Textination Newsline

Reset
41 results
(c) MAI Carbon
24.05.2022

From waste to secondary raw material - wetlaid nonwovens made from recycled carbon fibers

MAI Scrap SeRO | From Scrap to Secondary Ressources – Highly Orientated Wet-Laid-Nonwovens from CFRP-Waste

The »Scrap SeRO« project is an international joint project in the field of »recycling of carbon fibers«.

The technical project goal is the demonstration of a continuous process route for processing pyrolytically recycled carbon fibers (rCF) in high-performance second-life component structures. In addition to the technological level, the focus of the project is particularly on the international transfer character, in the sense of a cross-cluster initiative between the top cluster MAI Carbon (Germany) and CVC (South Korea).

MAI Scrap SeRO | From Scrap to Secondary Ressources – Highly Orientated Wet-Laid-Nonwovens from CFRP-Waste

The »Scrap SeRO« project is an international joint project in the field of »recycling of carbon fibers«.

The technical project goal is the demonstration of a continuous process route for processing pyrolytically recycled carbon fibers (rCF) in high-performance second-life component structures. In addition to the technological level, the focus of the project is particularly on the international transfer character, in the sense of a cross-cluster initiative between the top cluster MAI Carbon (Germany) and CVC (South Korea).

Through direct cooperation between market-leading companies and research institutions of the participating cluster members, the technical project processing takes place in the context of the global challenge of recycling, as well as the need for increased resource efficiency, with reference to the economically strategic material carbon fibers.

Efficient processing of recycled carbon fibers
The technological process route within the project runs along the industrial wet-laying technology, which is comparable to classic paper production. This enables a robust production of high-quality rCF nonwovens, which are characterized, among other things, by particularly high homogeneity and stability of characteristic values.

A special development focus is on a specific process control, which allows the generation of an orientation of the individual fiber filaments in the nonwoven material.

The given preferred fiber direction of the discontinuous fiber structure opens up strong synergy effects in relation to increased packing densities, i.e. fiber volume content, as well as a significantly optimized processing behavior in relation to impregnation, forming and consolidation, in addition to a load path-oriented mechanics.

The innovative wetlaid nonwovens are then further processed into thermoset and thermoplastic semi-finished products, i.e. prepregs or organosheets, using impregnation processes that are suitable for large-scale production.

rCF tapes are produced from this in an intermediate slitting step. By means of automated fiber placement, load path-optimized preforms can be deposited, which are then consolidated into complex demonstrator components.

The process chain is monitored at key interfaces by innovative non-destructive measurement technology and supplemented by extensive characterization methods. Especially for the processing of pyrolysed recycled carbon fibers, which were recovered from end-of-life waste or PrePreg waste, for example, there are completely new potentials with significant added value compared to the current state of the art for the overall process route presented here.

International Transfer
The fundamentally global challenge of recycling and the striving for increased sustainability is strongly influenced by national recycling strategies as a result of country-specific framework conditions. The globalized way in which companies deal with high-volume material flows places additional demands on a functioning circular economy. A networked solution can only be created on the basis of and in compliance with the respective guidelines and structural factors.

In the case of the high-performance material carbon fiber, there is a particularly high technical requirement for an ecologically and economically viable recycling industry. At the same time, the specific market size already opens up interesting scaling effects and potential for market penetration.

The Scrap SeRO project connects two of the world's leading top clusters in the field of carbon composites from South Korea and Germany on the basis of a cross-cluster initiative. As part of this first promising technology project, the foundation stone for future cooperation is to be laid that supports the effective recycling of carbon fibers. The project makes an important contribution to closing the material cycle for carbon fibers and thus paves the way for renewed use in further life cycles of this high-quality and energy-intensive material.

Info »Scrap SeRO«

  • Duration: 05/2019 – 04/2022
  • Funding: BMBF
  • Funding Amount: 2.557.000 €

National Consortium

  • Fraunhofer Institute for Casting, Composite and Processing Technology IGCV
  • ELG Carbon Fibre
  • J.M. Voith SE & Co. KG
  • Neenah Gessner
  • SURAGUS GmbH
  • LAMILUX Composites GmbH
  • Covestro Deutschland AG
  • BA Composites GmbH
  • SGL Carbon

International Consortium

  • KCarbon
  • Hyundai
  • Sangmyung University
  • TERA Engineering
Source:

Fraunhofer Institute for Casting, Composite and Processing Technology IGCV

(c) A3/Christian Strohmayr
10.05.2022

Fraunhofer reduces CO2 footprint and recycles trendy lightweight carbon material

Neo-ecology through innovative paper technology

To reduce the CO2 footprint, the Fraunhofer Institute for Casting, Composite and Processing Technology IGCV Augsburg research with a state-of-the-art wetlaid nonwoven machine for recycling carbon fibers. The production processes are similar to those of a paper manufacturing machine. The crucial difference: we turn not paper fibers into the paper but recycled carbon fibers into nonwoven roll fabrics. The carbon fiber thus gets a second life and finds an environmentally friendly way in nonwovens, such as door panels, engine bonnets, roof structures, underbody protection (automotive), and heat shields (helicopter tail boom), as well as in aircraft interiors.

“Wetlaid technology for processing technical fibers is currently experiencing a revolution following centuries of papermaking tradition.”
Michael Sauer, Researcher at Fraunhofer IGCV

Neo-ecology through innovative paper technology

To reduce the CO2 footprint, the Fraunhofer Institute for Casting, Composite and Processing Technology IGCV Augsburg research with a state-of-the-art wetlaid nonwoven machine for recycling carbon fibers. The production processes are similar to those of a paper manufacturing machine. The crucial difference: we turn not paper fibers into the paper but recycled carbon fibers into nonwoven roll fabrics. The carbon fiber thus gets a second life and finds an environmentally friendly way in nonwovens, such as door panels, engine bonnets, roof structures, underbody protection (automotive), and heat shields (helicopter tail boom), as well as in aircraft interiors.

“Wetlaid technology for processing technical fibers is currently experiencing a revolution following centuries of papermaking tradition.”
Michael Sauer, Researcher at Fraunhofer IGCV

The wetlaid technology used is one of the oldest nonwoven forming processes (around 140 BC - 100 AD). As an essential industry sector with diverse fields of application, wetlaid nonwovens are no longer only found in the classic paper. Instead, the application areas extend, for example, from adhesive carrier films, and packaging material, to banknotes and their process-integrated watermarks and security features. In the future, particularly sustainable technology fields will be added around battery components, fuel cell elements, filtration layers, and even function-integrated material solutions, e.g., EMI shielding function.

Fraunhofer IGCV wetlaid nonwovens line is specifically designed as a pilot line. In principle, very different fiber materials such as natural, regenerated, and synthetic fibers can be processed, mainly recycled and technical fibers. The system offers the highest possible flexibility regarding material variants and process parameters. In addition, sufficiently high productivity is ensured to allow subsequent scaled processing trials (e.g., demonstrator production).

The main operating range of the wetlaid line relates to the following parameters:

  • Processing speed: up to 30 m/min
  • Role width: 610 mm
  • Grammage: approx. 20–300 gsm
  • Overall machinery is ≥ IP65 standard for processing, e.g., conductive fiber materials
  • Machine design based on an angled wire configuration with high dewatering capacity, e.g., for processing highly diluted fiber suspensions or for material variants with high water retention capacity.
  • Machine modular system design with maximum flexibility for a quick change of material variants or a quick change of process parameters. The setup allows short-term hardware adaptations as well as project-specific modifications.

Research focus: carbon recycling at the end of the life cycle
The research focus of Fraunhofer IGCV is primarily in the field of technical staple fibers. The processing of recycled carbon fibers is a particular focus. Current research topics in this context include, for example, the research, optimization, and further development of binder systems, different fiber lengths and fiber length distributions, nonwoven homogeneity, and fiber orientation. In addition, the focus is on the integration of digital as well as AI-supported methods within the framework of online process monitoring. Further research topics, such as the production of gas diffusion layers for fuel cell components, the further development of battery elements, and filtration applications, are currently being developed.

Source:

Fraunhofer Institute for Casting, Composite and Processing Technology IGCV

Nicolas Meletiou, Pixabay
01.03.2022

Textiles and the environment: the role of design in Europe’s circular economy

From the perspective of European consumption, textiles have on average the fourth highest negative life cycle impact on the environment and climate change, after food, housing and mobility. A shift to a circular textile production and consumption system with longer use, and more reuse and recycling could reduce those impacts along with reductions in overall consumption. One important measure is circular design of textiles to improve product durability, repairability and recyclability and to ensure the uptake of secondary raw materials in new products.

Key messages

From the perspective of European consumption, textiles have on average the fourth highest negative life cycle impact on the environment and climate change, after food, housing and mobility. A shift to a circular textile production and consumption system with longer use, and more reuse and recycling could reduce those impacts along with reductions in overall consumption. One important measure is circular design of textiles to improve product durability, repairability and recyclability and to ensure the uptake of secondary raw materials in new products.

Key messages

  • In 2019, the EU textile and clothing sector had a turnover of EUR162 billion, employing over 1.5 million people across 160,000 companies. As was the case in many sectors, between 2019 and 2020, the COVID-19 crisis decreased turnover by 9% for textiles as a whole and by 17% for clothing.
  • In 2020, textile consumption in Europe had on average the fourth highest impact on the environment and climate change from a global life cycle perspective. It was the consumption area with the third highest impact on water and land use, and the fifth highest in terms of raw material use and greenhouse gas emissions.
  • To reduce the environmental impacts of textiles, a shift towards circular business models, including circular design, is crucial. This will need technical, social and business model innovation, as well as behavioural change and policy support.
  • Circular design is an important enabler of the transition towards sustainable production and consumption of textiles through circular business models. The design phase plays a critical role in each of the four pathways to achieving a circular textile sector: longevity and durability; optimised resource use; collection and reuse; and recycling and material use.

Textiles are identified as a key value chain in the EU circular economy action plan and will be addressed in the forthcoming European Commission’s 2022 EU strategy for sustainable and circular textiles and EU sustainable products initiative. This briefing aims to improve our understanding of the environmental and climate impacts of textiles from a European perspective and to identify design principles and measures to increase circularity in textiles. It is underpinned by a report from the EEA’s European Topic Centre on Circular Economy and Resource Use available here.

1. Production, trade and consumption of textiles
Textiles is an important sector for the EU economy. In 2019, the EU textile and clothing sector had a turnover of EUR162 billion, employing over 1.5 million people in 160,000 companies. As was the case for many sectors, between 2019 and 2020, the COVID-19 health and economic crisis decreased turnover by 9% for textiles as a whole and by 17% for clothing (Euratex, 2021).

In 2020, 6.9 million tonnes of finished textile products were produced in the EU-27. EU production specialises in carpets, household textiles and other textiles (including non-woven textiles, technical and industrial textiles, ropes and fabrics). In addition to finished products, the EU produces intermediate products for textiles, such as fibres, yarns and fabrics (Köhler et al., 2021).

The textiles sector is labour intensive compared with others. Almost 13 million full-time equivalent workers were employed worldwide in the supply chain to produce the amount of clothing, textiles and footwear consumed in the EU-27 in 2020. This makes the textiles sector the third largest employer worldwide, after food and housing. Most production takes place in Asia, where low production costs come at the expense of workers’ health and safety.
 
Textiles are highly globalised, with Europe being a significant importer and exporter. In 2020, 8.7 million tonnes of finished textile products, with a value of EUR125 billion, were imported into the EU-27. Clothing accounts for 45% of imports in terms of volume, followed by household textiles, other textiles and footwear (Eurostat, 2021a). The EU imports mainly from China, Bangladesh and Turkey, and exports mainly to the United Kingdom, Switzerland and the United States (Euratex, 2020).

Consumption
European households consume large amounts of textile products. In 2019, as in 2018, Europeans spent on average EUR600 on clothing, EUR150 on footwear and EUR70 on household textiles (Köhler et al., 2021; Eurostat, 2021b).

The response to the COVID-19 pandemic, involving stay-at-home measures and the closure of companies and shops, decreased textile production and demand overall (Euratex, 2021). As a result, the consumption of clothing and footwear per person decreased in 2020, relative to 2019, while the consumption of household textiles slightly increased. Average textile consumption per person amounted to 6.0kg of clothing, 6.1kg of household textiles and 2.7kg of shoes in 2020 (see Figure 1).

Apart from this COVID-related drop in consumption in 2020, the estimated consumption of clothing and footwear stayed relatively constant over the last decade, with slight fluctuations between years (see Figure 2). Similarly, the consumption of household textiles was also relatively steady, with a slight increase over the decade.

When calculating the ‘estimated consumption’ based on production and trade data from 2020, and excluding industrial/technical textiles and carpets, total textile consumption is 15kg per person per year, consisting of, on average:

  • 6.0kg of clothing
  • 6.1kg of household textiles
  • 2.7kg footwear.

For 2020, this amounts to a total consumption of 6.6 million tonnes of textile products in Europe. Textile consumption estimates are uncertain, as they vary by study, often using different scopes and calculation methods.

2. Environmental and climate impacts of textiles
The production and consumption of textiles has significant impacts on the environment and climate change. Environmental impacts in the production phase result from the cultivation and production of natural fibres such as cotton, hemp and linen (e.g. use of land and water, fertilisers and pesticides) and from the production of synthetic fibres such as polyester and elastane (e.g. energy use, chemical feedstock) (ETC/WMGE, 2021b). Manufacturing textiles requires large amounts of energy and water and uses a variety of chemicals across various production processes. Distribution and retail are responsible for transport emissions and packaging waste.

During use and maintenance — washing, drying and ironing — electricity, water and detergents are used. Chemicals and microfibres are also emitted into the waste water. Meanwhile, textiles contribute to significant amounts of textile waste. At the end of their life, textiles often end up in general waste and are incinerated or landfilled. When textile waste is collected separately, textiles are sorted and reused, recycled or disposed of, depending on their quality and material composition. In 2017, it was estimated that less than 1% of all textiles worldwide are recycled into new products (Ellen MacArthur Foundation, 2017).

To illustrate the magnitude of the impacts of textile consumption on raw material use, water and land use and greenhouse gas emissions compared with other consumption categories, we have updated our calculations of the life cycle environmental and climate impacts in the EU. We used input-output modelling based on data from the Exiobase database and Eurostat. In line with the reduced textile consumption level in 2020 because of the COVID-19 pandemic, the environmental impacts decreased from 2019 to 2020.

Raw material use
Large amounts of raw materials are used for textile production. To produce all clothing, footwear and household textiles purchased by EU households in 2020, an estimated 175 million tonnes of primary raw materials were used, amounting to 391kg per person. Roughly 40% of this is attributable to clothes, 30% to household textiles and 30% to footwear. This ranks textiles as the fifth highest consumption category in Europe in terms of primary raw material use (see Figure 3).

The raw materials used include all types of materials used in producing natural and synthetic fibres, such as fossil fuels, chemicals and fertilisers. It also includes all building materials, minerals and metals used in the construction of production facilities. Transport and retail of the textile products are included as well. Only 20% of these primary raw materials are produced or extracted in Europe, with the remainder extracted outside Europe. This shows the global nature of the textiles value chain and the high dependency of European consumption on imports. This implies that 80% of environmental impacts generated by Europe’s textile consumption takes place outside Europe. For example, cotton farming, fibre production and garment construction mostly take place in Asia (ETC/WMGE, 2019).

Water use
Producing and handling textiles requires large quantities of water. Water use distinguishes between ‘blue’ water (surface water or groundwater consumed or evaporated during irrigation, industry processes or household use) and ‘green’ water (rain water stored in the soil, typically used to grow crops) (Hoekstra et al., 2012).

To produce all clothing, footwear and household textiles purchased by EU households in 2020, about 4,000 million m³ of blue water were required, amounting to 9m³ per person, ranking textiles’ water consumption in third place, after food and recreation and culture (see Figure 4).

Additionally, about 20,000 million m³ of green water was used, mainly for producing cotton, which amounts to 44m³ per person. Blue water is used fairly equally in producing clothing (40%), footwear (30%) and household and other textiles (30%). Green water is mainly consumed in producing clothing (almost 50%) and household textiles (30%), of which cotton production consumes the most.

Water consumption for textiles consumed in Europe mostly takes place outside Europe. It is estimated that producing 1kg of cotton requires about 10m³ of water, typically outside Europe (Chapagain et al., 2006).

Land use
Producing textiles, in particular natural textiles, requires large amounts of land. The land used in the supply chain of textiles purchased by European households in 2020 is estimated at 180,000 km², or 400m² per person. Only 8% of the land used is in Europe. Over 90% of the land use impact occurs outside Europe, mostly related to (cotton) fibre production in China and India (ETC/WMGE, 2019). Animal-based fibres, such as wool, also have a significant land use impact (Lehmann et al., 2018). This makes textiles the sector with the third highest impact on land use, after food and housing (see Figure 5). Of this, 43% is attributable to clothes, 35% to footwear (including leather shoes, which have a high land use impact because of the need for cattle pasture) and 23% to household and other textiles.

Greenhouse gas emissions
The production and consumption of textiles generate greenhouse gas emissions, in particular from resource extraction, production, washing and drying, and waste incineration. In 2020, producing textile products consumed in the EU generated greenhouse gas emissions of 121 million tonnes carbon dioxide equivalent (CO2e) in total, or 270kg CO2e per person. This makes textiles the household consumption domain responsible for the fifth largest impact on climate change, after housing, food, transport and mobility, and recreation and culture (see Figure 6). Of this, 50% is attributable to clothes, 30% to household and other textiles, and 20% to footwear. While greenhouse gas emissions have a global effect, almost 75% are released outside Europe, mainly in the important textile-producing regions in Asia (ETC/WMGE, 2019).

About 80% of the total climate change impact of textiles occurs in the production phase. A further 3% occurs in distribution and retail, 14% in the use phase (washing, drying and ironing), and 3% during end of life (collection, sorting, recycling, incineration and disposal) (ECOS, 2021; Östlund et al., 2020).

Textiles made from natural fibres, such as cotton, generally have the lowest climate impact. Those made from synthetic fibres (especially nylon and acrylic) generally have a higher climate impact because of their fossil fuel origin and the energy consumed during production (ETC/WMGE, 2021b; Beton et al., 2014).

3. Design as an enabler of circular business models for textiles
To reduce the environmental and climate change impacts of textiles, shifting towards circular business models is crucial to save on raw materials, energy, water and land use, emissions and waste (ETC/WMGE, 2019). Implementing and scaling circular business models requires technical, social and business model innovation; as well as enablers from policy, consumption and education (EEA, 2021).

Circular design is an important component of circular business models for textiles. It can ensure higher quality, longer lifetimes, better use of materials, and better options for reuse and recycling. While it is important to enable the recycling and reuse of materials, life-extending strategies, such as design for durability, ease of reuse, repair and remanufacturing, should be prioritised. Preventing the use of hazardous chemicals and limiting toxic emissions and release of microplastics at all life cycle stages should be incorporated into product design.

Designing for circularity is the most recent development in design for sustainability. Expanding a technical and product-centric focus to a focus on large-scale system-level changes (considering both production and consumption systems) shows that this latest development requires many more disciplines than traditional engineering design. Product design as a component of a circular business model depends on consumer behaviour and policy to realise its potential and enable implementation. Figure 7 shows the linkages between the circular business model, product design, consumer behaviour and policy. All are needed to slow down and close the loop, making it circular.

(c) Schoeller Textil AG
18.01.2022

A jacket from a jacket from a jacket ...

Manufacture, wear, wash, incinerate: This typical life cycle of garments, which pollutes the environment, is to be changed in the future – towards principles of circular economy with recycling at its core. Using an outdoor jacket made from PET bottles and recycled materials, Empa researchers have investigated whether the product actually delivers what the idea promises.

At first glance, it's a normal rain jacket: three layers of polyester, a lining on the inside, a water vapor-permeable membrane on top and water-repellent fabric on the outside, with a hood. But the zipper makes you wonder. Instead of ending at collar height, it pulls up over the forehead ... – who would pull it that far?

Manufacture, wear, wash, incinerate: This typical life cycle of garments, which pollutes the environment, is to be changed in the future – towards principles of circular economy with recycling at its core. Using an outdoor jacket made from PET bottles and recycled materials, Empa researchers have investigated whether the product actually delivers what the idea promises.

At first glance, it's a normal rain jacket: three layers of polyester, a lining on the inside, a water vapor-permeable membrane on top and water-repellent fabric on the outside, with a hood. But the zipper makes you wonder. Instead of ending at collar height, it pulls up over the forehead ... – who would pull it that far?

The explanation is given by Annette Mark from textile manufacturer BTK Europe, who contributed to this product. The zipper is intended to be an eye-catcher – and is primarily for recycling: Sewn tight with a thread that dissolves in boiling water, it is easier to remove than two fasteners. "Pull once and you're done," says the expert on textiles and recycling. The light green color is also due to recycling: The raw material, a granule made from a mixture of different but single-variety textiles, is dark green – and melting and spinning out the material for new yarns lightens it.

Circular economy within textile industry
Magnetic buttons, seams, hems: Every detail of the jacket follows the Design2Recycle approach, as it says on the Wear2wear website. Six companies from Europe's textile industry have joined forces in this consortium to promote circular economy. After all, more than 70 percent of all textiles produced worldwide end up in landfills or incinerators without being recycled.

How can circular economy be acheived in this industry? A team from Empa's Technology and Society lab took a closer look at the jacket and its environmental impact using life cycle analyses over a four-year period of use; including washing it three times. The candidates: a jacket produced without circular economy methods, the "starter version" of the jacket available since 2019 in blue – with an outer layer made of polyester derived from used PET bottles – and the green version from the subsequent recycling process, in which unavoidable material losses are replaced by new polyester.

The researchers' analyses show that the recycled products perform better – in eleven environmental risk categories, including global warming, toxicity to ecosystems and water scarcity. There are strikingly large advantages in air pollution, for example, because fewer pollutants are released without incineration, as well as in water scarcity, especially for the green jacket after the first recycling "loop," for which PET bottles are no longer used.

Other insights from the analyses: In terms of greenhouse effect, the maximum benefit is a good 30 percent. And the use of PET bottles does not bring any major ecological benefits. What is decisive, on the other hand, is the number of recycling cycles to produce new jackets: The balance improves from jacket to jacket – provided the quality of the polyester remains high enough.

In practice, this is challenging, as Mark explains: "Depending on the origin, the raw material sometimes differs significantly." If the fibers have been coated with certain additives, the nozzles of the spinning machines can become clogged. And in general, the quality decreases with the number of recycling cycles: more irregular structures of the yarn and lower strength.

Annette Mark's conclusion on the Empa analyses: "very realistic" and useful for improvements. "The cooperation was very good," she says, "full transparency and no compromises." The researchers also found the collaboration fruitful. "Open collaboration between science and industry is enormously important," says former team member Gregor Braun, who has since left Empa and now works as a consultant for sustainability. "Sustainability and circular economy can work well together."

Will the jacket become a market success? "The textile industry is in a state of upheaval. A rethinking is taking place right now that we shouldn't miss," says Annette Mark. But large corporations that are already developing similar products "have completely different options." After all, talks are underway with a sportswear manufacturer – for a fleece jacket, for which the Empa findings could also be useful.

Microplastic fibers from textiles
Textiles made of polyester are making the headlines because of the release microplastic fibers – for instance, during washing – which is sometimes considered a threat to humans and the environment. Empa experts have studied the formation and release of microplastic fibers. Their results: Fibers are released primarily at the fabric's edges. Their formation and release depends, among other things, on the type of fiber, surface treatment and the type of cutting. Compared to other textiles, significantly fewer fibers are released from laser-cut textiles during washing. Empa is conducting studies with industrial partners to further reduce the formation of these fibers during textile production. In Swiss wastewater treatment plants, however, microfibers are largely removed from wastewater and incinerated with the sludge.

More information:
Empa PET Recycling polyester
Source:

EMPA, Norbert Raabe

photo: pixabay
04.01.2022

EU Project: System Circularity & Innovative Recycling of Textiles

SCIRT stands for System Circularity & Innovative Recycling of Textiles. Coordinated by VITO, an independent Flemish research organisation in the cleantech and sustainable development sector, SCIRT is a three year EU-funded project from the Horizon 2020 Programme.

It aims to demonstrate a complete textile-to-textile recycling system for discarded clothing—or post-consumer textiles—involving stakeholders throughout the value chain and focusing on the recycling of natural fibres, synthetic fibres and fibre blends. To reach this goal, the project has set four main objectives.

SCIRT stands for System Circularity & Innovative Recycling of Textiles. Coordinated by VITO, an independent Flemish research organisation in the cleantech and sustainable development sector, SCIRT is a three year EU-funded project from the Horizon 2020 Programme.

It aims to demonstrate a complete textile-to-textile recycling system for discarded clothing—or post-consumer textiles—involving stakeholders throughout the value chain and focusing on the recycling of natural fibres, synthetic fibres and fibre blends. To reach this goal, the project has set four main objectives.

  • Deliver a closed-loop recycling solution for discarded textiles.
  • Stimulate and encourage conscious design as well as production practices.
  • Create new business opportunities by boosting textile value chain activity.
  • Raise awareness of the environmental and social impacts of buying clothes.

Gathering 18 partners from five countries, the SCIRT project held its virtual kick-off meeting in mid-2021 to begin tackling the issue of clothing waste and recyclability, one of the biggest challenges faced in the fashion industry today.

As clothing brands are setting ambitious targets and making promises to incorporate recycled fibres in their products, discarded textiles are piling up in abundance around the globe. Though it would seem that the stars of supply and demand have aligned for this part of the circular economy, the truth is that less than 1% of textile waste is recycled into new textile fibres, according to an Ellen MacArthur Foundation report published in 2017. This miniscule percentage is indicative of a greater problem-achieving circularity in the fashion industry is not just a question of supply and demand, but of the connection between the two. There is a lack of knowledge surrounding the technological, economic and environmental feasibility of recycling fibre mixtures, and a need to align the quality and cost of recycling processes with the demands of textile companies and fashion brands.

SCIRT will develop solutions to support systemic innovation towards a more circular fashion system and bridge this supply-demand gap. To address the demand side of the equation, SCIRT will demonstrate a complete textile-to-textile recycling system for discarded clothing, otherwise known as post-consumer textiles, involving stakeholders throughout the value chain and focusing on the recycling of natural and synthetic fibres, as well as fibre blends. With the support of technical partners and research institutes, clothing brands Decathlon, Petit Bateau, Bel & Bo, HNST and Xandres, will develop, prototype and produce six different representative types of apparel using post-consumer recycled fibres. These include formal and casual wear, sportswear, underwear and uniforms. Through this endeavour, SCIRT will prioritise quality and cost-effectiveness in order to ensure market confidence and encourage the broad uptake of post-consumer recycled fibres.

From a non-technological perspective, SCIRT will develop supporting policy measures and tools to facilitate the transition towards a circular system for apparel. This includes a framework for an eco-modulated Extended Producer Responsibility (EPR) system and a True Cost Model to quantify circularity and increase value chain transparency. Special attention will also be given to the consumer perspective. To this end, Citizen Labs engaging consumers in various European locations, as well as a wider online engagement platform, will be developed to engage citizens throughout the project in order to understand the perceptions, motivations and emotions shaping their behaviour regarding the purchase, use, and disposal of textiles.

Over the next three years, SCIRT project partners will work to overcome current technological, economic, socio-economic and regulatory barriers faced in textiles recycling to achieve a real, lasting circular fashion economy.

2021:
The SCIRT project kicks off and partners identify the current state-of-the-art in apparel design, production and recycling, challenges and market trends, and stakeholder needs.

2022:
Designing and testing a fibre-to-fibre system by producing recycled yarns and filaments, free from harmful substances.

2023:
Formal wear, casual wear, sportswear, underwear and uniforms will be designed and produced using the optimized yarns developed.

Partners

  • Fashion companies: Bel&Bo, HNST, Decathlon, Xandres, Petit Bateau
  • Research organisations: VITO, CETI, Prospex Institute
  • Universities: BOKU, TU Wien, ESTIA
  • Industry players: Altex, AVS Spinning - A European Spinning Group (ESG) Company, Valvan
  • SMEs: Circular.fashion, FFact
  • Non-profit organisations: Flanders DC, IID-SII

 

ALTEX
ALTEX is a textile recycling company based in Germany that employs state-of-the-art machinery to recycle textile waste into new high-quality products. Its products include teared fibres, natural fibres, synthetic fibres and fibre blends among others.

Bel & Bo
Bel&Bo is a family-owned Belgian business with about 95 retail stores located throughout Belgium. Its mission is to offer colourful, fashionable and sustainably produced clothing for men, women and children at an affordable price.

CETI
The European Center for Innovative Textiles (CETI) is a non-profit organisation dedicated to conceiving, experimenting with and prototyping innovative textile materials and products through both private and collaborative R&D projects.

circular.fashion
circular.fashion offers software for circular design, intelligent textile sorting and closed-loop recycling, including the Circular Design Software and the circularity.ID®, as well as training and hands-on support to fashion brands in their transitions.

Decathlon
With over 315 stores in France, and 1,511 around the world, Decathlon has been innovating since 1976 to become the main player for athletic people. It has been engaged in reducing its environmental impact through a number of actions.

ESG
The European Spinning Group (ESG) is a textile group based in Belgium that offers a range of yarns produced with a highly technological open-end spinning mill for different applications, such as for interiors, fashion and technical textiles.

ESTIA
ESTIA is a French institute that has provided education and training in the areas of industrial technologies for 20 years. Since 2017, ESTIA has had a program focused on new materials and disruptive process in the fashion and textile industry.

FFACT
FFact is a unique group of management consultants that facilitates the implementation of sustainability from a business perspective, and translates facts into useful management information. FFact is based in the Netherlands and Belgium.

Flanders DC
The Flanders District of Creativity, a non-profit organisation based in Belgium, informs, coaches, promotes and inspires creative entrepreneurs in various sectors, including the fashion industry, who want to build or grow their business.

HNST
HNST is a Belgian circular denim brand that recovers post-consumer denim and recycles it into new fabric in the EU, creating durable and 100% recyclable jeans that use 82% less water and emit 76% less carbon dioxide than conventional jeans.

Petit Bateau
Petit Bateau is a French apparel brand that specialises in knit products. As a vertical company, Petit Bateau carries out its own knitting, dyeing, making up and store management with the support of its 3,000 employees.

Prospex Institute
The Prospex Institute aims to promote the participation of citizens and stakeholders in socially relevant decision-making dialogue and development by engaging with theorists and practitioners both in Belgium and abroad.

IID-SII
The Sustainable Innovation Institute is a French non-profit association based in Paris. Initiated by LGI, a French SME, the purpose of IID-SII is to act as a think and do tank on sustainable innovation to support the adoption of novel solutions.

TU Wien
TU Wien is an open academic institution where research, teaching and learning have taken place under the motto “Technology for people” for the past 200 years. One of its key areas of research is on recycling technology and fibre innovation.

BOKU
Research at the Institute for Environmental Biotechnology of BOKU based in Vienna, Austria focus on the exploitation of enzymes as powerful biocatalysts for biomaterials processing within recycling applications.

Valvan
Valvan Baling Systems has 30 years of experience in designing and constructing custom-made machinery, specialising in Baling Machines and Sorting Facilities for fibre producers, collectors, sorters and recyclers of textiles.

VITO
VITO, a leading independent European research and technology organisation in the cleantech and sustainable development sectors, aims to accelerate the transition towards a sustainable society by developing sustainable technologies.

Xandres
Xandres is a brand inspired by and for women. It is rooted in a highly respected tradition of fashion, driven by quality and created for the life women lead today. Xandres offers innovative designs with respect for luxury and the environment.

(c) STFI
14.12.2021

Funding Project Raw Material Classification of Recycled Fibers

For centuries, old textiles have been used to make tear fibers and processed into new textile products. This effective recycling is one of the oldest material cycles in the world. Today, it is not only clothing that is recycled, but also high-quality technical textiles. As the products of the textile industry evolve, so do the demands on textile recycling. The basis for this is a clear assessment and classification of raw materials.

For centuries, old textiles have been used to make tear fibers and processed into new textile products. This effective recycling is one of the oldest material cycles in the world. Today, it is not only clothing that is recycled, but also high-quality technical textiles. As the products of the textile industry evolve, so do the demands on textile recycling. The basis for this is a clear assessment and classification of raw materials.

In the research project of the German Institutes of Textile and Fiber Research Denkendorf (DITF) and the Sächsisches Textilforschungsinstitut e.V. (STFI - Saxony Textile Research Institute), a methodology is being developed that will make it possible to analyze the tearing as well as the subsequent processes with regard to fiber quality. The systematic analysis should make it possible to optimize the subsequent spinning processes in such a way that the recycled content of the yarn can be increased without the yarn properties differing significantly from those of a yarn consisting of 100% good fibers. These yarns can then be processed into sustainable textile products such as clothing or composite components.

The project, which is funded by the BMWi/IGF, is scheduled to run for two years and will end on December 31, 2022. The main benefits for the participating companies are to enable them to make greater use of secondary raw materials, to open up new markets through technologies or products developed in the project, to initiate synergies and long-term cooperation, and to prepare a joint market presence.    

The project includes several steps:

  • Material selection and procurement
    Cotton fibers to be processed are obtained from used textiles (T-shirts) and waste from the cotton spinning mill. Aramid fibers are processed from used protective clothing and technical textiles.
  • Optimization of the preparation / dissolution of the textiles
    To ensure that the fibers are detached from the corresponding textiles as gently as possible and with a not too high reduction, exact settings have to be found for the tearing process, which are technologically very demanding and require a lot of experience.
  • Determination of the quality criteria for the evaluation of the fiber dissolution
    In order to define the quality criteria, the fibers coming from the tearing mill are determined by means of an MDTA-4 measuring device from Textechno GmbH & Co. KG. The criteria determined are to be used to characterize the (lowest possible) fiber shortening caused by the tearing process.
  • Determination of optimized settings in the spinning process
    In order to determine the optimum settings for producing a yarn from the recycled fibers, they are spun after the rotor spinning process. By adjusting the spinning process, the aim is to produce a yarn that has good uniformity and also appropriate firmness.
  • Production and comparison of yarns from recycled raw materials
    In order that the recycled fibers - consisting of aramid and cotton - can each be used to produce an area-measured material, the material is to be processed at industrial scale. For this purpose, the fibers are processed over a complete blowroom line with following sliver production over adapted cards. After drawing and the following roving production, yarns are produced according to the rotor or ring spinning process. The finished yarns are used to produce knitted fabrics.
  • Coordination, analysis of results and preparation of reports
    The final report is prepared by the DITF and the STFI. The results will be transferred through publications, technical information to associations and trade fair presentations. Regular meetings with the participating companies are planned.

Textination spoke with Stephan Baz, Deputy Head of the Competence Center Staple Fiber, Weaving & Simulation, Head of Staple Fiber Technology and Markus Baumann, Research Associate at the Competence Center Staple Fiber, Weaving & Simulation (both DITF) as well as Bernd Gulich, Head of Department Nonwovens/Recycling and Johannes Leis, Research Associate Focus Nonwovens/Recycling (both STFI) about the current status of the funding project.

What is the current status of the project?
We are currently in the phase of carrying out trials and the iterative optimization of several project components. As expected, several loops are necessary for the mechanical preparation itself and also for the adjustment of the spinning process with the different variants. Ultimately, after all, the project aims at coordinating the processes of mechanical preparation and spinning as processing in order to achieve optimum results. At the same time, determining the quality criteria of the fibers produced is not trivial. This also requires the further development of processes and test methods that can be implemented productively in industry and that allow the quality of the fibers produced to be assessed effectively and unaffected by residual yarns, for example. What is really remarkable is the interest and willingness of the industry to drive the project work forward. The considerable quantities of materials required for our trials were purchased from ReSales Textilhandel und -recycling GmbH, Altex Textil-Recycling GmbH & Co. KG and Gebrüder Otto GmbH & Co. KG. Furthermore, with Temafa Maschinenfabrik GmbH, Nomaco GmbH & Co. KG, Schill + Seilacher GmbH, Spinnerei Neuhof GmbH & Co. KG and Maschinenfabrik Rieter AG, many members of the project-supporting committee are actively involved in the project, from consulting to the providing of technologies. The company Textechno Herbert Stein GmbH & Co. KG has provided a testing device of the type MDTA4 for the duration of the project and supports our work with regard to the evaluation of the mechanically prepared fibers. We are of course particularly pleased about this, as it has allowed us to look at and analyze several technologies in both mechanical preparation, testing and spinning. We expect to be able to make more detailed statements at the beginning of the coming year.

Which approaches do you think are particularly promising?
With regard to technologies, we must refer to the evaluation and analysis of the trials, which are currently still ongoing. We will be able to go into more detail in the first quarter of next year.

Of course, things are already emerging. With meta-aramid waste, promising approaches could be found very quickly; with post-consumer cotton, this is considerably more complex. Obviously, there is a link between the quality of the raw material and the quality of the products. In some cases, we have already been able to determine very low average fiber lengths in the procured goods; to a certain extent, these are of course directly reflected in the output of our processes. From this, and this is not a new finding, a great importance of the design of the textiles is again derived.

What are the challenges?
In addition to the expected high short fiber content, the residual yarns after the tearing process are an issue of particular focus. The proportion of these residual yarns can vary between the materials and preparation technologies, but the further dissolution of the products of the tearing process is essential.

If the processes are considered further in a utilization phase, the question of design naturally also arises for the best possible use of recycled fibers. Many problems, but also the approaches to solutions for the use of comparatively short fibers, can also be expected to apply to the (multiple) use of mechanically recycled fibers.

Can we speak of upcycling in the final product?
We see yarn-to-yarn recycling neither as upcycling nor downcycling, but as closed-loop recycling. The background is that the products are to go into the same application from which they came and have to compete with primary material. This means that certain specific requirements have to be met and at the same time there is considerable price pressure. In the case of downcycling, a significant reduction in properties is accepted, while in the case of upcycling, the higher-priced application can make up for the reprocessing effort. In the attempt to produce yarn material again from yarn material, both are only permissible to a small extent. This represents the particular challenge.

What does a recyclate prepared from used textiles mean for the spinning process?
Part of this question is to be answered in the project by the detailed classification of the processed fibers and is thus the subject of the tests currently underway. It turns out that, in addition to the rather obvious points such as significantly reduced fiber length, process disturbances due to undissolved fabrics and yarn pieces, there are also less obvious aspects to be considered, such as a significantly increased outgoing quantity for processing in the spinning process. The outgoing quantity is of particular interest here, because in the end the newly produced yarn should also contain a considerable proportion of prepared fibers.

What consequences does this have for textile machinery manufacturing?
The consequences that can already be estimated at the present time are that, particularly in the processing of cotton, the machinery in the spinning preparatory mill is specialized in the processing of (new) natural fibers with a certain amount of dirt. In contrast to new fibers, processed fibers are clean fibers with a significantly higher proportion of short fibers. Elements that are good at removing dirt also reject an increased amount of short fibers, which can lead to unintentionally high waste quantities under certain circumstances. It is therefore necessary to adapt the established machine technology to the new requirement profile of the raw material "processed fibers". Analogous adaptations are probably necessary along the entire processing chain up to the yarn. In the drafting system of the spinning machine, of course, this is due more to the high short fiber ratio than to elements that have been optimized for cleaning out dirt and foreign substances.

Source:

Textination GmbH

(c) nova-Institut GmbH
07.12.2021

Finalists for „Cellulose Fibre Innovation of the Year 2022” announced

Cellulose Fibre Innovation of the Year 2022: Cellulose Fibre Solutions are expanding from hygiene and textiles as well as non-wovens up to alternatives for carbon fibres for light-weight applications.

Great submissions made the nomination for the Innovation Award difficult. All of them present promising sustainable solutions in the field of cellulose fibres value chain. Six of them now get the chance to demonstrate their potential to a wide audience in Cologne (Germany), and online.

Cellulose Fibre Innovation of the Year 2022: Cellulose Fibre Solutions are expanding from hygiene and textiles as well as non-wovens up to alternatives for carbon fibres for light-weight applications.

Great submissions made the nomination for the Innovation Award difficult. All of them present promising sustainable solutions in the field of cellulose fibres value chain. Six of them now get the chance to demonstrate their potential to a wide audience in Cologne (Germany), and online.

For the second time, nova-Institute grants the “Cellulose Fibre Innovation of the Year” within the framework of the “International Conference on Cellulose Fibres 2022” (2-3 February 2022). The advisory board of the conference nominated six  products, ranging from cellulose made of orange- and wood pulp to a novel technology for cellulose fibre production. The presentations, election of the winner by the conference audience and the award ceremony will take place on the first day of the conference.

Cellulose fibres show an increasingly expanding wide range of applications, while at the same time markets are driven by technological developments and political framework conditions, especially bans and restrictions on plastics and increasing sustainability requirements. The conference provides rich information on opportunities for cellulose fibres through policy assessment, a session on sustainability, recycling and alternative feedstocks as well as latest development in pulp, cellulose fibres and yarns. This includes application such as non-wovens, packaging and composites.

Here are the nominees:
Carbon Fibres from Wood – German Institutes of Textile and Fiber Research Denkendorf (Germany)
The HighPerCellCarbon® technology is a sustainable and alternative process for the production of carbon fibres made from wood. The technology starts with wet spinning of cellulosic fibres using ionic liquids (IL) as direct solvent in an environmentally friendly, closed loop filament spinning process (HighPerCell® technology). These filaments are directly converted into carbon fibres by a low-pressure stabilisation process, followed by a suitable carbonisation process. No exhaust fumes or toxic by-products are formed during the whole process. Furthermore, the approach allows a complete recycling of solvent and precursor fibres, creating a unique and environmentally friendly process. Carbon fibres are used in many lightweight applications and the fibres are a sustainable alternative to fossil-based ones.

Fibers365, Truly Carbon-Negative Virgin Fibres from Straw – Fibers365 (Germany)
Fibers365 are the first carbon-negative virgin straw fibres on the market. The Fibers365 concept is based on a unique, state of the art process to provide functional, carbon negative, and competitive non-wood biomass products such as virgin fibres for paper, packaging and textile purposes as well as high value process energy, biopolymer and fertilizer side streams. The products are extracted from the stems of annual food plants such as straw by a chemical-free, regional, farm level steam explosion pulping technology, allowing an easy separation of the fibres from sugars, lignin, organic acid and minerals. In the case of annual plants, CO2 emissions are recaptured within 12 months from their production date, offering “instant”, yearly compensation of corresponding emissions.

Iroony® Hemp and Flax Cellulose – RBX Créations (France)
Iroony® is a branded cellulose made by RBX Créations from hemp. This resistant hemp plant grows quickly within in a few months, massively captures carbon and displays a high content of cellulose. The biomass is directly collected from French farmers who cultivate without chemicals or irrigation, in extended rotation cycles, contributing to soil regeneration and biodiversity. For a diversified supply, the hemp can be combined with organically-grown flax. Through its patented process, RBX Créations extracts high-purity cellulose, perfectly suitable for spinning technologies such as HighPerCell® of DITF research centre. The resulting fibres display versatile properties of fineness, tenacity and stretch, for applications like clothing or technical textiles. Iroony® combines low impact, trackability and performance.

SPINNOVA, Sustainable Textile Fibre without Harmful Chemicals – Spinnova (Finland)
Spinnova’s innovative technology enables production of sustainable textile fibres in a mechanical process, without dissolving or any harmful chemicals. The process involves use of paper-grade pulp and mechanical refining to turn pulp into microfibrillated cellulose (MFC). The fibre suspension consisting of MFC is extruded to form textile fibre, without regeneration processes. The Spinnova process does not generate any side waste, and the environmental footprint of SPINNOVA® including 65 % less CO2 emissions and 99 % less water compared to cotton production. Spinnova’s solution is also scalable: Spinnova targets to reach 1 million tonnes annual production capacity in the next 10 to 12 years.    

Sustainable Menstruation Panties: Application-driven Fibre Functionalisation – Kelheim Fibres (Germany)
Kelheim’s plant-based and biodegradable fibres contribute significantly to a sustainable future in the field of reusable hygiene textiles. Through innovative functionalisation they are specifically adjusted to the requirements of the single layers and thereby reach a performance comparable to that of synthetic fibres. A unique duality in fibre technology is created: sustainably manufactured cellulosic fibres that allow for high wearing comfort and reusability with extraordinary, durable performance. Fibre concepts comprise Celliant® Viscose, an in-fibre infrared solution and Danufil® Fibres in the top sheet, Galaxy, a trilobal fibre for the ADL, Bramante, a hollow viscose fibre, in the absorbing core and a water repellent woven fabric, a biodegradable PLA film or a sustainable coating as a back sheet.

TENCEL™ branded Lyocell Fibre made of Orange and Wood Pulp – Orange Fiber (Italy)
Orange Fiber is the world's first company to produce a sustainable textile fibre from a patented process for the extraction of cellulose to be spun from citrus juice leftovers, which are more than 1 million tonnes a year just in Italy. The result of our partnership with Lenzing Group, leading global producer of wood-based specialty fibres, is the first ever TENCEL™ branded lyocell fibre made of orange and wood pulp. A novel cellulosic fibre to further inspire sustainability across the value chain and push the boundaries of innovation. This fibre, part of the TENCEL™ Limited Edition initiative, is characterized by soft appeal and high moisture absorbance and has already obtained the OEKO-TEX Standard 100 certificate and is undergoing a diverse set of other sustainability assessments.

(c) Toray
23.11.2021

Toray Industries: A Concept to change Lives

Founded in January 1926, Tokyo-based Japanese chemical company Toray Industries, Inc. is known as the world's largest producer of PAN (polyacrylonitrile)-based carbon fibers. But its overall portfolio includes much more. Textination spoke with Koji Sasaki, General Manager of the Textile Division of Toray Industries, Inc. about innovative product solutions, new responsibilities and the special role of chemical companies in today's world.

Toray Industries is a Japanese company that - originating in 1926 as a producer of viscose yarns - is on the home stretch to its 100th birthday. Today, the Toray Group includes 102 Japanese companies and 180 overseas. They operate in 29 countries. What is the current significance of the fibers and textiles business unit for the success of your company?

Founded in January 1926, Tokyo-based Japanese chemical company Toray Industries, Inc. is known as the world's largest producer of PAN (polyacrylonitrile)-based carbon fibers. But its overall portfolio includes much more. Textination spoke with Koji Sasaki, General Manager of the Textile Division of Toray Industries, Inc. about innovative product solutions, new responsibilities and the special role of chemical companies in today's world.

Toray Industries is a Japanese company that - originating in 1926 as a producer of viscose yarns - is on the home stretch to its 100th birthday. Today, the Toray Group includes 102 Japanese companies and 180 overseas. They operate in 29 countries. What is the current significance of the fibers and textiles business unit for the success of your company?

The fibers’ and textiles’ business is both the starting point and the foundation of Toray's business development today. We started producing viscose yarns in 1926 and conducted our own research and development in nylon fibers as early as 1940. And since new materials usually require new processing methods, Toray also began investing in its own process technology at an early stage. On the one hand, we want to increase our sales, and on the other hand, we want to expand the application possibilities for our materials. For this reason, Toray also began to expand its business from pure fibers to textiles and even clothing. This allows us to better respond to our customers' needs while staying at the forefront of innovation.

Over the decades, Toray has accumulated a great deal of knowledge in polymer chemistry and organic synthesis chemistry - and this know-how is the foundation for almost all of our other business ventures. Today, we produce a wide range of advanced materials and high-value-added products in plastics, chemicals, foils, carbon fiber composites, electronics and information materials, pharmaceuticals, medicine and water treatment. However, fibers and textiles remain our most important business area, accounting for around 40% of the company's sales.

What understanding, what heritage is still important to you today? And how do you live out a corporate philosophy in the textile sector that you formulate as "Contributing to society through the creation of new value with innovative ideas, technologies and products"?

Toray has consistently developed new materials that the world has never seen before. We do this by focusing on our four core technologies: Polymer chemistry, organic synthetic chemistry, biotechnology and nanotechnology. We do this by focusing on our four core technologies: Polymer chemistry, organic synthetic chemistry, biotechnology and nanotechnology. For textiles, this means we use new polymer structures, spinning technologies and processing methods to develop yarns with unprecedented properties. We always focus on the needs and problems of the market and our customers.

This approach enables us to integrate textiles with new functions into our everyday lives that natural fibers and materials cannot accomplish. For example, we offer sportswear and underwear that absorb water excellently and dry very quickly, or rainwear and outdoor clothing with excellent water-repellent properties that feature a less bulky inner lining. Other examples include antibacterial underwear, uniforms, or inner linings that provide a hygienic environment and reduce the growth of odor-causing bacteria. People enjoy the convenience of these innovative textiles every day, and we hope to contribute to their daily comfort and improve their lives in some way.

In 2015, the United Nations adopted 17 sustainable development goals – simply known as the 2030 Agenda, which came into force on January 01, 2016. Countries were given 15 years to achieve them by 2030. In your company, there is a TORAY VISION 2030 and a TORAY SUSTAINABILITY VISION. How do you apply these principles and goals to the textile business? What role does sustainability play for this business area?

Sustainability is one of the most important issues facing the world today - not only in the textile sector, but in all industries. We in the Toray Group are convinced that we can contribute to solving various problems in this regard with our advanced materials. At the same time, the trend towards sustainability offers interesting new business approaches. In our sustainability vision, we have set four goals that the world should achieve by 2050. And we have defined which problems need to be addressed to achieve this.

We must:

  1. accelerate measures to combat climate change,
  2. implement sustainable, recycling-oriented solutions in the use of resources and in production,
  3. provide clean water and air, and
  4. contribute to better healthcare and hygiene for people around the world.

We will drive this agenda forward by promoting and expanding the use of materials that respond to environmental issues. In the textile sector, for example, we offer warming and cooling textiles – by eliminating the need for air conditioning or heating in certain situations, they can help reduce energy costs. We also produce environmentally friendly textiles that do not contain certain harmful substances such as fluorine, as well as textiles made from biomass, which use plant-based fibers instead of conventional petrochemical materials. Our product range also includes recycled materials that reduce waste and promote effective use of resources.

The TORAY VISION 2030, on the other hand, is our medium-term strategic plan and looks at the issue of sustainability from a different angle: Toray has defined the path to sustainable and healthy corporate growth in it. In this plan, we are focusing on two major growth areas: Our Green Innovation Business, which aims to solve environmental, resource and energy problems, and the Life Innovation Business, which focuses on improving medical care, public health, personal safety and ultimately a longer expectancy of life.

Innovation by Chemistry is the claim of the Toray Group. In a world where REACH and Fridays for Future severely restrict the scope of the chemical industry, the question arises as to what position chemistry can have in the textile industry. How do chemistry, innovation and sustainability fit together here?

The chemical industry is at a turning point today. The benefits that this industry can bring to civilization are still enormous, but at the same time, disadvantages such as the waste of resources and the negative impact on the environment and ecosystems are becoming increasingly apparent. In the future, the chemical industry will have to work much more towards sustainability - there is no way around it.

As far as textiles are concerned, we believe there are several ways to make synthetic materials more sustainable in the future. One of these, as I said, is materials made from plants instead of petrochemical raw materials. Another is to reduce the amount of raw materials used in production in the first place – this can be achieved, for example, by collecting and recycling waste materials from production or sales. Biodegradable materials that reduce the impact of waste products on the environment are another option worth pursuing, as is the reduction of environmentally harmful substances used in the production process. We are already looking at all of these possibilities in Toray's synthetic textiles business. At the same time, by the way, we make sure to save energy in our own production and minimize the impact on the environment.

Toray's fibers & textiles segment focuses on synthetic fibers such as nylon, polyester and acrylic, as well as other functional fibers. In recent years, there has been a clear trend on the market towards cellulosic fibers, which are also being traded as alternatives to synthetic products. How do you see this development – on the one hand for the Toray company, and on the other hand under the aspect of sustainability, which the cellulosic competitors claim for themselves with the renewable raw material base?

Natural fibers, including cellulose fibers and wool, are environmentally friendly in that they can be easily recycled and are rapidly biodegradable after disposal. However, to truly assess their environmental impact, a number of other factors must also be considered: Primarily, there is the issue of durability: precisely because natural fibers are natural, it is difficult to respond to a rapid increase in demand, and quality is not always stable due to weather and other factors.

Climatic changes such as extreme heat, drought, wind, floods and damages from freezing can affect the quantity and quality of the production of natural fibers, so that the supply is not always secured. In order to increase production, not only does land have to be cleared, but also large amounts of water and pesticides have to be used to cultivate it – all of which is harmful to the environment.

Synthetic fibers, on the other hand, are industrial products manufactured in controlled factory environments. This makes it easier to manage fluctuations in production volume and ensure consistent quality. In addition, certain functional properties such as resilience, water absorption, quick drying and antibacterial properties can be embedded into the material, which can result in textiles lasting longer in use.

So synthetic fibers and natural fibers, including cellulose fibers, have their own advantages and disadvantages – there is no panacea here, at least not at the moment. We believe: It is important to ensure that there are options that match the consumer's awareness and lifestyle. This includes comfort in everyday life and sustainability at the same time.

To what extent has the demand for recycled products increased? Under the brand name &+™, Toray offers a fiber made from recycled PET bottles. Especially with the "raw material base: PET bottles", problems can occur with the whiteness of the fiber. What distinguishes your process from that of other companies and to what extent can you compete with new fibers in terms of quality?

During the production of the "&+" fiber, the collected PET bottles are freed from all foreign substances using special washing and filtering processes. These processes have not only allowed us to solve the problem of fiber whiteness – by using filtered, high-purity recycled polyester chips, we can also produce very fine fibers and fibers with unique cross sections. Our proven process technologies can also be used to incorporate specific textures and functions of Toray into the fiber. In addition, "&+" contains a special substance in the polyester that allows the material to be traced back to the recycled PET bottle fibers used in it.

We believe that this combination of aesthetics, sustainability and functionality makes the recycled polyester fiber "&+" more competitive than those of other companies. And indeed, we have noticed that the number of requests is steadily increasing as companies develop a greater awareness of sustainability as early as the product planning stage.

How is innovation management practiced in Toray's textile division, and which developments that Toray has worked on recently are you particularly proud of?

The textile division consists of three sub-divisions focusing on the development and sale of fashion textiles (WOMEN'S & MEN'S WEAR FABRICS DEPT.), sports and outdoor textiles (SPORTS WEAR & CLOTHING MATERIALS FABRICS DEPT.) and, specifically for Japan, textiles for uniforms used in schools, businesses and the public sector (UNIFORM & ADVANCED TEXTILES DEPT.).

In the past, each division developed its own materials for their respective markets and customers. However, in 2021, we established a collaborative space to increase synergy and share information about textiles developed in different areas with the entire department. In this way, salespeople can also offer their customers materials developed in other departments and get ideas for developing new textiles themselves.

I believe that the new structure will also help us to respond better to changes in the market. We see, for example, that the boundaries between workwear and outdoor are blurring – brands like Engelbert Strauss are a good example of this trend. Another development that we believe will accelerate after the Corona pandemic is the focus on green technologies and materials. This applies to all textile sectors, and we need to work more closely together to be at the forefront of this.

How important are bio-based polyesters in your research projects? How do you assess the future importance of such alternatives?

I believe that these materials will play a major role in the coming years. Polyester is made from purified terephthalic acid (PTA), which again consists of paraxylene (PX) and ethylene glycol (EG). In a first step, we already offer a material called ECODEAR™, which uses sugar cane molasses waste as a raw material for EG production.

About 30% of this at least partially bio polyester fiber is therefore biologically produced, and the material is used on a large scale for sportswear and uniforms. In the next step, we are working on the development of a fully bio-based polyester fiber in which the PTA component is also obtained from biomass raw materials, such as the inedible parts of sugar cane and wood waste.

Already in 2011, we succeeded in producing a prototype of such a polyester fiber made entirely from biomass. However, the expansion of production at the PX manufacturer we are working with has proven to be challenging. Currently, we are only producing small sample quantities, but we hope to start mass production in the 2020s.

Originally starting with yarn, now a leading global producer of synthetic fibers for decades, you also work to the ready-made product. The range extends from protective clothing against dust and infections to smart textiles and functional textiles that record biometric data. What are you planning in these segments?

In the field of protective clothing, our LIVMOA™ brand is our flagship material. It combines high breathability to reduce moisture inside the garment with blocking properties that keep dust and other particles out. The textile is suitable for a wide range of work environments, including those with high dust or grease levels and even cleanrooms. LIVMOA™ 5000, a high quality, also demonstrates antiviral properties and helps to ease the burden on medical personnel. The material forms an effective barrier against bacteria and viruses and is resistant to hygroscopic pressure. Due to its high breathability, it also offers high wearing comfort.

Our smart textile is called hitoe™. This highly conductive fabric embeds a conductive polymer – a polymer compound that allows electricity to pass through - into the nanofiber fabric. hitoe™ is a high-performance material for detecting biosignals, weak electrical signals that we unconsciously emit from our bodies.

In Japan, Toray has developed products for electrocardiographic measurements (ECGs) that meet the safety and effectiveness standards of medical devices. And in 2016, we submitted an application to the Japanese medical administrative authorities to register a hitoe™ device as a general medical device – this registration process is now complete. Overall, we expect the healthcare sector, particularly medical and nursing applications, to grow – not least due to increasing infectious diseases and growing health awareness among the elderly population. We will therefore continue to develop and sell new products for this market.

In 1885, Joseph Wilson Swan introduced the term "artifical silk" for the nitrate cellulose filaments he artificially produced. Later, copper, viscose and acetate filament yarns spun on the basis of cellulose were also referred to as artifical silk. Toray has developed a new innovative spinning technology called NANODESIGN™, which enables nano-level control of the fineness and shape of synthetic fibers. This is expected to create functions, aesthetics and textures that have not existed before. For which applications do you intend to use these products?

In NANODESIGN™ technology, the polymer is split into a number of microscopic streams, which are then recombined in a specific pattern to form a new fiber. By controlling the polymer flow with extreme precision, the fineness and cross-sectional shape of the fiber can be determined much more accurately than was previously possible with conventional microfiber and nanofiber spinning technologies. In addition, this technology enables the combination of three or more polymer types with different properties in one fiber – conventional technologies only manage two polymer types. This technology therefore enables Toray to specify a wide range of textures and functions in the production of synthetic fibers that were not possible with conventional synthetic fibers – and even to outperform the texture and feel of natural fibers. Kinari, our artificial silk developed with NANODESIGN technology, is a prime example here, but the technology holds many more possibilities – especially with regard to our sustainability goals.

What has the past period of the pandemic meant for Toray's textile business so far? To what extent has it been a burden, but in which areas has it also been a driver of innovation? What do you expect of the next 12 months?

The Corona catastrophe had a dramatic impact on the company's results: The Corona catastrophe had a dramatic impact on the company's results: In the financial year 2020, Toray's total sales fell by about 10% to 188.36 billion yen (about 1.44 billion euros) and operating profit by about 28% to 90.3 billion yen (about 690 million euros). The impact on the fiber and textile business was also significant, with sales decreasing by around 13% to 719.2 billion yen (approx. 5.49 billion euros) and operating profit by around 39% to 36.6 billion yen (approx. 280 million euros).

In the financial year 2021, however, the outlook for the fibers and textiles sector is significantly better: So far, the segment has exceeded its goals overall, even if there are fluctuations in the individual areas and applications. In the period from April to June, we even returned to the level of 2019. This is partly due to the recovering sports and outdoor sector. The fashion apparel market, on the other hand, remains challenging due to changing lifestyles that have brought lock-downs and home-office. We believe that a full recovery in business will not occur until the travel and leisure sector returns to pre-Corona levels.

Another side effect of the pandemic that we feel very strongly, is the growing concern about environmental issues and climate change. As a result, the demand for sustainable materials has also increased in the apparel segment. In the future, sustainability will be mandatory for the development and marketing of new textiles in all market segments. Then again, there will always be the question of how sustainable a product really is, and data and traceability will become increasingly important. In the coming years, the textile division will keep a close eye on these developments and develop materials that meet customers' needs.

About the person:
Koji Sasaki joined Toray in 1987. In his more than 30 years with the company, he has held various positions, including a four-year position as Managing Director of Toray International Europe GmbH in Frankfurt from 2016 to 2020. Since 2020, Koji Sasaki has been responsible for Toray's textile division and serves as acting chairman of Toray Textiles Europe Ltd. In these roles, he supervises the company's development, sales and marketing activities in the apparel segment, including fashion, sports and work or school uniforms.

The interview was conducted by Ines Chucholowius, Managing partner Textination GmbH

(c) PERFORMANCE DAYS
16.11.2021

PERFORMANCE DAYS 2021: Hybrid Event in December

From December 1 to 2, 2021, the industry will meet up again live at the trade fair center in Munich. Trade visitors, industry insiders and experts can look forward to inter-personal exchanges, intensive networking, exciting fabric innovations and various other program highlights. The fair will go ahead in strict compliance with the current official hygiene regulations and in close cooperation with the Messe München authorities. Planned as a hybrid event, PERFORMANCE DAYS offers the possibility to follow what is on offer digitally.

From December 1 to 2, 2021, the industry will meet up again live at the trade fair center in Munich. Trade visitors, industry insiders and experts can look forward to inter-personal exchanges, intensive networking, exciting fabric innovations and various other program highlights. The fair will go ahead in strict compliance with the current official hygiene regulations and in close cooperation with the Messe München authorities. Planned as a hybrid event, PERFORMANCE DAYS offers the possibility to follow what is on offer digitally.

Live in Munich: PERFORMANCE DAYS in Hall A6
In Hall A6 on the grounds of the New Trade Center in Munich, trade visitors can look forward to an extensive portfolio of exhibitors showcasing their latest functional textiles and fabric innovations for the upcoming winter season, winter 2023/24. Exhibitors who are unable to present their highlights on site can also be accessed via the PERFORMANCE DAYS LOOP digital platform throughout the course of the fair. As part of the newly developed “remote booths” concept, trade visitors will for the first time also find collections from exhibitors who cannot be in Munich in person for the trade show. Interactive exchanges via chat, call or video call is planned.

Two further PERFORMANCE DAYS fairs are planned as live events: The Functional Fabric Fair by PERFORMANCE DAYS in Portland, Oregon, USA on November 17-18, 2021 and Functional Textiles Shanghai by PERFORMANCE DAYS on December 6-7, 2021. Registration is open at www.functionalfabricfair.com/ and www.functionaltextilesshanghai.com/

PERFORMANCE FORUM together with USA Fair
As part of the PERFORMANCE FORUM, a select jury of experts assembles for two days prior to the fair to exchange views on the latest fabric innovations for the winter 23/24 season. In order to ensure a more global market overview, the PERFORMANCE FORUM will curate highlights for the first time in conjunction with the US fair in Portland. Consequently, the next fair in Munich will not only feature the latest products from exhibitors at the Munich fair, but also highlights from the fair in Portland. This year’s Focus Topic in cooperation with the Vaude Academy will engage with the topic “The Sustainable Future of Nylon” and a specific hand-chosen selection of fabric materials. Furthermore, as part of the winter fair, the “sustain & innovate” conference on sustainability, organized in close cooperation with SAZsport, will take an in-depth look at the topic comprising all its aspects along with speakers, webinars and discussion rounds. The program will be broadcast live from the fair and thus accessible for all who wish to follow it online in digital form.  

Eco Award and Performance Award for Innovative Winter Fabrics 23/24
This year, in addition to a PERFORMANCE AWARD, the jury also presented an ECO PERFORMANCE AWARD. An integral part of the winter edition of PERFORMANCE DAYS is the presentation of the fabric highlights and accessory trends in the respective categories for the Winter Season 2023/24 at the PERFORMANCE FORUM. The well-known segments will be joined for the first time this winter by the Shoes & Bags category, while the renowned Lifestyle Category will be continued under its new title, “Function Meets Fashion”. The high level of innovation and quality of many of the fabrics submitted this year are particularly striking.

“The fusion of the two PERFORMANCE FORUMs of our fairs in Munich and Portland has lead to a significant increase in quality and innovation. Thanks to the new partnership, not only were we able to get new, exciting manufacturers on board, but there was also a significant increase in participation in general“, says Marco Weichert, CEO of PERFORMANCE DAYS.

Natural fabrics such as organic cotton, wool or canvas remain in demand. These are joined by significantly more plant fibers such as hemp, coconut shell, bamboo or fibers derived from pineapple or banana leaves. The additional use of castor oil, zinc or ginger supports the antibacterial effect, ensures enhanced breathability, optimum temperature management and makes the fabric soft, light and kind to the skin. The topic of recycling presents itself in various new facets and features exciting trends. The portfolio ranges from the recycling of marine waste, such as old buoys, plastic waste or fishing nets, to the recycling of waste from the automotive and computer industries, such as old car tires or computer chips. Natural dyeing methods are also gaining increasing importance, as is the recycling of materials into the textile loop.

In the Marketplace, visitors have the opportunity to view over 13,000+ products from exhibitors, including the fabric highlights of the individual categories at the PERFORMANCE FORUM. In order to be able to present the fabrics to the digital visitors as realistically as possible in terms of feel, design and structure, the PERFORMANCE FORUM has been equipped with groundbreaking 3D technology, including innovative tools such as 3D images, video animations and U3M files for download.

In addition to the PERFORMANCE AWARD WINNER, which goes to drielease/Optimer, there is also an ECO PERFORMANCE AWARD WINNER, awarded to Long Advance.

Completely new look: With the innovative Dricomfort Geo, drirelease turns to a blend of 6 % Lycra, 44 % polyester and 50 % recycled polyester. The processing of the various fibers in the knitting process, in combination with the Dricomfort GEO finishing, makes the reversible interlock fabric unique.

Unique, new pattern and knit designs are possible thanks to a special jacquard knitting process used to process the recycled polyester yarn. The material impresses with its lightness and versatility. The GEO technology also ensures optimal body temperature management. The adaptable technology provides excellent thermal regulation features through efficient heat management and enhanced moisture transport to optimize comfort and performance. Moreover, GEO boasts UV protection up to 50+.

New recycling variant: Long Advance presents LNT-21191-Z4C, a post consumer nylon that opens up a new world to recycling. The fabric, which consists of 7 % elastane and 93% recycled polyamide via Mass Balance, introduces new facets to the topic of recycling. BASF is using tire waste from now on and processes them into a new fiber. fiber. Due to the recycling, the need for synthetic fabrics are reduced to replace petroleum-based plastics with plastics made from renewable raw materials.

(c) Messe Frankfurt GmbH / SPOTT for Heimtextil
07.09.2021

Next Horizons: Heimtextil presents Trends 2022/23

With “Next Horizons”, Heimtextil is presenting its design forecast for the new season 2022/23 – analysed by international trend researchers and packed with valuable inspiration and inspiring content. The new trend themes take sustainability and resource conservation in the heart of their approach. The international trade fair for home and contract textiles takes place from 11 to 14 January 2022 in Frankfurt am Main.

With “Next Horizons”, Heimtextil is presenting its design forecast for the new season 2022/23 – analysed by international trend researchers and packed with valuable inspiration and inspiring content. The new trend themes take sustainability and resource conservation in the heart of their approach. The international trade fair for home and contract textiles takes place from 11 to 14 January 2022 in Frankfurt am Main.

Three international design agencies form the Heimtextil Trend Council. Together, they develop a well-founded global vision of the coming interior trends. Alongside the Heimtextil Trend Council, Heimtextil management has established a trend forecast for the coming season and presented it live via an online conference on 1 September 2021 from Frankfurt am Main. Trend Council members Anja Bisgaard Gaede from SPOTT trends & business, Anne Marie Commandeur from Stiljinstituut Amsterdam and Kate Franklin and Caroline Till from London studio FranklinTill shared their insights into the future of the industry. Designers, interior architects and decorators get inspired by the design forecast for the new season.

Next Horizons: long-term and circular mindset
The Next Horizons are not a fixed goal or a finish line – they are mindsets. These are made up of long-term thinking, accepting that the best way to impact the world is simply not to. Paradoxically, we have begun our transition to sustainability by addressing the problems within our manufactured system instead of transforming our approach to not create waste or imbalance. Transforming our nexus begins with accepting our economies are embedded within nature. The composition of design should be accessed, made and recirculated in tune with a long-term and circular mindset and simply not create waste. The Heimtextil Trends 22/23 “Deep Nature”, “Hyper Nature”, “Beyond Identity” and “Empowered Identity” explore these new mindsets for “Next Horizons”.

Heimtextil Trends in a new digital format
With “Next Horizons”, Heimtextil is breaking new ground and, for the first time, making trend information fully available in a digital format. The brand-new online platform of Heimtextil introduces the trends richly illustrated via colours, short films, bespoke imagery, key designer features and a soundtrack. The new online platform and all trend activities are directed by SPOTT trends & business from Denmark.

The Future Materials Library is now digital
Curated by Futures Agency FranklinTill, The Future Materials Library was launched in 2020 and is now available online at www.heimtextil-trends.com/future. This collection of exciting interior material innovations from around the world celebrates radical designers, innovative manufacturers and environmentally conscious producers who are helping to turn the current, linear system of production and consumption into a circular model.

Heimtextil Trends 22/23 – overview
Deep Nature – Rebalance by relearning

“Deep Nature” explores our ecosystem’s strategies: it’s our legacy and future all at once. We need to relearn and give into untamed texture, slow process, natural structures and living colours. “Deep Nature” is a long-term transformation and relearning process which gives us the ability to rebalance the natural world for a regenerative future. The colour scale for “Deep Nature” has a harmonious and soft expression used for untamed patternmaking. Mouldy, herbal tones and delicate tones of blue and rouge create a calm, tonal, and earthy approach.

Hyper Nature – Reconnect with nature via technology
“Hyper Nature” is about reconnecting to nature through technology. The theme is a digital facilitator of nature’s blueprint, fusing technology and nature for a protopia state and creating a better tomorrow step by step. Responsive materials, technical fibres, fluid patterns and microscopic structure describes materials and textiles for “Hyper Nature”. Bioscience brings inspiration to colours of both bright and lucid and blurred nuances of green and grey. Reflections and artificial light create new perceptions of nature-based colours. Coral, salmon and light raspberry are highlights.

Beyond Identity – Values more than physical attributes
“Beyond Identity” addresses the future with hopeful messages and soft and powerful defiance toward existing norms, leaving identity in flux. For the world of home interiors and textiles “Beyond Identity” works with recycled synthetic fabric, vintage silk and satin, natural-coloured textiles and new cellulose-based textiles. They are formed via the uncontrolled colouration process of a pastel-coloured look resembling the constant flux of identity. The colours scale for “Beyond Identity” features a range of pastels, complemented with a familiar grey and pale khaki as muted transferral colours.

Empowered Identity – Empower artisanship to sustain culture
“Empower Identity” is about creating sustainable cultural connections, renewing artisan sources of inspiration in a collaborative way. Empowering Identity encourages forming new connections between heritage cultures and future generations. Recycled and heritage textiles combined with textile craft techniques as tufting, embroidered appliqué and Cross-stitch are in focus in “Empower Identity”. Primary colours resemble their colour pigment origins to support the heritage expression of the theme. Sparks of coral and a greyed lilac accompany these primary tones. Multi-coloured usage is key.

(c) Messe Frankfurt Exhibition GmbH / Jens Liebchen
31.08.2021

Textile Services Industry a key to providing sustainable solutions and eco-friendly best practice

How can the major sustainability challenges in the textile industry be met? The textile services industry, whose business model has always been based on durability and re-use, has an important role to play here as ambassador. In the run-up to Texcare International, Elena Lai, Secretary General European Textile Services Association (ETSA), talks about these challenges and her expectations for Texcare International from 27 November to 1 December 2021.

How can the major sustainability challenges in the textile industry be met? The textile services industry, whose business model has always been based on durability and re-use, has an important role to play here as ambassador. In the run-up to Texcare International, Elena Lai, Secretary General European Textile Services Association (ETSA), talks about these challenges and her expectations for Texcare International from 27 November to 1 December 2021.

The textile sector was identified as a priority sector in the European Green Deal and in the Circular Economy Action Plan. What are the implications for the European textile services industry?
Elena Lai:
We are in a truly historic and exciting time for the textile services industry. We are all well-aware that our industry is the key to providing sustainable solutions and ecofriendly best practice. We had a series of webinars at ETSA dedicated to sustainability and circular economy being key elements of the Green Deal and our larger companies such as industrial laundries, key textile manufacturers and innovative machinery companies, are all up to the task and providing effective solutions. Our national associations too, members of ETSA, are all working synergistically to exchange their best ways forward, in Europe and beyond as we have also partners from the US. These efforts within ETSA’s value chain make us really proud and eager to go the extra mile, guiding our members also towards those areas which seem to be the most challenging. For instance, the new EU Climate Law, which calls for 55% CO2 reductions by 2030: this means that European industries will all have to do better to make us reach these targets in less than nine years. We know ETSA could represent the right network to identify the best way forward on this issue and truly perform and deliver what the EU is advocating for.

How can the textile services industry contribute to achieving circular economy in the textile industry?
Elena Lai:
The business model of textile services is inherently circular. By having a business model which is focused on renting and reusing textiles we can see a litany of benefits that it can offer to the EU’s Circular Economy Action Plan. Firstly, in renting textiles. Through rented textile services, textile service companies can extend the lifecycle of products and thus reduce the amount of production that is necessary to occur in the first place, while also reducing the amount of wastewater and energy needed in the laundry process. Secondly, through re-use and repair textile products can remain in consumer hands for longer, which is paramount as our industry is one that battles against planned obsolescence. Both of these are important pillars to our industries that will help both consumers and the planet. Lastly, by continuing to expand recycling and upcycling we can minimise waste, ensuring that a product stays inside the European economy as long as possible. These are all important steps and help us do our part to help Europe reach its emissions and sustainability goals.

Textile recycling is a very important point. How do you think the textile recycling rate can be increased?
Elena Lai:
The Commission will mandate separate waste sorting of textiles by the year 2025, thus recycling, upcycling and end of life re-use must be improved. A ban on the burning of unused textiles will also soon take effect, this will incentivise further recycling and waste reduction. Fundamentally what we in textiles services need to do is to continue to reduce, re-use and recycle. We can increase the rate of recycling by making consumers aware of rented textiles and textile services so to increase the public demand for such services.

How can sustainability in textile services be further improved?
Elena Lai:
In order to boost sustainability in our industry we need to build on the existing culture of innovation and entrepreneurship where exciting, new, out-of-the-box ideas can be developed and refined. EU programs like Horizon Europe, which emphasise green and digital solutions to common problems are an excellent way to empower citizens, textile service firms and local communities to take the initiative and take matters into their own hands. The EU’s Due Diligence legislation is one example of somewhere we can see both consumers and firms come together and take proactive action to improve sustainability, not only in textiles and textile services, but in European industry more broadly. To put it clearly, we have to strengthen our technological innovation while also empowering consumers, authorities and textile service firms, we believe our work at the EU level helps to make this a reality.

How does ETSA promote new projects in the field of sustainability?
Elena Lai:
We at ETSA have been hard at work lobbying EU policymakers for responsible legislation, while also spreading awareness of the industry’s best practice to the public. Recently ETSA has also become an EU Commission Climate Pact Ambassador. This is an exciting opportunity which will allow ETSA to work closely with European Institutions to inform and inspire real climate action amongst our members, national associations and the industry as a whole. ETSA is a platform where stakeholders, citizens, industries and European Union representatives can come together and have a dialogue on the best ways to improve Europe’s sustainability. Furthermore, we have been hard at work disseminating information on the best practice that will help Europe get to 55% emissions reductions, as well information on chemicals, waste-water, microplastics and other salient environmental issues. Our work is far from being done but we look forward to continuing to strive and advance via our focused Working Group on Environment and our webinars to make the world green and sustainable again.

What role will circular economy/sustainability play at Texcare?
Elena Lai:
A central role, several European and World Leaders have underlined, is that Climate Change is the most important issue of our time and it is imperative we act now. Climate Change is also an issue with a global spill over and therefore we all have a clear incentive to find solutions and work in synergy with each other. We need future-oriented dialogue which understands the urgent need for sustainability across the entire textile value chain. ETSA in synergy with one of our members, DTV, is working hard to put together a panel at Texcare dedicated to the sustainability debate, with lots of members and participants to get engaged.

What does ETSA expect from this year's Texcare?
Elena Lai:
We at ETSA are excited to be at Texcare, we think it’s a great opportunity to not only network and converse with other relevant actors in the industry but also to share best practice, concerns and most of all opportunities. Due to the pandemic we had a difficult year 2021 and this event will really enhance a stronger engagement of key actors in this sector. The need for green, sustainable and digital solutions is nonetheless imperative. We are looking forward to hearing of ways that the industry across the world not only continues to adapt to the evolving COVID situation, but also how it is embracing the green and digital transition that has been emphasised as being the futuristic approach by our EU policymakers. We at ETSA wholeheartedly look forward to this event.

Texcare International will take place from November 27 December 1, 2021 in Frankfurt am Main.

Photo: pixabay
20.07.2021

Closed-Loop Recycling Pilot Project for Single Use Face Masks

  • Circular economy for plastics: Fraunhofer, SABIC, and Procter & Gamble join forces

The Fraunhofer Cluster of Excellence Circular Plastics Economy CCPE and its Institute for Environmental, Safety and Energy Technology UMSICHT have developed an advanced recycling process for used plastics. The pilot project with SABIC and Procter & Gamble serves to demonstrate the feasibility of closed-loop recycling for single-use facemasks.

The transformation from a linear to a circular plastics economy can only succeed with a multi-stakeholder approach. The Fraunhofer Cluster of Excellence Circular Plastics Economy CCPE combines the competencies of six institutes of the Fraunhofer-Gesellschaft and cooperates closely with partners from industry. Together, we work on systemic, technical and social innovations and keep an eye on the entire life cycle of plastic products.  

  • Circular economy for plastics: Fraunhofer, SABIC, and Procter & Gamble join forces

The Fraunhofer Cluster of Excellence Circular Plastics Economy CCPE and its Institute for Environmental, Safety and Energy Technology UMSICHT have developed an advanced recycling process for used plastics. The pilot project with SABIC and Procter & Gamble serves to demonstrate the feasibility of closed-loop recycling for single-use facemasks.

The transformation from a linear to a circular plastics economy can only succeed with a multi-stakeholder approach. The Fraunhofer Cluster of Excellence Circular Plastics Economy CCPE combines the competencies of six institutes of the Fraunhofer-Gesellschaft and cooperates closely with partners from industry. Together, we work on systemic, technical and social innovations and keep an eye on the entire life cycle of plastic products.  

Fraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT is a pioneer in sustainable energy and raw materials management by supplying and transferring scientific results into companies, society and politics. Together with partners, the dedicated UMSICHT team researches and develops sustainable products, processes and services which inspire.

Fraunhofer Institute UMSICHT, SABIC and Procter & Gamble (P&G) are collaborating in an innovative circular economy pilot project which aimed to demonstrate the feasibility of closed-loop recycling of single-use facemasks.

Due to COVID-19, use of billions of disposable facemasks is raising environmental concerns especially when they are thoughtlessly discarded in public spaces, including - parks, open-air venues and beaches. Apart from the challenge of dealing with such huge volumes of essential personal healthcare items in a sustainable way, simply throwing the used masks away for disposal on landfill sites or in incineration plants represents a loss of valuable feedstock for new material.

“Recognizing the challenge, we set out to explore how used facemasks could potentially be returned into the value chain of new facemask production,” says Dr. Peter Dziezok, Director R&D Open Innovation at P&G. “But creating a true circular solution from both a sustainable and an economically feasible perspective takes partners. Therefore, we teamed up with Fraunhofer CCPE and Fraunhofer UMSICHT’s expert scientists and SABIC’s T&I specialists to investigate potential solutions.”

As part of the pilot, P&G collected used facemasks worn by employees or given to visitors at its manufacturing and research sites in Germany. Although those masks are always disposed of responsibly, there was no ideal route in place to recycle them efficiently. To help demonstrate a potential step change in this scenario, special collection bins were set up, and the collected used masks were sent to Fraunhofer for further processing in a dedicated research pyrolysis plant.

“A single-use medical product such as a face mask has high hygiene requirements, both in terms of disposal and production. Mechanical recycling, would have not done the job” explains Dr. Alexander Hofmann, Head of Department Recycling Management at Fraunhofer UMSICHT. “In our solution, therefore, the masks were first automatically shredded and then thermochemically converted to pyrolysis oil.

Pyrolysis breaks the plastic down into molecular fragments under pressure and heat, which will also destroy any residual pollutants or pathogens, such as the Coronavirus. In this way it is possible to produce feedstock for new plastics in virgin quality that can also meet the requirements for medical products” adds Hofmann, who is also Head of Research Department “Advanced Recycling” at Fraunhofer CCPE.

The pyrolysis oil was then sent to SABIC to be used as feedstock for the production of new PP resin. The resins were produced using the widely recognized principle of mass balance to combine the alternative feedstock with fossil-based feedstock in the production process. Mass balance is considered a crucial bridge between today’s linear economy and the more sustainable circular economy of the future.

“The high-quality circular PP polymer obtained in this pilot clearly demonstrates that closed-loop recycling is achievable through active collaboration of players from across the value chain,” emphasizes Mark Vester, Global Circular Economy Leader at SABIC. “The circular material is part of our TRUCIRCLE™ portfolio, aimed at preventing valuable used plastic from becoming waste and at mitigating the depletion of fossil resources.”

Finally, to close the loop, the PP polymer was supplied to P&G, where it was processed into non-woven fibers material. “This pilot project has helped us to assess if the close loop approach could work for hygienic and medical grade plastics.” says Hansjörg Reick, P&G Senior Director Open Innovation. “Of course, further work is needed but the results so far have been very encouraging”.

The entire closed loop pilot project from facemask collection to production was developed and implemented within only seven months. The transferability of advanced recycling to other feedstocks and chemical products is being further researched at Fraunhofer CCPE.

Photo: pixabay
06.07.2021

»Waste4Future«: Today's Waste becomes Tomorrow's Resource

Fraunhofer Institutes pave new ways in plastics recycling

A sustainable society, the renunciation of fossil raw materials, climate-neutral processes - also the chemical industry has committed itself to these goals. For the industry, this means a huge challenge within the next years and decades. This structural change can succeed if all activities - from the raw material base to material flows and process technology to the end of a product's life cycle - are geared towards the goal of sustainable value creation. The key to this is innovation.

Fraunhofer Institutes pave new ways in plastics recycling

A sustainable society, the renunciation of fossil raw materials, climate-neutral processes - also the chemical industry has committed itself to these goals. For the industry, this means a huge challenge within the next years and decades. This structural change can succeed if all activities - from the raw material base to material flows and process technology to the end of a product's life cycle - are geared towards the goal of sustainable value creation. The key to this is innovation.

Plastics such as polyethylene (PE), polypropylene (PP) or polystyrene (PS), which are currently produced almost entirely from fossil raw materials, are fundamental to many everyday products and modern technologies. The carbon contained in plastics is an important resource for the chemical industry. If it is possible to better identify such carbon-containing components in waste, to recycle them more effectively, and to use them again to produce high-quality raw materials for industry, the carbon can be kept in the cycle. This not only reduces the need for fossil resources, but also pollution with CO2 emissions and plastic waste. At the same time, the security of supply for industry is improved because an additional source of carbon is tapped.

The "Waste4Future" lighthouse project therefore aims to create new opportunities for recycling plastics in order to make the carbon they contain available as a "green" resource for the chemical industry. "We are thus paving the way for a carbon circular economy in which valuable new base molecules are obtained from plastic waste and emissions are largely avoided: Today's waste becomes tomorrow's resource," says Dr.-Ing. Sylvia Schattauer, deputy director of the Fraunhofer Institute for Microstructure of Materials and Systems IMWS, which is heading the project. "With the know-how of the participating institutes, we want to show how the comprehensive recycling of waste containing plastics without loss of carbon is possible and ultimately economical through interlocking, networked processes." The outcome of the project, which will run until the end of 2023, is expected to be innovative recycling technologies for complex waste that can be used to obtain high-quality recyclates.

Specifically, the development of a holistic, entropy-based assessment model is planned (entropy = measure of the disorder of a system), which will reorganize the recycling chain from process-guided to material-guided. A new type of sorting identifies which materials and in particular which plastic fractions are contained in the waste. Based on this analysis, the total stream is separated and a targeted decision is then made for the resulting sub-streams as to which recycling route is the most technically, ecologically and economically sensible for this specific waste quantity. What cannot be further utilized by means of mechanical recycling is available for chemical recycling, always with the aim of preserving the maximum possible amount of carbon compounds. Burning waste containing plastics at the end of the chain is thus eliminated.

The challenges for research and development are considerable. These include the complex evaluation of both input materials and recyclates according to ecological, economic and technical criteria. Mechanical recycling must be optimized, and processes and technologies must be established for the key points in the material utilization of plastic fractions. In addition, suitable sensor technology must be developed that can reliably identify materials in the sorting system. Machine learning methods will also be used, and the aim is to link them to a digital twin that represents the properties of the processed materials.

Another goal of the project is the automated optimization of the formulation development of recyclates from different material streams. Last but not least, an economic evaluation of the new recycling process chain will be carried out, for example with regard to the effects of rising prices for CO2 certificates or new regulatory requirements. The project consortium will also conduct comprehensive life cycle analysis (LCA) studies for the individual recycling technologies to identify potential environmental risks and opportunities.

For the development of the corresponding solutions, the participating institutes are in close exchange with companies from the chemical industry and plastics processing, waste management, recycling plant construction and recycling plant operation, in order to consider the needs of industry in a targeted manner and thus increase the chances of rapid application of the results achieved.

The following Institutes are involved in the Fraunhofer lighthouse project "Waste4Future":

  • Fraunhofer Institute for Microstructure of Materials and Systems IMWS (lead)
  • Fraunhofer Institute for Non-Destructive Testing IZFP
  • Fraunhofer Institute for Materials Recycling and Resource Strategy IWKS
  • Fraunhofer Institute of Optronics, System Technologies and Image Exploitation IOSB
  • Fraunhofer Institute for High Frequency Physics and Radar Techniques FHR
  • Fraunhofer Institute for Structural Durability and System Reliability LBF
  • Fraunhofer Institute for Process Engineering and Packaging IVV
Photo: Pixabay
29.06.2021

A sustainable Circular Economy: Polypropylene Recycling from Carpet Waste

A significant part of carpet waste consists of petroleum-based polypropylene. As a non-recyclable product, disposing of it has previously meant incineration or landfill. However, a new solvent is now making it possible to recover virgin-standard polypropylene from carpet waste — with no perceptible reduction in quality. Developed by the Fraunhofer Institute for Building Physics IBP and its partners, the process also involves costs that are quite competitive. The development has taken place as part of the ISOPREP EU project.

The EU alone produces around 1.6 million tons of carpet waste every year. The majority of this ends up being sent to landfill or incinerated, as carpet is a composite material that is not suitable for purely mechanical recycling methods. With carpet waste analysed in the project consisting of around a quarter polypropylene, a petroleum-based plastic, the result is a great deal of resources going to waste.

A significant part of carpet waste consists of petroleum-based polypropylene. As a non-recyclable product, disposing of it has previously meant incineration or landfill. However, a new solvent is now making it possible to recover virgin-standard polypropylene from carpet waste — with no perceptible reduction in quality. Developed by the Fraunhofer Institute for Building Physics IBP and its partners, the process also involves costs that are quite competitive. The development has taken place as part of the ISOPREP EU project.

The EU alone produces around 1.6 million tons of carpet waste every year. The majority of this ends up being sent to landfill or incinerated, as carpet is a composite material that is not suitable for purely mechanical recycling methods. With carpet waste analysed in the project consisting of around a quarter polypropylene, a petroleum-based plastic, the result is a great deal of resources going to waste.

Carpet recycling now possible thanks to a new process
A team of researchers, including from Fraunhofer IBP, has now developed a new recycling process as part of an EU project named ISOPREP (see logo). “For the first time, this is making it possible to recover polypropylene from carpet waste — and the outcome is virgin-quality,” says Maike Illner, a researcher at Fraunhofer IBP. Not only does this allow the recovered polypropylene to be used in lower-quality products (in a process known as downcycling), but it also means that the quality is similar to that of newly manufactured polypropylene, making the material suitable for high-quality products too.

The process is based on a special solvent in the form of an ionic liquid. With the right components, it is able to selectively extract polypropylene from carpet fibers. Before the team of experts applies the solvent, the carpet waste is cleaned — something which involves removing as much of the backing as possible — and broken down. Once the pretreatment is complete, the waste is fed into a reactor in which it undergoes treatment using the solvent. The polypropylene is selectively dissolved in the solvent, a method that provides an effective way of removing dyes and other additives. The process is already being used on an extensive laboratory scale involving several liters of the solvent — and now, the research consortium has set its sights on scaling the process up to a pilot plant with the ability to recycle a ton of carpet waste per day. The pilot plant is set to commence operation by the end of the project in March 2022.

Costs and environmental impact
A recycling process can only be deployed on a large scale if its costs are competitive. For this application, this means retaining as much of the expensive ionic liquid as possible in the cycle. “If loss rates can be kept to one percent or less, there is potential for the costs of the process to rival those of producing new polypropylene,” explains Illner. “We know this thanks to a preliminary economic analysis that we conducted at Fraunhofer IBP.” The analysis involved the Fraunhofer researchers investigating the quantities of material and energy that would be required for the process and what kind of product would be output, and then calculating the associated costs. The team also considered how the costs would develop over the long term.

Fraunhofer IBP is focusing on the ecological aspects of carpet recycling. It is able to draw conclusions from factors including a lifecycle assessment, which sheds light on the emissions that are produced during the recycling process, for example. If the consortium is able to achieve its aim of keeping solvent loss rates to one percent or less in this case too, primary energy requirements and greenhouse gas emissions will remain on a similar scale to those involved in producing new polypropylene.

Potential for transfer to other polypropylene waste streams
While carpet waste is the focus of this particular project, the process that has been developed has potential applications far beyond it. The experts involved believe that it could be transferred to a whole host of waste flows that contain polypropylene and are unsuitable for conventional recycling methods. “One example is polypropylene products that contain dyes and additives,” says Illner. “Until now, it has been difficult to extract them from plastic, which means that the recycled polypropylene has only been suitable for use in lower-quality products.” The new process separates the polypropylene not only from other materials, but also from dyes and other additives, allowing it to be used in high-quality applications.

This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement no. 820787.

(c) Fraunhofer IAP
08.06.2021

Fraunhofer IAP: Recyclable, Fiber-reinforced Material made from Bio-based Polylactic Acid

"Packaging made from bio-based plastics has long been established. We are now supporting the further development of these materials for new areas of application. If in the future the market also offers plant-based materials for technically demanding tasks such as vehicle construction, the bioeconomy will take a decisive step forward," explained Uwe Feiler, Parliamentary State Secretary at the Federal Ministry of Food and Agriculture, in Potsdam. The occasion was the handover of a grant to the Fraunhofer Institute for Applied Polymer Research IAP. The Fraunhofer IAP wants to develop a composite material that consists entirely of bio-based polylactic acid (PLA) and is significantly easier to recycle than conventional fiber composites.

"Packaging made from bio-based plastics has long been established. We are now supporting the further development of these materials for new areas of application. If in the future the market also offers plant-based materials for technically demanding tasks such as vehicle construction, the bioeconomy will take a decisive step forward," explained Uwe Feiler, Parliamentary State Secretary at the Federal Ministry of Food and Agriculture, in Potsdam. The occasion was the handover of a grant to the Fraunhofer Institute for Applied Polymer Research IAP. The Fraunhofer IAP wants to develop a composite material that consists entirely of bio-based polylactic acid (PLA) and is significantly easier to recycle than conventional fiber composites.

The German Federal Ministry of Food and Agriculture (BMEL) is intensively promoting the development of biomaterials as part of its Renewable Resources funding program. More than 100 projects are currently underway, covering a wide range of topics: from plastics that are degradable in the sea to natural fiber-reinforced lightweight components for the automotive sector. The projects are supported by the Agency for Renewable Resources, the BMEL project management agency responsible for the Renewable Resources funding program.

Easier recycling of fiber-reinforced plastics
PLA is one of the particularly promising bio-based materials. The global market for this polymer is growing by around 10 percent a year. PLA is also used, among other things, as a matrix in fiber-reinforced plastics. In these mechanically resilient plastics, reinforcing fibers are embedded in a plastic matrix.

The Fraunhofer IAP project is now focusing on these reinforcing fibers: "We are further developing our PLA fibers in order to transfer them to industrial scale together with partners from industry. These fibers are ideally suited for reinforcing PLA plastics. The resulting self-reinforcing single-component composite promises great recycling benefits. Since the fiber and the matrix of PLA are chemically identical, complex separation steps are not necessary," explains Dr. André Lehmann, expert for fiber technology at Fraunhofer IAP.

Novel PLA fibers and films are more thermally stable
The challenge with this approach is that conventional PLA has a relatively low temperature resistance. Technical fibers can be produced most economically using the melt spinning process. The Fraunhofer IAP team is now using more thermally stable stereocomplex PLA (sc-PLA) for the fibers. The term stereocomplex refers to a special crystal structure that the PLA molecules can form. Sc-PLA fibers have a melting point that is 40 - 50 °C higher and can therefore withstand the incorporation process in a matrix made of conventional PLA. In the project, the researchers are developing and optimizing a melt spinning process for sc-PLA filament yarns. The partner in this work package is Trevira GmbH, a manufacturer of technical and textile fiber and filament yarn specialties that are in demand from automotive suppliers and contract furnishers, among others. Furthermore, the development of a manufacturing process for sc-PLA reinforced flat films is planned. The international adhesive tape manufacturer tesa SE is participating in this task, and will test the suitability of sc-PLA films as adhesive foils. In a third work package, the Fraunhofer IAP will finally process the filaments in a double pultrusion process to produce granules suitable for injection molding.

Bio-based solutions for the automotive and textile industries
The scientists led by Dr. André Lehmann are certain that the self-reinforced PLA material can conquer many new areas of application. The automotive and textile industries are already showing interest in bio-based materials that are also easier to recycle. In terms of price, PLA would already be competitive here, and now the material is also to be made technically fit for the new tasks.

Professor Alexander Böker, head of Fraunhofer IAP, says: "The steadily growing demand from industry for sustainable solutions underlines how important it is to develop biobased and at the same time high-performance materials. With our research, we are also actively driving the development of a sustainable and functioning circular economy and therefore very much welcome the support from the federal government."

Information on the project is available at fnr.de under the funding code 2220NR297X.

Photo: pixabay
25.05.2021

Water Saving Solution for Textile Industry EC Project Waste2Fresh

The Fraunhofer Institute for Biomedical Engineering IBMT, with its long-term expertise in nanotoxicity and nanosafety testing, contributes to a new EC project for water saving solutions for textile industry. This industry uses a vast amount of water for different steps in the textile dyeing process. It also produces a lot of wastewater, which contains a range of chemicals and dyes.

The Fraunhofer Institute for Biomedical Engineering IBMT, with its long-term expertise in nanotoxicity and nanosafety testing, contributes to a new EC project for water saving solutions for textile industry. This industry uses a vast amount of water for different steps in the textile dyeing process. It also produces a lot of wastewater, which contains a range of chemicals and dyes.

Breakthrough innovations are needed in energy intensive industries to recycle water and create closed loops in industrial processes. 20% of global industrial water pollution comes from textile manufacturing. To reduce the high amount of freshwater used in textile industry, the EC-funded Waste2Fresh project will develop a closed-loop process for textile manufacturing factories in which wastewater is collected, recycled and used again. Novel and innovative catalytic degradation approaches with highly selective separation and extraction techniques will be developed, based on nanotechnology. According to the European Commission, such “closed loops“ would significantly reduce the use of fresh water and improve water availability in the relevant EU water catchment areas, as outlined in the Water Framework Directive.

Closed loop recycling system for wastewater from textile manufacturers
Waste2Fresh meets the above challenges and industry needs by developing and demonstrating (to TRL 7) a closed loop recycling system for wastewater from textile manufacturing factories; to counteract freshwater resource scarcities and water pollution challenges exacerbated by energy intensive industries which are major users of fresh water (for e.g., processing, washing, heating, cooling).

The Waste2Fresh technology is developed to reduce current use of freshwater resources and considerably increases the recovery of water, energy and other resources (organics, salts and heavy metals). The result is a 30% increase in resource and water efficiency compared to the state-of-the-art. The system will ultimately lead to considerable environmental improvements and accordingly reduce the EC and global environmental footprint.

Fraunhofer IBMT expertise in human-toxicity and -safety testing
The Fraunhofer Institute for Biomedical Engineering IBMT will be primarily responsible for performing nanotoxicity and nanosafety testing during the whole technology process (from development to demonstration), ensuring that the developed system and processes meet relevant safety regulations. The Fraunhofer IBMT collaborates with all consortium partners developing and using to develop approaches for ensuring that the developed nanomaterial-based components meet relevant health and safety standards during their use.

For the hazard assessment of the developed nanomaterials, the Fraunhofer IBMT will perform a set of in vitro toxicity studies using commercially available human cell lines. The results of this toxicity studies will be the basis for the development of relevant safety procedures for handling and using the developed recycling technology.

 

Project funding: H2020-EU.2.1.5.3. - Sustainable, resource-efficient and low-carbon technologies in energy-intensive process industries

Duration: 12/2020- 11/2023

Coordinator:
KONYA TEKNIK UNIVERSITESI, Turkey

Project partners:
CENTRE FOR PROCESS INNOVATION LIMITED LBG, United Kingdom
ERAK GIYIM SANAYI VE TICARET ANONIM SIRKETI, Turkey
FRAUNHOFER GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG E.V., Fraunhofer-Institut für Biomedizinische Technik IBMT, Germany
INNOVATION IN RESEARCH & ENGINEERING SOLUTIONS, Belgium
INSTYTUT MOLEKULYARNOI BIOLOGII I GENETYKY NAN UKRAINY, Ukraine
L'UREDERRA, FUNDACION PARA EL DESARROLLO TECNOLOGICO Y SOCIAL, Spain
NANOFIQUE LIMITED, United Kingdom
NANOGENTECH LTD, United Kingdom
PCI MEMBRANES SPOLKA Z OGRANICZONA ODPOWIEDZIALNOSCIA, Poland
STIFTELSE CSDI WATERTECH, Norway
THE OPEN UNIVERSITY, United Kingdom
ULUDAG CEVRE TEKNOLOJILERI ARGE MERKEZI SANAYI VE TICARET LIMITED SIRKETI, Turkey
UNIVERSIDAD INDUSTRIAL DE SANTANDER, Colombia
UNIVERSITA DEGLI STUDI DI TRENTO, Italy
VEREALA GMBH, Switzerland
VSI SOCIALINES INOVACIJOS SVARESNEI APLINKAI, Lithiani

(c) Porsche AG
04.05.2021

Fraunhofer: Lightweight and Ecology in Automotive Construction

  • The “Bioconcept-Car” moves ahead

In automobile racing, lightweight bodies made from plastic and carbon fibers have been standard for many years because they enable drivers to reach the finish line more quickly. In the future, lightweight-construction solutions could help reduce the energy consumption and emissions of everyday vehicles. The catch is that the production of carbon fibers is not only expensive but also consumes considerable amounts of energy and petroleum. In collaboration with Porsche Motorsport and Four Motors, researchers at the Fraunhofer WKI have succeeded in replacing the carbon fibers in a car door with natural fibers. This is already being installed in small series at Porsche. The project team is now taking the next step: Together with HOBUM Oleochemicals, they want to maximize the proportion of renewable raw materials in the door and other body parts - using bio-based plastics and paints.

  • The “Bioconcept-Car” moves ahead

In automobile racing, lightweight bodies made from plastic and carbon fibers have been standard for many years because they enable drivers to reach the finish line more quickly. In the future, lightweight-construction solutions could help reduce the energy consumption and emissions of everyday vehicles. The catch is that the production of carbon fibers is not only expensive but also consumes considerable amounts of energy and petroleum. In collaboration with Porsche Motorsport and Four Motors, researchers at the Fraunhofer WKI have succeeded in replacing the carbon fibers in a car door with natural fibers. This is already being installed in small series at Porsche. The project team is now taking the next step: Together with HOBUM Oleochemicals, they want to maximize the proportion of renewable raw materials in the door and other body parts - using bio-based plastics and paints.

Carbon fibers reinforce plastics and therefore provide lightweight components with the necessary stability. Mass-produced natural fibers are not only more cost-effective but can also be produced in a considerably more sustainable manner. For the “Bioconcept-Car” pilot vehicle, researchers at the Fraunhofer WKI have developed body parts with 100 percent natural fibers as reinforcing components.

“We utilize natural fibers, such as those made from hemp, flax or jute. Whilst natural fibers exhibit lower stiffnesses and strengths compared to carbon fibers, the values achieved are nonetheless sufficient for many applications,” explained Ole Hansen, Project Manager at the Fraunhofer WKI. Due to their naturally grown structure, natural fibers dampen sound and vibrations more effectively. Their lesser tendency to splinter can help to reduce the risk of injury in the event of an accident. Furthermore, they do not cause skin irritation during processing.

The bio-based composites were successfully tested by the Four Motors racing team in the “Bioconcept-Car” on the racetrack under extreme conditions. Porsche has actually been using natural fiber-reinforced plastics in a small series of the Cayman GT4 Clubsport since 2019. During production, the researchers at the Fraunhofer WKI also conducted an initial ecological assessment based on material and energy data. “We were able to determine that the utilized natural-fiber fabric has a better environmental profile in its production, including the upstream chains, than the fabric made from carbon. Thermal recycling after the end of its service life should also be possible without any problems,” confirmed Ole Hansen.

In the next project phase of the "Bioconcept-Car", the researchers at the Fraunhofer WKI, in collaboration with the cooperation partners HOBUM Oleochemicals GmbH, Porsche Motorsport and Four Motors, will develop a vehicle door with a biogenic content of 85 percent in the overall composite consisting of fibers and resin. They intend to achieve this by, amongst other things, utilizing bio-based resin-hardener blends as well as bio-based paint systems. The practicality of the door - and possibly additional components - will again be tested by Four Motors on the racetrack. If the researchers are successful, it may be possible to transfer the acquired knowledge into series production at Porsche.

The German Federal Ministry of Food and Agriculture (BMEL) is funding the “Bioconcept-Car” project via the project-management agency Fachagentur Nachwachsende Rohstoffe e. V. (FNR).

Background
Sustainability through the utilization of renewable raw materials has formed the focus at the Fraunhofer WKI for more than 70 years. The institute, with locations in Braunschweig, Hanover and Wolfsburg, specializes in process engineering, natural-fiber composites, surface technology, wood and emission protection, quality assurance of wood products, material and product testing, recycling procedures and the utilization of organic building materials and wood in construction. Virtually all the procedures and materials resulting from the research activities are applied industrially.

 

  • EU Project ALMA: Thinking Ahead to Electromobility

E-mobility and lightweight construction are two crucial building blocks of modern vehicle development to drive the energy transition. They are the focus of the ALMA project (Advanced Light Materials and Processes for the Eco-Design of Electric Vehicles). Nine European organizations are now working in the EU project to develop more energy-efficient and sustainable vehicles. Companies from research and industry are optimizing the efficiency and range of electric vehicles, among other things by reducing the weight of the overall vehicle. The Fraunhofer Institute for Industrial Mathematics ITWM is providing support with mathematical simulation expertise.

According to the low emissions mobility strategy, the European Union aims to have at least 30 million zero-emission vehicles on its roads by 2030. Measures to support jobs, growth, investment, and innovation are taken to tackle emissions from the transport sector. To make transport more climate-friendly, EU measures are being taken to promote jobs, investment and innovation. The European Commission's Horizon 2020 project ALMA represents one of these measures.

Photo: pixabay
13.04.2021

KPMG Study in Cooperation with EHI: Fashion 2030

For years now, fashion retail has been able to show a moderate but steady growth in sales. However, the share of sales accounted for by online retail is becoming significantly stronger, and consequently that of stationary retail is becoming weaker. In just 10 years, online fashion retail will have a market share as high as that of local fashion stores, according to one of the findings of the study "Fashion 2030 - Seeing what fashion will be tomorrow" by KPMG in cooperation with EHI. "For retailers, the decline in sales in the stationary sector means that they have to reduce their stationary areas," says Marco Atzberger, Managing Director of EHI. A dilemma, because the majority of customers prefer to shop in their local fashion store, despite all the online alternatives.

For years now, fashion retail has been able to show a moderate but steady growth in sales. However, the share of sales accounted for by online retail is becoming significantly stronger, and consequently that of stationary retail is becoming weaker. In just 10 years, online fashion retail will have a market share as high as that of local fashion stores, according to one of the findings of the study "Fashion 2030 - Seeing what fashion will be tomorrow" by KPMG in cooperation with EHI. "For retailers, the decline in sales in the stationary sector means that they have to reduce their stationary areas," says Marco Atzberger, Managing Director of EHI. A dilemma, because the majority of customers prefer to shop in their local fashion store, despite all the online alternatives.

Textiles, media and electrical goods are currently the categories most frequently purchased online. Consumers believe that online shopping in these categories will also be particularly attractive in the future, although there is also considerable interest in online purchasing of furniture, drugstore and hardware store products.

With sales of 16.5 billion euros, online fashion retail already accounts for 25 percent of total fashion sales, which were around 66 billion euros in 2020. The experts at KPMG and EHI predict that this share will double in the next ten years. The forecasted annual sales of 79.2 billion euros in 2030 are to be divided equally between online and stationary stores. In order to position itself correctly here, the textile trade is facing strategic changes in terms of sustainability and digitization in addition to reductions in retail space. Concepts such as circular economy (recycling) or re-commerce (second-hand) are just as much part of the customer's demands as a smooth (channel-independent) shopping experience or a targeted customer approach.

Online information sources are becoming increasingly important for customers. However, browsing in stores continues to be the main source of information when shopping. One exception, however, is electrical goods - the independent opinion of reviews is the most important source of information here.

Reductions in retail space
As the market share of online fashion retail is becoming increasingly stronger than that of the overall fashion market, there will be a scissor effect for the stationary clothing retail – unless decisive parameters such as store rents change. Permanently reducing the share of fixed costs in the stationary sector can lead to a harmonization of both sales channels and prevent massive cannibalization effects, according to the authors of the study. The reduction in retail space will have the most severe impact on department stores and multi-story formats. Interviews with retail experts show that the retail expects a reduction in space of around 50 percent by 2030 and anticipates shrinkages of up to 70 percent at peak times. However, the current crisis also offers fashion retailers a greater choice of appealing rental spaces and therefore the opportunity to position themselves for the future by strategically streamlining their own store networks, adapting their space and differentiating their concepts to suit their target customers - in combination with smart digital solutions.

Multi-channel approaches are continuing to grow. On the one hand, stationary retailers will increasingly enter the online market; on the other hand, it can be observed that the opening of their own local stores by previously online-only retailers is on the rise.

Shopping experience
For a successful shopping experience, the city centers must be vibrant as well as attractive and should offer entertainment. All of this requires cooperation between all of the local players involved and collaboration with conceptually oriented urban development. To increase the individual customer loyalty and build real trust, fashion retailers must invest more in emotionality and use IT solutions. Whether in-store or online, customers want a targeted and smooth shopping experience, which for retailers means cleverly linking the systems. Availability and finding clothes in the right size also play a significant role in the stationary fashion retail. 42 percent of customers say that they would shop more often in stores, if these factors were guaranteed.

Already today, a concrete shortage of qualified personnel can be observed in certain regions and areas of responsibility. This is likely to become even more severe in the future. The retail’s own qualification measures will increase, and the industry's image will have to be improved.

Despite all technological support, the human being remains the most important factor in retailing - 88 percent agree on this. For 60 percent of consumers, encounters with people in a retail store are becoming increasingly important.

Sustainability
For almost half of the consumers surveyed (46 percent), sustainability is already a worthwhile concept today. This also includes re-commerce and second-hand. 34 percent of customers already buy used clothing, and another 28 percent can imagine doing so. In terms of occasions, a large proportion can also imagine renting clothing. The second-hand clothing trend has the potential to claim a market share of up to 20 percent in the next ten years and therefore to become a significant market segment in fashion retail.

In addition to the sustainability debate, the main factors driving this trend are the digitalization of the "second-hand store around the corner" and the large online fashion platforms that are discovering this market for themselves and making consumers increasingly aware of the models of temporary use.

Laws and regulations as well as increasing pressure from stakeholders have contributed to the growing importance of sustainability. However, the consumer goods sector attaches greater importance than other sectors to the aspect of being able to achieve a reputational gain through a sustainability strategy.

When it comes to the circular economy or rather the recycling of raw materials from used clothing, many companies are already involved in non-profit initiatives and research projects to develop the relevant technologies. In 2030, also due to legal initiatives, many clothing items will probably be made from recycled textile raw materials or fibers, which would substantially shorten the supply chains. "Automated fiber recovery, increasing unit labor costs in the Far East and fewer used textiles, this is the starting point for a perspective revival of textile production in countries close to Europe as well as in Europe itself," says Stephan Fetsch, Head of Retail EMA at KPMG. Although circular economy does not yet play a major role due to the current limited availability, it shows great potential: 28 percent have already purchased recycled textiles, and over 50 percent are positive about it.

Customers believe that retailers and manufacturers are responsible for sustainability. They, on the other hand, would like consumers to initiate the upswing of re-commerce by changing their behavior. New compliance guidelines will have an accelerating effect on the development of the re-commerce market.

Source:

(Studies; KPMG/EHI or rather KPMG):
- Fashion 2030: Sehen, was morgen Mode ist (Seeing what fashion will be tomorrow - only available in German)
- CONSUMER MARKETS: Trends in Handel 2020 (Trends in Retail 2020 - only available in German)

(c) Neonyt/Messe Frankfurt GmbH
30.03.2021

Circularity and Fashion: Interview about the Business and Communication Platform Neonyt

Circular instead of throwaway economy - from fast fashion to zero-waste philosophy. The key elements of the circular economy in the fashion business are: Avoiding waste and pollution through new processes, continuous recycling of products and materials, and regeneration of natural systems. Textination talked with Olaf Schmidt, Vice President of Textiles & Textile Technologies, and Thimo Schwenzfeier, Show Director of Neonyt, from Messe Frankfurt about the Neonyt trade show as a business and communication platform for circularity & fashion.
 
It has been about 10 years since Messe Frankfurt ventured onto the "sustainable" fashion trade show stage. Initially with the Ethical Fashion Show, then with the Greenshowroom, there were two trade show formats in Berlin dedicated to the topic of green fashion. What prompted you as a trade show organizer to launch such a special format in Germany at that time?

Circular instead of throwaway economy - from fast fashion to zero-waste philosophy. The key elements of the circular economy in the fashion business are: Avoiding waste and pollution through new processes, continuous recycling of products and materials, and regeneration of natural systems. Textination talked with Olaf Schmidt, Vice President of Textiles & Textile Technologies, and Thimo Schwenzfeier, Show Director of Neonyt, from Messe Frankfurt about the Neonyt trade show as a business and communication platform for circularity & fashion.
 
It has been about 10 years since Messe Frankfurt ventured onto the "sustainable" fashion trade show stage. Initially with the Ethical Fashion Show, then with the Greenshowroom, there were two trade show formats in Berlin dedicated to the topic of green fashion. What prompted you as a trade show organizer to launch such a special format in Germany at that time?

Olaf Schmidt: Messe Frankfurt's Texpertise Network brings together the world's most important textile trade shows - at around 60 events worldwide, we show what drives the textile and fashion industry. We present the current topics and trends and set impulses for the entire textile value chain. Messe Frankfurt recognized the need for a suitable platform for the future topic of sustainability at an early stage. It was therefore obvious to expand our expertise in the field of fashion and to meet the demand from this segment. To achieve this, we have adapted and realigned existing formats: After launching the Ethical Fashion Show in Paris in 2004, Messe Frankfurt France took over the event in 2010. Two years later, Messe Frankfurt founded the Ethical Fashion Show Berlin in Germany and found, with the moving of the event to the polarizing capital, the ideal location for the coming years. Messe Frankfurt merged the already existing Greenshowroom with the Ethical Fashion Show, and from January 2015 the two shows took place in one venue. For Messe Frankfurt, hosting these events was the next logical step on our way to a sustainable fashion future - the concept is now established in the sustainable fashion market and has a continuous growth potential. The merging of the trade show duo in 2019, with the current name Neonyt, allowed us, our exhibitors and visitors a new content orientation and a holistic approach to the topic of sustainability as well as a more direct access to the conventional fashion market, especially with regard to retail. In summer 2021, Neonyt will take place for the first time in the new fashion hotspot Frankfurt as part of the new Frankfurt Fashion Week.

 
In 2019, both event formats were merged, the new trade show Neonyt was born and 1 + 1 became what? What components does Neonyt offer in addition to the previous trade show concepts, what is so "new-new" and how did you actually come up with the name?

Thimo Schwenzfeier: One plus one, as you so nicely put it, did not simply add up to two with Neonyt. One plus one equals unique, neo-new, internationally relevant: Among other things, the trade show business was supplemented by the international conference format Fashionsustain and a showcase to gradually bring
together the topic of sustainability with the topics of technology, innovation and prepress. Our content creator format Prepeek ensures the necessary lifestyle and the fashion show provides the glamour of the fashion world. Neonyt combines the most important elements of the international textile and fashion industry - style, business, inspiration, innovation, knowledge, fun and community. And that is exactly what makes Neonyt so "new-new". Progressive and polarizing - the artificial word Neonyt is derived from the ancient Greek word "neo" (eng. new, revolutionary) and the Scandinavian word "nytt" (eng. new). "The renewed new" - Neonyt is our synonym for the fundamental transformation process of the textile and fashion industry, a reinterpretation of what has already been there and our commitment not to stand still and to promote positive change together.

 
For the Neonyt trade show format, you have teamed up with partners - for example, for conferencing components and in the design area. What expertise do they provide, and what is the added value for exhibitors and visitors?

Thimo Schwenzfeier: We know which future topics our brands and the community are currently dealing with and therefore create the right platform - for personal encounters and exchange, for networking and successful business deals. To put it simply: we organize trade shows, we organize events, we provide the right setting, we connect people and business. Neonyt therefore forms the global interface between the various players in the textile and fashion industry - between industry, trade, politics, services and consumption. And so that a lively, transparent and, above all, authentic dialog can develop between all counterparts, we naturally draw on the knowledge of industry experts and form strong partnerships to push fashion and sustainability forward. Only together can we achieve real change and guarantee that our community is provided with sufficient and, above all, the right information to make self-determined decisions.
 

In recent years, the keyword circularity - or rather closing the loop - has been encountered everywhere in the fashion industry. Whether Stella McCartney, the Ellen MacArthur Foundation, or large retail groups - many players and decision-makers are of the opinion that the future of the fashion world lies only in a circular economy and not in downcycling of any kind. What is Neonyt's view on this?
         
Thimo Schwenzfeier: That's right, the concept of circular economy is not new, nor is it limited to the textile and fashion industry. Circularity - actually the ultimate for every product, every industry, for our global society. The concept is supposedly simple: All materials and products are kept in a closed loop, the useful life is increased and at the end of the product life cycle everything is recycled. Many sustainable fashion labels are already showing how it's done. Neonyt brands are right at the forefront and are already implementing practices that should become the norm as soon as possible: starting with T-shirts or shoes made from recycled materials and take-back systems for collection items. As well as compostable clothing that "dissolves" at the end of the product life cycle and breaks down into its natural components, and on to repair services and leasing models for denim and co. - thinking holistically, acting in a sustainable manner and producing in a circular way are definitely the trends of the coming fashion seasons and at least one important, if not the most important, component of the future fashion world.

 
For the idea of a circular economy to be implemented successfully, there needs to be an interplay between technology, production, design and sales. What presentation options and forms of communication does Neonyt have in store for the various components?  

Thimo Schwenzfeier: The combined innovative power of technology, sustainability and digitization is an important driver of the current developments in the textile and fashion industry - including the topic of circularity. Processes and production sequences are changing along the entire value chain - the industry has to reinvent itself for the most part. Neonyt shows how this can work successfully in the long term, with the internationally established Fashionsustain conference format - including spin-offs in China, Europe and the USA - and the supplementary Showcase. Together, these two formats offer the ideal mix of orientation and inspiration to prepare the industry for the future. Virtual fashion, authentic brands and textile value chains, science and innovation as well as retail, business models and impact investment - at Fashionsustain, top-class experts will exchange ideas with an interested professional audience and discuss the change and new solutions in the textile and fashion industry. The Neonyt Showcase takes a deeper look at the topics and innovations presented and discussed on the Fashionsustain stage. Expert knowledge on-demand, so to speak: whether microfactories or installations - Neonyt brands as well as brands from the rest of the Texpertise Network of Messe Frankfurt, such as exhibitors at Texprocess, get the chance to present sustainable innovations, new technologies and materials, initiatives, change-maker campaigns or research projects. Here they interact directly and practically with Neonyt's international cross-sector community.
 

Last year was an unprecedented challenge for trade show companies due to the pandemic situation. Neonyt was also affected by this - and physical events had to be canceled. With a digital format "Neonyt on Air" you have tried to offer exhibitors and visitors an alternative platform. What has been your experience: Did the focus of the trade show and its community perhaps even help to make such a virtual event easier to launch? 

Olaf Schmidt: Corona has already changed a lot and will certainly continue to do so in one way or another. Nevertheless, it will continue to be our task as trade show organizers to offer the industry the best possible meeting platforms for presenting their new products worldwide. We are convinced that people will continue to want to meet in person and discuss new products as well as services in the future. This is particularly the case in the textile sector, where haptics plays a very crucial role. We expect that there will even be a certain catch-up effect after the crisis. Because what the last two very successful digital seasons of Neonyt on Air, for example, have nevertheless shown clearly: Fashion lives from personalities, presentation and inspiration. Digital formats can support this, but they cannot fully replace it.
 
Thimo Schwenzfeier: The digital Neonyt on Air was far from being a total replacement for the original physical seasons, but nevertheless a huge success. For one week, fashion, lifestyle and digital experts were discussing about more authenticity, immediacy and transparency in the textile and fashion industry in numerous keynotes, interviews and panel discussions. With more than 24,000 international followers on Instagram, we generated around 50,000 impressions and more than 4,700 content interactions with our presenting partners Grüner Knopf, Hessnatur and Oeko-Tex in just five days. These figures show, that the topic of sustainability has arrived in the middle of society and is being discussed across all industries. I think that the polarization and, above all, the prevailing restrictions, as far as trade and commerce are concerned, have certainly contributed to holding a successful digital format. Digitization was truly the booster for the fashion industry in this case: Instead of replacing personal exchange, it helps to maintain and expand the business activities of brands, especially in the current times. And quite clearly, the need for exchange in the fashion industry and the motivation to initiate together a change are still enormous. Neonyt on Air has once again shown us that clearly. However, we are already looking forward to the next physical edition of Neonyt.
 

The COVID-19 pandemic has also left its mark on the textile and clothing industry. When you look back on just under a year of "state of emergency" - what positive experiences do you take with you, where do you see a need for improvement, for what support are you grateful for and where did you feel you were left on your own? 

Olaf Schmidt: A year like no other - that can clearly be said about the last one. The Corona pandemic caught everyone off guard - us as trade show organizers, but of course also our exhibitors, visitors and partners. Especially in the near future, we must continue to expect, that trade shows can only be held under stricter health and safety regulations at first. Messe Frankfurt reacted quickly and developed a comprehensive safety and hygiene concept. One thing was clear: we all had to adjust and deal with a new situation. And so far, we've done a great job together, the team understanding among each other, the close contact - although physically at a distance, but globally networked - between all those involved, makes me feel positive about the future. For me, an important realization of this global pandemic, a credo almost, is to be open to new ways and opportunities and to find ways to combine things rather than separate them: Hybrid solutions, so to speak.    

Thimo Schwenzfeier: There was no master plan for Neonyt, and in places there was also the impression that we now had to "reinvent the wheel": How does collaboration work when face-to-face meetings cannot take place? Can digitized contact compensate for the social distancing that is currently being imposed and still make it possible to work closely together? How can business relationships be maintained when stores are closed? How can priorities be set when well-tested solutions and established annual plans lose their validity? Who am I, who are 'the others' and what defines community? Never have questions about our creation and existence, about what makes us who we are and what we want to be, been more relevant than right now. One thing that I take away from the current situation and that allows me to continue to look forward positively despite difficult circumstances is the fact, that cohesion and solidarity with one another - both privately and professionally - have become increasingly important. Like a magnifying glass, the crisis has magnified existing opportunities, but also challenges, and brought the essentials into focus. I think that if we continue to try to experience things more consciously and not take them for granted, we will manage together to create a " new normal " and leave this crisis with more strength.
 

As in the past in Berlin, Neonyt is currently also located in Frankfurt in the environment of the Fashion Week and conventional trade shows. Can you imagine that a special event concept like Neonyt will be unnecessary in a few years, because the circularity concept will have established itself in the clothing industry worldwide?

Olaf Schmidt: A clear no. Sustainability per se is already no longer a unique selling point. The important thing is to keep up with the times, to follow trends or, even better, to track down new trends yourself and develop them further. Things, strategies, concepts will always change - if last year showed us one thing, it was certainly that. It is more than desirable that we all learn from this crisis and reflect on the really important values, on solidarity between partners, on climate protection and sustainability. It may be exactly for this reason, that companies that place particular emphasis on sustainability will emerge even stronger from this crisis. So you can be sure that we, as a leading international trade show organizer for the textile industry, will continue to focus on sustainability and support future-oriented companies and solutions. However, this will not make our formats obsolete due to the establishment and normalization of holistic business practices in the textile industry. But it is impossible to make an exact forecast for the coming decades. Over the last few months, we have all noticed ourselves in our personal everyday lives or in our professional lives, how uncertain and volatile the future is. What is clear, however, is that the fashion industry - the world in general - will change even faster than before. And therein lies the opportunity for formats like Neonyt. The ten-year history shows in how many directions Neonyt has already developed, content focal points have been shifted and it has reinvented itself - this will also be the case in the future.
 

Mr. Schwenzfeier, in addition to your role as Director of Marketing Communications for Messe Frankfurt's textile exhibitions, you have also been Show Director of Neonyt since 2018. You have spoken to many exhibitors and visitors - which ideas or creations have particularly impressed you?

Thimo Schwenzfeier: I think it's not so much the individual innovations or creations of the exhibitors at our trade shows. And I deliberately choose the plural here. Because in my function as Director of Marketing Communications in the Textiles & Textile Technologies division of Messe Frankfurt, Neonyt is just one of "my" events. I think it's more the variety of fashion, technical and professional innovations that brands, labels, companies, start-ups and designers present every year. But if I really had to choose one innovation, it would probably be the vegan "Currywurst" sneakers made of red pepper and recycled PET bottles - the same label also offers shoes made of wood, stone, coffee and mushrooms or now even meteorite particles. It is impressive to experience every season anew of how creative the textile and fashion industry is.
 

Breaking new ground means being willing to make decisions, overcoming fears - and thus also having the courage to fail. Not every project can succeed. In retrospect, about which entrepreneurial decision by Messe Frankfurt are you particularly glad, that you made?
 
Olaf Schmidt: Clearly the decision to create Neonyt. To establish our own trade show format for fashion, sustainability and innovation and to integrate the freedom and lifestyle, which entail this topic, into our event. After more than a decade, we may be saying goodbye to Berlin in 2021, but not to our community and our spirit. Together we look back on many fashionable seasons and great locations in the capital: starting in the Hotel Adlon Kempinski to the Ewerk, the Postbahnhof, the Kronprinzenpalais, the Funkhaus and the Kraftwerk to the last physical event in Tempelhof. With the turn of the year and in the setting of Frankfurt Fashion Week, Neonyt is about to move to the metropolis by the Main. In Frankfurt, worlds collide: Skyscrapers and 19th-century villas. Architectural sins and masterpieces. Business and middle class. Red-light district and luxury boulevard. Frankfurt Fashion Week sets new impulses in this area of conflict. And in the middle of all this is Neonyt. The signs are pointing to a new beginning - a restart for the entire fashion industry, together we are taking sustainability to the next level - the focus topics Applied Sustainability and Applied Digitization are creating a completely new Fashion Week ecosystem in the metropolis by the Main.
 

If everything works out, Neonyt can be held again as a face-to-face event for the first time in July 2021. What are your plans? What and who can visitors look forward to? And what backup is there for a worst-case scenario?

Thimo Schwenzfeier: Of course, due to the currently ongoing tense situation around Covid-19, it is difficult to make binding statements about the next physical event. However, we are cur rently expecting the situation to ease into the summer summer 2021 is therefore on the health of everyone - exhibitors, visitors, partners and employees of Neonyt. Messe Frankfurt has developed a concept that includes detailed hygienic measures: Hygiene, distance and fresh air supply are important factors, which we coordinate with the responsible authorities in Frankfurt and those in charge of Frankfurt Fashion Week. In due course, the Neonyt community will receive advice and recommendations for the trade show attendance and participation, that comply with current regulations. We have not yet thought about a concrete backup for a worst-case scenario, as we are currently anticipating a physical B2B event - but the last two seasons have shown, should it not be possible to hold the Neonyt face-to-face, that we are quite well positioned with the digital Neonyt on Air and could certainly adapt the format for another summer event. We regularly exchange ideas with all market participants and try to get a sense of opinions and wishes from our community through surveys. Wait and see, one might say - in the end, we also have to act according to what the current health situation allows and what decisions are made by politicians.

The Interview was conducted by Ines Chucholowius,
Managing Partner, Textination GmbH

Photo: Pixabay
16.02.2021

Carbon with Multiple Lives: Bringing Innovations in Carbon Fiber Recycling to Market

When it comes to the future of motorized mobility, everyone talks about the power drive: How much e-car, how much combustion engine can the environment tolerate and how much do people need? At the same time, new powertrains place ineased demands not only on the engine, but also on its housing and the car body: Carbon fibers are often used for such demanding applications. Like the powertrain of the future, the materials on the vehicle should also be environmentally friendly. That is why recycling of carbon fibers is required. Institutes of the Zuse Community have developed solutions for this.

Carbon fibers consist almost completely of pure carbon. It is extracted from the plastic polyacrylonitrile at 1,300 degrees Celsius, using a lot of energy. The advantages of carbon fibers: They have almost no dead weight, are enormously break-resistant and sturdy. These properties are needed, for example, in the battery box of electric vehicles in structural components of a car body.

When it comes to the future of motorized mobility, everyone talks about the power drive: How much e-car, how much combustion engine can the environment tolerate and how much do people need? At the same time, new powertrains place ineased demands not only on the engine, but also on its housing and the car body: Carbon fibers are often used for such demanding applications. Like the powertrain of the future, the materials on the vehicle should also be environmentally friendly. That is why recycling of carbon fibers is required. Institutes of the Zuse Community have developed solutions for this.

Carbon fibers consist almost completely of pure carbon. It is extracted from the plastic polyacrylonitrile at 1,300 degrees Celsius, using a lot of energy. The advantages of carbon fibers: They have almost no dead weight, are enormously break-resistant and sturdy. These properties are needed, for example, in the battery box of electric vehicles in structural components of a car body.

The Saxon Textile Research Institute (STFI), for instance, is currently working with industrial partners on combining the static-mechanical strengths of carbon fibers with vibration damping properties to improve the housings of electric motors in cars. The project, which is funded by the German Federal Ministry for Economic Affairs and Energy, is aimed at developing hybrid nonwovens that contain other fibers, in addition to carbon fiber, as a reinforcement. "We want to combine the advantages of different fiber materials and thereby develop a product that is optimally tailored to the requirements", explains Marcel Hofmann, head of department of Textile Lightweight Construction at STFI.

The Chemnitz researchers would therefore complement previous nonwoven solutions. They look back on 15 years of working with recycled carbon fibers. The global annual demand for the high-value fibers has almost quadrupled in the past decade, according to the AVK Industry Association to around 142,000 t most recently. "Increasing demand has brought recycling more and more into focus", says Hofmann. According to him, carbon fiber waste is available for about one-tenth to one-fifth of the price of primary fibers, but they still need to be processed. The key issue for the research success of recycled fibers is competitive applications. STFI has found these not only in cars, but also in the sports and leisure sector as well as in medical technology, for example in components for computer tomography. "While metals or glass fibers cast shadows as potential competing products, carbon does not interfere with the image display and can fully exploit its advantages", explains Hofmann.
 
Using Paper Know-How
If recycled carbon fibers can pass through the product cycle again, this significantly improves their carbon footprint. At the same time it applies: The shorter the carbon fibers, the less attractive they are for further recycling. With this in mind, the Cetex Research Institute and the Papiertechnische Stiftung (PTS), both members of the Zuse Community, developed a new process as part of a research project that gives recycled carbon fibers, which previously seemed unsuitable, a second product life. "While classic textile processes use dry processing for the already very brittle recycled carbon fibers in fiber lengths of at least 80 mm, we dealt with a process from the paper industry that processes the materials wet. At the end of the process, in very simplified terms, we obtained a laminar mat made of recycled carbon fibers and chemical fibers", says Cetex project engineer Johannes Tietze, explaining the process by which even 40 mm short carbon fibers can be recycled into appealing intermediates.

The resulting product created in a hot pressing process serves as the base material for heavy-duty structural components. In addition, the mechanical properties of the semi-finished products were improved by combining them with continuous fiber-reinforced tapes. The researchers expect the recycled product to compete with glass-fiber-reinforced plastics, for example in applications in rail and vehicle construction. The results are now being incorporated into further research and development in
the cooperation network of Ressourcetex, a funded association with 18 partners from industry and science.

Successful Implementation in the Automotive Industry
Industrial solutions for the recycling of carbon fiber production waste are being developed at the Thuringian Institute of Textile and Plastics Research (TITK). Several of these developments were industrially implemented with partners at the company SGL Composites in Wackersdorf, Germany. The processing of the so-called dry waste, mainly from production, is carried out in a separate procedure. "Here, we add the opened fibers to various processes for nonwoven production", says the responsible head of the department at TITK, Dr. Renate Lützkendorf . In addition to developments for applications e.g. in the BMW i3 in the roof or rear seat shell, special nonwovens and processes for the production of Sheet Molding Compounds (SMC) were established at TITK. These are thermoset materials consisting of reaction resins and reinforcing fibers, which are used to press fiber-plastic composites. This was used, for example, in a component for the C-pillar of the BMW 7 Series. "In its projects, TITK is primarily focusing on the development of more efficient processes and combined procedures to give carbon fiber recycling materials better opportunities in lightweight construction applications, also in terms of costs", says Lützkendorf. The focus is currently on the use of CF recycled fibers in thermoplastic processes for sheet and profile extrusion. "The goal is to combine short- and continuous-fiber reinforcement in a single, high-performance process step."

1) Since February 1st, 2021, Dr.-Ing. Thomas Reussmann succeeds Dr.-Ing. Renate Lützkendorf, who retired 31 January.

Source:

Zuse Community