Forschungspublikationen

4 Ergebnisse
06.03.2023

Gewebte Papier-Textil-Strukturen für einen nachhaltigen Leichtbau

Gewebe Composites Textilmaschinenbau Nachhaltigkeit Technische Textilien

Zusammenfassung

Mit dem technologischen Nachweis des neuartigen HyPerWeave-Ansatzes steht somit in der Zukunft eine nachhaltige Material- und Leichtbaulösung für eine Vielzahl an Branchen bereit, deren Eigenschaften (Stabilität, Brandschutz) auf den jeweiligen Anwendungsfall maßgeschneidert angepasst werden kann. Darüber ermöglicht die Kopplung von Papier- und Textiltechnik geschlossene Stoffkreisläufe, in denen das betreffende Bauteil gegen Ende der Produktlebenszeit und abhängig von seiner Zusammensetzung getrennt und zu neuen Leichtbaustrukturen recycelt werden kann.

Bericht

Mit dem konsequenten Einsatz von Leichtbau-Technologien können in vielen industriellen Bereichen sowie in der Mobilitäts- und Baubranche erhebliche Mengen an CO2-Emissionen eingespart werden. Jedoch erfordert die Herstellung entsprechender faserverstärkter Leichtbaustrukturen einen hohen Energie- und Ressourcenaufwand, wodurch eine tatsächliche CO2-Ersparnis erst sehr spät und am Ende der Nutzungsdauer erreicht wird. Zum Beispiel basieren Carbon- oder Aramidfaser in der Regel auf petrochemischen Ausgangsmaterialien und erfordern bei der Herstellung einen immensen Energieeinsatz. Im Gegensatz dazu bieten naturbasierte Verstärkungsfasern ein großes Potenzial zur Senkung von CO2-Emissionen und zur stofflichen Bindung von CO2 bei der Herstellung von Leichtbaustrukturen. Dennoch sind diese Technologien noch nicht weit verbreitet, da die Eigenschaften der Ausgangsmaterialien großen Schwankungen unterliegen und die Kompatibilität mit gebräuchlichen Matrixsystemen nicht immer gegeben ist.

Das branchenübergreifende Projekt "HyPerWeave" erforscht Wege zur Umsetzung eines CO2-armen und damit nachhaltigen Leichtbaus. Wissenschaftler:innen der Papiertechnischen Stiftung Heidenau (PTS) und des Instituts für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM) der TU Dresden entwickeln im Rahmen der Industriellen Gemeinschaftsforschung gewebte Verstärkungsstrukturen auf Basis von Papier (siehe Abbildung 1) für neuartige, hochstabile Leichtbaupaneele, wie sie in vielen Bereichen der Mobilität, der Gebäudeausrüstung oder dem Anlagenbau benötigt werden. Neben den Anforderungen an eine hohe spezifische Tragfähigkeit solcher Paneele, sind es daher insbesondere die Brandschutzeigenschaften bis DIN 4102 B1, die in der Materialentwicklung von HyPerWeave adressiert werden.

Die papier- und textiltechnologischen Arbeiten der Forschungseinrichtungen sind eng miteinander verzahnt. So konnten in der ersten Projektphase neue Papiere entwickelt werden, die ein vielversprechendes Eigenschaftsprofil hinsichtlich Mechanik, Brandschutz und textiltechnologischer Verarbeitbarkeit aufweisen und nun im Rahmen der zweiten Projektphase schrittweise auf praxisähnliche Versuchsanlagen der PTS hergestellt werden. Für die weitere Verarbeitung der Papiere zu integral verstärkten Leichtbaustrukturen wird am ITM eine neues Webverfahren entwickelt und konstruktiv-technologisch umgesetzt. Dies betrifft insbesondere die Materialführung, bei der das Papier in anforderungsgerechte Streifen geschnitten und in Form von Kettfäden bindungstechnisch in eine Abstandsgewebestruktur eingebracht werden. Die textilbasierte Kopplung zwischen der so aus dem Papier ausgeprägten Kernlage und den gleichzeitig gewebten Decklagen (siehe Abbildung) verspricht dabei gegenüber dem Stand der Technik eine deutlich verbessertes Delaminationsverhalten, gesteigerte Schubstabilität und Schadenstoleranz gegenüber geklebten Waben-Sandwichstrukturen. Die gewebten Papierhalbzeuge können anschließend mit Fixiermitteln und Matrixmaterialien auf Basis nachwachsender Rohstoffe zu hochwertigen Paneelen weiterverarbeitet werden.

Danksagung

Das IGF-Vorhaben 21856 BR (Entwicklung von integral gewebten Papier-Textil-Sandwichstrukturen für Leichtbaupaneele (Hybrid High Performance Paper Weaves – HyPerWeave) wird über die AiF im Rahmen des Programms zur Förderung der Industriellen Gemeinschaftsforschung (IGF) vom Bundesministerium für Wirtschaft und Klimaschutz aufgrund eines Beschlusses des Deutschen Bundestages gefördert.

AutorInnen: Vorhof, Michael (1); Wüstner, Cornell (2); Sennewald, Cornelia (1); Cherif, Chokri (1) (1) Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM) (2) Papiertechnische Stiftung Heidenau

Technische Universität Dresden
Fakultät Maschinenwesen
Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM)
01062 Dresden
cornelia.sennewald@tu-dresden.de

Papiertechnische Stiftung Heidenau
Pirnaer Straße 37
01809 Heidenau
cornell.wüstner@ptspaper.de

https://tu-dresden.de/mw/itm | https://www.ptspaper.de

More entries from TU Dresden, Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik ITM

18.10.2022

Entwicklung von Textilstrukturen mit materialintrinsischem Formänderungsvermögen für die regenerative Medizin (TexMedActor)

Garne Gewebe Nachhaltigkeit Technische Textilien Medizin

Zusammenfassung

Im IGF-Projekt 21022 BR/1 „TexMedActor“ wurden Gewebe auf Basis von Formgedächtnis- bzw. Elektroaktiven-Garnen entwickelt, die in der Lage sind, einerseits Defekte an Hohlorganen zu umschließen und andererseits durch Mikrobewegungen Zellen stimulieren zu können. Dafür wurden Einflüsse von Spinnverfahren und Materialzusammensetzung auf das Formgedächtnisverhalten TPU-basierter Garne charakterisiert und insbesondere die Aktivierungstemperatur auf Werte der Körperkern- und Körperoberflächentemperatur eingestellt. Weiterhin wurde piezoelektrische PVDF-Garne entwickelt, deren Anteil polarer Kristallphasen durch die Spinnparameter und Nachbehandlung deutlich erhöht war, wodurch auch das piezoelektrische Verhalten des Materials gesteigert werden konnte. Damit konnten dynamische Veränderungen der Porengröße in situ nachgewiesen werden, die eine stimulierende Wirkung auf Zellen entfalten können. Die Ergebnisse bieten mit einem neuen Verfahren und einer neuen Produktgruppe (Textilien mit intrinsischem, aktivem Formänderungsvermögen) nicht nur bei Medizinprodukten ein hohes Innovationspotenzial, sondern auch bei einer Vielzahl von lukrativen Anwendungen in einer Vielzahl von Nischen, z. B. Sporttextilien und Filtertextilien. Diese können weiterhin als Basis zur Entwicklung von extrakorporalen Medizinprodukten wie Kompressionstextilien, Bandagen und Orthesen genutzt werden.

Bericht

Einleitung, Problemstellung und Zielsetzung

In Deutschland führt sowohl der demografische Wandel der Gesellschaft als auch Verletzungen infolge von Traumata zu einem hohen Anteil von Personen mit behandlungsbedürftigen Erkrankungen des Herz-Kreislauf-Systems oder Verletzungen an Gefäßen und inneren Organen. Zur Behandlung von Verletzungen an inneren Organen, Gefäßen oder Nerven sind meist komplexe Eingriffe (Anastomosen) erforderlich, bei denen aufwändige Fixierungen und Nahtführungen erforderlich sind. Diese komplizierten und aufwändigen Prozeduren sind häufig mit langen Eingriffszeiten verbunden, die wiederum direkt mit erhöhten Komplikationsraten korrelieren [1‑3]. Zur Überbrückung solcher Defekte werden zunehmend tubuläre Kunststoffimplantate entwickelt, die jedoch kein Einwachsen von Gewebezellen ermöglichen und damit dem Konzept der regenerativen Medizin entgegenstehen, das die Wiederherstellung von Körpergeweben und ‑zellen anstrebt. Darüber hinaus kommt es bei der Auffüllung der Defekte häufig zu Störungen der Regeneration durch die nicht an die Biomechanik angepassten strukturmechanischen Eigenschaften. Ferner verhindern die fehlende Interkonnektivität der Porenräume der Ersatzstrukturen das Einwachsen von Zellen, das Zellwachstum, die Nährstoffversorgung und den Abtransport der Stoffwechselprodukte.

Im Rahmen des in vitro Tissue Engineerings werden neben statischen Zellkultursystemen auch dynami­sche Systeme entwickelt. Diese basieren beispielsweise auf kontinuierlichen oder pulsierenden Flüssigkeitsströmungen oder auf einer zyklischen Dehnung des eingespannten Zellträgersystems bzw. der Unterlage [4]. Eine Nachbildung der natürlichen mechanischen Wachstumsstimuli ist mit solchen Bio­reaktorsystemen jedoch nicht möglich, da sich insbesondere in größeren Strukturen eine lokal erhöhte Strömungsgeschwindigkeit entlang der größten Durchgangsporen bzw. lediglich eine Überströmung des gesamten Zellträgersystems einstellt und in mechanisch stimulierten Systemen unerwünschte Spannungsspitzen und undefinierte Verzerrungen im Bereich der Klemmen und Auflagen auftreten.

Da der native Aufbau der vier wichtigsten Gewebetypen (Binde- und Stützgewebe, Nerven-, Muskel- und Epithelgewebe) aus denen Organe, wie Knochen, Blutgefäße, Muskeln, Sehnen und Bänder, gebildet sind, aus faserartigen Konstrukten besteht, lassen sich diese mit textilen Strukturen besonders gut biomimetisch nachbilden. Mithilfe vorbedachter Faseranordnungen können dreidimensionale, kom­plexe Geometrien mit interkonnektierenden Porenräumen aufgebaut werden, an der sich Zellen in ihrer Wachstumsrichtung orientieren können [5]. Deshalb sind faserbasierte High‑Tech Strukturen zur Überwindung der Limitationen aktuell verfügbarer Implantate besonders prädestiniert.

Daher wurden im Rahmen des IGF-Forschungsvorhabens TexMedActor (21022 BR/1) neuartige Textilstrukturen mit materialintrinsischem Formänderungsvermögen für die regenerative Medizin mit einer Vielzahl von unterschiedlichen Anwendungsfeldern, insbesondere der Anastomose, entwickelt. Das verfolgte Konzept sieht hierbei die textiltechnologische Realisierung von Strukturen mit einem Formgedächtniseffekt vor. Die Textilien sollen gezielt vorbestimmte Geometrien annehmen können, um sich an Defekte interaktiv anzupassen und um komplexe Eingriffe zum Überbrücken bzw. zum Stützen von Defekten an inneren Organen wie Gefäßen und Nerven zu vereinfachen. Ein weiterer Wirkmechanismus soll darüber hinaus die elektromechanische Stimulation mit dem Ziel der aktiven, gezielten Anregung des Zellwachstums ermöglichen. Somit soll die Regeneration beschleunigt bzw. überhaupt erst ermöglicht werden, da die erforderlichen Stimuli zur gewebe- und zellangepassten Wachstumsanregung insbesondere bei schwach bzw. nicht durchbluteten Körpergeweben, wie Knorpeln, Sehnen, Bändern, oder bei Wundheilungsstörungen oder chronischen Wunden fehlen. Es sollen weiterhin neuartige Bioreaktoren mittels intrinsischen Eigenschaften der textilen Strukturen entwickelt werden, die den Wirkmechanismus zur elektromechanischen Stimulation nutzen, um selbst in hochkomplexen und großskaligen Zellträgerstrukturen die Zellen an jeder Stelle gleichmäßig zu stimulieren. Die mechanischen Reize gehen hierbei vom Material selbst aus. Diese materialintrinsische Stimulation stellt eine neue Methode für die optimale Zellkultivierung dar, sodass die Zellen auf den textilen Zellträgerstrukturen unter Verzicht auf extern angelegte Flüssigkeitsströmungen oder mechanische Verformungen stimuliert werden können. Damit sollen zwei anerkannte medizintechnische Probleme behoben werden: 1) Komplizierte, aufwändige und mit minimalinvasiven Verfahren schwer oder nicht zu realisierende Operationen an innenliegenden Organen, Gefäßen oder Nerven sowie 2) fehlende gewebe- und zellangepassten Stimuli zur Anregung des Wachstums seitens der bisher verwendeten Ersatzstrukturen und ‑materialien sowie derzeit verfügbarer dynamischer Zellkultursysteme.

Danksagung

Das IGF-Vorhaben 21022 BR/1 der Forschungsvereinigung Forschungskuratorium Textil e.V. wurde über die AiF im Rahmen des Programms zur Förderung der industriellen Gemeinschaftsforschung (IGF) vom Bundesministerium für Wirtschaft und Klimaschutz aufgrund eines Beschlusses des Deutschen Bundestages gefördert. Wir danken den genannten Institutionen für die Bereitstellung der finanziellen Mittel. Darüber hinaus möchten wir den Mitgliedern des Projektbegleitenden Ausschusses für ihre Unterstützung während der Projektbearbeitung danken.

AutorInnen: Benecke, Lukas; Aibibu, Dilbar; Cherif, Chokri

Technische Universität Dresden
Fakultät Maschinenwesen
Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM)
01062 Dresden

More entries from TU Dresden, Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik ITM

30.09.2022

CF/AR/Thermoplast Hybridgarne für anforderungsgerechte thermoplastische Composites mit herausragenden, skalierbaren Steifigkeits-, Festigkeits-, Crash- und Impacteigenschaftskombinationen

Fasern Garne Composites Textilmaschinenbau

Zusammenfassung

Im Rahmen des IGF-Forschungsvorhabens (21004 BR/1) wurden am ITM Materialkonzepte auf Basis von zwei, in der Industrie etablierten Garnbildungstechnologien realisiert und damit CF/AR/PA 6- bzw. rCF/rAR/PA 6-Hybridgarne für anforderungsgerechte thermoplastische Composites mit herausragenden, skalierbaren Steifigkeits-, Festigkeits-, Crash- und Impacteigenschaftskombinationen hergestellt. Dabei wurden die Einflüsse der Parameter der Krempel-, Strecken- und Flyerspinnanlage (MK1) sowie der Lufttexturieranlage (MK2) und der Faservolumenanteile auf die mechanischen Eigenschaften analysiert, um anforderungsgerechte und definierte Engineered Garne und darauf basierende Composites zu entwickeln. Die untersuchten Garnbildungstechnologien ergänzen sich bzw. konkurrieren teilweise untereinander, bilden dadurch aber auch ein breites Technologiespektrum ab, das eine große Breitenwirkung für die Anwendung der Ergebnisse zur Produktentwicklung in zahlreichen deutschen und oft auf wenige Technologien spezialisierten KMU der Textiltechnik erzeugt.

Bericht

Einleitung, Problemstellung und Zielsetzung

Aktuelle faserverstärkte Kunststoffverbunde (Composites) werden entweder nach Steifigkeits- und Festigkeits- oder Impact- bzw. Crasheigenschaften ausgelegt. Komplexe, sich überlagernde Lastszenarien werden dabei nur sehr beschränkt berücksichtigt. Zwar gibt es erste realisierte Verbundbauteile, bspw. die B-Säule eines Automobils [1], bei denen Composites (bspw. Carbonfaserprepregs) zur Realisierung hoher gewichtsspezifischer Steifigkeiten und Festigkeiten mit metallischen Komponenten (bspw. Stahlbleche) zur Erreichung der notwendigen Schadenstoleranz kombiniert werden. Bei derartigen Konzepten erfolgt die Hybridisierung auf Makro- (Strukturebene) oder Mesoebene (Garnebene) und erfordert extrem aufwendige und kostenintensive Fertigungsprozesse [2–4]. Konzeptbedingt weisen diese Bauteilen zudem stark ausgeprägte interlaminare Grenzflächen auf, an denen durch komplexe Beanspruchungen hohe Scherspannungen entstehen, die dann zu frühzeitigen Delaminationen mit entsprechenden Strukturversagen führen [5–8]. Im Rahmen des hier vorgestellten Projekts wurden ein Konzept zur Überwindung der Nachteile und für den Einsatz bei zukünftigen Entwicklungen erarbeitet und umgesetzt. Der Ansatz besteht dabei darin, die Kombination der verschiedenen Komponenten durch Hybridisierung auf Mikroebene (innerhalb eines Garnes/Faserebene) zu gestalten und damit deren Eigenschaftspotentiale maximal auszuschöpfen. Durch den Einsatz recycelter Hochleistungsfasern ergeben sich zudem deutliche Vorteile hinsichtlich Nachhaltigkeit, Ressourceneffizienz und Wirtschaftlichkeit gegenüber konventionellen Composites.

Ziel des Projekts ist die Kreierung einer neuen auf Mikroebene hybridisierten dreikomponentigen Werkstoffklasse für thermoplastische Leichtbauanwendungen. Durch die gezielte Kombination der Verstärkungsfasern Carbon und Aramid sind über Variation der Verstärkungsfaseranteile und Faseraufmachung lastfallgerecht hohe Steifigkeiten und Festigkeiten mit hohen Crash- bzw. Impacteigenschaften kombinierbar. Abb. 1a zeigt schematisch die Eigenschaften von CF/AR Hybridcomposites nach dem Stand der Technik (Abb. 1a unten durch Ellipse hervorgehoben), aus zu entwickelnden Engineered Garnen (oben, Bereich innerhalb der gestrichelten Linien) und die theoretischen Materialpotentiale (oben, farbige Linien) jeweils in Abhängigkeit der Faservolumenanteile. Die systematische Untersuchung des Einflusses der materialspezifischen Faservolumenanteile für eine skalierbare Auslegung der Composites, erfolgte beispielhaft in fünf Stufen (CF/AR bzw. rCF/rAR: 50/0 %; 40/10 %; 25/25 %; 10/40 %; 0/50 %).

Die Entwicklungsarbeiten konzentrierten sich auf drei wesentliche Schwerpunkte. Der erste Schwerpunkt war die Weiterentwicklung der Prozesstechnik, sodass die auf Engineered Garnen basierenden Composites aufgrund geringer Faserschädigungen, einer hohe Gleichmäßigkeit und hohen Faserorientierung hohe Festigkeiten und Steifigkeiten aufweisen. Der zweite Schwerpunkt war die erstmalige Umsetzung der homogenen Durchmischung von drei Fasermaterialien auf Mikroebene, sodass gleichzeitig Steifigkeiten, Festigkeiten und ebenfalls Impact- und Crasheigenschaften signifikant erhöht werden können. Der dritte Schwerpunkt lag in der Auslegung der Engineered Garne, um so herausragende, skalierbare Steifigkeits-, Festigkeits-, Crash- und Impacteigenschaftskombinationen für verschiedenste Anforderungen gezielt einstellen zu können (Abb. 1a).

Die konkrete Umsetzung des angestrebten Ziels, Realisierung von CF/AR/PA6 bzw. rCF/rAR/PA6 Hybridgarnen zur Herstellung anforderungsgerechter thermoplastischer Composites mit herausragenden, skalierbaren Steifigkeits-, Festigkeits-, Crash- und Impacteigenschaftskombinationen, erfolgte unter Verwendung von zwei Materialkonzepten (Abb. 1b) auf Basis von zwei, in der Industrie etablierten Garnbildungstechnologien (Abb. 1a). Dabei wurden die komplexen Zusammenhänge zwischen Prozessparametern und Material-Garn-Verbundeigenschaften analysiert und für die KMU fundiertes Wissen für die Entwicklung, materialabhängige Auslegung der Engineered-Garne, die Ableitung der bestmöglichen Material- und Prozessparameter für konkrete Anwendungen sowie für die Steuerung der Fertigungsprozesse erarbeitet und in Form eines Verfahrensleitfadens aufbereitet. Die detaillierte Beschreibung der Entwicklungsarbeiten kann aus dem Abschlussbericht entnommen werden.

Danksagung

Das IGF-Vorhaben 21004 BR/1 der Forschungsvereinigung Forschungskuratorium Textil e.V. wurde über die AiF im Rahmen des Programms zur Förderung der industriellen Gemeinschaftsforschung (IGF) vom Bundesministerium für Wirtschaft und Klimaschutz aufgrund eines Beschlusses des Deutschen Bundestages gefördert. Wir danken den genannten Institutionen für die Bereitstellung der finanziellen Mittel.

 

 

 

AutorInnen: Matthias Overberg, Anwar Abdkader, Chokri Cherif

Technische Universität Dresden
Fakultät Maschinenwesen
Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM)
01062 Dresden

https://tu-dresden.de/mw/itm

More entries from TU Dresden, Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik ITM

28.09.2022

Filterung von Abgasen von Holzfeueröfen auf Basis neuartiger textiler Filtersysteme

Nachhaltigkeit Technische Textilien Haus- und Heimtextilien

Zusammenfassung

Gasförmige und vor allem partikelförmige Emissionen aus handbeschickten Holzöfen haben einen nicht unerheblichen Anteil an der Luftverschmutzung in Deutschland. Vor allem ultra-feine Rußpartikel und organische Schadstoffe wie polyzyklische aromatische Kohlenwasserstoffe werden häufig in hohen Anteilen emittiert. Die Freisetzung dieser Schadstoffe hat negative toxikologische und klimatische Konsequenzen für Mensch und Umwelt. Andererseits gewinnen erneuerbare biogene Festbrennstoffe aufgrund der Knappheit fossiler Rohstoffe für die regenerative Wärmebereitstellung zunehmend an Bedeutung.

Bericht

In Anbetracht dieser Problemstellung forschen an der RWTH Aachen University das Institut für Textiltechnik (ITA) und das Lehr- und Forschungsgebiet Technologie der Energierohstoffe (TEER) gemeinsam mit der Skantherm GmbH & Co. KG und der Culimeta Textilglas-Technologie GmbH & Co. KG im Rahmen des FNR-Projekts „PartEX4Abholz“ an der Entwicklung eines neuen, hocheffizienten Abscheiders, der die partikelförmigen (festen und flüssigen) Emissionen aus dem Abgas von handbeschickten Holzöfen abscheidet und sequestriert. Der innovative Ansatz besteht in der Nutzung neuartiger Filtersysteme auf Basis textiler Strukturen.

Im Gegensatz zu den auf dem Markt erhältlichen E-Abscheidern erzeugt die zu entwickelnde Filterlösung nicht nur keine Rußflocken, es werden auch die groben Partikel durch das Filtersystem effizient im Filtermedium gespeichert. Außerdem wird eine hohe Abscheideleistung gegenüber flüchtigen und kondensierten organischen Substanzen erreicht. Die Herausforderung liegt dabei nicht nur in der Abscheidung der prozessimmanenten ultrafeinen (< 100 nm) Partikel durch Diffusionsabscheidung an sich, sondern vielmehr das Erreichen einer hohen und damit wirtschaftlichen Standzeit (hohe Speicherkapazität).

Unter Einsatz des neuen Filtersystems sollen die emittierten Partikel und Stäube von Holzfeueröfen gemäß dem Umweltzeichen "Der Blaue Engel" auf 15 mg/m³ reduziert werden. Mit ersten Projektergebnissen wird im ersten Quartal 2023 gerechnet.

AutorInnen: Maryam Sodagar, M.Sc.

ITA Institut für Textiltechnik an der RWTH Aachen University, Otto-Blumenthal-Strasse 1, 52074 Aachen, Deutschland

More entries from ITA Institut für Textiltechnik der RWTH Aachen University