PE-based, spun-dyed and sustainable clothing made from organic raw materials
Fasern Garne Gestricke & Gewirke Recycling Nachhaltigkeit Fashion
Zusammenfassung
The bioPEtex project in the BIOTEXFUTURE Innovation Space aims to develop sustainable clothing made from bio-based raw materials in the form of spun-dyed T-shirts. In an industry heavily dominated by fossil-based polymers such as polyester, bio-based polyethylene (bioPE), a bio-based polymer made from fermented starches or sugars, offers an environmentally friendly alternative. BioPE has the same properties as fossil-based PE and is fully recyclable. The use of spun-dyed bioPE also reduces energy and water consumption by 50 % and CO2 emissions by 60 %. The project involves the development of sustainably dyed compounds from bioPE for the spun-dyeing process and the development of multifilament yarns through melt spinning and false-twist texturing. The yarns are knitted on seamless machines and a T-shirt demonstrator is manufactured, which is finished with a sustainable elastic finish. The results will not only reduce the ecological footprint of the textile industry, but also promote innovative approaches to the circular economy.
Bericht
Introduction
The global annual man-made fibre production is growing steadily and is expected to exceed 100 million tonnes by 2030. Polyethylene terephthalate (PET) from the polyester (PES) family is the most widely used polymer, with an 80 % market share. Global clothing production alone almost doubled between 2000 and 2015. More than 80 % of all fibres produced are now used for clothing. Between 30 and 60 % of PET produced worldwide is used in clothing, i.e. approx. 18 to 36 million tonnes. This makes PET the most widely used material for clothing (as of 2021). The textile industry therefore faces enormous ecological challenges, particularly due to the high proportion of fossil raw materials used in textile production. Fossil-based polyesters account for around 52 % of the market and have a significant negative impact on the environment and resource consumption. Synthetic fibres in clothing are largely made from these fossil-based polyesters, the main component of which is PET, which is not yet 100 % bio-based. Clothing made from 100 % biopolymers has so far only been shown in studies and flagship projects, as it is too expensive for the mass market and not available in sufficient quantities. The bioPEtex project aims to establish 100 % bio-based polyethylene (bioPE) in the clothing market. The large-volume thermoplastic drop-in polymer is used to produce mono material, thermomechanically recyclable clothing. To achieve this, the challenge that PE is not produced for continuous fibre production and that there are no designated types for this purpose and no textile plant technology designed for the polymer must be solved. Based on preliminary work at the Institute für Textiltechnik (ITA), the current project status and Alberghini et al., it is foreseeable that the project will be successful. The consortium's expertise is ideally suited for rapid implementation. [Tex22; AHL+21; SB20Materials and Methods
In the scope of this project, commercially available bio-based polyethylenes are selected, procured and modified (see Figure 1).
Spinnable compounds made from BioPE are then developed. For subsequent spin dyeing in the melt spinning process, colour masterbatches with bio-based colour pigments are developed by our industry partner TECNARO GmbH, Ilsfeld, Germany, in order to realise a sustainable alternative to conventional dyeing with dyes. In addition, conventional dyeing of PE is challenging [BBO+13]. Various textured multifilament yarns with up to 100 filaments are developed from these bioPE compounds using melt spinning and texturing processes on a semi-industrial scale, so that a bio-based T-shirt can be manufactured. Until now, PE has only been used in the industry for staple fibres, highly drawn fibres for technical applications or for carbon fibres – but not yet as yarn in clothing [Fou99; Pei18; Wor17]. In addition to the elasticity provided by the meshes in the knitted fabric, innovative, pre-competitive, sustainable textile finishes are being tested and further developed.
Results
Initial results show promising progress in the processing of bioPE into spun-dyed yarns with suitable properties for textile applications. BioPE can be processed into multifilament yarns in stable melt spinning processes. Process development with dyed bioPE compounds is currently underway (see Figure 2).
The resulting partially oriented yarns (POY) with currently 96 filaments and a single filament titre of approx. 1 dtex have suitable properties for subsequent false-twist texturing (see Figure 3). Production speeds for melt spinning are currently in the industrial range (2,500 m/min). In a next step, yarns with 30 filaments and a higher single filament titre will be spun in order to give the resulting textile more stability in combination with the fine yarns.
Tensile strengths of approx. 20 cN/tex have been achieved to date, thus already meeting the target values derived from PET-POY. False-twist texturing on a laboratory scale (ITA) and on a semi-industrial scale (BB Engineering GmbH, Remscheid, Germany) has also been successful. The mechanical properties of the textured yarns (draw-textured yarn, DTY) are thus improved and the yarn volume and heat retention capacity are increased (see Figure 4). The close-up image of the DTY below shows that no tangling was introduced on a laboratory scale and that the yarn cohesion is therefore not yet ideal. However, the DTY can already be processed into a knitted fabric without any problems. These shortcomings are also remedied on a semi-industrial scale.
The resulting natural fibre-like, cool feel now makes it possible to use the yarn in textiles. Initial knitting trials with the lab-scale DTY have been successful at our industrial partner FALKE KGaA in Schmallenberg, Germany, once again confirming the cooling sensation when the textile is touched. Further yarns are being developed so that the next step can be to produce a T-shirt for sports applications using semi-industrial yarns and validate it as a demonstrator. The development of the bio-based elastic finish is also currently underway.
Summary
The bioPEtex project represents an innovative approach to producing sustainable clothing from bio-based materials. Targeted research and development aims to achieve both ecological and economic benefits. The results achieved could contribute to significantly reducing the ecological footprint of the textile industry and setting new standards for recyclability in the fashion industry. So far, developments with bio-based PE compounds have been successful, and smooth, partially oriented as well as textured yarns can be produced on a semi-industrial scale and processed into a cooling knit fabric. Validation as a demonstrator in the form of a seamless, bio-based T-shirt with elastic bio-based finishing is still pending in the further course of the project.
Acknowledgement
We thank the Federal Ministry of Research, Technology and Space for funding the Innovation Space BIOTEXFUTURE and the research project bioPEtex (031B1496). Furthermore, we would also like to thank everyone involved in this project for their contributions and commitment.
Bibliography
[Fou99] Fourné, F.:
Synthetic Fibers. Hanser, München, 1999
Kontakt: mathias.ortega@ita.rwth-aachen.de
ITA Institut für Textiltechnik der RWTH Aachen University, Otto-Blumenthal-Straße 1, 52074 Aachen, Germany
More entries from ITA Institut für Textiltechnik der RWTH Aachen University