recycled fibres, there is still work to do in other life cycle stages. For example; garment quality and using the garment during their full life span are crucial for mitigating the environmental impacts per garment use.
          
Citizen engagement
The EU has identified culture as one of the key barriers to the adoption of the circular economy within Europe. An adidas quantitative consumer survey conducted across three key markets during the project revealed that there is still confusion around circularity in textiles, which has highlighted the importance of effective citizen communication and engagement activities.

Cohesive legislation
Legislation is a powerful tool for driving the adoption of more sustainable and circular practices in the textiles industry. With several pieces of incoming legislation within the EU alone, the need for a cohesive and harmonised approach is essential to the successful implementation of policy within the textiles industry. Considering the link between different pieces of legislation such as Extended Producer Responsibility and the Ecodesign for Sustainable Products Regulation, along with their corresponding timeline for implementation will support stakeholders from across the value chain to prepare effectively for adoption of these new regulations.

The high, and continuously growing demand for recycled materials implies that all possible end-of-use textiles must be collected and sorted. Both mechanical and chemical recycling solutions are needed to meet the demand. We should also implement effectively both paths; closed-loop (fibre-to-fibre) and open -loop recycling (fibre to other sectors). There is a critical need to reconsider the export of low-quality reusable textiles outside the EU. It would be more advantageous to reuse them in Europe, or if they are at the end of their lifetime recycle these textiles within the European internal market rather than exporting them to countries where demand is often unverified and waste management inadequate.

Overall, the learnings spotlight the need for a holistic approach and a fundamental mindset shift in ways of working for the textiles industry. Deeper collaboration and knowledge exchange is central to developing effective circular value chains, helping to support the scaling of innovative recycling technologies and increase availability of recycled fibres on the market. The further development and scaling of collecting and sorting, along with the need to address substantial gaps in the availability of quality textile flow data should be urgently prioritised. The New Cotton Project has also demonstrated the potential of recycled fibres such as Infinna™ to offer a more sustainable option to some other traditional fibres, but at the same time highlights the importance of addressing the whole value chain holistically to make greater gains in lowering environmental impact. Ongoing research and development across the entire value chain is also essential to ensure we can deliver recycled fabrics at scale in the future.

The New Cotton Project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 101000559.

 

Source:

Fashion for Good

Feathers from waterfowl (c) Daunen- und Federnverbände Mainz
05.03.2024

Adhesives: Feathers replace petroleum

Adhesives are almost always based on fossil raw materials such as petroleum. Researchers at Fraunhofer have recently developed a process that allows to utilize keratin for this purpose. This highly versatile protein compound can be found, for instance, in chicken feathers. Not only can it be used to manufacture a host of different adhesives for a variety of applications, but the processes and end products are also sustainable and follow the basic principles underlying a bioinspired circular economy. The project, developed together with Henkel AG & Co. KGaA, addresses a billion-dollar market.

Adhesives are almost always based on fossil raw materials such as petroleum. Researchers at Fraunhofer have recently developed a process that allows to utilize keratin for this purpose. This highly versatile protein compound can be found, for instance, in chicken feathers. Not only can it be used to manufacture a host of different adhesives for a variety of applications, but the processes and end products are also sustainable and follow the basic principles underlying a bioinspired circular economy. The project, developed together with Henkel AG & Co. KGaA, addresses a billion-dollar market.

Adhesives are found nearly everywhere: in sports shoes, smartphones, floor coverings, furniture, textiles or packaging. Even auto windshields are glued into place using adhesives. Experts recognize more than 1,000 different types of adhesives. These can bond almost every imaginable material to another. Adhesives weigh very little and so lend themselves to lightweight design. Surfaces bonded with adhesive do not warp because, unlike with screw fastenings, the load is distributed evenly. Adhesives do not rust, and seal out moisture. Surfaces bonded with adhesive are also less susceptible to vibration. Added to which, adhesives are inexpensive and relatively easy to work with.

Feathers from poultry meat production
Traditionally, adhesives have almost always been made from fossil raw materials such as petroleum. The Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB has recently adopted a different approach. Researchers there have been using feathers as a base material instead of petroleum. Feathers are a by-product of poultry meat production. They are destroyed or mixed into animal feed. But feathers are far too valuable to go to waste because they contain the structural protein keratin. This biopolymer is found in animals and makes up talons, claws, hooves or feathers. Its fibrous structure is extremely strong.

Why keratin is perfect for manufacturing adhesives
Keratin is a biodegradable and thus eco-friendly material whose structure has specific properties that make it particularly suitable for the manufacture of adhesives. Keratin's polymer structure, i.e., its very long-chain molecules, as well as its ability to undergo cross-linking reactions predestine it for the manufacture of various adhesives. “The properties required for adhesives are to some extent already inherent in the base material and only need to be unlocked, modified and activated,” explains project manager Dr. Michael Richter.

Platform chemical and specialty adhesives
Over the past three years, Fraunhofer IGB has been working with Henkel AG & Co. KGaA on the KERAbond project: “Specialty chemicals from customized functional keratin proteins” — Kera being short for keratin, combined with the English word bond. Henkel is a global market leader in the adhesives sector.

The partners in the project have recently developed and refined a new process. In the first stage, feathers received from the slaughterhouse are sterilized, washed and mechanically shredded. Next, an enzyme process splits the long-chain biopolymers or protein chains into short-chain polymers by means of hydrolysis.

The output product is a platform chemical that can serve as a base material for further development of specially formulated adhesives. “We use the process      and the platform chemical as a “toolbox” to integrate bio-enhanced properties into the end product,” says Richter. This means parameters can be specified for the target special adhesive such as curing time, elasticity, thermal properties or strength. Also, it’s not just adhesives that are easy to manufacture but also related substances such as hardeners, coatings or primers.

In the next stage, the Fraunhofer team set about converting the feathers on a large scale. Ramping up the process fell to the Fraunhofer Center for Chemical-Biotechnological Processes CBP in Leuna. The aim was to prove that the keratin-based platform chemicals can also be manufactured cost-efficiently on an industrial scale. This involved processing several kilograms of chicken feathers, with the material produced being used for promising initial material trials at Fraunhofer IGB and Henkel.

Foundations of a bioinspired economy
This bioinspired process is of particular significance for the Fraunhofer-Gesellschaft. Biotechnology is in fact one of the main fields of research for the Fraunhofer-Gesellschaft: “We draw our inspiration from functionality or properties that already exist in nature or in natural raw materials. And we attempt to translate these properties into products through innovative manufacturing methods. This generates a bioinspired cycle for valuable raw materials, Richter explains.

The project carries some economic weight. According to Statista, around one million tons of adhesives were manufactured in Germany alone in 2019. Total value is around 1.87 billion euros.

A patent application has been filed for the new process and an article published in a scientific journal. Two PhD students who have conducted extensive research on the project at Henkel and Fraunhofer are expected to complete their theses in the first quarter of 2024. This new keratin-based technology will allow a host of platform chemicals to be produced in a sustainable, bioinspired way.

The KERAbond project has been funded and supported over the past three years by Fachagentur Nachwachsende Rohstoffe (FNR) in Gülzow on behalf of the Federal Ministry of Food and Agriculture (BMEL) under the Renewable Resources Funding funding program (grant number 22014218).

Source:

Fraunhofer IBG

offshore windpark Nicholas Doherty, unsplash
17.10.2023

Pyrolysis processes promise sustainable recycling of fiber composites

Wind turbines typically operate for 20 to 30 years before they are undergoing dismantling and recycling. However, the recycling of fiber composites, especially from the thick-walled rotor blade parts, has been inadequate until now. The prevailing methods involve thermal or mechanical recycling. For a sustainable and holistic recycling process, a research consortium led by Fraunhofer IFAM is pooling their expertise to recover the fibers through pyrolysis. Subsequent surface treatment and quality testing of the recyclates allow for them to be used again in industry.

Wind turbines typically operate for 20 to 30 years before they are undergoing dismantling and recycling. However, the recycling of fiber composites, especially from the thick-walled rotor blade parts, has been inadequate until now. The prevailing methods involve thermal or mechanical recycling. For a sustainable and holistic recycling process, a research consortium led by Fraunhofer IFAM is pooling their expertise to recover the fibers through pyrolysis. Subsequent surface treatment and quality testing of the recyclates allow for them to be used again in industry.

Today, the vast majority of wind turbines can already be recycled cleanly. In the case of rotor blades, however, recycling is only just beginning. Due to the 20-year operation period and the installation rates, the blade volume for recycling will be increasing in the coming years and decades. In 2000, for example, around 6,000 wind turbines were erected in Germany, which now need to be fed into a sustainable recycling process. In 2022, about 30,000 onshore and offshore wind turbines with a capacity of 65 gigawatts were in operation in Germany alone.

As wind energy is the most important cornerstone for a climate-neutral power supply, the German government has set itself the goal of further increasing its wind energy capacity by 2030 by installing larger and more modern turbines. Rotor blades will become longer, the proportion of carbon fibers used will continue to increase - and so will the amount of waste. In addition, the existing material mix in rotor blades is expected to increase in the future and precise knowledge of the structure of the components will become even more important for recycling. This underscores the urgency of developing sustainable processing methods, especially for recycling the thick-walled fiber composites in the rotor blades.

Economic and ecological recycling solution for fiber composites on the horizon
Rotor blades of wind turbines currently up for recycling consist of more than 85 percent of glass- and carbon-fiber-reinforced thermosets (GFRP/CFRP). A large proportion of these materials is found in the flange and root area and within the fiber-reinforced straps as thick-walled laminates with a wall thicknesses of up to 150 mm. Research into high-quality material fiber recycling as continuous fibers is of particular importance, not only because of the energy required for carbon fiber production. This is where the project "Pyrolysis of thick-walled fiber composites as a key innovation in the recycling process for wind turbine rotor blades" – "RE SORT" for short – funded by the German Federal Ministry of Economics and Climate Protection comes in. The aim of the project team is the complete recycling by means of pyrolysis.

A prerequisite for high-quality recycling of fiber composites is the separation of the fibers from the mostly thermoset matrix. Although pyrolysis is a suitable process for this purpose, it has not yet gained widespread adoption. Within the project, the project partners are therefore investigating and developing pyrolysis technologies that make the recycling of thick-walled fiber composite structures economically feasible and are technically different from the recycling processes commonly used for fiber composites today. Both quasi-continuous batch and microwave pyrolysis are being considered.

Batch pyrolysis, which is being developed within the project, is a pyrolysis process in which the thermoset matrix of thick fiber composite components is slowly decomposed into oily and especially gaseous hydrocarbon compounds by external heating. In microwave pyrolysis, energy is supplied by the absorption of microwave radiation, resulting in internal rapid heat generation. Quasi-continuous batch pyrolysis as well as microwave pyrolysis allow the separation of pyrolysis gases or oils. The planned continuous microwave pyrolysis also allows for the fibers to be preserved and reused in their full length.

How the circular economy succeeds - holistic utilization of the recycled products obtained
In the next step, the surfaces of the recovered recycled fibers are prepared by means of atmospheric plasmas and wet-chemical coatings to ensure their suitability for reuse in industrial applications. Finally, strength tests can be used to decide whether the recycled fibers will be used again in the wind energy industry or, for example, in the automotive or sporting goods sectors.

The pyrolysis oils and pyrolysis gases obtained in batch and microwave pyrolysis are evaluated with respect to their usability as raw materials for polymer synthesis (pyrolysis oils) or as energy sources for energy use in combined heat and power (CHP) plants (pyrolysis gases).

Both quasi-continuous batch pyrolysis and continuous-flow microwave pyrolysis promise economical operation and a significant reduction in the environmental footprint of wind energy. Therefore, the chances for a technical implementation and utilization of the project results are very good, so that this project can make a decisive contribution to the achievement of the sustainability and climate goals of the German Federal Government.

Source:

Fraunhofer-Institut für Fertigungstechnik und Angewandte Materialforschung IFAM

Carbon U Profil (c) vombaur GmbH & Co. KG
19.09.2023

"After all, a spaceship is not made off the peg."

Interview with vombaur - pioneers in special textiles
Technical narrow textiles, custom solutions, medium-sized textile producer and development partner for filtration textiles, composite textiles and industrial textiles: vombaur. Digitalisation, sustainability, energy prices, pioneering work and unbroken enthusiasm – Textination spoke to two passionate textile professionals: Carl Mrusek, Chief Sales Officer (CSO), and Johannes Kauschinger, Sales Manager for Composites and Industrial Textiles, at vombaur GmbH, which, as well as JUMBO-Textil, belongs to the Textation Group.
 

Interview with vombaur - pioneers in special textiles
Technical narrow textiles, custom solutions, medium-sized textile producer and development partner for filtration textiles, composite textiles and industrial textiles: vombaur. Digitalisation, sustainability, energy prices, pioneering work and unbroken enthusiasm – Textination spoke to two passionate textile professionals: Carl Mrusek, Chief Sales Officer (CSO), and Johannes Kauschinger, Sales Manager for Composites and Industrial Textiles, at vombaur GmbH, which, as well as JUMBO-Textil, belongs to the Textation Group.
 
If you look back at your history and thus to the beginnings of the 19th century, you will see a ribbon manufactory and, from 1855, a production of silk and hat bands. Today you produce filtration textiles, industrial textiles and composites textiles. Although you still produce narrow textiles today, the motto "Transformation as an opportunity" seems to be a lived reality at vombaur.
 
Carl Mrusek, Chief Sales Officer: Yes, vombaur has changed a few times in its almost 220-year history.  Yet the company has always remained true to itself as a narrow textiles manufacturer. This testifies to the willingness of the people in the company to change and to their curiosity. Successful transformation is a joint development, there is an opportunity in change. vombaur has proven this many times over the past almost 220 years: We have adapted our product portfolio to new times, we have built new factory buildings and new machinery, we have introduced new materials and developed new technologies, we have entered into new partnerships – as most recently as part of the Textation Group. We are currently planning our new headquarters. We are not reinventing ourselves, but we will go through a kind of transformation process with the move into the brand new, climate-friendly high-tech space.

 

Could you describe the challenges of this transformation process?
 
Johannes Kauschinger, Sales Manager for Composites and Industrial Textiles: A transformation usually takes place technically, professionally, organisationally and not least – perhaps even first and foremost – culturally. The technical challenges are obvious. Secondly, in order to manage and use the new technologies, appropriate expertise is needed in the company. Thirdly, every transformation entails new processes, teams and procedures have to be adapted. And finally, fourthly, the corporate culture also changes. Technology can be procured, expertise acquired, the organisation adapted. Time, on the other hand, cannot be bought. I therefore consider the greatest challenge to be the supply of human resources: In order to actively shape the transformation and not be driven by development, we need sufficient skilled workers.

 

Visiting your website, the claim "pioneering tech tex" immediately catches the eye. Why do you see your company as a pioneer, and what are vombaur's groundbreaking or pioneering innovations?

Carl Mrusek: With our unique machine park, we are pioneers for seamless circular woven textiles. And as a development partner, we break new ground with every order. We are always implementing new project-specific changes: to the end products, to the product properties, to the machines. It happens regularly that we adapt a weaving machine for a special seamless woven shaped textile, sometimes even develop a completely new one.
 
With our young, first-class and growing team for Development and Innovation led by Dr. Sven Schöfer, we repeatedly live up to our promise of "pioneering tech tex" by developing special textile high-tech solutions with and for our customers. At the same time, we actively explore new potentials. Most recently with sustainable materials for lightweight construction and research into novel special filtration solutions, for example for the filtration of microplastics. A state-of-the-art textile technology laboratory is planned for this team in the new building.

 

The development of technical textiles in Germany is a success story. From a global perspective, we manage to succeed with mass-produced goods only in exceptional cases. How do you assess the importance of technical textiles made in Germany for the success of other, especially highly technological industries?

Carl Mrusek: We see the future of industry in Europe in individually developed high-tech products. vombaur stands for high-quality, reliable and durable products and made-to-order products. And it is precisely this – custom-fit products, instead of surplus and throwaway goods – that is the future for sustainable business in general.

 

What proportion of your production is generated by being project-based as opposed to a standard range, and to what extent do you still feel comfortable with the term "textile producer"?

Johannes Kauschinger: Our share of special solutions amounts to almost 90 percent. We develop technical textile solutions for our customers' current projects. For this purpose, we are in close contact with the colleagues from our customers' product development departments. Especially in the field of composite textiles, special solutions are in demand. This can be a component for space travel – after all, a spaceship is not manufactured off the peg. We also offer high-quality mass-produced articles, for example in the area of industrial textiles, where we offer round woven tubulars for conveyor belts. In this sense, we are a textile producer, but more than that: we are also a textile developer.

 

In August, Composites Germany presented the results of its 21st market survey. The current business situation is viewed very critically, the investment climate is becoming gloomier and future expectations are turning negative. vombaur also has high-strength textile composites made of carbon, aramid, glass and hybrids in its portfolio. Do you share the assessment of the economic situation as reflected in the survey?

Carl Mrusek: We foresee a very positive development for vombaur because we develop in a very solution-oriented way and offer our customers genuine added value. This is because future technologies in particular require individual, reliable and lightweight components. This ranges from developments for the air taxi to wind turbines. Textiles are a predestined material for the future. The challenge here is also to offer sustainable and recyclable solutions with natural raw materials such as flax and recycled and recyclable plastics and effective separation technologies.

 

There is almost no company nowadays that does not use the current buzzwords such as climate neutrality, circular economy, energy efficiency and renewable energies. What is your company doing in these areas and how do you define the importance of these approaches for commercial success?

Carl Mrusek: vombaur pursues a comprehensive sustainability strategy. Based on the development of our mission statement, we are currently working on a sustainability declaration. Our responsibility for nature will be realised in a very concrete and measurable way through our new building with a green roof and solar system. In our product development, the high sustainability standards – our own and those of our customers – are already flowing into environmentally friendly and resource-saving products and into product developments for sustainable projects such as wind farms or filtration plants.

 

Keyword digitalisation: medium-sized businesses, to which vombaur belongs with its 85 employees, are often scolded for being too reluctant in this area. How would you respond to this accusation?

Johannes Kauschinger:

We often hear about the stack crisis at the present time. Based on this, we could speak of the stack transformation. We, the small and medium-sized enterprises, are transforming ourselves in a number of different dimensions at the same time: Digital transformation, climate neutrality, skilled labour market and population development, independence from the prevailing supply chains. We are capable of change and willing to change. Politics and administration could make it a bit easier for us in some aspects. Key words: transport infrastructure, approval times, energy prices. We do everything we can on our side of the field to ensure that small and medium-sized enterprises remain the driving economic force that they are.

 

 

How do you feel about the term shortage of skilled workers? Do you also take unconventional paths to find and retain talent and skilled workers in such a specialised industry? Or does the problem not arise?

Carl Mrusek: Of course, we are also experiencing a shortage of skilled workers, especially in the industrial sector. But the development was foreseeable. The topic played a major role in the decision to move together with our sister company JUMBO-Textil under the umbrella of the Textation Group. Recruiting and promoting young talent can be better mastered together – for example with cross-group campaigns and cooperations.

 

If you had to describe a central personal experience that has shaped your attitude towards the textile industry and its future, what would it be?

Johannes Kauschinger: A very good friend of my family pointed out to me that we live in an area with a very active textile industry, which at the same time has problems finding young talents. I visited two companies for an interview and already on the tour of each company, the interaction of people, machines and textiles up to the wearable end product was truly impressive. In addition, I was able to learn a profession with a very strong connection to everyday life. To this day, I am fascinated by the wide range of possible uses for textiles, especially in technical applications, and I have no regrets whatsoever about the decision I made back then.

Carl Mrusek: I came into contact with the world of textiles and fashion at a young age. I still remember the first time I went through the fully integrated textile production of a company in Nordhorn with my father Rolf Mrusek. Since then, the subject has never left me. Even before I started my studies, I had made a conscious decision to pursue a career in this industry and to this day I have never regretted it, on the contrary. The diversity of the special solutions developed in the Textation Group fascinates me again and again.

 

vombaur is a specialist for seamless round and shaped woven narrow textiles and is known throughout the industry as a development partner for filtration textiles, composite textiles and industrial textiles made of high-performance fibres. Technical narrow textiles from vombaur are used for filtration – in the food and chemical industries, among others. As high-performance composite materials, they are used, for example, in aircraft construction or medical technology. For technical applications, vombaur develops specially coated industrial textiles for insulation, reinforcement or transport in a wide range of industrial processes – from precision mechanics to the construction industry. The Wuppertal-based company was founded in 1805. The company currently employs 85 people.

Sectors

  • Aviation & Automotive
  • Sports & Outdoor   
  • Construction & Water Management
  • Safety & Protection   
  • Chemistry & Food
  • Plant construction & electronics   
  • Medicine & Orthopaedics

 

(c) Nadine Glad
18.07.2023

Promoting transparent supply chains and a more circular economy with digital product passports

Any prospective buyer interested in knowing more about the products they have set their eyes on will have to cope with limited information on print or online manuals or engage in time-consuming research. This may change soon, as the European Commission introduced a standardised digital product passport for the upcoming legislation. A project consortium has been formed with partners from industry and academia to set ground for the developments. The idea is for the proposed passports, supported by EU regulations, to make all product information available along the entire value chain and easily accessible e.g. by QR code.

Any prospective buyer interested in knowing more about the products they have set their eyes on will have to cope with limited information on print or online manuals or engage in time-consuming research. This may change soon, as the European Commission introduced a standardised digital product passport for the upcoming legislation. A project consortium has been formed with partners from industry and academia to set ground for the developments. The idea is for the proposed passports, supported by EU regulations, to make all product information available along the entire value chain and easily accessible e.g. by QR code.

ID cards and passports are usually the first things packed when one goes on a journey. They are internationally recognized and accepted documents with all the necessary information about the holder: Commonplace items for people that will soon become just as common for electronic devices, textiles, or batteries. But mobile phones, tablet computers, and their kin usually do not travel with a passport pouch, so their digital product passports with all their “personal details” will soon be accessible at every link in the value chain via a QR code or RFID chip.

Consumers looking to buy a new piece of clothing, a piece of electronics, or even furniture or toys should have more means to understand important information about their products, including their energy efficiency, the labor conditions during manufacturing, or their reparability, in order to make informed and sustainable purchasing choices.

Product passports also hold great potential for other actors, e.g. for repairs or recycling. Current electronic products, often highly miniaturized, make it hard to understand with materials, not least toxic substances are contained and how they could be separated from another. Use-specific certificates can regulate that this type of information is available to the people who need to know it.

No final decision has yet been made about the range of information that will be contained in the product passports. For the CIRPASS project, Eduard Wagner and his team at Fraunhofer ZM is currently surveying which types of information are already covered by current legal requirements and which additional information could be contained on a digital product passport. Their aim is to provide an information architecture that determines which types of information have added value for which actors in the value chain and at what cost this information could be provided. A reparability scale that shows how easily a product is to repair has been required in France since 2021 and might be a good inclusion in the digital, pan-European product passport. “Information about energy efficiency is already required, but this information still has to be prepared on a case-by-case basis, and there are no universal European disclosure requirements for other types of circularity related information. Meaningful standardization here is one of the top goals of the product passport. Imagine we could compare the durability of all t-shirts in the EU between each other,” says sustainability expert Eduard Wagner.

For the first product passports to be ready by 2026, many actors still need to be brought on board and a consensus be found for which information is most relevant. “Our project has identified 23 groups of stakeholders that we are including in our survey of requirements, in all three sectors”, Wagner explains. “We have suppliers of materials, manufacturers of electronics, and representatives of repair and recycling associations with us.” The results of these consultations will go to the European Commission to act as pointers for the political process en route to new legal requirements for the product passport. Small to medium-sized enterprises are given special attention and support in this, as providing the required information can mean a considerable effort on their part.

Source:

Fraunhofer Institute for Reliability and Microintegration IZM

Swijin Inage Swijin
20.06.2023

Innovative sportswear: Swim and run without changing

Just in time for summer: The Swiss start-up Swijin is launching a new sportswear category with its SwimRunner – a sports bra together with matching bottoms that works as both swimwear and running gear and dries in no time. The innovative product was developed together with Empa researchers in an Innosuisse project. The SwimRunner can be tested this weekend at the Zurich City Triathlon.
 
A quick dip after jogging without having to change clothes? Swijin (pronounced Swie-Djin), a new Swiss TechTex start-up, is launching its first product, the SwimRunner: a sports bra and bottoms that function as both swimwear and running gear and dry in a flash.

Just in time for summer: The Swiss start-up Swijin is launching a new sportswear category with its SwimRunner – a sports bra together with matching bottoms that works as both swimwear and running gear and dries in no time. The innovative product was developed together with Empa researchers in an Innosuisse project. The SwimRunner can be tested this weekend at the Zurich City Triathlon.
 
A quick dip after jogging without having to change clothes? Swijin (pronounced Swie-Djin), a new Swiss TechTex start-up, is launching its first product, the SwimRunner: a sports bra and bottoms that function as both swimwear and running gear and dry in a flash.

For the first time, this innovation enables women to make a smooth transition between land and water sports without having to change clothes. For example, hikers and runners can easily go into the water to cool off. Stand-up paddlers wearing the SwimRunner enjoy unrestricted freedom of movement and at the same time sufficient support, both on the board and in the water.
Science to boost sports performance
 
What appears to be a relatively simple requirement at first glance has turned out to be an extremely complex product to develop. As part of an Innosuisse project, Swijin collaborated with the Empa Biomimetic Membranes and Textiles laboratory in St. Gallen. Led by Empa engineer Martin Camenzind, the researchers first defined the requirements for the material and cut of the sports bra. "During development, we faced three main challenges: On the one hand, the product had to meet the requirements of a heavy-duty sports bra on land. At the same time, it had to maintain the compression of a swimsuit in the water – and do so with a very short drying time," says Camenzind.

Since no comparable garment exists on the market yet, the team also developed new tests for evaluating the high-performance textile. "Moreover, we designed a mannequin: a model of the female torso that can be used to measure the mechanical properties of bras," explains the researcher. In addition to scientific findings, the product development process also incorporated a great deal of expertise from sports physiologists, textile engineers, industry specialists, designers and, of course, female athletes.

Highest demands
Many of these athletes come from the swimrun scene. Swimrun is a fast-growing adventure sport that originated in the skerry gardens of Sweden. Unlike triathletes, who start out by swimming, then bike, and finally run, swimrunners switch back and forth between trail running and open water swimming throughout the race. The intensity of this sport provided Swijin with the optimal conditions for product development – and gave its name to the first collection, SwimRunner. "The feedback from female athletes was one of the deciding factors for the success of the product. They often swim and run for six to seven hours at a stretch. When they were satisfied with our prototypes, we knew: The SwimRunner is ready for market," says Swijin founder Claudia Glass.

The product idea first came to Claudia Glass while she was on vacation on Mallorca. During her morning runs, she longed to be able to take a quick dip in the sea. "Sports bras, however, are not designed for swimming," the founder explains. "They soak up the water and never seem to dry because of their thick compression material. Last summer, I wore the SwimRunner prototype all day. In the morning, I ran to Lake Zurich with my dog and jumped in. When I got back home, I could have just sat down at my desk and started working – I was completely dry and felt very comfortable."

Design and sustainability
The young company makes a point of combining engineering and design. Swijin's creative director, Valeria Cereda, is based in the center of the world's fashion capital, Milan, and infuses her experience with luxury brands into Swijin's aesthetic. But as a former competitive swimmer, she is also focused on functionality.

Swijin's high-performance products can only be realized with synthetic materials. The young company is determined to reduce the environmental impact of its products to a minimum. The tight supply chain keeps the CO2 footprint low. The materials of the SwimRunner are 100% made in the EU and designed for quality.

Traditional garment labels only provide information about where the garment was made. Swijin is working with supplier Avery Dennison to provide all products with a Digital Identity Label. This gives consumers detailed information about the entire value chain, right down to the textile manufacturer's investment in reducing its carbon footprint and the use of the water-based, solvent-free logo. Swijin packages all materials in Cradle-to-Cradle Gold certified packaging, which is produced by Voegeli AG in Emmental.

Furthermore, Swijin proactively addresses the challenges at the end of the product life cycle. In order to come one step closer to a truly circular economy for functional textiles, Swijin participates in the Yarn-to-Yarn® pilot project of Rheiazymes AG as a lighthouse partner. This biotech solution uses microorganisms and enzymes to generate new starting materials directly from used textiles in a climate-neutral way. When customers return end-of-life Swijin products – for which the company offers incentives – the high-quality monomers can be returned to the supply chain in their original quality: true circularity.

"As an emerging brand, we have both the obligation and the luxury of choosing partners whose vision and values align with our own," says Claudia Glass. "I had a clear understanding of what kind of brand I would buy, but I couldn't find it anywhere. With Swijin, we feel obligated to actually make our values a reality."

Source:

Claudia Glass, Anna Ettlin, EMPA

Photo: Unsplash
13.06.2023

The impact of textile production and waste on the environment

  • With fast fashion, the quantity of clothes produced and thrown away has boomed.

Fast fashion is the constant provision of new styles at very low prices. To tackle the impact on the environment, the EU wants to reduce textile waste and increase the life cycle and recycling of textiles. This is part of the plan to achieve a circular economy by 2050.

Overconsumption of natural resources
It takes a lot of water to produce textile, plus land to grow cotton and other fibres. It is estimated that the global textile and clothing industry used 79 billion cubic metres of water in 2015, while the needs of the EU's whole economy amounted to 266 billion cubic metres in 2017.

To make a single cotton t-shirt, 2,700 litres of fresh water are required according to estimates, enough to meet one person’s drinking needs for 2.5 years.

  • With fast fashion, the quantity of clothes produced and thrown away has boomed.

Fast fashion is the constant provision of new styles at very low prices. To tackle the impact on the environment, the EU wants to reduce textile waste and increase the life cycle and recycling of textiles. This is part of the plan to achieve a circular economy by 2050.

Overconsumption of natural resources
It takes a lot of water to produce textile, plus land to grow cotton and other fibres. It is estimated that the global textile and clothing industry used 79 billion cubic metres of water in 2015, while the needs of the EU's whole economy amounted to 266 billion cubic metres in 2017.

To make a single cotton t-shirt, 2,700 litres of fresh water are required according to estimates, enough to meet one person’s drinking needs for 2.5 years.

The textile sector was the third largest source of water degradation and land use in 2020. In that year, it took on average nine cubic metres of water, 400 square metres of land and 391 kilogrammes (kg) of raw materials to provide clothes and shoes for each EU citizen.

Water pollution
Textile production is estimated to be responsible for about 20% of global clean water pollution from dyeing and finishing products.

Laundering synthetic clothes accounts for 35% of primary microplastics released into the environment. A single laundry load of polyester clothes can discharge 700,000 microplastic fibres that can end up in the food chain.

The majority of microplastics from textiles are released during the first few washes. Fast fashion is based on mass production, low prices and high sales volumes that promotes many first washes.

Washing synthetic products has caused more than 14 million tonnes of microplastics to accumulate on the bottom of the oceans. In addition to this global problem, the pollution generated by garment production has a devastating impact on the health of local people, animals and ecosystems where the factories are located.

Greenhouse gas emissions
The fashion industry is estimated to be responsible for 10% of global carbon emissions – more than international flights and maritime shipping combined.

According to the European Environment Agency, textile purchases in the EU in 2020 generated about 270 kg of CO2 emissions per person. That means textile products consumed in the EU generated greenhouse gas emissions of 121 million tonnes.

Textile waste in landfills and low recycling rates
The way people get rid of unwanted clothes has also changed, with items being thrown away rather than donated. Less than half of used clothes are collected for reuse or recycling, and only 1% of used clothes are recycled into new clothes, since technologies that would enable clothes to be recycled into virgin fibres are only now starting to emerge.

Between 2000 and 2015, clothing production doubled, while the average use of an item of clothing has decreased.

Europeans use nearly 26 kilos of textiles and discard about 11 kilos of them every year. Used clothes can be exported outside the EU, but are mostly (87%) incinerated or landfilled.

The rise of fast fashion has been crucial in the increase in consumption, driven partly by social media and the industry bringing fashion trends to more consumers at a faster pace than in the past.

The new strategies to tackle this issue include developing new business models for clothing rental, designing products in a way that would make re-use and recycling easier (circular fashion), convincing consumers to buy fewer clothes of better quality (slow fashion) and generally steering consumer behaviour towards more sustainable options.

Work in progress: the EU strategy for sustainable and circular textiles
As part of the circular economy action plan, the European Commission presented in March 2022 a new strategy to make textiles more durable, repairable, reusable and recyclable, tackle fast fashion and stimulate innovation within the sector.

The new strategy includes new ecodesign requirements for textiles, clearer information, a Digital Product Passport and calls companies to take responsibility and act to minimise their carbon and environmental footprints

On 1 June 2023, MEPs set out proposals for tougher EU measures to halt the excessive production and consumption of textiles. Parliament’s report calls for textiles to be produced respecting human, social and labour rights, as well as the environment and animal welfare.

Existing EU measures to tackle textile waste
Under the waste directive approved by the Parliament in 2018, EU countries are obliged to collect textiles separately by 2025. The new Commission strategy also includes measures to, tackle the presence of hazardous chemicals, calls producers have to take responsibility for their products along the value chain, including when they become wasteand help consumers to choose sustainable textiles.

The EU has an EU Ecolabel that producers respecting ecological criteria can apply to items, ensuring a limited use of harmful substances and reduced water and air pollution.

The EU has also introduced some measures to mitigate the impact of textile waste on the environment. Horizon 2020 funds Resyntex, a project using chemical recycling, which could provide a circular economy business model for the textile industry.

A more sustainable model of textile production also has the potential to boost the economy. "Europe finds itself in an unprecedented health and economic crisis, revealing the fragility of our global supply chains," said lead MEP Huitema. "Stimulating new innovative business models will in turn create new economic growth and the job opportunities Europe will need to recover."

(c) nova-Institut GmbH
14.03.2023

Bacteria instead of trees, textile and agricultural waste

For the third time, the nova-Institut awarded the "Cellulose Fibre Innovation of the Year" prize at the "Cellulose Fibres Conference 2023" in Cologne, 8-9 March 2023.

The yearly conference is a unique meeting point of the global cellulose fibres industry. 42 speakers from twelve countries highlighted the innovation potential of cellulosic fibres and presented the latest market insights and trends to more than 220 participants from 30 countries.

Leading international experts introduced new technologies for recycling of cellulose rich raw materials and practices for circular economy in textiles, packing and hygiene, which were discussed in seven panel discussion with active audience participation.    

Prior to the conference, the conference advisory board had nominated six remarkable innovations. The winners were elected in an exciting head-to-head live-voting by the conference audience on the first day of the event.

For the third time, the nova-Institut awarded the "Cellulose Fibre Innovation of the Year" prize at the "Cellulose Fibres Conference 2023" in Cologne, 8-9 March 2023.

The yearly conference is a unique meeting point of the global cellulose fibres industry. 42 speakers from twelve countries highlighted the innovation potential of cellulosic fibres and presented the latest market insights and trends to more than 220 participants from 30 countries.

Leading international experts introduced new technologies for recycling of cellulose rich raw materials and practices for circular economy in textiles, packing and hygiene, which were discussed in seven panel discussion with active audience participation.    

Prior to the conference, the conference advisory board had nominated six remarkable innovations. The winners were elected in an exciting head-to-head live-voting by the conference audience on the first day of the event.

The collaboration between Nanollose (AU) and Birla Cellulose (IN) with tree-free lyocell from bacterial cellulose called Nullarbor™ is the winning cellulose fibre innovation 2023, followed by Renewcell (SE) cellulose fibres made from 100 % textile waste, while Vybrana – the new generation banana fibre from Gencrest Bio Products (IN) won third place.
    
Winner: Nullarbor™ – Nanollose and Birla Cellulose (AU/IN)
In 2020, Nanollose and Birla Cellulose started a journey to develop and commercialize treefree lyocell from bacterial cellulose, called Nullarbor™. The name derives from the Latin “nulla arbor” which means “no trees”. Initial lab research at both ends led to the joint patent application “production of high-tenacity lyocell fibres made from bacterial cellulose”.
Nullarbor is significantly stronger than lyocell made from wood-based pulp; even adding small amounts of bacterial cellulose to wood pulp increases the fibre toughness. In 2022, the first pilot batch of 260 kg was produced with 20 % bacterial pulp share. Several high-quality fabrics and garments were produced with this fibre. The collaboration between Nanollose and Birla Cellulose now focuses on increasing the production scale and amount of bacterial pulp in the fibre.  

Second place: Circulose® – makes fashion circular – Renewcell (SE)
Circulose® made by Renewcell is a branded dissolving pulp made from 100 % textile waste, like worn-out clothes and production scraps. It provides a unique material for fashion that is 100 % recycled, recyclable, biodegradable, and of virgin-equivalent quality. It is used by fibre producers to make staple fibre or filaments like viscose, lyocell, modal, acetate or other types of man-made cellulosic fibres. In 2022, Renewcell, opened the world’s first textile-to-textile     
chemical recycling plant in Sundsvall, Sweden – Renewcell 1. The plant is expected to reach an annual capacity of 120,000 tonnes.

Third place: Vybrana – The new generation banana fibre – Gencrest Bio Products (IN)
Vybrana is a Gencrest’s Sustainable Cellulosic Fibre upcycled from agrowaste. Raw fibres are extracted from the banana stem at the end of the plant lifecycle. The biomass waste is then treated by the Gencrest patented Fiberzyme technology. Here, cocktail enzyme formulations remove the high lignin content and other impurities and help fibre fibrillation. The company's proprietary cottonisation process provides fine, spinnable cellulose staple fibres suitable for blending with other staple fibres and can be spun on any conventional spinning systems giving yarns sustainable apparel. Vybrana is produced without the use of heavy chemicals and minimized water consumption and in a waste-free process where balance biomass is converted to bio stimulants Agrosatva and bio-based fertilizers and organic manure.