Textination Newsline

Reset
11 results
Converting CO2 to Solid Carbon Nanofibers (c) Zhenhua Xie/Brookhaven National Laboratory and Columbia University; Erwei Huang/Brookhaven National Laboratory
22.01.2024

Converting CO2 to Solid Carbon Nanofibers

Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material.

Scientists at the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory and Columbia University have developed a way to convert carbon dioxide (CO2), a potent greenhouse gas, into carbon nanofibers, materials with a wide range of unique properties and many potential long-term uses. Their strategy uses tandem electrochemical and thermochemical reactions run at relatively low temperatures and ambient pressure. As the scientists describe in the journal Nature Catalysis, this approach could successfully lock carbon away in a useful solid form to offset or even achieve negative carbon emissions.

Tandem electrocatalytic-thermocatalytic conversion could help offset emissions of potent greenhouse gas by locking carbon away in a useful material.

Scientists at the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory and Columbia University have developed a way to convert carbon dioxide (CO2), a potent greenhouse gas, into carbon nanofibers, materials with a wide range of unique properties and many potential long-term uses. Their strategy uses tandem electrochemical and thermochemical reactions run at relatively low temperatures and ambient pressure. As the scientists describe in the journal Nature Catalysis, this approach could successfully lock carbon away in a useful solid form to offset or even achieve negative carbon emissions.

“You can put the carbon nanofibers into cement to strengthen the cement,” said Jingguang Chen, a professor of chemical engineering at Columbia with a joint appointment at Brookhaven Lab who led the research. “That would lock the carbon away in concrete for at least 50 years, potentially longer. By then, the world should be shifted to primarily renewable energy sources that don’t emit carbon.”

As a bonus, the process also produces hydrogen gas (H2), a promising alternative fuel that, when used, creates zero emissions.

Capturing or converting carbon?
The idea of capturing CO2 or converting it to other materials to combat climate change is not new. But simply storing CO2 gas can lead to leaks. And many CO2 conversions produce carbon-based chemicals or fuels that are used right away, which releases CO2 right back into the atmosphere.

“The novelty of this work is that we are trying to convert CO2 into something that is value-added but in a solid, useful form,” Chen said.

Such solid carbon materials—including carbon nanotubes and nanofibers with dimensions measuring billionths of a meter—have many appealing properties, including strength and thermal and electrical conductivity. But it’s no simple matter to extract carbon from carbon dioxide and get it to assemble into these fine-scale structures. One direct, heat-driven process requires temperatures in excess of 1,000 degrees Celsius.

“It’s very unrealistic for large-scale CO2 mitigation,” Chen said. “In contrast, we found a process that can occur at about 400 degrees Celsius, which is a much more practical, industrially achievable temperature.”

The tandem two-step
The trick was to break the reaction into stages and to use two different types of catalysts—materials that make it easier for molecules to come together and react.

“If you decouple the reaction into several sub-reaction steps you can consider using different kinds of energy input and catalysts to make each part of the reaction work,” said Brookhaven Lab and Columbia research scientist Zhenhua Xie, lead author on the paper.

The scientists started by realizing that carbon monoxide (CO) is a much better starting material than CO2 for making carbon nanofibers (CNF). Then they backtracked to find the most efficient way to generate CO from CO2.

Earlier work from their group steered them to use a commercially available electrocatalyst made of palladium supported on carbon. Electrocatalysts drive chemical reactions using an electric current. In the presence of flowing electrons and protons, the catalyst splits both CO2 and water (H2O) into CO and H2.

For the second step, the scientists turned to a heat-activated thermocatalyst made of an iron-cobalt alloy. It operates at temperatures around 400 degrees Celsius, significantly milder than a direct CO2-to-CNF conversion would require. They also discovered that adding a bit of extra metallic cobalt greatly enhances the formation of the carbon nanofibers.

“By coupling electrocatalysis and thermocatalysis, we are using this tandem process to achieve things that cannot be achieved by either process alone,” Chen said.

Catalyst characterization
To discover the details of how these catalysts operate, the scientists conducted a wide range of experiments. These included computational modeling studies, physical and chemical characterization studies at Brookhaven Lab’s National Synchrotron Light Source II (NSLS-II)—using the Quick X-ray Absorption and Scattering (QAS) and Inner-Shell Spectroscopy (ISS) beamlines—and microscopic imaging at the Electron Microscopy facility at the Lab’s Center for Functional Nanomaterials (CFN).

On the modeling front, the scientists used “density functional theory” (DFT) calculations to analyze the atomic arrangements and other characteristics of the catalysts when interacting with the active chemical environment.

“We are looking at the structures to determine what are the stable phases of the catalyst under reaction conditions,” explained study co-author Ping Liu of Brookhaven’s Chemistry Division who led these calculations. “We are looking at active sites and how these sites are bonding with the reaction intermediates. By determining the barriers, or transition states, from one step to another, we learn exactly how the catalyst is functioning during the reaction.”

X-ray diffraction and x-ray absorption experiments at NSLS-II tracked how the catalysts change physically and chemically during the reactions. For example, synchrotron x-rays revealed how the presence of electric current transforms metallic palladium in the catalyst into palladium hydride, a metal that is key to producing both H2 and CO in the first reaction stage.

For the second stage, “We wanted to know what’s the structure of the iron-cobalt system under reaction conditions and how to optimize the iron-cobalt catalyst,” Xie said. The x-ray experiments confirmed that both an alloy of iron and cobalt plus some extra metallic cobalt are present and needed to convert CO to carbon nanofibers.

“The two work together sequentially,” said Liu, whose DFT calculations helped explain the process.

“According to our study, the cobalt-iron sites in the alloy help to break the C-O bonds of carbon monoxide. That makes atomic carbon available to serve as the source for building carbon nanofibers. Then the extra cobalt is there to facilitate the formation of the C-C bonds that link up the carbon atoms,” she explained.

Recycle-ready, carbon-negative
“Transmission electron microscopy (TEM) analysis conducted at CFN revealed the morphologies, crystal structures, and elemental distributions within the carbon nanofibers both with and without catalysts,” said CFN scientist and study co-author Sooyeon Hwang.

The images show that, as the carbon nanofibers grow, the catalyst gets pushed up and away from the surface. That makes it easy to recycle the catalytic metal, Chen said.

“We use acid to leach the metal out without destroying the carbon nanofiber so we can concentrate the metals and recycle them to be used as a catalyst again,” he said.

This ease of catalyst recycling, commercial availability of the catalysts, and relatively mild reaction conditions for the second reaction all contribute to a favorable assessment of the energy and other costs associated with the process, the researchers said.

“For practical applications, both are really important—the CO2 footprint analysis and the recyclability of the catalyst,” said Chen. “Our technical results and these other analyses show that this tandem strategy opens a door for decarbonizing CO2 into valuable solid carbon products while producing renewable H2.”

If these processes are driven by renewable energy, the results would be truly carbon-negative, opening new opportunities for CO2 mitigation.

Source:

Brookhaven National Laboratory

offshore windpark Nicholas Doherty, unsplash
17.10.2023

Pyrolysis processes promise sustainable recycling of fiber composites

Wind turbines typically operate for 20 to 30 years before they are undergoing dismantling and recycling. However, the recycling of fiber composites, especially from the thick-walled rotor blade parts, has been inadequate until now. The prevailing methods involve thermal or mechanical recycling. For a sustainable and holistic recycling process, a research consortium led by Fraunhofer IFAM is pooling their expertise to recover the fibers through pyrolysis. Subsequent surface treatment and quality testing of the recyclates allow for them to be used again in industry.

Wind turbines typically operate for 20 to 30 years before they are undergoing dismantling and recycling. However, the recycling of fiber composites, especially from the thick-walled rotor blade parts, has been inadequate until now. The prevailing methods involve thermal or mechanical recycling. For a sustainable and holistic recycling process, a research consortium led by Fraunhofer IFAM is pooling their expertise to recover the fibers through pyrolysis. Subsequent surface treatment and quality testing of the recyclates allow for them to be used again in industry.

Today, the vast majority of wind turbines can already be recycled cleanly. In the case of rotor blades, however, recycling is only just beginning. Due to the 20-year operation period and the installation rates, the blade volume for recycling will be increasing in the coming years and decades. In 2000, for example, around 6,000 wind turbines were erected in Germany, which now need to be fed into a sustainable recycling process. In 2022, about 30,000 onshore and offshore wind turbines with a capacity of 65 gigawatts were in operation in Germany alone.

As wind energy is the most important cornerstone for a climate-neutral power supply, the German government has set itself the goal of further increasing its wind energy capacity by 2030 by installing larger and more modern turbines. Rotor blades will become longer, the proportion of carbon fibers used will continue to increase - and so will the amount of waste. In addition, the existing material mix in rotor blades is expected to increase in the future and precise knowledge of the structure of the components will become even more important for recycling. This underscores the urgency of developing sustainable processing methods, especially for recycling the thick-walled fiber composites in the rotor blades.

Economic and ecological recycling solution for fiber composites on the horizon
Rotor blades of wind turbines currently up for recycling consist of more than 85 percent of glass- and carbon-fiber-reinforced thermosets (GFRP/CFRP). A large proportion of these materials is found in the flange and root area and within the fiber-reinforced straps as thick-walled laminates with a wall thicknesses of up to 150 mm. Research into high-quality material fiber recycling as continuous fibers is of particular importance, not only because of the energy required for carbon fiber production. This is where the project "Pyrolysis of thick-walled fiber composites as a key innovation in the recycling process for wind turbine rotor blades" – "RE SORT" for short – funded by the German Federal Ministry of Economics and Climate Protection comes in. The aim of the project team is the complete recycling by means of pyrolysis.

A prerequisite for high-quality recycling of fiber composites is the separation of the fibers from the mostly thermoset matrix. Although pyrolysis is a suitable process for this purpose, it has not yet gained widespread adoption. Within the project, the project partners are therefore investigating and developing pyrolysis technologies that make the recycling of thick-walled fiber composite structures economically feasible and are technically different from the recycling processes commonly used for fiber composites today. Both quasi-continuous batch and microwave pyrolysis are being considered.

Batch pyrolysis, which is being developed within the project, is a pyrolysis process in which the thermoset matrix of thick fiber composite components is slowly decomposed into oily and especially gaseous hydrocarbon compounds by external heating. In microwave pyrolysis, energy is supplied by the absorption of microwave radiation, resulting in internal rapid heat generation. Quasi-continuous batch pyrolysis as well as microwave pyrolysis allow the separation of pyrolysis gases or oils. The planned continuous microwave pyrolysis also allows for the fibers to be preserved and reused in their full length.

How the circular economy succeeds - holistic utilization of the recycled products obtained
In the next step, the surfaces of the recovered recycled fibers are prepared by means of atmospheric plasmas and wet-chemical coatings to ensure their suitability for reuse in industrial applications. Finally, strength tests can be used to decide whether the recycled fibers will be used again in the wind energy industry or, for example, in the automotive or sporting goods sectors.

The pyrolysis oils and pyrolysis gases obtained in batch and microwave pyrolysis are evaluated with respect to their usability as raw materials for polymer synthesis (pyrolysis oils) or as energy sources for energy use in combined heat and power (CHP) plants (pyrolysis gases).

Both quasi-continuous batch pyrolysis and continuous-flow microwave pyrolysis promise economical operation and a significant reduction in the environmental footprint of wind energy. Therefore, the chances for a technical implementation and utilization of the project results are very good, so that this project can make a decisive contribution to the achievement of the sustainability and climate goals of the German Federal Government.

Source:

Fraunhofer-Institut für Fertigungstechnik und Angewandte Materialforschung IFAM

(c) Fraunhofer WKI
19.04.2023

Sustainable natural-fiber reinforcement for textile-reinforced concrete components

Textile-reinforced concrete components with a sustainable natural-fiber reinforcement possess sufficient bond and tensile load-bearing behavior for the utilization in construction. This has been verified by researchers at the Fraunhofer WKI in collaboration with Biberach University of Applied Sciences and the industrial partner FABRINO. In the future, textile-reinforced components with natural-fiber reinforcement could therefore replace conventionally reinforced concrete components and improve the environmental balance in the construction industry.

Textile-reinforced concrete components with a sustainable natural-fiber reinforcement possess sufficient bond and tensile load-bearing behavior for the utilization in construction. This has been verified by researchers at the Fraunhofer WKI in collaboration with Biberach University of Applied Sciences and the industrial partner FABRINO. In the future, textile-reinforced components with natural-fiber reinforcement could therefore replace conventionally reinforced concrete components and improve the environmental balance in the construction industry.

Non-metallic reinforcements for concrete elements are currently often made from various synthetically produced fibers - for example from glass or carbon fibers. An ecological alternative to synthetic fibers is provided by flax or other natural fibers. These are widely available and are more sustainable, due, amongst other things, to their renewable raw-material basis, the advantages regarding recycling, and the lower energy requirements during production. This is where the researchers from the Fraunhofer WKI and Biberach University of Applied Sciences, in collaboration with an industrial partner, became active. Their goal was to demonstrate that reinforcements made from textile fibers are just as suitable for utilization in construction as synthetic fibers.

"At the Fraunhofer WKI, we have produced leno fabrics from flax-fiber yarn using a weaving machine. In order to enhance sustainability, we tested a treatment of the flax yarns for improving the tensile strength, durability and adhesion which is ecologically advantageous compared to petro-based treatments," explained Jana Winkelmann, Project Manager at the Fraunhofer WKI. In the coating process, a commonly used petro-based epoxy resin was successfully replaced by a partially bio-based impregnation. A large proportion (56%) of the molecular structure of the utilized epoxy resin consists of hydrocarbons of plant origin and can therefore improve the CO2 balance.

Textile reinforcements have a number of fundamental advantages. They exhibit, for example, significantly reduced corrodibility at the same or higher tensile strength than steel, with the result that the necessary nominal dimension of the concrete covering can be reduced. This often allows smaller cross-sections to be required for the same load-bearing capacity. Up to now, however, the load-bearing behavior of textile reinforcements made from natural fibers in concrete components has not been systematically investigated.

At Biberach University of Applied Sciences, researchers tested the bond and tensile load-bearing behavior as well as the uniaxial flexural load-bearing behavior of concrete components with textile reinforcement made from flax fibers. The scientists came to the conclusion that the natural-fiber-based textile-reinforced components with a bio-based impregnation are fundamentally suitable. The suitability was demonstrated by both a significant increase in the breaking load compared to non-reinforced and under-reinforced concrete components and in finely distributed crack patterns. The curves of the stress-strain diagrams could be divided into three ranges typical for reinforced expansion elements (State I - non-cracked, State IIa - initial cracking, and State IIb - final crack pattern). The delineation of the ranges becomes more pronounced as the degree of reinforcement increases.

As a whole, regionally or Europe-wide available, renewable natural fibers and a partially bio-based coating contribute towards an improvement of the CO2 footprint of the construction industry. As a result, a further opportunity is being opened up for the energy- and raw-material-intensive construction industry in terms of meeting increasingly stringent environmental and sustainability requirements. "Textile-reinforced concretes enable lighter and more slender structures and therefore offer architectural leeway. We would like to continue our research into the numerous application possibilities of natural-fiber-reinforced concretes," said Christina Haxter, a staff member at the Fraunhofer WKI.

The project, which ran from 9th December 2020 to 31st December 2022, was funded by the German Federal Environmental Foundation (DBU).   

Photo Pixabay
16.11.2022

Green chemistry transforms facemasks into Ethernet cables

Swansea University academics have pioneered a process which converts the carbon found in discarded facemasks to create high-quality single-walled carbon nanotubes (CNT) which were then used to make Ethernet cable with broadband quality.
 
The study, which has been published in Carbon Letters, outlines how this new green chemistry could be used to upcycle materials which would otherwise be thrown away and transform them into high value materials with real-world applications. The CNTs produced by this technique have the potential not only to be used in Ethernet cables, but also in the production of lightweight batteries used in electric cars and drones.

Swansea University academics have pioneered a process which converts the carbon found in discarded facemasks to create high-quality single-walled carbon nanotubes (CNT) which were then used to make Ethernet cable with broadband quality.
 
The study, which has been published in Carbon Letters, outlines how this new green chemistry could be used to upcycle materials which would otherwise be thrown away and transform them into high value materials with real-world applications. The CNTs produced by this technique have the potential not only to be used in Ethernet cables, but also in the production of lightweight batteries used in electric cars and drones.

Professor Alvin Orbaek White, of Swansea University’s Energy Safety Research Institute (ESRI):
“Single-use facemasks are a real travesty for the recycling system as they create vast amounts of plastic waste - much of it ending up in our oceans. During the study, we established that the carbon inside the facemask can be used as a pretty good feedstock to make high-quality materials like CNTs.

“CNTs are highly sought-after because they have preferential physical properties and tend to be much more costly on an industrial scale. So, through this study, we demonstrated that we could make very high value materials by processing the CNTs from what are, essentially, worthless waste facemasks.”

The team also studied the energy costs involved in using this process and concluded that the technique was green not only in levels of resource consumption but also in the product value generation as opposed to waste creation. Also, the Ethernet cable produced using the CNTs was good quality and adhered to Category 5 transmission speeds while easily exceeding the benchmarks set for broadband internet in most countries, including the UK.

Professor Orbaek White said:
“Using CNT films in batteries instead of metal films has a lower impact on the environment as the use of carbon offsets the need for mining and extraction activities. This is a crucial piece of work as it contributes to not only a circular economy but is also scalable and is viable for industrial processing and has green chemistry at its core.”

Source:

Swansea University

(c) MAI Carbon
24.05.2022

From waste to secondary raw material - wetlaid nonwovens made from recycled carbon fibers

MAI Scrap SeRO | From Scrap to Secondary Ressources – Highly Orientated Wet-Laid-Nonwovens from CFRP-Waste

The »Scrap SeRO« project is an international joint project in the field of »recycling of carbon fibers«.

The technical project goal is the demonstration of a continuous process route for processing pyrolytically recycled carbon fibers (rCF) in high-performance second-life component structures. In addition to the technological level, the focus of the project is particularly on the international transfer character, in the sense of a cross-cluster initiative between the top cluster MAI Carbon (Germany) and CVC (South Korea).

MAI Scrap SeRO | From Scrap to Secondary Ressources – Highly Orientated Wet-Laid-Nonwovens from CFRP-Waste

The »Scrap SeRO« project is an international joint project in the field of »recycling of carbon fibers«.

The technical project goal is the demonstration of a continuous process route for processing pyrolytically recycled carbon fibers (rCF) in high-performance second-life component structures. In addition to the technological level, the focus of the project is particularly on the international transfer character, in the sense of a cross-cluster initiative between the top cluster MAI Carbon (Germany) and CVC (South Korea).

Through direct cooperation between market-leading companies and research institutions of the participating cluster members, the technical project processing takes place in the context of the global challenge of recycling, as well as the need for increased resource efficiency, with reference to the economically strategic material carbon fibers.

Efficient processing of recycled carbon fibers
The technological process route within the project runs along the industrial wet-laying technology, which is comparable to classic paper production. This enables a robust production of high-quality rCF nonwovens, which are characterized, among other things, by particularly high homogeneity and stability of characteristic values.

A special development focus is on a specific process control, which allows the generation of an orientation of the individual fiber filaments in the nonwoven material.

The given preferred fiber direction of the discontinuous fiber structure opens up strong synergy effects in relation to increased packing densities, i.e. fiber volume content, as well as a significantly optimized processing behavior in relation to impregnation, forming and consolidation, in addition to a load path-oriented mechanics.

The innovative wetlaid nonwovens are then further processed into thermoset and thermoplastic semi-finished products, i.e. prepregs or organosheets, using impregnation processes that are suitable for large-scale production.

rCF tapes are produced from this in an intermediate slitting step. By means of automated fiber placement, load path-optimized preforms can be deposited, which are then consolidated into complex demonstrator components.

The process chain is monitored at key interfaces by innovative non-destructive measurement technology and supplemented by extensive characterization methods. Especially for the processing of pyrolysed recycled carbon fibers, which were recovered from end-of-life waste or PrePreg waste, for example, there are completely new potentials with significant added value compared to the current state of the art for the overall process route presented here.

International Transfer
The fundamentally global challenge of recycling and the striving for increased sustainability is strongly influenced by national recycling strategies as a result of country-specific framework conditions. The globalized way in which companies deal with high-volume material flows places additional demands on a functioning circular economy. A networked solution can only be created on the basis of and in compliance with the respective guidelines and structural factors.

In the case of the high-performance material carbon fiber, there is a particularly high technical requirement for an ecologically and economically viable recycling industry. At the same time, the specific market size already opens up interesting scaling effects and potential for market penetration.

The Scrap SeRO project connects two of the world's leading top clusters in the field of carbon composites from South Korea and Germany on the basis of a cross-cluster initiative. As part of this first promising technology project, the foundation stone for future cooperation is to be laid that supports the effective recycling of carbon fibers. The project makes an important contribution to closing the material cycle for carbon fibers and thus paves the way for renewed use in further life cycles of this high-quality and energy-intensive material.

Info »Scrap SeRO«

  • Duration: 05/2019 – 04/2022
  • Funding: BMBF
  • Funding Amount: 2.557.000 €

National Consortium

  • Fraunhofer Institute for Casting, Composite and Processing Technology IGCV
  • ELG Carbon Fibre
  • J.M. Voith SE & Co. KG
  • Neenah Gessner
  • SURAGUS GmbH
  • LAMILUX Composites GmbH
  • Covestro Deutschland AG
  • BA Composites GmbH
  • SGL Carbon

International Consortium

  • KCarbon
  • Hyundai
  • Sangmyung University
  • TERA Engineering
Source:

Fraunhofer Institute for Casting, Composite and Processing Technology IGCV

(c) A3/Christian Strohmayr
10.05.2022

Fraunhofer reduces CO2 footprint and recycles trendy lightweight carbon material

Neo-ecology through innovative paper technology

To reduce the CO2 footprint, the Fraunhofer Institute for Casting, Composite and Processing Technology IGCV Augsburg research with a state-of-the-art wetlaid nonwoven machine for recycling carbon fibers. The production processes are similar to those of a paper manufacturing machine. The crucial difference: we turn not paper fibers into the paper but recycled carbon fibers into nonwoven roll fabrics. The carbon fiber thus gets a second life and finds an environmentally friendly way in nonwovens, such as door panels, engine bonnets, roof structures, underbody protection (automotive), and heat shields (helicopter tail boom), as well as in aircraft interiors.

“Wetlaid technology for processing technical fibers is currently experiencing a revolution following centuries of papermaking tradition.”
Michael Sauer, Researcher at Fraunhofer IGCV

Neo-ecology through innovative paper technology

To reduce the CO2 footprint, the Fraunhofer Institute for Casting, Composite and Processing Technology IGCV Augsburg research with a state-of-the-art wetlaid nonwoven machine for recycling carbon fibers. The production processes are similar to those of a paper manufacturing machine. The crucial difference: we turn not paper fibers into the paper but recycled carbon fibers into nonwoven roll fabrics. The carbon fiber thus gets a second life and finds an environmentally friendly way in nonwovens, such as door panels, engine bonnets, roof structures, underbody protection (automotive), and heat shields (helicopter tail boom), as well as in aircraft interiors.

“Wetlaid technology for processing technical fibers is currently experiencing a revolution following centuries of papermaking tradition.”
Michael Sauer, Researcher at Fraunhofer IGCV

The wetlaid technology used is one of the oldest nonwoven forming processes (around 140 BC - 100 AD). As an essential industry sector with diverse fields of application, wetlaid nonwovens are no longer only found in the classic paper. Instead, the application areas extend, for example, from adhesive carrier films, and packaging material, to banknotes and their process-integrated watermarks and security features. In the future, particularly sustainable technology fields will be added around battery components, fuel cell elements, filtration layers, and even function-integrated material solutions, e.g., EMI shielding function.

Fraunhofer IGCV wetlaid nonwovens line is specifically designed as a pilot line. In principle, very different fiber materials such as natural, regenerated, and synthetic fibers can be processed, mainly recycled and technical fibers. The system offers the highest possible flexibility regarding material variants and process parameters. In addition, sufficiently high productivity is ensured to allow subsequent scaled processing trials (e.g., demonstrator production).

The main operating range of the wetlaid line relates to the following parameters:

  • Processing speed: up to 30 m/min
  • Role width: 610 mm
  • Grammage: approx. 20–300 gsm
  • Overall machinery is ≥ IP65 standard for processing, e.g., conductive fiber materials
  • Machine design based on an angled wire configuration with high dewatering capacity, e.g., for processing highly diluted fiber suspensions or for material variants with high water retention capacity.
  • Machine modular system design with maximum flexibility for a quick change of material variants or a quick change of process parameters. The setup allows short-term hardware adaptations as well as project-specific modifications.

Research focus: carbon recycling at the end of the life cycle
The research focus of Fraunhofer IGCV is primarily in the field of technical staple fibers. The processing of recycled carbon fibers is a particular focus. Current research topics in this context include, for example, the research, optimization, and further development of binder systems, different fiber lengths and fiber length distributions, nonwoven homogeneity, and fiber orientation. In addition, the focus is on the integration of digital as well as AI-supported methods within the framework of online process monitoring. Further research topics, such as the production of gas diffusion layers for fuel cell components, the further development of battery elements, and filtration applications, are currently being developed.

Source:

Fraunhofer Institute for Casting, Composite and Processing Technology IGCV

(c) Toray
23.11.2021

Toray Industries: A Concept to change Lives

Founded in January 1926, Tokyo-based Japanese chemical company Toray Industries, Inc. is known as the world's largest producer of PAN (polyacrylonitrile)-based carbon fibers. But its overall portfolio includes much more. Textination spoke with Koji Sasaki, General Manager of the Textile Division of Toray Industries, Inc. about innovative product solutions, new responsibilities and the special role of chemical companies in today's world.

Toray Industries is a Japanese company that - originating in 1926 as a producer of viscose yarns - is on the home stretch to its 100th birthday. Today, the Toray Group includes 102 Japanese companies and 180 overseas. They operate in 29 countries. What is the current significance of the fibers and textiles business unit for the success of your company?

Founded in January 1926, Tokyo-based Japanese chemical company Toray Industries, Inc. is known as the world's largest producer of PAN (polyacrylonitrile)-based carbon fibers. But its overall portfolio includes much more. Textination spoke with Koji Sasaki, General Manager of the Textile Division of Toray Industries, Inc. about innovative product solutions, new responsibilities and the special role of chemical companies in today's world.

Toray Industries is a Japanese company that - originating in 1926 as a producer of viscose yarns - is on the home stretch to its 100th birthday. Today, the Toray Group includes 102 Japanese companies and 180 overseas. They operate in 29 countries. What is the current significance of the fibers and textiles business unit for the success of your company?

The fibers’ and textiles’ business is both the starting point and the foundation of Toray's business development today. We started producing viscose yarns in 1926 and conducted our own research and development in nylon fibers as early as 1940. And since new materials usually require new processing methods, Toray also began investing in its own process technology at an early stage. On the one hand, we want to increase our sales, and on the other hand, we want to expand the application possibilities for our materials. For this reason, Toray also began to expand its business from pure fibers to textiles and even clothing. This allows us to better respond to our customers' needs while staying at the forefront of innovation.

Over the decades, Toray has accumulated a great deal of knowledge in polymer chemistry and organic synthesis chemistry - and this know-how is the foundation for almost all of our other business ventures. Today, we produce a wide range of advanced materials and high-value-added products in plastics, chemicals, foils, carbon fiber composites, electronics and information materials, pharmaceuticals, medicine and water treatment. However, fibers and textiles remain our most important business area, accounting for around 40% of the company's sales.

What understanding, what heritage is still important to you today? And how do you live out a corporate philosophy in the textile sector that you formulate as "Contributing to society through the creation of new value with innovative ideas, technologies and products"?

Toray has consistently developed new materials that the world has never seen before. We do this by focusing on our four core technologies: Polymer chemistry, organic synthetic chemistry, biotechnology and nanotechnology. We do this by focusing on our four core technologies: Polymer chemistry, organic synthetic chemistry, biotechnology and nanotechnology. For textiles, this means we use new polymer structures, spinning technologies and processing methods to develop yarns with unprecedented properties. We always focus on the needs and problems of the market and our customers.

This approach enables us to integrate textiles with new functions into our everyday lives that natural fibers and materials cannot accomplish. For example, we offer sportswear and underwear that absorb water excellently and dry very quickly, or rainwear and outdoor clothing with excellent water-repellent properties that feature a less bulky inner lining. Other examples include antibacterial underwear, uniforms, or inner linings that provide a hygienic environment and reduce the growth of odor-causing bacteria. People enjoy the convenience of these innovative textiles every day, and we hope to contribute to their daily comfort and improve their lives in some way.

In 2015, the United Nations adopted 17 sustainable development goals – simply known as the 2030 Agenda, which came into force on January 01, 2016. Countries were given 15 years to achieve them by 2030. In your company, there is a TORAY VISION 2030 and a TORAY SUSTAINABILITY VISION. How do you apply these principles and goals to the textile business? What role does sustainability play for this business area?

Sustainability is one of the most important issues facing the world today - not only in the textile sector, but in all industries. We in the Toray Group are convinced that we can contribute to solving various problems in this regard with our advanced materials. At the same time, the trend towards sustainability offers interesting new business approaches. In our sustainability vision, we have set four goals that the world should achieve by 2050. And we have defined which problems need to be addressed to achieve this.

We must:

  1. accelerate measures to combat climate change,
  2. implement sustainable, recycling-oriented solutions in the use of resources and in production,
  3. provide clean water and air, and
  4. contribute to better healthcare and hygiene for people around the world.

We will drive this agenda forward by promoting and expanding the use of materials that respond to environmental issues. In the textile sector, for example, we offer warming and cooling textiles – by eliminating the need for air conditioning or heating in certain situations, they can help reduce energy costs. We also produce environmentally friendly textiles that do not contain certain harmful substances such as fluorine, as well as textiles made from biomass, which use plant-based fibers instead of conventional petrochemical materials. Our product range also includes recycled materials that reduce waste and promote effective use of resources.

The TORAY VISION 2030, on the other hand, is our medium-term strategic plan and looks at the issue of sustainability from a different angle: Toray has defined the path to sustainable and healthy corporate growth in it. In this plan, we are focusing on two major growth areas: Our Green Innovation Business, which aims to solve environmental, resource and energy problems, and the Life Innovation Business, which focuses on improving medical care, public health, personal safety and ultimately a longer expectancy of life.

Innovation by Chemistry is the claim of the Toray Group. In a world where REACH and Fridays for Future severely restrict the scope of the chemical industry, the question arises as to what position chemistry can have in the textile industry. How do chemistry, innovation and sustainability fit together here?

The chemical industry is at a turning point today. The benefits that this industry can bring to civilization are still enormous, but at the same time, disadvantages such as the waste of resources and the negative impact on the environment and ecosystems are becoming increasingly apparent. In the future, the chemical industry will have to work much more towards sustainability - there is no way around it.

As far as textiles are concerned, we believe there are several ways to make synthetic materials more sustainable in the future. One of these, as I said, is materials made from plants instead of petrochemical raw materials. Another is to reduce the amount of raw materials used in production in the first place – this can be achieved, for example, by collecting and recycling waste materials from production or sales. Biodegradable materials that reduce the impact of waste products on the environment are another option worth pursuing, as is the reduction of environmentally harmful substances used in the production process. We are already looking at all of these possibilities in Toray's synthetic textiles business. At the same time, by the way, we make sure to save energy in our own production and minimize the impact on the environment.

Toray's fibers & textiles segment focuses on synthetic fibers such as nylon, polyester and acrylic, as well as other functional fibers. In recent years, there has been a clear trend on the market towards cellulosic fibers, which are also being traded as alternatives to synthetic products. How do you see this development – on the one hand for the Toray company, and on the other hand under the aspect of sustainability, which the cellulosic competitors claim for themselves with the renewable raw material base?

Natural fibers, including cellulose fibers and wool, are environmentally friendly in that they can be easily recycled and are rapidly biodegradable after disposal. However, to truly assess their environmental impact, a number of other factors must also be considered: Primarily, there is the issue of durability: precisely because natural fibers are natural, it is difficult to respond to a rapid increase in demand, and quality is not always stable due to weather and other factors.

Climatic changes such as extreme heat, drought, wind, floods and damages from freezing can affect the quantity and quality of the production of natural fibers, so that the supply is not always secured. In order to increase production, not only does land have to be cleared, but also large amounts of water and pesticides have to be used to cultivate it – all of which is harmful to the environment.

Synthetic fibers, on the other hand, are industrial products manufactured in controlled factory environments. This makes it easier to manage fluctuations in production volume and ensure consistent quality. In addition, certain functional properties such as resilience, water absorption, quick drying and antibacterial properties can be embedded into the material, which can result in textiles lasting longer in use.

So synthetic fibers and natural fibers, including cellulose fibers, have their own advantages and disadvantages – there is no panacea here, at least not at the moment. We believe: It is important to ensure that there are options that match the consumer's awareness and lifestyle. This includes comfort in everyday life and sustainability at the same time.

To what extent has the demand for recycled products increased? Under the brand name &+™, Toray offers a fiber made from recycled PET bottles. Especially with the "raw material base: PET bottles", problems can occur with the whiteness of the fiber. What distinguishes your process from that of other companies and to what extent can you compete with new fibers in terms of quality?

During the production of the "&+" fiber, the collected PET bottles are freed from all foreign substances using special washing and filtering processes. These processes have not only allowed us to solve the problem of fiber whiteness – by using filtered, high-purity recycled polyester chips, we can also produce very fine fibers and fibers with unique cross sections. Our proven process technologies can also be used to incorporate specific textures and functions of Toray into the fiber. In addition, "&+" contains a special substance in the polyester that allows the material to be traced back to the recycled PET bottle fibers used in it.

We believe that this combination of aesthetics, sustainability and functionality makes the recycled polyester fiber "&+" more competitive than those of other companies. And indeed, we have noticed that the number of requests is steadily increasing as companies develop a greater awareness of sustainability as early as the product planning stage.

How is innovation management practiced in Toray's textile division, and which developments that Toray has worked on recently are you particularly proud of?

The textile division consists of three sub-divisions focusing on the development and sale of fashion textiles (WOMEN'S & MEN'S WEAR FABRICS DEPT.), sports and outdoor textiles (SPORTS WEAR & CLOTHING MATERIALS FABRICS DEPT.) and, specifically for Japan, textiles for uniforms used in schools, businesses and the public sector (UNIFORM & ADVANCED TEXTILES DEPT.).

In the past, each division developed its own materials for their respective markets and customers. However, in 2021, we established a collaborative space to increase synergy and share information about textiles developed in different areas with the entire department. In this way, salespeople can also offer their customers materials developed in other departments and get ideas for developing new textiles themselves.

I believe that the new structure will also help us to respond better to changes in the market. We see, for example, that the boundaries between workwear and outdoor are blurring – brands like Engelbert Strauss are a good example of this trend. Another development that we believe will accelerate after the Corona pandemic is the focus on green technologies and materials. This applies to all textile sectors, and we need to work more closely together to be at the forefront of this.

How important are bio-based polyesters in your research projects? How do you assess the future importance of such alternatives?

I believe that these materials will play a major role in the coming years. Polyester is made from purified terephthalic acid (PTA), which again consists of paraxylene (PX) and ethylene glycol (EG). In a first step, we already offer a material called ECODEAR™, which uses sugar cane molasses waste as a raw material for EG production.

About 30% of this at least partially bio polyester fiber is therefore biologically produced, and the material is used on a large scale for sportswear and uniforms. In the next step, we are working on the development of a fully bio-based polyester fiber in which the PTA component is also obtained from biomass raw materials, such as the inedible parts of sugar cane and wood waste.

Already in 2011, we succeeded in producing a prototype of such a polyester fiber made entirely from biomass. However, the expansion of production at the PX manufacturer we are working with has proven to be challenging. Currently, we are only producing small sample quantities, but we hope to start mass production in the 2020s.

Originally starting with yarn, now a leading global producer of synthetic fibers for decades, you also work to the ready-made product. The range extends from protective clothing against dust and infections to smart textiles and functional textiles that record biometric data. What are you planning in these segments?

In the field of protective clothing, our LIVMOA™ brand is our flagship material. It combines high breathability to reduce moisture inside the garment with blocking properties that keep dust and other particles out. The textile is suitable for a wide range of work environments, including those with high dust or grease levels and even cleanrooms. LIVMOA™ 5000, a high quality, also demonstrates antiviral properties and helps to ease the burden on medical personnel. The material forms an effective barrier against bacteria and viruses and is resistant to hygroscopic pressure. Due to its high breathability, it also offers high wearing comfort.

Our smart textile is called hitoe™. This highly conductive fabric embeds a conductive polymer – a polymer compound that allows electricity to pass through - into the nanofiber fabric. hitoe™ is a high-performance material for detecting biosignals, weak electrical signals that we unconsciously emit from our bodies.

In Japan, Toray has developed products for electrocardiographic measurements (ECGs) that meet the safety and effectiveness standards of medical devices. And in 2016, we submitted an application to the Japanese medical administrative authorities to register a hitoe™ device as a general medical device – this registration process is now complete. Overall, we expect the healthcare sector, particularly medical and nursing applications, to grow – not least due to increasing infectious diseases and growing health awareness among the elderly population. We will therefore continue to develop and sell new products for this market.

In 1885, Joseph Wilson Swan introduced the term "artifical silk" for the nitrate cellulose filaments he artificially produced. Later, copper, viscose and acetate filament yarns spun on the basis of cellulose were also referred to as artifical silk. Toray has developed a new innovative spinning technology called NANODESIGN™, which enables nano-level control of the fineness and shape of synthetic fibers. This is expected to create functions, aesthetics and textures that have not existed before. For which applications do you intend to use these products?

In NANODESIGN™ technology, the polymer is split into a number of microscopic streams, which are then recombined in a specific pattern to form a new fiber. By controlling the polymer flow with extreme precision, the fineness and cross-sectional shape of the fiber can be determined much more accurately than was previously possible with conventional microfiber and nanofiber spinning technologies. In addition, this technology enables the combination of three or more polymer types with different properties in one fiber – conventional technologies only manage two polymer types. This technology therefore enables Toray to specify a wide range of textures and functions in the production of synthetic fibers that were not possible with conventional synthetic fibers – and even to outperform the texture and feel of natural fibers. Kinari, our artificial silk developed with NANODESIGN technology, is a prime example here, but the technology holds many more possibilities – especially with regard to our sustainability goals.

What has the past period of the pandemic meant for Toray's textile business so far? To what extent has it been a burden, but in which areas has it also been a driver of innovation? What do you expect of the next 12 months?

The Corona catastrophe had a dramatic impact on the company's results: The Corona catastrophe had a dramatic impact on the company's results: In the financial year 2020, Toray's total sales fell by about 10% to 188.36 billion yen (about 1.44 billion euros) and operating profit by about 28% to 90.3 billion yen (about 690 million euros). The impact on the fiber and textile business was also significant, with sales decreasing by around 13% to 719.2 billion yen (approx. 5.49 billion euros) and operating profit by around 39% to 36.6 billion yen (approx. 280 million euros).

In the financial year 2021, however, the outlook for the fibers and textiles sector is significantly better: So far, the segment has exceeded its goals overall, even if there are fluctuations in the individual areas and applications. In the period from April to June, we even returned to the level of 2019. This is partly due to the recovering sports and outdoor sector. The fashion apparel market, on the other hand, remains challenging due to changing lifestyles that have brought lock-downs and home-office. We believe that a full recovery in business will not occur until the travel and leisure sector returns to pre-Corona levels.

Another side effect of the pandemic that we feel very strongly, is the growing concern about environmental issues and climate change. As a result, the demand for sustainable materials has also increased in the apparel segment. In the future, sustainability will be mandatory for the development and marketing of new textiles in all market segments. Then again, there will always be the question of how sustainable a product really is, and data and traceability will become increasingly important. In the coming years, the textile division will keep a close eye on these developments and develop materials that meet customers' needs.

About the person:
Koji Sasaki joined Toray in 1987. In his more than 30 years with the company, he has held various positions, including a four-year position as Managing Director of Toray International Europe GmbH in Frankfurt from 2016 to 2020. Since 2020, Koji Sasaki has been responsible for Toray's textile division and serves as acting chairman of Toray Textiles Europe Ltd. In these roles, he supervises the company's development, sales and marketing activities in the apparel segment, including fashion, sports and work or school uniforms.

The interview was conducted by Ines Chucholowius, Managing partner Textination GmbH

Photo: pixabay
10.08.2021

Stand-up paddle board made from renewable lightweight mater

Stand-up paddling has become a popular sport. However, conventional surfboards are made of petroleum-based materials such as epoxy resin and polyurethane.

Researchers at the Fraunhofer Institute for Wood Research, Wilhelm-Klauditz-Institut, WKI, want to replace plastic boards with sustainable sports equipment: They are developing a stand-up paddle board that is made from one hundred percent renewable raw materials. The ecological lightweight material can be used in many ways, such as in the construction of buildings, cars and ships.

Stand-up paddling has become a popular sport. However, conventional surfboards are made of petroleum-based materials such as epoxy resin and polyurethane.

Researchers at the Fraunhofer Institute for Wood Research, Wilhelm-Klauditz-Institut, WKI, want to replace plastic boards with sustainable sports equipment: They are developing a stand-up paddle board that is made from one hundred percent renewable raw materials. The ecological lightweight material can be used in many ways, such as in the construction of buildings, cars and ships.

Stand-up paddling (SUP) is a sport that is close to nature, but the plastic boards are anything but environmentally friendly. As a rule, petroleum-based materials such as epoxy resin, polyester resin, polyurethane and expanded or extruded polystyrene are used in combination with fiberglass and carbon fiber fabrics to produce the sports equipment. In many parts of the world, these plastics are not recycled, let alone disposed of correctly. Large quantities of plastic end up in the sea and collect in huge ocean eddies. For Christoph Pöhler, a scientist at Fraunhofer WKI and an avid stand-up paddler, this prompted him to think about a sustainable alternative. In the ecoSUP project, he is driving the development of a stand-up paddle board that is made from 100 percent renewable raw materials and which is also particularly strong and durable. The project is funded by the German Federal Ministry of Education and Research (BMBF). The Fraunhofer Center for International Management and Knowledge Economy IMW is accompanying the research work, with TU Braunschweig acting as project partner.

Recovering balsa wood from rotor blades
“In standard boards, a polystyrene core, which we know as styrofoam, is reinforced with fiberglass and sealed with an epoxy resin. We, instead, use bio-based lightweight material,” says the civil engineer. Pöhler and his colleagues use recycled balsa wood for the core. This has a very low density, i.e. it is light yet mechanically stressable. Balsa wood grows mainly in Papua New Guinea and Ecuador, where it has been used in large quantities in wind turbines for many years – up to six cubic meters of the material can be found in a rotor blade. Many of the systems are currently being disconnected from the grid. In 2020 alone, 6000 were dismantled. A large proportion of this is burnt. It would make more sense to recover the material from the rotor blade and recycle it in accordance with the circular economy. “This was exactly our thinking. The valuable wood is too good to burn,” says Pöhler.

Since the entire sandwich material used in conventional boards is to be completely replaced, the shell of the ecological board is also made from one hundred percent bio-based polymer. It is reinforced with flax fibers grown in Europe, which are characterized by very good mechanical properties. To pull the shell over the balsa wood core, Pöhler and his team use the hand lay-up and vacuum infusion processes. Feasibility studies are still underway to determine the optimal method. The first demonstrator of the ecological board should be available by the end of 2022. “In the interests of environmental protection and resource conservation, we want to use natural fibers and bio-based polymers wherever it is technically possible. In many places, GFRP is used even though a bio-based counterpart could do the same,” Pöhler sums up.

Patented technology for the production of wood foam
But how is it possible to recover the balsa wood from the rotor blade — after all, it is firmly bonded to the glass-fiber reinforced plastic (GFRP) of the outer shell? First, the wood is separated from the composite material in an impact mill. The density differences can be used to split the mixed-material structures into their individual components using a wind sifter. The balsa wood fibers, which are available as chips and fragments, are then finely ground. “We need this very fine starting material to produce wood foam. Fraunhofer WKI has a patented technology for this,” explains the researcher. In this process, the wood particles are suspended to form a kind of cake batter and processed into a light yet firm wood foam that holds together thanks to the wood’s own binding forces. The addition of adhesive is not required. The density and strength of the foam can be adjusted. “This is important because the density should not be too high. Otherwise, the stand-up paddle board would be too heavy to transport.”

Initially, the researchers are focusing on stand-up paddle boards. However, the hybrid material is also suitable for all other boards, such as skateboards. The future range of applications is broad: For example, it could be used as a facade element in the thermal insulation of buildings. The technology can also be used in the construction of vehicles, ships and trains.

(c) Porsche AG
04.05.2021

Fraunhofer: Lightweight and Ecology in Automotive Construction

  • The “Bioconcept-Car” moves ahead

In automobile racing, lightweight bodies made from plastic and carbon fibers have been standard for many years because they enable drivers to reach the finish line more quickly. In the future, lightweight-construction solutions could help reduce the energy consumption and emissions of everyday vehicles. The catch is that the production of carbon fibers is not only expensive but also consumes considerable amounts of energy and petroleum. In collaboration with Porsche Motorsport and Four Motors, researchers at the Fraunhofer WKI have succeeded in replacing the carbon fibers in a car door with natural fibers. This is already being installed in small series at Porsche. The project team is now taking the next step: Together with HOBUM Oleochemicals, they want to maximize the proportion of renewable raw materials in the door and other body parts - using bio-based plastics and paints.

  • The “Bioconcept-Car” moves ahead

In automobile racing, lightweight bodies made from plastic and carbon fibers have been standard for many years because they enable drivers to reach the finish line more quickly. In the future, lightweight-construction solutions could help reduce the energy consumption and emissions of everyday vehicles. The catch is that the production of carbon fibers is not only expensive but also consumes considerable amounts of energy and petroleum. In collaboration with Porsche Motorsport and Four Motors, researchers at the Fraunhofer WKI have succeeded in replacing the carbon fibers in a car door with natural fibers. This is already being installed in small series at Porsche. The project team is now taking the next step: Together with HOBUM Oleochemicals, they want to maximize the proportion of renewable raw materials in the door and other body parts - using bio-based plastics and paints.

Carbon fibers reinforce plastics and therefore provide lightweight components with the necessary stability. Mass-produced natural fibers are not only more cost-effective but can also be produced in a considerably more sustainable manner. For the “Bioconcept-Car” pilot vehicle, researchers at the Fraunhofer WKI have developed body parts with 100 percent natural fibers as reinforcing components.

“We utilize natural fibers, such as those made from hemp, flax or jute. Whilst natural fibers exhibit lower stiffnesses and strengths compared to carbon fibers, the values achieved are nonetheless sufficient for many applications,” explained Ole Hansen, Project Manager at the Fraunhofer WKI. Due to their naturally grown structure, natural fibers dampen sound and vibrations more effectively. Their lesser tendency to splinter can help to reduce the risk of injury in the event of an accident. Furthermore, they do not cause skin irritation during processing.

The bio-based composites were successfully tested by the Four Motors racing team in the “Bioconcept-Car” on the racetrack under extreme conditions. Porsche has actually been using natural fiber-reinforced plastics in a small series of the Cayman GT4 Clubsport since 2019. During production, the researchers at the Fraunhofer WKI also conducted an initial ecological assessment based on material and energy data. “We were able to determine that the utilized natural-fiber fabric has a better environmental profile in its production, including the upstream chains, than the fabric made from carbon. Thermal recycling after the end of its service life should also be possible without any problems,” confirmed Ole Hansen.

In the next project phase of the "Bioconcept-Car", the researchers at the Fraunhofer WKI, in collaboration with the cooperation partners HOBUM Oleochemicals GmbH, Porsche Motorsport and Four Motors, will develop a vehicle door with a biogenic content of 85 percent in the overall composite consisting of fibers and resin. They intend to achieve this by, amongst other things, utilizing bio-based resin-hardener blends as well as bio-based paint systems. The practicality of the door - and possibly additional components - will again be tested by Four Motors on the racetrack. If the researchers are successful, it may be possible to transfer the acquired knowledge into series production at Porsche.

The German Federal Ministry of Food and Agriculture (BMEL) is funding the “Bioconcept-Car” project via the project-management agency Fachagentur Nachwachsende Rohstoffe e. V. (FNR).

Background
Sustainability through the utilization of renewable raw materials has formed the focus at the Fraunhofer WKI for more than 70 years. The institute, with locations in Braunschweig, Hanover and Wolfsburg, specializes in process engineering, natural-fiber composites, surface technology, wood and emission protection, quality assurance of wood products, material and product testing, recycling procedures and the utilization of organic building materials and wood in construction. Virtually all the procedures and materials resulting from the research activities are applied industrially.

 

  • EU Project ALMA: Thinking Ahead to Electromobility

E-mobility and lightweight construction are two crucial building blocks of modern vehicle development to drive the energy transition. They are the focus of the ALMA project (Advanced Light Materials and Processes for the Eco-Design of Electric Vehicles). Nine European organizations are now working in the EU project to develop more energy-efficient and sustainable vehicles. Companies from research and industry are optimizing the efficiency and range of electric vehicles, among other things by reducing the weight of the overall vehicle. The Fraunhofer Institute for Industrial Mathematics ITWM is providing support with mathematical simulation expertise.

According to the low emissions mobility strategy, the European Union aims to have at least 30 million zero-emission vehicles on its roads by 2030. Measures to support jobs, growth, investment, and innovation are taken to tackle emissions from the transport sector. To make transport more climate-friendly, EU measures are being taken to promote jobs, investment and innovation. The European Commission's Horizon 2020 project ALMA represents one of these measures.

Photo: Pixabay
16.02.2021

Carbon with Multiple Lives: Bringing Innovations in Carbon Fiber Recycling to Market

When it comes to the future of motorized mobility, everyone talks about the power drive: How much e-car, how much combustion engine can the environment tolerate and how much do people need? At the same time, new powertrains place ineased demands not only on the engine, but also on its housing and the car body: Carbon fibers are often used for such demanding applications. Like the powertrain of the future, the materials on the vehicle should also be environmentally friendly. That is why recycling of carbon fibers is required. Institutes of the Zuse Community have developed solutions for this.

Carbon fibers consist almost completely of pure carbon. It is extracted from the plastic polyacrylonitrile at 1,300 degrees Celsius, using a lot of energy. The advantages of carbon fibers: They have almost no dead weight, are enormously break-resistant and sturdy. These properties are needed, for example, in the battery box of electric vehicles in structural components of a car body.

When it comes to the future of motorized mobility, everyone talks about the power drive: How much e-car, how much combustion engine can the environment tolerate and how much do people need? At the same time, new powertrains place ineased demands not only on the engine, but also on its housing and the car body: Carbon fibers are often used for such demanding applications. Like the powertrain of the future, the materials on the vehicle should also be environmentally friendly. That is why recycling of carbon fibers is required. Institutes of the Zuse Community have developed solutions for this.

Carbon fibers consist almost completely of pure carbon. It is extracted from the plastic polyacrylonitrile at 1,300 degrees Celsius, using a lot of energy. The advantages of carbon fibers: They have almost no dead weight, are enormously break-resistant and sturdy. These properties are needed, for example, in the battery box of electric vehicles in structural components of a car body.

The Saxon Textile Research Institute (STFI), for instance, is currently working with industrial partners on combining the static-mechanical strengths of carbon fibers with vibration damping properties to improve the housings of electric motors in cars. The project, which is funded by the German Federal Ministry for Economic Affairs and Energy, is aimed at developing hybrid nonwovens that contain other fibers, in addition to carbon fiber, as a reinforcement. "We want to combine the advantages of different fiber materials and thereby develop a product that is optimally tailored to the requirements", explains Marcel Hofmann, head of department of Textile Lightweight Construction at STFI.

The Chemnitz researchers would therefore complement previous nonwoven solutions. They look back on 15 years of working with recycled carbon fibers. The global annual demand for the high-value fibers has almost quadrupled in the past decade, according to the AVK Industry Association to around 142,000 t most recently. "Increasing demand has brought recycling more and more into focus", says Hofmann. According to him, carbon fiber waste is available for about one-tenth to one-fifth of the price of primary fibers, but they still need to be processed. The key issue for the research success of recycled fibers is competitive applications. STFI has found these not only in cars, but also in the sports and leisure sector as well as in medical technology, for example in components for computer tomography. "While metals or glass fibers cast shadows as potential competing products, carbon does not interfere with the image display and can fully exploit its advantages", explains Hofmann.
 
Using Paper Know-How
If recycled carbon fibers can pass through the product cycle again, this significantly improves their carbon footprint. At the same time it applies: The shorter the carbon fibers, the less attractive they are for further recycling. With this in mind, the Cetex Research Institute and the Papiertechnische Stiftung (PTS), both members of the Zuse Community, developed a new process as part of a research project that gives recycled carbon fibers, which previously seemed unsuitable, a second product life. "While classic textile processes use dry processing for the already very brittle recycled carbon fibers in fiber lengths of at least 80 mm, we dealt with a process from the paper industry that processes the materials wet. At the end of the process, in very simplified terms, we obtained a laminar mat made of recycled carbon fibers and chemical fibers", says Cetex project engineer Johannes Tietze, explaining the process by which even 40 mm short carbon fibers can be recycled into appealing intermediates.

The resulting product created in a hot pressing process serves as the base material for heavy-duty structural components. In addition, the mechanical properties of the semi-finished products were improved by combining them with continuous fiber-reinforced tapes. The researchers expect the recycled product to compete with glass-fiber-reinforced plastics, for example in applications in rail and vehicle construction. The results are now being incorporated into further research and development in
the cooperation network of Ressourcetex, a funded association with 18 partners from industry and science.

Successful Implementation in the Automotive Industry
Industrial solutions for the recycling of carbon fiber production waste are being developed at the Thuringian Institute of Textile and Plastics Research (TITK). Several of these developments were industrially implemented with partners at the company SGL Composites in Wackersdorf, Germany. The processing of the so-called dry waste, mainly from production, is carried out in a separate procedure. "Here, we add the opened fibers to various processes for nonwoven production", says the responsible head of the department at TITK, Dr. Renate Lützkendorf . In addition to developments for applications e.g. in the BMW i3 in the roof or rear seat shell, special nonwovens and processes for the production of Sheet Molding Compounds (SMC) were established at TITK. These are thermoset materials consisting of reaction resins and reinforcing fibers, which are used to press fiber-plastic composites. This was used, for example, in a component for the C-pillar of the BMW 7 Series. "In its projects, TITK is primarily focusing on the development of more efficient processes and combined procedures to give carbon fiber recycling materials better opportunities in lightweight construction applications, also in terms of costs", says Lützkendorf. The focus is currently on the use of CF recycled fibers in thermoplastic processes for sheet and profile extrusion. "The goal is to combine short- and continuous-fiber reinforcement in a single, high-performance process step."

1) Since February 1st, 2021, Dr.-Ing. Thomas Reussmann succeeds Dr.-Ing. Renate Lützkendorf, who retired 31 January.

Source:

Zuse Community

Photo: Pixabay
26.02.2019

TURKEY REMAINS AN IMPORTANT MARKET FOR GERMAN TEXTILE MACHINERY

  • Competition from the Far East increases modernization pressure

Turkey is an important market for German manufacturers of textile machinery. However, the textile and clothing industry has a problem: exports have been stagnating for years.

  • Competition from the Far East increases modernization pressure

Turkey is an important market for German manufacturers of textile machinery. However, the textile and clothing industry has a problem: exports have been stagnating for years.

The Turkish textile industry is broadly based: Companies manufacture all intermediate products in the country, including yarns, fibers and fabrics. Production along the entire textile value chain means great sales potential for German suppliers of textile machinery. In fact, Turkey is the second most important export market for German spinning, weaving, textile finishing machines and the like after China, as it can be seen from the figures of the Federal Statistical Office Destatis.Nevertheless, the sector is not a growth market. Apart from a few outliers upwards and downwards, Turkish textile machinery imports have remained at the same level for several years. This is due to the fact that Turkish exports of textiles and clothing are also stagnating. Particularly noticeable: companies benefited only marginally from the weak lira last year.

Textile and apparel industry benefits little from weak lira
Year Turkish exports of clothing and textiles (in US$ billion) Annual change (in %)
2015 26.3 -10.3
2016 26.1 -0.6
2017 26.7 2.1
2018 27.7 3.6

Source: Turkish Statistical Office TÜIK (http://www.tuik.gov.tr)

Increasing pressure from the Far East
Turkish clothing manufacturers are increasingly feeling the effects of competition from the Far East. Despite the high number of informal workers, wages in Turkey have risen to such an extent that they cannot keep up with the low wages of Asian sewing factories. The geographical advantage of Turkish companies over Chinese competitors is at stake because of the new Silk Road and the development of faster transport routes. Free trade agreements that the European Union is currently negotiating with India and South Korea will further increase the pressure on Turkish producers.

Slump in 3rd quarter 2018
In addition, there is the difficult economic situation in the country: the Turkish lira reached a record low, especially in the months of August to October 2018, and commercial banks raised their lending rates. As a result, financing costs for machinery from abroad suddenly increased, orders from Turkey failed to materialize, especially in the third quarter. The German knitting machine manufacturer Mayer & Cie has also noticed this, as Stefan Bühler, who is responsible for the Turkish business, reports: "In the last three months of 2018, the market was virtually dead. In the meantime, however, the industry is gradually recovering.

Akar Textile plans new factory
Announcements about new investments cannot yet be heard at this time. As early as June 2018, Akar Textile (http://www.akartextile.com) announced that it would build a new factory for 47 million Turkish lira (TL) in the municipality of Savur in southeastern Turkey. 3,000 employees are there to become employed. Akar Textile produces for companies such as C&A, Mango and H&M. Only a few months after the announcement of the project, the economic crisis in Turkey deepened in September. The extent to which the turbulence has affected the project implementation is not known.

Technical textiles as a driving force for growth
Far Eastern competition is increasing the pressure to modernize the Turkish textile industry. In the future, industry will have to compete primarily with high-quality products. Growth impulses are currently coming from the sector of technical textiles. According to industry reports, more than 200 small and medium-sized enterprises are already producing technical textiles and nonwovens in Turkey. These textiles and fabrics are being used in the automotive, packaging and cosmetics industries.

In June 2018, the Turkish METYX Group (http://www.metyx.com) invested in its machinery parc. The company is manufacturing technical textiles and has ordered a line of warp knitting machines from the German textile machine manufacturer Karl Mayer. The manufacturer of composite materials is thus increasing its capacity by 12,000 tons of glass and carbon fibers. In recent years, more and more research and development centers have emerged to promote the necessary technology transfer in the industry. The Institute for Technical Textiles at RWTH Aachen University (ITA) founded a research center in Istanbul in October 2016. In the Teknosab industrial zone in Bursa the BUTEKOM research and development center for textile technology was established in 2008. The institute offers training as well as research and development cooperation to and with companies.

However, many medium-sized textile companies often lack the money to invest in modern machinery. The short planning horizon makes an access to research and development more difficult. As a member of the management board of the German-Turkish Chamber of Industry and Commerce, Frank Kaiser has been observing the Turkish business landscape for eight years. He points out that the textile manufacturers, like other medium-sized companies in the country too, often plan in short terms. "In view of the volatile business environment, this is rational," Kaiser explains.

Turkish imports of textile machinery and exchange rate comparison  1)
Year Import from Germany
(in USD million)
Total imports
(in USD million)
Exchange rate
(1 US$ = ?TL)
2009 143 505 1.55
2011 521 1,851 1.67
2013 619 2,211 1.90
2015 382 1,398 2.72
2017 447 1,478 3.65
2018 1) 2) 490 1,774 4.81

1) the slump in the 3rd quarter is not yet visible in the annual figures for 2018; it will not become noticeable until 2019
Sources: UN-Comtrade, TurkStat 2), Bundesbank