Textination Newsline

Reset
4 results
Functional textiles – an alternative to antibiotics University of Borås
04.07.2023

Functional textiles – an alternative to antibiotics

Tuser Biswas conducts research that aims to develop modern medical textiles that are good for both the environment and human health. Textiles with antimicrobial properties could reduce the use of antibiotics.

Tuser Biswas conducts research that aims to develop modern medical textiles that are good for both the environment and human health. Textiles with antimicrobial properties could reduce the use of antibiotics.

His work involves research and teaching activities within the area of textile material technology. The current research involves resource-efficient inkjet printing of functional materials on various textile surfaces for advanced applications.
 
The conventional textile industry devours natural resources in the form of water, energy, and chemicals. A more resource-efficient way to produce textiles is with ink jet printing. Tuser Biswas, who recently defended his doctoral thesis in Textile Material Technology, seeks to develop methods for functional textiles. He has shown that it is possible to print enzymes on textiles. These are proteins that function as catalysts in the body, as they set chemical processes in motion without themselves changing. They could, for example, be used in medical textiles with antimicrobial properties or to measure biological or chemical reactions.

“Ever since the industrial revolution, our society has used an abundance of synthetic and harsh chemicals. Our research works to replace these chemicals with environmentally friendly and bio-based materials,” said Tuser Biswas.
 
Promising results with enzymes on textiles
Developing a good enzyme ink was not entirely easy and it took a number of attempts before he finally, to his great joy, had successful results. Tuser Biswas explained that the most important result is to show how a printed enzyme could bind another enzyme to the surface of a fabric. Although the activity of the enzymes decreased by 20-30 percent after printing, the results are still promising for future applications. At the same time, the work has provided new knowledge about many fundamental questions about printing biomaterials on fabric.

“Before starting the project, we found several related studies that focused on producing a finished product. But we wanted to study the fundamental challenges of this subject, and now we know how to make it work,” said Tuser Biswas.

He is now seeking funding to continue researching the subject and has so far received a grant from the Sjuhärad Savings Bank Foundation. During the Days of Knowledge event in April 2023, he presented his research to representatives from the City of Borås and business, the Sjuhärad Savings Bank Foundation, and the University of Borås.
     
Medical textiles instead of antibiotics
Tuser Biswas hopes that continued research in textile technology can provide alternatives to using antibiotics. With increasing antibiotic resistance, it is an important issue not only locally but worldwide.

“Instead of treating the patient with a course of antibiotics, one can act preventively and more effectively by damaging the bacteria on the surface where they start to grow. In a wound dressing, for example. Nanoparticle-based antimicrobials can reduce growth effectively. It is possible as nanoparticles can interact better with the bacterial membrane and reach the target more easily than conventional antimicrobials.”

Source:

Lina Färm. Translation by Eva Medin. University of Borås

A cotton knit fabric dyed blue and washed 10 times to simulate worn garments is enzymatically degraded to a slurry of fine fibers and "blue glucose" syrup that are separated by filtration - both of these separated fractions have potential recycle value. A cotton knit fabric dyed blue and washed 10 times to simulate worn garments is enzymatically degraded to a slurry of fine fibers and "blue glucose" syrup that are separated by filtration - both of these separated fractions have potential recycle value. Credit: Sonja Salmon.
11.04.2023

Researchers Separate Cotton from Polyester in Blended Fabric

In a new study, North Carolina State University researchers found they could separate blended cotton and polyester fabric using enzymes – nature’s tools for speeding chemical reactions. Ultimately, they hope their findings will lead to a more efficient way to recycle the fabric’s component materials, thereby reducing textile waste. However, they also found the process need more steps if the blended fabric was dyed or treated with chemicals that increase wrinkle resistance.

In a new study, North Carolina State University researchers found they could separate blended cotton and polyester fabric using enzymes – nature’s tools for speeding chemical reactions. Ultimately, they hope their findings will lead to a more efficient way to recycle the fabric’s component materials, thereby reducing textile waste. However, they also found the process need more steps if the blended fabric was dyed or treated with chemicals that increase wrinkle resistance.

“We can separate all of the cotton out of a cotton-polyester blend, meaning now we have clean polyester that can be recycled,” said the study’s corresponding author Sonja Salmon, associate professor of textile engineering, chemistry and science at NC State. “In a landfill, the polyester is not going to degrade, and the cotton might take several months or more to break down. Using our method, we can separate the cotton from polyester in less than 48 hours.”
 
According to the U.S. Environmental Protection Agency, consumers throw approximately 11 million tons of textile waste into U.S. landfills each year. Researchers wanted to develop a method of separating the cotton from the polyester so each component material could be recycled.

In the study, researchers used a “cocktail” of enzymes in a mildly acidic solution to chop up cellulose in cotton. Cellulose is the material that gives structure to plants’ cell walls. The idea is to chop up the cellulose so it will “fall out” out of the blended woven structure, leaving some tiny cotton fiber fragments remaining, along with glucose. Glucose is the biodegradable byproduct of degraded cellulose. Then, their process involves washing away the glucose and filtering out the cotton fiber fragments, leaving clean polyester.
 
“This is a mild process – the treatment is slightly acidic, like using vinegar,” Salmon said. “We also ran it at 50 degrees Celsius, which is like the temperature of a hot washing machine.
“It’s quite promising that we can separate the polyester to a clean level,” Salmon added. “We still have some more work to do to characterize the polyester’s properties, but we think they will be very good because the conditions are so mild. We’re just adding enzymes that ignore the polyester.”

They compared degradation of 100% cotton fabric to degradation of cotton and polyester blends, and also tested fabric that was dyed with red and blue reactive dyes and treated with durable press chemicals. In order to break down the dyed materials, the researchers had to increase the amount of time and enzymes used. For fabrics treated with durable press chemicals, they had to use a chemical pre-treatment before adding the enzymes.

“The dye that you choose has a big impact on the potential degradation of the fabric,” said the study’s lead author Jeannie Egan, a graduate student at NC State. “Also, we found the biggest obstacle so far is the wrinkle-resistant finish. The chemistry behind that creates a significant block for the enzyme to access the cellulose. Without pre-treating it, we achieved less than 10% degradation, but after, with two enzyme doses, we were able to fully degrade it, which was a really exciting result.”

Researchers said the polyester could be recycled, while the slurry of cotton fragments could be valuable as an additive for paper or useful addition to composite materials. They’re also investigating whether the glucose could be used to make biofuels.

“The slurry is made of residual cotton fragments that resist a very powerful enzymatic degradation,” Salmon said. “It has potential value as a strengthening agent. For the glucose syrup, we’re collaborating on a project to see if we can feed it into an anaerobic digester to make biofuel. We’d be taking waste and turning it into bioenergy, which would be much better than throwing it into a landfill.”

The study, “Enzymatic textile fiber separation for sustainable waste processing,” was published in Resources, Environment and Sustainability. Co-authors included Siyan Wang, Jialong Shen, Oliver Baars and Geoffrey Moxley. Funding was provided by the Environmental Research and Education Foundation, Kaneka Corporation and the Department of Textile Engineering, Chemistry and Science at NC State.

Source:

North Carolina State University, Laura Oleniacz

Photo unsplash
21.02.2023

Consortium for enzymatic textile recycling gains new supporters

"Shared vision of a true circular economy for the textile industry"

US fashion group PVH has joined the fibre-to-fibre consortium founded by Carbios, On, Patagonia, PUMA and Salomon. The aim is to support the further development of Carbios' biorecycling process on an industrial scale, setting new global standards for textile recycling technologies. PVH owns brands such as Calvin Klein and Tommy Hilfiger. In the agreement signed by PVH Corp, the company commits to accelerating the textile industry's transition to a circular economy through its participation in the consortium.

Carbios is working with On, Patagonia, PUMA, PVH Corp. and Salomon to test and improve its bio-recycling technology on their products. The aim is to demonstrate that this process closes the fibre-to-fibre loop on an industrial scale, in line with sustainability commitments.

"Shared vision of a true circular economy for the textile industry"

US fashion group PVH has joined the fibre-to-fibre consortium founded by Carbios, On, Patagonia, PUMA and Salomon. The aim is to support the further development of Carbios' biorecycling process on an industrial scale, setting new global standards for textile recycling technologies. PVH owns brands such as Calvin Klein and Tommy Hilfiger. In the agreement signed by PVH Corp, the company commits to accelerating the textile industry's transition to a circular economy through its participation in the consortium.

Carbios is working with On, Patagonia, PUMA, PVH Corp. and Salomon to test and improve its bio-recycling technology on their products. The aim is to demonstrate that this process closes the fibre-to-fibre loop on an industrial scale, in line with sustainability commitments.

The two-year cooperation project will not only enable the biological recycling of polyester articles on an industrial scale, but also develop thorough sorting and disassembly technologies for complex textile waste. Existing members voted unanimously for PVH Corp. to join the consortium, saying the common goal is to support the development of viable solutions that address the fashion industry's contribution to climate change..

Carbios has developed a technology using highly selective enzymes that can recycle mixed feedstocks, reducing the laborious sorting required by current thermomechanical recycling processes. For textiles made from blended fibres, the patented enzyme acts only on the PET polyester contained within. This innovative process produces recycled PET (r-PET) that is equivalent in quality to virgin PET and can be used to produce new textile fibres.

Textile waste treatment and recycling
Globally, only 13% of textile waste is currently recycled, mainly for low-value applications such as upholstery, insulation or rags. The remaining 87% is destined for landfill or incineration. To work on improving textile recycling technologies, consortium members will supply feedstock in the form of clothing, underwear, footwear and sportswear. In 2023, a new PET textile waste facility will be commissioned at the Carbios demonstration plant, notably as part of the LIFE Cycle of PET project co-funded by the European Union.  This is in anticipation of future regulations, such as the separate collection of textile waste, which will be mandatory in Europe from 1 January 2025.

From fibre to fibre: circularity of textiles
Today, the textile industry relies largely on non-renewable resources to produce fibres and fabrics, partly turning to recycled PET bottles for recycled polyester fibres. However, this resource will become scarce as PET bottles are used exclusively for the production of new bottles in the food and beverage industry. In a circular economy, the materials used to produce textiles are obtained from recycled or renewable raw materials produced by regenerative processes. In addition to supplying raw materials for the demonstration plant, the consortium members also aim to produce new products from r-PET fibres using the company's biorecycling process.

"Partnering with Carbios and its consortium members demonstrates our continued commitment to incorporating more circular materials into our collections," said Esther Verburg, EVP, Sustainable Business and Innovation, Tommy Hilfiger Global and PVH Europe. "We are excited to support the development of Carbios' enzymatic recycling technology and to leverage new solutions that can help us drive fashion sustainably."

More information:
Carbios textile recycling enzymatic
Source:

Carbios / Textination

Photo: pixabay
17.08.2021

Innovative wound care: Customized wound dressings made from tropoelastin

Customized, biomedically applicable materials based on tropoelastin are being developed in a joint project by Skinomics GmbH from Halle, Martin Luther University Halle-Wittenberg and the Fraunhofer Institute for Microstructure of Materials and Systems IMWS. The material combines biocompatibility, durability, biodegradability and favorable mechanical properties similar to those of skin. Preclinical tests have confirmed that it is suitable for use as a wound dressing material used in the treatment of chronic and complex wounds.

Customized, biomedically applicable materials based on tropoelastin are being developed in a joint project by Skinomics GmbH from Halle, Martin Luther University Halle-Wittenberg and the Fraunhofer Institute for Microstructure of Materials and Systems IMWS. The material combines biocompatibility, durability, biodegradability and favorable mechanical properties similar to those of skin. Preclinical tests have confirmed that it is suitable for use as a wound dressing material used in the treatment of chronic and complex wounds.

Particularly in the context of an aging society, special wound dressings are gaining in importance. The treatment of complex wound diseases such as venous ulcers, leg ulcers, or foot ulcers is challenging for medical staff, long-term and painful for those affected and cost-intensive for the healthcare system. Innovative protein-based materials are now being used for the treatment of such wounds. However, since they are made from animal tissues, they carry increased risks of infection or can result in undesirable immune reactions. In addition, there are increasing reservations in the population about medical products of animal origin.

In the joint research project, the project partners are currently developing customized, biomedically applicable materials based on human tropoelastin. This precursor protein is converted in the body to elastin, a vital and long-lived structural biopolymer that has exceptional mechanical properties and thus gives the skin and other organs the elasticity and resilience they need to function.

“Elastin is chemically and enzymatically extremely stable, biocompatible and does not produce immunological rejections when used as a biomaterial in humans. Therefore, we want to create new and innovative solutions for the treatment of complex wounds based on human tropoelastin,” says Dr. Christian Schmelzer, Head of the Department of Biological and Macromolecular Materials at Fraunhofer IMWS.

Individual wound treatment
As part of the research project led by Prof. Dr. Markus Pietzsch of Martin Luther University Halle-Wittenberg, the researchers succeeded in developing a biotechnological process for modifying tropoelastin. The modified tropoelastin is processed at Fraunhofer IMWS. Here, an electrospinning procedure is used to produce ultra-thin nanofibers with diameters of only a few hundred nanometers. The resulting nonwovens are further crosslinked to stabilize them for the respective application. The procedures developed have been optimized so that biomedical parameters such as pore size, stability and mechanical properties are variable and can thus be customized to meet the requirements of the respective wound treatment. The materials produced using the new procedures are being investigated by Skinomics GmbH in initial preclinical tests with regard to their skin compatibility and have already achieved promising results.

At the end of the project by the end of this year, applications for intellectual property rights are to be filed, building the basis for a subsequent product development phase for certified medical products.