Textination Newsline

Reset
6 results
Empa researcher Simon Annaheim is working to develop a mattress for newborn babies. Image: Empa
11.03.2024

Medical textiles and sensors: Smart protection for delicate skin

Skin injuries caused by prolonged pressure often occur in people who are unable to change their position independently – such as sick newborns in hospitals or elderly people. Thanks to successful partnerships with industry and research, Empa scientists are now launching two smart solutions for pressure sores.

If too much pressure is applied to our skin over a long period of time, it becomes damaged. Populations at high risk of such pressure injuries include people in wheelchairs, newborns in intensive care units and the elderly. The consequences are wounds, infections and pain.

Skin injuries caused by prolonged pressure often occur in people who are unable to change their position independently – such as sick newborns in hospitals or elderly people. Thanks to successful partnerships with industry and research, Empa scientists are now launching two smart solutions for pressure sores.

If too much pressure is applied to our skin over a long period of time, it becomes damaged. Populations at high risk of such pressure injuries include people in wheelchairs, newborns in intensive care units and the elderly. The consequences are wounds, infections and pain.

Treatment is complex and expensive: Healthcare costs of around 300 million Swiss francs are incurred every year. "In addition, existing illnesses can be exacerbated by such pressure injuries," says Empa researcher Simon Annaheim from the Biomimetic Membranes and Textiles laboratory in St. Gallen. According to Annaheim, it would be more sustainable to prevent tissue damage from occurring in the first place. Two current research projects involving Empa researchers are now advancing solutions: A pressure-equalizing mattress for newborns in intensive care units and a textile sensor system for paraplegics and bedridden people are being developed.

Optimally nestled at the start of life
The demands of our skin are completely different depending on age: In adults, the friction of the skin on the lying surface, physical shear forces in the tissue and the lack of breathability of textiles are the main risk factors. In contrast, the skin of newborns receiving intensive care is extremely sensitive per se, and any loss of fluid and heat through the skin can become a problem. "While these particularly vulnerable babies are being nursed back to health, the lying situation should not cause any additional complications," says Annaheim. He thinks conventional mattresses are not appropriate for newborns with very different weights and various illnesses. Annaheim's team is therefore working with researchers from ETH Zurich, the Zurich University of Applied Sciences (ZHAW) and the University Children's Hospital Zurich to find an optimal lying surface for babies' delicate skin. This mattress should be able to adapt individually to the body in order to help children with a difficult start in life.

In order to do this, the researchers first determined the pressure conditions in the various regions of the newborn's body. "Our pressure sensors showed that the head, shoulders and lower spine are the areas with the greatest risk of pressure sores," says Annaheim. These findings were incorporated into the development of a special kind of air-filled mattress: With the help of pressure sensors and a microprocessor, its three chambers can be filled precisely via an electronic pump so that the pressure in the respective areas is minimized. An infrared laser process developed at Empa made it possible to produce the mattress from a flexible, multi-layered polymer membrane that is gentle on the skin and has no irritating seams.

After a multi-stage development process in the laboratory, the first small patients were allowed to lie on the prototype mattress. The effect was immediately noticeable when the researchers filled the mattress with air to varying degrees depending on the individual needs of the babies: Compared to a conventional foam mattress, the prototype reduced the pressure on the vulnerable parts of the body by up to 40 percent.

Following this successful pilot study, the prototype is now being optimized in the Empa labs. Simon Annaheim and doctoral student Tino Jucker will soon be starting a larger-scale study with the new mattress with the Department of Intensive Care Medicine & Neonatology at University Children's Hospital Zurich.

Intelligent sensors prevent injuries
In another project, Empa researchers are working on preventing so-called pressure ulcer tissue damage in adults. This involves converting the risk factors of pressure and circulatory disorders into helpful warning signals.

If you lie in the same position for a long time, pressure and circulatory problems lead to an undersupply of oxygen to the tissue. While the lack of oxygen triggers a reflex to move in healthy people, this neurological feedback loop can be disrupted in people with paraplegia or coma patients, for example. Here, smart sensors can help to provide early warning of the risk of tissue damage.

In the ProTex project, a team of researchers from Empa, the University of Bern, the OST University of Applied Sciences and Bischoff Textil AG in St. Gallen has developed a sensor system made of smart textiles with associated data analysis in real time. "The skin-compatible textile sensors contain two different functional polymer fibers," says Luciano Boesel from Empa's Biomimetic Membranes and Textiles laboratory in St. Gallen. In addition to pressure-sensitive fibers, the researchers integrated light-conducting polymer fibers (POFs), which are used to measure oxygen. "As soon as the oxygen content in the skin drops, the highly sensitive sensor system signals an increasing risk of tissue damage," explains Boesel. The data is then transmitted directly to the patient or to the nursing staff. This means, for instance, that a lying person can be repositioned in good time before the tissue is damaged.

Patented technology
The technology behind this also includes a novel microfluidic wet spinning process developed at Empa for the production of POFs. It allows precise control of the polymer components in the micrometer range and smoother, more environmentally friendly processing of the fibers. The microfluidic process is one of three patents that have emerged from the ProTex project to date.

Another product is a breathable textile sensor that is worn directly on the skin. The spin-off Sensawear in Bern, which emerged from the project in 2023, is currently pushing ahead with the market launch. Empa researcher Boesel is also convinced: "The findings and technologies from ProTex will enable further applications in the field of wearable sensor technology and smart clothing in the future."

Source:

Dr. Andrea Six, Empa

Conceptualisation of a running shoe made out of a metamaterial. AI generated with DALL-E   (Visualisation: ETH Zurich) Conceptualisation of a running shoe made out of a metamaterial. AI generated with DALL-E (Visualisation: ETH Zurich)
18.12.2023

AI for safer bike helmets and better shoe soles

Researchers have trained an artificial intelligence to design the structure of so-called metamaterials with desired mechanical properties for a wide range of applications.

Researchers have trained an artificial intelligence to design the structure of so-called metamaterials with desired mechanical properties for a wide range of applications.

  • ETH researchers have used artificial intelligence to design metamaterials that show unusual or extraordinary responses to complex loads.
  • Their new AI tool deciphers the essential features of a metamaterial’s microstructure and accurately predicts its deformation behaviour.
  • The tool not only finds optimal microstructures but also bypasses time-consuming engineering simulations.

Bike helmets that absorb the energy of an impact, running shoes that give you an extra boost with every step, or implants that behave just like natural bone. Metamaterials make such applications possible. Their inner structure is the result of a careful design process, following which 3D printers produce structures with optimised properties. Researchers led by Dennis Kochmann, Professor of Mechanics and Materials in the Department of Mechanical and Process Engineering at ETH Zurich, have developed novel AI tools that bypass the time-consuming and intuition-based design process of metamaterials. Instead, they predict metamaterials with extraordinary properties in a rapid and automated fashion. A novelty, their framework applies to large (so-called non-linear) loads, e.g. when a helmet absorbs major forces during an impact.

Kochmann’s team has been among the pioneers in designing small-scale cellular structures (similar to beam networks in timber-frame houses) to create metamaterials with specific or extreme properties. “For example, we design metamaterials that behave like fluids: hard to compress but easy to deform. Or metamaterials that shrink in all directions when compressed in a particular one,” explains Kochmann.

Efficient, optimal material design
The design possibilities seem endless. However, the full potential of metamaterials is far from realised, since the design process is based on experience, involving trial and error. Furthermore, small changes in the structure can give rise to huge changes in properties.

In their recent breakthrough, the researchers succeeded in using AI to systematically explore the abundant design and mechanical properties of two types of metamaterials. Their computational tools can predict optimal structures for desired deformation responses at the push of a button. Key is the use of large datasets of the deformation behaviour of real structures to train an AI model that not only reproduces data but also generates and optimises new structures. By leveraging a method known as “variational autoencoders”, the AI learns the essential features of a structure from the large set of design parameters and how they result in specific properties. It then uses this knowledge to generate a metamaterial blueprint whenever the researchers specify its desired properties and requirements.

Assembling building blocks
Li Zheng, a doctoral student in Kochmann’s group, trained an AI model using a dataset of one million structures and their simulated response. “Imagine a huge box of Lego bricks – you can arrange them in countless ways and over time learn design principles. The AI does this extremely efficiently and learns essential design features and how to assemble the building blocks of metamaterials to give them a particular softness or hardness”, says Zheng. Unlike prior approaches using a small catalogue of building blocks as the basis for design, the new method gives the AI freedom to add, remove, or move building blocks around almost arbitrarily.  Together with Sid Kumar, an assistant professor at TU Delft and a former member of Kochmann’s team, they showed in a recently published paper that the AI model can even go beyond what it has been trained to do and predict structures that are far better than anything ever generated before.

Learning from the movies
Jan-Hendrik Bastek, also doctoral student in Kochmann’s group, used a different approach to achieve something similar. He used a method originally introduced for AI-based video generation, which has become commonplace: if you type in ‘an elephant flying over Zurich’, the AI generates a realistic video of an elephant circling the Fraumünster Church. Bastek trained his AI system using 50,000 video sequences of deforming 3D-printable structures. “I can insert the trajectory of how I want the structures to deform, and the AI produces a video of the optimal structure and the complete deformation response,” explains Bastek. Most previous approaches have focused on only predicting a single image of the optimal structure. However, giving the AI videos of the entire deformation process is crucial to retain accuracy in such complex scenarios. Based on the video sequences, the AI can create blueprints for new materials, taking into account highly complex scenarios.

Big benefits for bike helmets and shoe soles
The researchers have made available their AI tools to the metamaterials community. This will hopefully lead to the design of many new and unusual materials. The tools are opening new avenues for the development of protective equipment such as bicycle helmets and for further applications of metamaterials from medical engineering to soft robotics. Even shoe soles can be designed to absorb shocks better when running or to provide a forward boost when stepping down. Will AI completely replace the manual engineering design of materials? “No,” laughs Kochmann. “Used well, AI can be a highly efficient and diligent assistant, but it must be given the right instructions and the right training – and that requires scientific principles and engineering knowhow.”

Source:

ETH Zürich

sportswear Stocksnap, Pixabay
30.08.2023

Detecting exhaustion with smart sportswear

Researchers at ETH Zurich have developed an electronic yarn capable of precisely measuring how a person’s body moves. Integrated directly into sportswear or work clothing, the textile sensor predicts the wearer’s exhaustion level during physical exertion.

Exhaustion makes us more prone to injury when we’re exercising or performing physical tasks. A group of ETH Zurich researchers led by Professor Carlo Menon, Head of the Biomedical and Mobile Health Technology Lab, have now developed a textile sensor that produces real-time measurements of how exhausted a person gets during physical exertion. To test their new sensor, they integrated it into a pair of athletic leggings. Simply by glancing at their smartphone, testers were able to see when they were reaching their limit and if they ought to take a break.

Researchers at ETH Zurich have developed an electronic yarn capable of precisely measuring how a person’s body moves. Integrated directly into sportswear or work clothing, the textile sensor predicts the wearer’s exhaustion level during physical exertion.

Exhaustion makes us more prone to injury when we’re exercising or performing physical tasks. A group of ETH Zurich researchers led by Professor Carlo Menon, Head of the Biomedical and Mobile Health Technology Lab, have now developed a textile sensor that produces real-time measurements of how exhausted a person gets during physical exertion. To test their new sensor, they integrated it into a pair of athletic leggings. Simply by glancing at their smartphone, testers were able to see when they were reaching their limit and if they ought to take a break.

This invention, for which ETH Zurich has filed a patent, could pave the way for a new generation of smart clothing: many of the products currently on the market have electronic components such as sensors, batteries or chips retrofitted to them. In addition to pushing up prices, this makes these articles difficult to manufacture and maintain.

By way of contrast, the ETH researchers’ stretchable sensor can be integrated directly into the material fibres of stretchy, close-fitting sportswear or work clothing. This makes large-scale production both easier and cheaper. Menon highlights another benefit: “Since the sensor is located so close to the body, we can capture body movements very precisely without the wearer even noticing.”

An extraordinary yarn
When people get tired, they move differently – and running is no exception: strides shorten and become less regular. Using their new sensor, which is made of a special type of yarn, the ETH researchers can measure this effect. It’s all thanks to the yarn’s structure: the inner fibre is made of a conductive, elastic rubber. The researchers wrapped a rigid wire, which is clad in a thin layer of plastic, into a spiral around this inner fibre. “These two fibres act as electrodes and create an electric field. Together, they form a capacitor that can hold an electric charge,” says Tyler Cuthbert, a postdoc in Menon’s group, who was instrumental in the research and development that led to the invention.

Smart running leggings
Stitching this yarn into the thigh section of a pair of stretchy running leggings means that it will stretch and slacken at a certain rhythm as the wearer runs. Each movement alters the gap between the two fibres, and thus also the electric field and the capacitor’s charge.

Under normal circumstances, these charge fluctuations would be much too small to help measure the body’s movements. However, the properties of this yarn are anything but normal: “Unlike most other materials, ours actually becomes thicker when stretched,” Cuthbert says. As a result, the yarn is considerably more sensitive to minimal movements. Stretching it even a little produces distinctly measurable fluctuations in the sensor’s charge. This makes it possible to measure and analyse even subtle changes in running form.

But how can this be used to determine a person’s exhaustion level? In previous research, Cuthbert and Menon observed a series of testers, who ran while wearing athletic leggings equipped with a similar sensor. They recorded how the electric signals changed as the runners got more and more tired. Their next step was to turn this pattern into a model capable of predicting runners’ exhaustion which can now be used for their novel textile sensor.  But ensuring that the model can make accurate predictions outside the lab will require a lot of additional tests and masses of gait pattern data.

Textile antenna for wireless data transfer  
To enable the textile sensor to send electrical signals wirelessly to a smartphone, the researchers equipped it with a loop antenna made of conducting yarn, which was also sewn directly onto the leggings. “Together, the sensor and antenna form an electrical circuit that is fully integrated into the item of clothing,” says Valeria Galli, a doctoral student in Menon’s group.

The electrical signal travels from the stretchable sensor to the antenna, which transmits it at a certain frequency capable of being read by a smartphone. The wearer runs and the sensor moves, creating a signal pattern with a continuously fluctuating frequency, which a smartphone app then records and evaluates in real time. But the researchers still have quite a bit of development work to do to make this happen.

Applications include sport and workplace
At the moment, the researchers are working on turning their prototype into a market-ready product. To this end, they are applying for one of ETH Zurich’s sought-after Pioneer Fellowships. “Our goal is to make the manufacture of smart clothing cost-effective and thus make it available to a broader public,” Menon says. He sees the potential applications stretching beyond sport to the workplace – to prevent exhaustion-related injuries – as well as to rehabilitation medicine.

sports Photo Pixabay
21.03.2023

3D-printed insoles measure sole pressure directly in the shoe

  • For sports and physiotherapy alike

Researchers at ETH Zurich, Empa and EPFL are developing a 3D-printed insole with integrated sensors that allows the pressure of the sole to be measured in the shoe and thus during any activity. This helps athletes or patients to determine performance and therapy progress.

In elite sports, fractions of a second sometimes make the difference between victory and defeat. To optimize their performance, athletes use custom-made insoles. But people with musculoskeletal pain also turn to insoles to combat their discomfort.

  • For sports and physiotherapy alike

Researchers at ETH Zurich, Empa and EPFL are developing a 3D-printed insole with integrated sensors that allows the pressure of the sole to be measured in the shoe and thus during any activity. This helps athletes or patients to determine performance and therapy progress.

In elite sports, fractions of a second sometimes make the difference between victory and defeat. To optimize their performance, athletes use custom-made insoles. But people with musculoskeletal pain also turn to insoles to combat their discomfort.

Before specialists can accurately fit such insoles, they must first create a pressure profile of the feet. To this end, athletes or patients have to walk barefoot over pressure-sensitive mats, where they leave their individual footprints. Based on this pressure profile, orthopaedists then create customised insoles by hand. The problem with this approach is that optimisations and adjustments take time. Another disadvantage is that the pressure-sensitive mats allow measurements only in a confined space, but not during workouts or outdoor activities.

Now an invention by a research team from ETH Zurich, Empa and EPFL could greatly improve things. The researchers used 3D printing to produce a customised insole with integrated pressure sensors that can measure the pressure on the sole of the foot directly in the shoe during various activities.

“You can tell from the pressure patterns detected whether someone is walking, running, climbing stairs, or even carrying a heavy load on their back – in which case the pressure shifts more to the heel,” explains co-project leader Gilberto Siqueira, Senior Assistant at Empa and at ETH Complex Materials Laboratory. This makes tedious mat tests a thing of the past. The invention was recently featured in the journal Scientific Reports.

One device, multiple inks
These insoles aren’t just easy to use, they’re also easy to make. They are produced in just one step – including the integrated sensors and conductors – using a single 3D printer, called an extruder.

For printing, the researchers use various inks developed specifically for this application. As the basis for the insole, the materials scientists use a mixture of silicone and cellulose nanoparticles.
Next, they print the conductors on this first layer using a conductive ink containing silver. They then print the sensors on the conductors in individual places using ink that contains carbon black. The sensors aren’t distributed at random: they are placed exactly where the foot sole pressure is greatest. To protect the sensors and conductors, the researchers coat them with another layer of silicone.

An initial difficulty was to achieve good adhesion between the different material layers. The researchers resolved this by treating the surface of the silicone layers with hot plasma.
As sensors for measuring normal and shear forces, they use piezo components, which convert mechanical pressure into electrical signals. In addition, the researchers have built an interface into the sole for reading out the generated data.

Running data soon to be read out wirelessly
Tests showed the researchers that the additively manufactured insole works well. “So with data analysis, we can actually identify different activities based on which sensors responded and how strong that response was,” Siqueira says.

At the moment, Siqueira and his colleagues still need a cable connection to read out the data; to this end, they have installed a contact on the side of the insole. One of the next development steps, he says, will be to create a wireless connection. “However, reading out the data hasn’t been the main focus of our work so far.”

In the future, 3D-printed insoles with integrated sensors could be used by athletes or in physiotherapy, for example to measure training or therapy progress. Based on such measurement data, training plans can then be adjusted and permanent shoe insoles with different hard and soft zones can be produced using 3D printing.

Although Siqueira believes there is strong market potential for their product, especially in elite sports, his team hasn’t yet taken any steps towards commercialisation.

Researchers from Empa, ETH Zurich and EPFL were involved in the development of the insole. EPFL researcher Danick Briand coordinated the project, and his group supplied the sensors, while the ETH and Empa researchers developed the inks and the printing platform. Also involved in the project were the Lausanne University Hospital (CHUV) and orthopaedics company Numo. The project was funded by the ETH Domain’s Advanced Manufacturing Strategic Focus Areas programme.

Source:

Peter Rüegg, ETH Zürich

Photo: pixabay
15.02.2022

Advanced Fibers: When damaged ropes change color

High-performance fibres that have been exposed to high temperatures usually lose their mechanical properties undetected and, in the worst case, can tear precisely when lives depend on them. For example, safety ropes used by fire brigades or suspension ropes for heavy loads on construction sites. Empa researchers have now developed a coating that changes color when exposed to high temperatures through friction or fire.

The firefighter runs into the burning building and systematically searches room by room for people in need of rescue. Attached to him is a safety rope at the other end of which his colleagues are waiting outside in front of the building. In an emergency - should he lose consciousness for any reason - they can pull him out of the building or follow him into the building for rescue. However, if this rope has been exposed to excessive heat during previous operations, it may tear apart. This means danger to life!

High-performance fibres that have been exposed to high temperatures usually lose their mechanical properties undetected and, in the worst case, can tear precisely when lives depend on them. For example, safety ropes used by fire brigades or suspension ropes for heavy loads on construction sites. Empa researchers have now developed a coating that changes color when exposed to high temperatures through friction or fire.

The firefighter runs into the burning building and systematically searches room by room for people in need of rescue. Attached to him is a safety rope at the other end of which his colleagues are waiting outside in front of the building. In an emergency - should he lose consciousness for any reason - they can pull him out of the building or follow him into the building for rescue. However, if this rope has been exposed to excessive heat during previous operations, it may tear apart. This means danger to life!

And up to now there has been no way of noticing this damage to the rope. 2021 a team of researchers from Empa and ETH Zurich has developed a coating which changes color due to the physical reaction with heat, thus clearly indicating whether a rope will continue to provide the safety it promises in the future.

Researchers from ETH Zurich and Empa developed a coating system in 2018 as part of a Master's thesis, which the Empa team was now able to apply to fibers. "It was a process involving several steps," says Dirk Hegemann from Empa's Advances Fibers lab. The first coatings only worked on smooth surfaces, so the method first had to be adapted so that it would also work on curved surfaces. Empa has extensive know-how in the coating of fibers - Hegemann and his team have already developed electrically conductive fibers in the past. The so-called sputtering process has now also been successfully applied to the latest coating.

Three layers are required to ensure that the fiber actually changes color when heated. The researchers apply silver to the fibre itself, in this case PET (i.e. polyester) and VectranTM, a high-tech fibre. This serves as a reflector - in other words, as a metallic base layer. This is followed by an intermediate layer of titanium nitrogen oxide, which ensures that the silver remains stable. And only then follows the amorphous layer that causes the color change: Germanium-antimony tellurium (GST), which is just 20 nanometers thick. When this layer is exposed to elevated temperatures, it crystallizes, changing the color from blue to white. The colour change is based on a physical phenomenon known as interference. Two different waves (e.g. light) meet and amplify or weaken each other. Depending on the chemical composition of the temperature-sensitive layer, this color change can be adjusted to a temperature range between 100 and 400 degrees and thus adapted to the mechanical properties of the fiber type.

Tailor-made solutions
The possible areas of application for the colour-changing fibres are still open, and Hegemann is currently looking for possible project partners. In addition to safety equipment for firefighters or mountaineers, the fibres can also be used for load ropes in production facilities, on construction sites, etc. In any case, research on the subject is far from complete. At present, it is not yet possible to store the fibers for long periods of time without losing their functionality. "Unfortunately, the phase-change materials oxidize over the course of a few months," says Hegemann. This means that the corresponding phase change - crystallization - no longer takes place, even with heat, and the rope thus loses its "warning signal". In any case, it has been proven that the principle works, and durability is a topic for future research, says Hegemann. "As soon as the first partners from industry register their interest in our own products, the fibers can be further optimized according to their needs".

Information:
Dr. Dirk Hegemann
Advanced Fibers
Tel. +41 58 765 7268
Dirk.Hegemann@empa.ch

More information:
Empa Fibers Ropes temperature
Source:

EMPA, Andrea Six

(c) Empa
08.02.2022

Early detection of dementia with a textile belt

Alzheimer's and other dementias are among the most widespread diseases today. Diagnosis is complex and can often only be established with certainty late in the course of the disease. A team of Empa researchers, together with clinical partners, is now developing a new diagnostic tool that can detect the first signs of neurodegenerative changes using a sensor belt.

Forgetfulness and confusion can be signs of a currently incurable ailment: Alzheimer's disease. It is the most common form of dementia that currently affect around 50 million people worldwide. It mainly afflicts older people. The fact that this number will increase sharply in the future is therefore also related to the general increase in life expectancy.

Alzheimer's and other dementias are among the most widespread diseases today. Diagnosis is complex and can often only be established with certainty late in the course of the disease. A team of Empa researchers, together with clinical partners, is now developing a new diagnostic tool that can detect the first signs of neurodegenerative changes using a sensor belt.

Forgetfulness and confusion can be signs of a currently incurable ailment: Alzheimer's disease. It is the most common form of dementia that currently affect around 50 million people worldwide. It mainly afflicts older people. The fact that this number will increase sharply in the future is therefore also related to the general increase in life expectancy.

If dementia is suspected, neuropsychological examinations, laboratory tests and demanding procedures in the hospital are required. However, the first neurodegenerative changes in the brain occur decades before a reduced cognitive ability becomes apparent. Currently, these can only be detected by expensive or invasive procedures. These methods are thus not suitable for extensive early screenings on a larger scale. Empa researchers are working with partners from the Cantonal Hospital and the Geriatric Clinic in St. Gallen on a non-invasive diagnostic method that detects the early processes of dementia.

Signs in the unconscious
For the new method, the researchers Patrick Eggenberger and Simon Annaheim from Empa's Biomimetic Membranes and Textiles lab in St. Gallen relied on a sensor belt that has already been used successfully for ECG measurements and has now been equipped with sensors for other relevant parameters such as body temperature and gait pattern. This is because long before memory starts to deteriorate in dementia, subtle changes appear in the brain, which are expressed through unconscious bodily reactions.

These changes can only be recorded precisely when measurements are taken over a longer period of time, though. "It should be possible to integrate the long-term measurements into everyday life," explains Simon Annaheim. Skin-friendly and comfortable monitoring systems are essential for measurements that are suitable for everyday use. The diagnostic belt is therefore based on flexible sensors with electrically conductive or light-conducting fibers as well as sensors for motion and temperature measurement.

To enable such long-term measurements to be used for monitoring neurocognitive health, the researchers are integrating the collected data into in-house developed mathematical models. The goal: an early warning system that can estimate the progression of cognitive impairment. Another advantage is that the data measurements can be integrated into telemonitoring solutions and can thus improve patient care in their familiar environment.

Suspicious monotony
The human body is able to keep its temperature constant in a range of 1 degree Celsius. The values naturally oscillate in the course of the day. This daily rhythm changes with age and is conspicuous in neurodegenerative diseases such as dementia or Parkinson's disease. In Alzheimer's patients, for example, the core body temperature is elevated by up to 0.2 degrees Celsius. At the same time, the spikes in daily temperature fluctuations are dampened.

In a study, the researchers have now been able to show that altered skin temperature readings measured with the sensor belt actually provide an indication of the cognitive performance of test subjects – and can do so well before dementia develops. The test subjects in the study included healthy people with or without mild brain impairment. This mild cognitive impairment (MCI) does not represent a disability in everyday life, but it is considered a possible precursor to Alzheimer's disease. The subjects took part in long-term measurements and neuropsychological tests. It was found that a lower body temperature, which fluctuated more throughout the day, was linked to a better cognitive performance. In individuals with MCI, body temperature varied less and was slightly elevated overall.

The heartbeat is also subject to natural variations that show how our nervous system adapts to sudden challenges. The small silence between two heartbeats, about one second in duration, has great significance for our health: If this pause always remains the same, our nervous system is not at its best.

A study by researchers from ETH Zurich determined that poorer measurements in older, healthy people can be improved within six months through cognitive-motor dance training. In these "exergames," the test subjects imitated sequences of steps from a video. In contrast, participants who instead only trained in straight lines on a treadmill, but also trained their memory, benefited less.

"The point is to intervene early with appropriate training as soon as the first negative signs can be measured," says Patrick Eggenberger. "With our sensor system, any improvements in cognitive performance can be tracked through movement-based forms of therapy." Studies with long-term monitoring will now be used to clarify how the sensor measurements can be used to predict the progression of mild brain disorders.

Further information
Dr. Simon Annaheim
Biomimetic Membranes and Textiles   
Phone +41 58 765 77 68
Simon.Annaheim@empa.ch

More information:
Empa Membrane Medical & Healthcare
Source:

EMPA, Andrea Six