Textination Newsline

Zurücksetzen
44 Ergebnisse
  Forschende um Bernd Nowack haben die Freisetzung von Nanopartikeln beim Waschen von Polyestertextilien untersucht. Bild: Empa
14.02.2024

Freisetzung von Oligomeren aus Polyester-Textilien

Wenn Nanoplastik keiner ist ... Textilien aus synthetischen Fasern geben beim Waschen Mikro- und Nanoplastik ab. Empa-Forschende konnten nun zeigen, dass ein Teil des vermeintlichen Nanoplastiks gar nicht aus Plastikpartikeln besteht, sondern aus wasserunlöslichen Oligomeren. Welche Auswirkungen sie auf Mensch und Umwelt haben, ist noch kaum erforscht.

Gebrauchsgegenstände aus Kunststoff und Kleider aus Kunstfasern setzen Mikroplastik frei: Partikel unter fünf Millimeter Größe, die unbemerkt in die Umwelt gelangen können. Ein kleiner Teil dieser Partikel befindet sich sogar im Nanometerbereich. Solcher Nanoplastik ist Gegenstand intensiver Forschung, denn aufgrund ihrer geringen Größe können Nanoplastik-Teilchen in den menschlichen Körper aufgenommen werden – über ihre potenzielle Toxizität ist jedoch noch wenig bekannt.

Wenn Nanoplastik keiner ist ... Textilien aus synthetischen Fasern geben beim Waschen Mikro- und Nanoplastik ab. Empa-Forschende konnten nun zeigen, dass ein Teil des vermeintlichen Nanoplastiks gar nicht aus Plastikpartikeln besteht, sondern aus wasserunlöslichen Oligomeren. Welche Auswirkungen sie auf Mensch und Umwelt haben, ist noch kaum erforscht.

Gebrauchsgegenstände aus Kunststoff und Kleider aus Kunstfasern setzen Mikroplastik frei: Partikel unter fünf Millimeter Größe, die unbemerkt in die Umwelt gelangen können. Ein kleiner Teil dieser Partikel befindet sich sogar im Nanometerbereich. Solcher Nanoplastik ist Gegenstand intensiver Forschung, denn aufgrund ihrer geringen Größe können Nanoplastik-Teilchen in den menschlichen Körper aufgenommen werden – über ihre potenzielle Toxizität ist jedoch noch wenig bekannt.

Empa-Forschende aus der Gruppe von Bernd Nowack aus dem Labor „Technologie und Gesellschaft" haben nun gemeinsam mit Kollegen aus China Nanopartikel aus Textilien unter die Lupe genommen. Tong Yang, Erstautor der Studie, hat die Untersuchungen während seines Doktorats an der Empa durchgeführt. Bereits in früheren Studien konnten die Empa-Forscher zeigen, dass beim Waschen von Polyester Mikro- und Nanoplastik freigesetzt wird. Eine genaue Untersuchung der freigesetzten Nanopartikel hat nun ergeben, dass nicht alles, was auf den ersten Blich nach Nanoplastik aussieht, auch tatsächlich Nanoplastik ist.

Zu einem beträchtlichen Teil handelte es sich tatsächlich nicht um Nanoplastik, sondern um Klumpen von sogenannten Oligomeren, also kleinen bis mittelgroßen Moleküle, die eine Zwischenstufe zwischen den langen verketteten Polymeren und ihren Einzelbausteinen, den Monomeren, darstellen. Diese Moleküle sind noch kleiner als Nanoplastik-Partikel. Auch über ihre Toxizität ist kaum etwas bekannt. Die Ergebnisse veröffentlichten die Forschenden in der Zeitschrift „Nature Water“.

Für die Studie haben die Forschenden zwölf unterschiedliche Polyesterstoffe untersucht, darunter etwa Mikrofaser, Satin und Jersey. Die Stoffproben wurden bis zu vier Mal gewaschen und die dabei freigesetzten Nanopartikel analysiert und charakterisiert. Keine einfache Aufgabe, sagt Bernd Nowack. „Plastik, vor allem Nanoplastik, ist überall, auch an unseren Geräten und Utensilien“, so der Wissenschaftler. „Bei Nanoplastik-Messungen müssen wir dieses 'Hintergrundrauschen' berücksichtigen.“

Großer Anteil löslicher Partikel
Um Nanoplastik von Oligomerklumpen zu unterscheiden, nutzten die Forschenden ein Ethanolbad. Plastikstückchen, egal wie klein, lösen sich darin nicht auf, Ansammlungen von Oligomeren dagegen schon. Der Befund: Rund ein Drittel bis knapp 90 Prozent der beim Waschen freigesetzten Nanopartikel ließen sich in Ethanol auflösen. „Dadurch konnten wir zeigen, dass nicht alles, was im ersten Moment nach Nanoplastik aussieht, auch Nanoplastik ist“, sagt Nowack.

Ob die Freisetzung von „nanopartikulären“ Oligomeren beim Waschen von Textilien negative Auswirkungen auf Mensch und Umwelt hat, ist noch nicht klar. „Bei anderen Kunststoffen haben Studien bereits gezeigt, dass nanopartikuläre Oligomere toxischer sind als Nanoplastik“, sagt Nowack. „Das ist ein Hinweis, dass man das genauer untersuchen sollte.“ Die Forschenden konnten jedoch feststellen, dass die Beschaffenheit des Textils sowie die Schnittmethode – Schere oder Laser – keinen großen Einfluss auf die Menge der freigesetzten Partikel haben.

Auch der Mechanismus der Freisetzung ist noch nicht geklärt – weder für Nanoplastik noch für die Oligomerpartikel. Die erfreuliche Nachricht ist, dass die Menge der freigesetzten Partikel mit wiederholten Waschgängen stark abnimmt. Denkbar wäre, dass die Oligomerpartikel bei der Herstellung des Textils entstehen oder sich durch chemische Prozesse bei der Lagerung von den Fasern abspalten. Auch hierzu sind weitere Studien notwendig.

Nowack und sein Team widmen sich jedoch vorerst wieder größeren Partikeln: In einem nächsten Projekt wollen sie untersuchen, welche Fasern beim Waschen von Textilien aus nachwachsenden Rohstoffen freigesetzt werden und ob diese die Umwelt und die Gesundheit belasten könnten. „Halbsynthetische Textilien wie Viskose oder Lyocell werden als Ersatz für Polyester angepriesen“, sagt Nowack. „Aber wir wissen noch gar nicht, ob sie wirklich besser sind, wenn es um die Freisetzung von Fasern geht.“

 

Quelle:

Empa

intelligente Textilien (c) Sanghyo Lee
24.04.2023

Kostengünstigere Verfahren zur Herstellung gewebter Displays und intelligenter Textilien

Forscher haben intelligente Textilien der nächsten Generation entwickelt, die mit LEDs, Sensoren, Energiegewinnung und -speicherung ausgestattet sind. Diese Textilien können kostengünstig in jeder Form und Größe auf herkömmlichen industriellen Webstühlen hergestellt werden, wie sie auch für die Herstellung von Alltagskleidung verwendet werden.
 
Ein internationales Team unter der Leitung der Universität Cambridge hatte in der Vergangenheit bereits gezeigt, dass gewebte Displays in großen Größen produziert werden können, aber diese früheren Beispiele wurden mit speziellen manuellen Laborgeräten hergestellt. Andere intelligente Textilien können in spezialisierten mikroelektronischen Produktionsanlagen hergestellt werden, die jedoch sehr teuer sind und große Mengen an Abfall produzieren.

Forscher haben intelligente Textilien der nächsten Generation entwickelt, die mit LEDs, Sensoren, Energiegewinnung und -speicherung ausgestattet sind. Diese Textilien können kostengünstig in jeder Form und Größe auf herkömmlichen industriellen Webstühlen hergestellt werden, wie sie auch für die Herstellung von Alltagskleidung verwendet werden.
 
Ein internationales Team unter der Leitung der Universität Cambridge hatte in der Vergangenheit bereits gezeigt, dass gewebte Displays in großen Größen produziert werden können, aber diese früheren Beispiele wurden mit speziellen manuellen Laborgeräten hergestellt. Andere intelligente Textilien können in spezialisierten mikroelektronischen Produktionsanlagen hergestellt werden, die jedoch sehr teuer sind und große Mengen an Abfall produzieren.

Das Team fand heraus, wie flexible Displays und intelligente Textilien viel billiger und nachhaltiger hergestellt werden können, indem elektronische, optoelektronische, sensorische und energetische Faserkomponenten auf denselben industriellen Webstühlen gewebt werden, die auch für die Herstellung herkömmlicher Textilien verwendet werden. Die in der Fachzeitschrift Science Advances veröffentlichten Ergebnisse zeigen, wie intelligente Textilien eine Alternative zu größeren elektronischen Bauteilen in Bereichen wie Automobilbau, Elektronik, Mode und Bauwesen sein könnten.

Trotz der jüngsten Fortschritte bei der Entwicklung intelligenter Textilien sind deren Funktionalität, Abmessungen und Form durch die gegenwärtigen Herstellungsverfahren begrenzt.
„Wir könnten diese Textilien in speziellen Mikroelektronik-Anlagen herstellen, aber das erforderte Investitionen in Milliardenhöhe“, so Dr. Sanghyo Lee vom Cambridge Department of Engineering, Erstautor der Studie. „Zudem ist die Herstellung intelligenter Textilien auf diese Weise sehr begrenzt, da alles auf denselben starren Wafern hergestellt werden muss, die auch für die Herstellung integrierter Schaltkreise verwendet werden, so dass die maximale Größe, die wir erreichen können, etwa 30 Zentimeter im Durchmesser beträgt.

„Intelligente Textilien waren bisher auch durch ihre mangelnde Praxistauglichkeit eingeschränkt“, ergänzte Dr. Luigi Occhipinti, ebenfalls vom Fachbereich Ingenieurwissenschaften, der die Forschungsarbeiten mit leitete. „Man denke nur an das Biegen, Dehnen und Falten, dem normale Textilien standhalten müssen, und es war eine Herausforderung, die gleiche Haltbarkeit in intelligente Textilien zu integrieren.“

Letztes Jahr hatten einige derselben Forscher gezeigt, dass die in intelligenten Textilien verwendeten Fasern mit Materialien beschichtet werden können, die Dehnungen standhalten, so dass sie mit herkömmlichen Webverfahren kompatibel sind. Mit dieser Technik stellten sie ein gewebtes 46-Zoll-Demonstrationsdisplay her.

Jetzt haben die Forscher gezeigt, dass intelligente Textilien in automatisierten Prozessen hergestellt werden können, wobei ihrer Größe und Form keine Grenzen gesetzt sind. Mehrere Arten von Faserbauelementen, darunter Energiespeicher, Leuchtdioden und Transistoren, wurden hergestellt, eingekapselt und mit herkömmlichen synthetischen oder natürlichen Fasern gemischt, um durch automatisches Weben intelligente Textilien herzustellen. Die Faserbauteile wurden durch ein automatisiertes Laserschweißverfahren mit elektrisch leitendem Klebstoff miteinander verbunden.
 
Alle Prozesse wurden so optimiert, dass die elektronischen Komponenten möglichst wenig beschädigt wurden, was wiederum die intelligenten Textilien so haltbar machte, dass sie der Dehnung einer industriellen Webmaschine standhalten. Die Verkapselungsmethode wurde unter Berücksichtigung der Funktionalität der Faserkomponenten entwickelt, und die mechanische Kraft und thermische Energie wurden systematisch geprüft, um ein automatisches Weben bzw. eine laserbasierte Verbindung zu erreichen.

Gemeinsam mit Textilherstellern konnte das Forschungsteam Testflächen aus intelligenten Textilien mit einer Größe von etwa 50 x 50 Zentimetern herstellen, die jedoch auf größere Abmessungen skaliert und in großen Mengen produziert werden können.
 
„Diese Unternehmen verfügen über gut etablierte Produktionsanlagen mit Faserextrudern mit hohem Durchsatz und großen Webmaschinen, die automatisch ein Quadratmeter Textil weben können“, so Lee. „Wenn wir also die intelligenten Fasern in den Prozess einbringen, ist das Ergebnis im Grunde ein elektronisches System, das genauso hergestellt wird wie andere Textilien.“
Den Forschern zufolge könnten große, flexible Bildschirme und Monitore auf industriellen Webstühlen und nicht in spezialisierten Elektronikfertigungsanlagen hergestellt werden, was ihre Produktion wesentlich billiger machen würde. Der Prozess muss jedoch noch weiter optimiert werden.

„Die Flexibilität dieser Textilien ist absolut erstaunlich,“ sagt Occhipinti. „Nicht nur in Bezug auf ihre mechanische Flexibilität, sondern auch in Bezug auf die Flexibilität des Ansatzes, nachhaltige und umweltfreundliche Plattformen zur Herstellung von Elektronik einzusetzen, die zur Verringerung der Kohlenstoffemissionen beitragen und echte Anwendungen von intelligenten Textilien in Gebäuden, im Innenraum von Autos und in der Kleidung ermöglichen. Unser Ansatz ist in dieser Hinsicht ziemlich einzigartig.“

Die Forschung wurde teilweise von der Europäischen Union und UK Research and Innovation unterstützt.

Quelle:

University of Cambridge

Foto: Unsplash, Bastian Pudill
17.05.2022

Die Industriezukunft braucht klimaneutrale Prozesswärme

IN4climate.NRW veröffentlicht Impulspapier

Nicht nur private Haushalte, sondern vor allem Industriebetriebe haben einen hohen Wärmebedarf. Auf dem Weg zur Klimaneutralität muss die Prozesswärmeversorgung der Industrie stärker in den Fokus rücken – besonders im Industrieland Nordrhein-Westfalen. Das zeigt das Impulspapier des Klimaschutz-Thinktanks IN4climate.NRW.

Prozesswärme machte 2020 einen Großteil des industriellen Energiebedarfs aus - 67 Prozent des Energieverbrauchs der deutschen Industrie - und wird heute noch überwiegend aus fossilen Energieträgern gedeckt (BMWi 2021a). Das sind fast 20 Prozent des gesamten deutschlandweiten Energiebedarfs. Kein Wunder: Egal ob Glas, Metall, Zement oder Papier geschmolzen, geschmiedet, gebrannt oder getrocknet werden – all diese Verfahren benötigen Prozesswärme. Und das teilweise bis zu einer Temperatur von 3 000 °C.

IN4climate.NRW veröffentlicht Impulspapier

Nicht nur private Haushalte, sondern vor allem Industriebetriebe haben einen hohen Wärmebedarf. Auf dem Weg zur Klimaneutralität muss die Prozesswärmeversorgung der Industrie stärker in den Fokus rücken – besonders im Industrieland Nordrhein-Westfalen. Das zeigt das Impulspapier des Klimaschutz-Thinktanks IN4climate.NRW.

Prozesswärme machte 2020 einen Großteil des industriellen Energiebedarfs aus - 67 Prozent des Energieverbrauchs der deutschen Industrie - und wird heute noch überwiegend aus fossilen Energieträgern gedeckt (BMWi 2021a). Das sind fast 20 Prozent des gesamten deutschlandweiten Energiebedarfs. Kein Wunder: Egal ob Glas, Metall, Zement oder Papier geschmolzen, geschmiedet, gebrannt oder getrocknet werden – all diese Verfahren benötigen Prozesswärme. Und das teilweise bis zu einer Temperatur von 3 000 °C.

IN4climate.NRW formuliert in dem Impulspapier »Prozesswärme für eine klimaneutrale Industrie« Ansätze und Handlungsempfehlungen für eine Prozesswärmewende. Insgesamt dreizehn Partner der Initiative haben das Papier mitgezeichnet.

Samir Khayat, Geschäftsführer von NRW.Energy4–Climate: »Die Umstellung auf eine nachhaltige Prozesswärmebereitstellung ist einer der entscheidenden Hebel, damit die Transformation der Industrie gelingen kann. Mit der Initiative IN4climate.NRW bringen wir die Kompetenzen aus Wissenschaft, Politik und Wirtschaft an einen Tisch und entwickeln konkrete Strategien, um Klimaneutralität in der Industrie in die Praxis umzusetzen.«

Verschiedene Zahlen verdeutlichen den notwendigen Handlungsbedarf: Nur 6 Prozent des Energiebedarfs für Prozesswärme werden bislang durch Erneuerbare Energien gedeckt. Auch Strom macht derzeit nur einen Anteil von 8 Prozent aus – als Energiequelle ist er im heutigen Strommix noch längst nicht emissionsfrei, muss es aber durch die Umstellung auf 100 Prozent Erneuerbare perspektivisch werden.

40 Prozent des Prozesswärmebedarfs von ganz Deutschland benötigt allein NRW
Tania Begemann, Projektmanagerin Industrie und Produktion bei NRW.Energy4Climate und Autorin des Papiers: »Die nachhaltige Umstellung von Prozesswärme war bei IN4climate.NRW schon immer ein wichtiges und dringendes Thema, wird in Zeiten einer globalen Energiekrise aber noch brisanter. Schätzungsweise 40 Prozent des Prozesswärmebedarfs von ganz Deutschland benötigt allein NRW. Um langfristig wirtschaftsstark und Industrieland zu bleiben, ist es für NRW daher von ganz besonderer Bedeutung, zeitnah unabhängig von fossilen Prozesswärmequellen zu werden. Darauf möchten wir mit dem Papier aufmerksam machen. Gleichzeitig bietet sich mit dieser enormen Herausforderung für NRW auch die Chance, Vorreiter zu werden.«

Wie das gehen kann? Das Impulspapier zeigt zentrale Ansätze und Handlungsempfehlungen auf:

  • Effizienz steigern: Die Entwicklung und der Einsatz von Hochtemperatur-Wärmepumpen sollte im Rahmen von Pilotanlagen und -konzepten gezielt gefördert werden. Zudem sollten Unternehmen bei der Erstellung und Umsetzung von Konzepten unterstützt werden, die Prozesstemperaturen minimieren und innerbetrieblich Abwärme nutzen.
  • Erneuerbare Wärmequellen fördern: Lokale, erneuerbare Energiequellen wie Tiefengeothermie und Solarthermie können ein wichtiger Baustein zur klimaneutralen Prozesswärmeversorgung sein und gleichzeitig die Abhängigkeit von Energieimporten reduzieren. Dort, wo Erneuerbare industrielle Wärmebedarfe decken können, sollten sie auch genutzt werden. Diese Energieformen sollten deswegen durch Erkundungen und Ausschreibungen gezielt unterstützen werden.
  • Erneuerbaren Strom erhöhen: Die Elektrifizierung von Prozessen und Anwendungen ist die Voraussetzung für die Energiewende. Die erneuerbare Stromerzeugung mitsamt einem soliden Stromnetz auszubauen, wettbewerbsfähige Preise für grünen Strom zu schaffen und flexible Systeme zu entwickeln, sind somit zentrale Aufgaben.
  • Speicherbare alternative Energieträger forcieren: Um Prozesswärme auch dann erzeugen zu können, wenn Erneuerbare Energien nicht zur Verfügung stehen, benötigt die Industrie große Mengen an speicherbaren Energieträgern. Insbesondere nachhaltiger Wasserstoff muss zu wettbewerbsfähigen Preisen verfügbar sein und die dafür nötigen Voraussetzungen wie zum Beispiel eine Transport- und Speicherinfrastruktur geschaffen werden. Neben Wasserstoff ist Biomasse ein wertvoller und speicherbarer Energieträger und zugleich Rohstoff. Diese limitierte Ressource gilt es daher gezielt und effizient einzusetzen.

Prozesswärme klimaneutral zu erzeugen, ist für ganz Deutschland, aber besonders für das Industrieland NRW von hoher Bedeutung und gleichzeitig eine große Herausforderung. Die Wärmewende der Industrie erfordert eine gesamtsystemische und überregionale Betrachtung und Strategieentwicklung. Einerseits sollten solche Strategien das Zusammenspiel verschiedener Sektoren berücksichtigen. Andererseits sollten sie alle Wärmebedarfe – von Gebäuden bis zur Industrie – miteinbeziehen. Entscheiderinnen und Entscheider aus Politik, Wirtschaft und Gesellschaft finden in diesem Papier erste Anhaltspunkte und Impulse für diese wichtige, gemeinsame Aufgabe.

Das Papier hat die Initiative IN4climate.NRW unter dem Dach der Landesgesellschaft NRW.Energy4Climate erarbeitet. Mitgetragen wird es von den Instituten Fraunhofer UMSICHT, RWTH Aachen (Lehrstuhl Technische Thermodynamik), der Forschungseinrichtung des VDZ sowie dem Wuppertal Institut, den Unternehmen Amprion, Currenta, Deutsche Rohstofftechnik (RHM-Gruppe), Georgsmarienhütte, Kabel Premium Pulp and Paper, Lhoist, Pilkington Deutschland (NSG Group) und Speira sowie dem Bundesverband Glasindustrie.

Quelle:

Fraunhofer-Institut für Umwelt-, Sicherheits- und Energietechnik UMSICHT

Nicolas Meletiou, Pixabay
01.03.2022

Textilien und die Umwelt: die Rolle des Designs in Europas Kreislaufwirtschaft

Aus der Sicht des europäischen Verbrauchs haben Textilien im Durchschnitt die viertgrößten negativen Auswirkungen auf die Umwelt und den Klimawandel, nach Lebensmitteln, Wohnraum und Mobilität. Eine Umstellung auf ein zirkuläres Produktions- und Verbrauchssystem für Textilien mit längerer Nutzungsdauer und mehr Wiederverwendung und Recycling könnte diese Auswirkungen zusammen mit einer Reduzierung des Gesamtverbrauchs verringern. Eine wichtige Maßnahme ist ein kreislauffähiges Design (Circular Design) von Textilien, um die Haltbarkeit, Reparierbarkeit und Wiederverwertbarkeit von Produkten zu verbessern und die Verwendung von Sekundärrohstoffen in neuen Produkten zu gewährleisten.

Aus der Sicht des europäischen Verbrauchs haben Textilien im Durchschnitt die viertgrößten negativen Auswirkungen auf die Umwelt und den Klimawandel, nach Lebensmitteln, Wohnraum und Mobilität. Eine Umstellung auf ein zirkuläres Produktions- und Verbrauchssystem für Textilien mit längerer Nutzungsdauer und mehr Wiederverwendung und Recycling könnte diese Auswirkungen zusammen mit einer Reduzierung des Gesamtverbrauchs verringern. Eine wichtige Maßnahme ist ein kreislauffähiges Design (Circular Design) von Textilien, um die Haltbarkeit, Reparierbarkeit und Wiederverwertbarkeit von Produkten zu verbessern und die Verwendung von Sekundärrohstoffen in neuen Produkten zu gewährleisten.

Kernaussagen
Im Jahr 2019 erzielte der Textil- und Bekleidungssektor der EU einen Umsatz von 162 Mrd. EUR und beschäftigte über 1,5 Millionen Menschen in 160 000 Unternehmen. Wie in vielen anderen Branchen hat die COVID-19-Krise zwischen 2019 und 2020 zu einem Umsatzrückgang von 9 % für Textilien insgesamt und von 17 % für Bekleidung geführt.

  • Im Jahr 2020 hatte der Textilkonsum in Europa im Durchschnitt die vierthöchsten Auswirkungen auf die Umwelt und den Klimawandel aus einer globalen Lebenszyklusperspektive. Er war der Verbrauchsbereich mit den dritthöchsten Auswirkungen auf Wasser- und Landnutzung und den fünfthöchsten in Bezug auf den Rohstoffverbrauch und die Treibhausgasemissionen.
  • Um die Umweltauswirkungen von Textilien zu verringern, ist eine Umstellung auf zirkuläre Geschäftsmodellen, einschließlich kreislauffähigen Designs (Circular Design), entscheidend. Dazu sind technische, soziale und geschäftsmodellbezogene Innovationen erforderlich, aber auch Verhaltensänderungen und politische Unterstützung.
  • Kreislauffähiges Design (Circular Design) ist ein wichtiger Wegbereiter für den Übergang zu einer nachhaltigen Produktion und einem nachhaltigen Verbrauch von Textilien durch Kreislaufgeschäftsmodellen. Die Entwurfsphase spielt bei jedem der vier Wege zur Verwirklichung einer kreislauffähigen Textilbranche eine entscheidende Rolle: Langlebigkeit und Haltbarkeit, optimierte Ressourcennutzung, Sammlung und Wiederverwendung sowie Recycling und Materialnutzung.

Textilien werden im EU-Aktionsplan für die Kreislaufwirtschaft als eine der wichtigsten Wertschöpfungsketten bezeichnet und in der bevorstehenden EU-Strategie 2022 der Europäischen Kommission für nachhaltige und kreislauffähige Textilien und der EU-Initiative für nachhaltige Produkte behandelt. Dieses Briefing zielt darauf ab, das Verständnis der Umwelt- und Klimaauswirkungen von Textilien aus einer europäischen Perspektive zu verbessern und Gestaltungsprinzipien und Maßnahmen zur Erhöhung der Kreislauffähigkeit von Textilien zu identifizieren. Es stützt sich auf einen Bericht des „European Topic Centre on Circular Economy and Resource Use“ der EUA, der hier (auf Englisch) verfügbar ist.

1. Produktion, Handel und Verbrauch von Textilien
Textilien sind ein wichtiger Wirtschaftszweig in der EU. Im Jahr 2019 erwirtschaftete der Textil- und Bekleidungssektor der EU einen Umsatz von 162 Mrd. EUR und beschäftigte über 1,5 Millionen Menschen in 160.000 Unternehmen. Wie in vielen anderen Branchen ging der Umsatz zwischen 2019 und 2020 aufgrund der Gesundheits- und Wirtschaftskrise COVID-19 bei Textilien insgesamt um 9 % und bei Bekleidung um 17 % zurück (Euratex, 2021).

Verbrauch
Die europäischen Haushalte verbrauchen große Mengen an Textilwaren. Im Jahr 2019 gaben die Europäerinnen und Europäer wie schon 2018 im Durchschnitt 600 EUR für Bekleidung, 150 EUR für Schuhe und 70 EUR für Heimtextilien aus (Köhler et al., 2021; Eurostat, 2021b).

Die Reaktion auf die COVID-19-Pandemie, die mit Maßnahmen zum zu Hause bleiben und der Schließung von Unternehmen sowie Geschäften einherging, führte insgesamt zu einem Rückgang der Textilproduktion und der Nachfrage (Euratex, 2021). Infolgedessen ging der Pro-Kopf-Verbrauch von Bekleidung und Schuhen im Jahr 2020 gegenüber 2019 zurück, während der Verbrauch von Heimtextilien leicht anstieg. Der durchschnittliche Textilverbrauch pro Person belief sich im Jahr 2020 auf 6,0 kg Bekleidung, 6,1 kg Heimtextilien und 2,7 kg Schuhe (siehe Abbildung 1).

Abgesehen von diesem COVID-bedingten Rückgang des Verbrauchs im Jahr 2020 blieb der geschätzte Verbrauch von Bekleidung und Schuhen in den letzten zehn Jahren relativ konstant, mit leichten Schwankungen zwischen den Jahren (siehe Abbildung 2). Gleiches gilt für den Verbrauch von Heimtextilien, mit einem leichten Anstieg im Laufe des Jahrzehnts.

Bei der Berechnung des "geschätzten Verbrauchs" auf der Grundlage von Produktions- und Handelsdaten aus dem Jahr 2020, ausgenommen sind industrielle/technische Textilien und Teppiche, liegt der Gesamttextilverbrauch bei 15 kg pro Person und Jahr, die sich im Durchschnitt wie folgt zusammensetzen:

  • 6,0 kg Bekleidung
  • 6,1 kg Heimtextilien
  • 2,7 kg Schuhe.

2. Umwelt- und Klimaauswirkungen von Textilien
Die Produktion und der Konsum von Textilien haben erhebliche Auswirkungen auf die Umwelt und den Klimawandel. Umweltauswirkungen in der Produktionsphase ergeben sich aus dem Anbau und der Produktion von Naturfasern wie Baumwolle, Hanf und Leinen (z. B. Nutzung von Land und Wasser, Düngemittel und Pestizide) und aus der Produktion von Kunstfasern wie Polyester und Elastan (z. B. Energieverbrauch, chemische Ausgangsstoffe) (ETC/WMGE, 2021b). Die Herstellung von Textilien erfordert große Mengen an Energie und Wasser und verwendet eine Vielzahl von Chemikalien in verschiedenen Produktionsprozessen. Vertrieb und Einzelhandel sind für Transportemissionen und Verpackungsabfälle verantwortlich.

Bei der Nutzung und Pflege - Waschen, Trocknen und Bügeln - werden Strom, Wasser und Waschmittel benötigt. Auch Chemikalien und Mikrofasern werden in das Abwasser abgegeben. Gleichzeitig tragen Textilien mit erheblichen Mengen zu Textilabfällen bei. Am Ende ihrer Lebensdauer landen Textilien oft im allgemeinen Abfall und werden verbrannt oder deponiert. Bei der getrennten Sammlung von Textilabfällen werden die Textilien je nach ihrer Qualität und Materialzusammensetzung sortiert und wiederverwendet, recycelt oder entsorgt. Im Jahr 2017 wurde geschätzt, dass weniger als 1 % aller Textilien weltweit zu neuen Produkten recycelt werden (Ellen MacArthur Foundation, 2017).

Um das Ausmaß der Auswirkungen des Textilverbrauchs auf den Rohstoffverbrauch, die Wasser- und Flächennutzung und die Treibhausgasemissionen im Vergleich zu anderen Verbrauchskategorien zu veranschaulichen, hat die Europäische Umweltagentur ihre Berechnungen der Umwelt- und Klimaauswirkungen des Lebenszyklus in der EU aktualisiert. Verwendet wurden Input-Output-Modelle auf der Grundlage von Daten aus der Exiobase-Datenbank und von Eurostat. Im Einklang mit dem geringeren Textilverbrauchsniveau im Jahr 2020 aufgrund der COVID-19-Pandemie sind die Umweltauswirkungen von 2019 auf 2020 zurückgegangen.

Verwendung von Rohstoffen
Für die Textilproduktion werden große Mengen an Rohstoffen eingesetzt. Für die Herstellung aller von den EU-Haushalten im Jahr 2020 gekauften Bekleidung, Schuhe und Heimtextilien wurden schätzungsweise 175 Millionen Tonnen Primärrohstoffe verwendet, was rund 391 kg pro Person entspricht. Etwa 40 % davon entfallen auf Kleidung, 30 % auf Heimtextilien und 30 % auf Schuhe. Damit sind Textilien die fünftgrößte Verbrauchskategorie in Europa in Bezug auf den Primärrohstoffverbrauch (siehe Abbildung 3).

Zu den Rohstoffen gehören alle Arten von Materialien, die bei der Herstellung von Natur- und Kunstfasern verwendet werden, wie fossile Brennstoffe, Chemikalien und Düngemittel. Dazu gehören auch alle Baumaterialien, Mineralien und Metalle, die für den Bau von Produktionsanlagen verwendet werden. Auch der Transport und der Handel mit den Textilwaren sind eingeschlossen. Nur 20 % dieser Primärrohstoffe werden in Europa hergestellt oder gewonnen, der Rest wird außerhalb Europas gewonnen.

Dies zeigt den globalen Charakter der textilen Wertschöpfungskette und die hohe Ab-hängigkeit des europäischen Verbrauchs von Importen. Dies bedeutet, dass 80 % der durch den europäischen Textilkonsum verursachten Umweltauswirkungen außerhalb Europas stattfinden. So finden beispielsweise der Baumwollanbau, die Faserproduktion und die Bekleidungsherstellung hauptsächlich in Asien statt (ETC/WMGE, 2019).

Wasserverbrauch
Für die Herstellung und Verarbeitung von Textilien werden große Mengen an Wasser benötigt. Bei der Wassernutzung wird zwischen "blauem" Wasser (Oberflächenwasser oder Grundwasser, das bei der Bewässerung, bei industriellen Prozessen oder im Haushalt verbraucht wird oder verdunstet) und "grünem" Wasser (im Boden gespeichertes Regenwasser, das in der Regel zum Anbau von Pflanzen verwendet wird) unterschieden (Hoekstra et al., 2012).
 
Für die Herstellung aller von den EU-Haushalten im Jahr 2020 gekauften Bekleidung, Schuhe und Heimtextilien wurden etwa 4.000 Millionen m³ blaues Wasser benötigt, das sind 9 m³ pro Person, womit der Wasserverbrauch für Textilien an dritter Stelle nach Lebensmitteln sowie Freizeit und Kultur steht (siehe Ab-bildung 4).

Zusätzlich wurden etwa 20.000 Millionen m³ grünes Wasser verwendet, hauptsächlich für die Baumwollproduktion, was 44 m³ pro Person entspricht. Blaues Wasser wird zu etwa gleichem Anteil für die Herstellung von Kleidung (40 %), Schuhen (30 %) sowie Heim- und anderen Textilien (30 %) verwendet. Grünes Wasser wird hauptsächlich für die Herstellung von Kleidung (fast 50 %) und Heimtextilien (30 %) ver-braucht, wobei die Baumwollproduktion den größten Anteil hat.

Der Wasserverbrauch für in Europa verbrauchte Textilien findet größtenteils außerhalb Europas statt. Es wird geschätzt, dass für die Herstellung von 1 kg Baumwolle etwa 10 m³ Wasser benötigt werden, in der Regel außerhalb Europas (Chapagain et al., 2006).

Landnutzung
Die Herstellung von Textilien, insbesondere von Naturtextilien, erfordert große Mengen an Land. Der Flächenverbrauch in der Lieferkette für Textilien, die von europäischen Haushalten im Jahr 2020 gekauft werden, wird auf 180.000 km² geschätzt, das sind 400 m² pro Person. Nur 8 % der verbrauchten Flächen befinden sich in Europa. Über 90 % der Auswirkungen auf die Flächennutzung finden außerhalb Europas statt, hauptsächlich im Zusammenhang mit der (Baumwoll-)Faserproduktion in China und Indien (ETC/WMGE, 2019). Fasern auf Tierbasis, wie Wolle, haben ebenfalls erhebliche Auswirkungen auf die Landnutzung (Lehmann et al., 2018). Damit ist der Textilsektor der Sektor mit den dritthöchsten Auswirkungen auf die Flächennutzung, nach Nahrungsmitteln und Wohnraum (siehe Abbildung 5). Davon fallen 43 % auf Kleidung, 35 % auf Schuhe (einschließlich Lederschuhen, die aufgrund des Bedarfs an Viehweiden eine hohe Auswirkung auf die Landnutzung haben) und 23 % auf Heim- und andere Textilien.

Treibhausgasemissionen
Die Herstellung und der Verbrauch von Textilien verursachen Treibhausgasemissionen, insbesondere durch die Gewinnung von Ressourcen, die Produktion, das Waschen und Trocknen sowie die Abfallverbrennung. Im Jahr 2020 verursachte die Herstellung von Textilwaren, die in der EU konsumiert wurden, Treibhausgasemissionen von insgesamt 121 Millionen Tonnen Kohlendioxidäquivalent (CO2e), was 270 kg CO2e pro Person entspricht. Damit sind Textilien der Verbrauchsbereich der Haushalte, der für die fünftgrößten Auswirkungen auf den Klimawandel verantwortlich ist, nach Wohnen, Ernährung, Verkehr und Mobilität sowie Freizeit und Kultur (siehe Abbildung 6). Davon entfallen 50 % auf Kleidung, 30 % auf Haushalts- und andere Textilien und 20 % auf Schuhe. Die Treibhausgasemissionen wirken sich zwar weltweit aus, aber fast 75 % werden außerhalb Europas freigesetzt, vor allem in den wichtigen textilproduzierenden Regionen in Asien (ETC/WMGE, 2019).

Etwa 80 % der gesamten Klimaauswirkungen von Textilien entstehen in der Produktionsphase. Weitere 3 % entstehen im Vertrieb und Einzelhandel, 14 % in der Nutzungsphase (Waschen, Trocknen und Bügeln) und 3 % am Ende des Lebenszyklus (Sammlung, Sortierung, Recycling, Verbrennung und Entsorgung) (ECOS, 2021; Östlund et al., 2020).

Textilien aus Naturfasern, wie z. B. Baumwolle, haben im Allgemeinen die geringsten Klimaauswirkungen. Textilien aus synthetischen Fasern (insbesondere Nylon und Acryl) haben im Allgemeinen eine höhere Klimabelastung, da sie aus fossilen Brennstoffen hergestellt werden und bei der Produktion Energie verbraucht wird (ETC/WMGE, 2021b; Beton et al., 2014).

3. Design als Wegbereiter für zirkuläre Geschäftsmodelle für Textilien
Um die Auswirkungen von Textilien auf die Umwelt und den Klimawandel zu verringern, ist die Umstellung auf zirkuläre Geschäftsmodelle von entscheidender Bedeutung, um Rohstoffe, Energie, Wasser und Landnutzung, Emissionen und Abfall einzusparen (ETC/WMGE, 2019). Die Umsetzung und Skalierung von Kreislaufwirtschaftsmodellen erfordert technische, soziale und geschäftsmodellbezogene Innovationen sowie die Förderung von Politik, Konsum und Bildung (EUA, 2021).

Kreislauffähiges Design ist ein wichtiger Bestandteil von zirkulären Geschäftsmodellen für Textilien. Es kann eine höhere Qualität, eine längere Lebensdauer, eine bessere Nutzung von Materialien und bessere Optionen für Wiederverwendung und Recycling gewährleisten. Während es wichtig ist, das Recycling und die Wiederverwendung von Materialien zu ermöglichen, sollten lebensverlängernde Strategien, wie z. B. Design für Langlebigkeit, einfache Wiederverwendung, Reparatur und Wiederaufbereitung, Vorrang haben. Die Vermeidung der Verwendung gefährlicher Chemikalien und die Begrenzung der Schadstoffemissionen und der Freisetzung von Mikroplastik in allen Phasen des Lebenszyklus sollten in die Produktgestaltung einbezogen werden.

Das Design für Kreislaufwirtschaft ist die jüngste Entwicklung im Design für Nachhaltigkeit. Die Ausweitung eines technischen und produktorientierten Fokus auf Veränderungen auf Systemebene (unter Berück-sichtigung von Produktions- und Verbrauchssystemen) zeigt, dass diese jüngste Entwicklung viel mehr Disziplinen erfordert als das traditionelle technische Design. Das Produktdesign als Bestandteil eines kreislauforientierten Geschäftsmodells hängt vom Verbraucherverhalten und den Richtlinien ab, um sein Potenzial auszuschöpfen und seine Umsetzung zu ermöglichen. Abbildung 7 zeigt die Zusammenhänge zwischen dem Kreislaufwirtschaftsmodell, dem Produktdesign, dem Verbraucherverhalten und den Richtlinien. Sie alle sind notwendig, um den Zyklus zu verlangsamen und zu schließen, damit er kreislauffähig wird.

Quelle:

Europäische Umweltagentur
Übersetzung durch Textination

08.02.2022

Frühwarnsystem für Demenz mit einem Textilgurt

Alzheimer und andere Demenzerkrankungen gehören heute zu den grossen Volksleiden. Die Diagnose ist aufwändig und wird oft erst spät im Krankheitsverlauf zweifelsfrei gestellt. Ein Forscherteam der Empa entwickelt nun gemeinsam mit klinischen Partnern eine neue Diagnose-Methode zur Früherkennung von neurodegenerativen Veränderungen über einen Sensor-Gurt.

Vergesslichkeit und Verwirrtheit können Anzeichen für ein bisher unheilbares Leiden sein: die Alzheimer Krankheit. Sie ist die häufigste Demenzerkrankung, die derzeit insgesamt rund 50 Millionen Menschen weltweit betreffen. Es erkranken vor allem ältere Menschen. Dass diese Zahl künftig stark zunehmen wird, hängt daher auch mit der allgemein steigenden Lebenserwartung zusammen.

Alzheimer und andere Demenzerkrankungen gehören heute zu den grossen Volksleiden. Die Diagnose ist aufwändig und wird oft erst spät im Krankheitsverlauf zweifelsfrei gestellt. Ein Forscherteam der Empa entwickelt nun gemeinsam mit klinischen Partnern eine neue Diagnose-Methode zur Früherkennung von neurodegenerativen Veränderungen über einen Sensor-Gurt.

Vergesslichkeit und Verwirrtheit können Anzeichen für ein bisher unheilbares Leiden sein: die Alzheimer Krankheit. Sie ist die häufigste Demenzerkrankung, die derzeit insgesamt rund 50 Millionen Menschen weltweit betreffen. Es erkranken vor allem ältere Menschen. Dass diese Zahl künftig stark zunehmen wird, hängt daher auch mit der allgemein steigenden Lebenserwartung zusammen.

Soll ein Verdacht auf Demenz abgeklärt werden, stehen für die Betroffenen neuropsychologische Untersuchungen, Labortests und aufwändige Prozeduren im Spital an. Doch bereits Jahrzehnte bevor eine verminderte Denkleistung auffällt, sind erste neurodegenerative Veränderungen im Gehirn nachweisbar. Derzeit lassen sich diese lediglich durch teure oder invasive Verfahren feststellen. Für ein ausgedehntes frühzeitiges Screening im grösseren Massstab eignen sich diese Methoden daher nicht. Empa-Forschende arbeiten gemeinsam mit Partnern des Kantonsspital und der Geriatrischen Klinik St. Gallen an einer nicht-invasiven Diagnose-Methode zur frühzeitigen Erkennung von Symptomen einer Demenzerkrankung.

Anzeichen im Unbewussten
Für das neue Verfahren baute das Forscherteam um Patrick Eggenberger und Simon Annaheim vom «Biomimetic Membranes and Textiles» Labor der Empa in St. Gallen auf einen Sensor-Gurt, der bereits erfolgreich für EKG-Messungen eingesetzt und nun mit Sensoren für weitere relevante Parameter wie Körpertemperatur und Gangmuster ausgerüstet wurde. Denn bevor bei einer Demenz das Erinnerungsvermögen nachlässt, tauchen feinste Veränderungen im Gehirn auf, die sich über das autonome Nervensystem, das unbewusste Körpervorgänge steuert, äussern.

Für die präzise Erfassung von Veränderungen dieser Parameter werden Messungen über einen längeren Zeitraum benötigt. «Die Langzeitmessungen sollten in den Alltag integrierbar sein», betont Simon Annaheim. Für alltagstaugliche Messungen sind hautverträgliche und komfortable Messsysteme unabdingbar. Der Diagnostik-Gurt basiert daher auf flexiblen Sensoren mit elektrisch leitfähigen bzw. lichtleitenden Fasern sowie Sensoren für Bewegungs- und Temperaturmessung.

Damit derartigen Langzeitmessungen für die Kontrolle der kognitiven Gesundheit genutzt werden können, werden die erfassten Daten von den Forschenden in eigens entwickelte mathematische Modelle integriert. Das Ziel: ein Frühwarnsystem, das den Verlauf von kognitiven Einschränkungen abschätzen kann. Ein weiterer Vorteil: Die Datenmessungen lassen sich in Telemonitoringlösungen einbinden und können so die Patientenbetreuung in einer gewohnten Umgebung verbessern.

Verdächtige Monotonie
Grundsätzlich ist der menschliche Körper in der Lage, seine Temperatur im Bereich von 1 Grad Celsius konstant zu halten. Im Tagesverlauf treten chrakteristische Schwankungen dieser Werte auf. Dieser tägliche Rhythmus ändert sich im Alter und ist bei neurodegenerativen Krankheiten wie Demenz oder Parkinson auffällig. Bei Alzheimer-Patienten ist beispielsweise die Körperkerntemperatur um bis zu 0.2 Grad Celsius erhöht. Gleichzeitig sind die Ausschläge der täglichen Temperaturschwankungen gedämpft.

In einer aktuellen Studie konnten die Forschenden nun zeigen, dass mit dem Sensor-Gurt gemessene veränderte Hauttemperaturwerte tatsächlich einen Hinweis auf die kognitive Leistungsfähigkeit von Testpersonen geben – und zwar bevor eine Demenzerkrankung auftritt. Unter den Testpersonen der Studien waren gesunde Menschen mit oder ohne leichte Hirnleistungsstörung. Diese milde kognitive Beeinträchtigung (engl. mild cognitive impairment, MCI) stellt keine Behinderung im Alltag dar, sie gilt aber als eine mögliche Vorstufe von Alzheimer. Die Versuchspersonen nahmen an Langzeitmessungen und an neuropsychologischen Tests teil. Es stellte sich heraus, dass eine niedrigere Körpertemperatur, die über den Tag stärker schwankt, mit einer besseren Hirnleistung verknüpft war. Bei Personen mit MCI variierte die Körpertemperatur weniger und war insgesamt leicht erhöht.

Auch der Herzschlag ist natürlichen Schwankungen unterworfen, die zeigen, wie sich unser Nervensystem an momentane Herausforderungen anpasst. Die kleine Stille zwischen zwei Herzschlägen, rund eine Sekunde kurz, hat grosse Aussagekraft für unsere Gesundheit: Bleibt die Pause stets gleich, ist das Nervensystem nicht in Höchstform.

In einer Studie von Forschenden der ETH Zürich wurde ermittelt, dass sich schlechtere Messwerte bei älteren, gesunden Menschen durch ein kognitiv-motorisches Tanztraining innerhalb von sechs Monaten verbessern liessen. Die Versuchspersonen tanzten bei diesen «Exergames» Schrittfolgen eines Videos nach. Teilnehmende, die stattdessen lediglich geradeaus auf einem Laufband trainierten, zudem aber ihr Gedächtnis schulten, profitierten dagegen weniger.

«Es geht darum, mit einem geeigneten Training frühzeitig einzugreifen, sobald sich erste negative Anzeichen messen lassen», sagt Patrick Eggenberger. «Mit unserem Sensor-System lassen sich allfällige Verbesserungen der kognitiven Leistung durch bewegungsbasierte Therapieformen verfolgen.» Über Studien mit Langzeitmessungen soll nun geklärt werden, wie sich anhand der Sensor-Messungen der Verlauf von milden Hirnleistungsstörungen vorhersagen lässt.

Informationen
Dr. Simon Annaheim
Biomimetic Membranes and Textiles
Tel. +41 58 765 77 68
Simon.Annaheim@empa.ch

Quelle:

EMPA, Andrea Six

Foto: pixabay
04.01.2022

EU Projekt: Kreislaufwirtschaft und innovatives Recycling von Textilien

Das dreijährige im Rahmen des Programms Horizon 2020 EU-finanzierte Projekt SCIRT steht für "System Circularity & Innovative Recycling of Textiles" und wird von VITO, einer unabhängigen flämischen Forschungsorganisation im Bereich Cleantech und nachhaltige Entwicklung, koordiniert.

Ziel des Projekts ist die Darstellung eines vollständigen Textil-zu-Textil-Recyclingsystems für ausrangierte Kleidung - oder Post-Consumer-Textilien - unter Einbeziehung aller Akteure der Wertschöpfungskette und mit Schwerpunkt auf dem Recycling von Naturfasern, Kunstfasern und Fasermischungen. Um dieses Ziel zu erreichen, hat sich das Projekt vier Hauptziele gesetzt.

Das dreijährige im Rahmen des Programms Horizon 2020 EU-finanzierte Projekt SCIRT steht für "System Circularity & Innovative Recycling of Textiles" und wird von VITO, einer unabhängigen flämischen Forschungsorganisation im Bereich Cleantech und nachhaltige Entwicklung, koordiniert.

Ziel des Projekts ist die Darstellung eines vollständigen Textil-zu-Textil-Recyclingsystems für ausrangierte Kleidung - oder Post-Consumer-Textilien - unter Einbeziehung aller Akteure der Wertschöpfungskette und mit Schwerpunkt auf dem Recycling von Naturfasern, Kunstfasern und Fasermischungen. Um dieses Ziel zu erreichen, hat sich das Projekt vier Hauptziele gesetzt.

  • Bereitstellung einer geschlossenen Recyclinglösung für Alttextilien.
  • Anregung und Förderung eines bewussten Designs und einer bewussten Produktionspraxis.
  • Schaffung neuer Geschäftsmöglichkeiten durch Förderung der textilen Wertschöpfungskette.
  • Bewusstsein für die ökologischen und sozialen Auswirkungen des Kleidungskaufs schaffen.

Das Projekt SCIRT, an dem 18 Partner aus fünf Ländern beteiligt sind, wurde Mitte 2021 virtuell gestartet, um das Problem des Abfalls und der Wiederverwertbarkeit von Kleidungsstücken anzugehen, eine der größten Herausforderungen für die Modeindustrie von heute.

Während sich Bekleidungsmarken ehrgeizige Ziele setzen und versprechen, recycelte Fasern in ihre Produkte einzubauen, stapeln sich die ausrangierten Textilien rund um den Globus in Hülle und Fülle. Obwohl es so den Anschein hat, dass Angebot und Nachfrage für diesen Teil der Kreislaufwirtschaft im Einklang stehen, werden laut einem 2017 veröffentlichten Bericht der Ellen MacArthur Foundation weniger als 1 % des Textilabfalls zu neuen Textilfasern recycelt. Dieser winzige Prozentsatz deutet auf ein größeres Problem hin: Die Verwirklichung der Kreislaufwirtschaft in der Modeindustrie ist nicht nur eine Frage von Angebot und Nachfrage, sondern der Verbindung zwischen beiden. Es mangelt an Wissen über die technologische, wirtschaftliche und ökologische Machbarkeit des Recyclings von Fasermischungen, und es besteht die Notwendigkeit, die Qualität und die Kosten von Recyclingprozessen mit den Anforderungen von Textilunternehmen und Modemarken in Einklang zu bringen.

SCIRT wird Lösungen entwickeln, um systemische Innovationen für ein stärker kreislauforientiertes Bekleidungssystem zu unterstützen und diese Lücke zwischen Angebot und Nachfrage zu schließen. Um die Nachfrageseite der Gleichung anzugehen, wird SCIRT ein umfassendes Textil-zu-Textil-Recycling-System für aus-rangierte Kleidung, auch bekannt als Post-Consumer-Textilien, demonstrieren, das die Akteure der gesamten Wertschöpfungskette einbezieht und sich auf das Recycling von Natur- und Kunstfasern sowie Fasermischungen konzentriert. Mit Unterstützung von technischen Partnern und Forschungsinstituten werden die Bekleidungsmarken Decathlon, Petit Bateau, Bel & Bo, HNST und Xandres sechs verschiedene repräsentative Kleidungsstücke aus recycelten Post-Consumer-Fasern entwickeln, prototypisieren und produzieren. Dazu gehören formelle und legere Kleidung, Sportbekleidung, Unterwäsche und Uniformen. Dabei wird SCIRT den Schwerpunkt auf Qualität und Kosteneffizienz legen, um das Vertrauen des Marktes zu gewinnen und die breite Verwendung von Post-Consumer-Recyclingfasern zu fördern.

Aus einer nichttechnologischen Perspektive wird SCIRT unterstützende strategische Maßnahmen und Instrumente entwickeln, um den Übergang zu einem Kreislaufsystem für Bekleidung zu erleichtern. Dazu gehören ein Konzept für ein ökologisch moduliertes System der erweiterten Herstellerverantwortung (EPR) und ein True-Cost-Modell zur Quantifizierung der Kreislaufwirtschaft und zur Erhöhung der Transparenz der Wertschöpfungskette. Besondere Aufmerksamkeit wird auch der Verbraucherperspektive gewidmet. Zu diesem Zweck werden Citizen Labs, die Verbraucher an verschiedenen europäischen Standorten einbeziehen, sowie eine breitere Online-Engagement-Plattform entwickelt, um die Bevölkerung während des gesamten Projekts einzubeziehen, um so die Wahrnehmungen, Motivationen und Emotionen zu verstehen, die ihr Verhalten in Bezug auf den Kauf, die Nutzung und die Entsorgung von Textilien bestimmen.

In den nächsten drei Jahren werden die SCIRT-Projektpartner daran arbeiten, die derzeitigen technologischen, wirtschaftlichen, sozioökonomischen und regulatorischen Hindernisse für das Textilrecycling zu überwinden, um eine echte, dauerhafte Kreislaufwirtschaft für die Bekleidungsindustrie zu schaffen.

2021:
Das SCIRT-Projekt läuft an, und die Partner ermitteln den aktuellen Stand in den Bereichen Bekleidungsdesign, -produktion und -recycling, Herausforderungen und Markttrends sowie die Bedürfnisse der Interessengruppen.

2022:
Entwicklung und Erprobung eines Faser-zu-Faser-Systems zur Herstellung recycelter Garne und Fasern, die frei von schädlichen Substanzen sind.

2023:
Formelle Kleidung, Freizeitkleidung, Sportbekleidung, Unterwäsche und Uniformen werden unter Einsatz der entwickelten optimierten Garne entworfen und hergestellt.

Partners

  • Modeunternehmen: Bel&Bo, HNST, Decathlon, Xandres, Petit Bateau
  • Forschungseinrichtungen: VITO, CETI, Prospex Institute
  • Universitäten: BOKU, TU Wien, ESTIA
  • Akteure der Branche: Altex, AVS Spinning - A European Spinning Group (ESG) Company, Valvan
  • KMUs: Circular.fashion, FFact
  • Non-profit Organisationen: Flanders DC, IID-SII

 

ALTEX
ALTEX ist ein in Deutschland ansässiges Textilrecyclingunternehmen, das mit Hilfe modernster Maschinen Textilabfälle zu neuen, hochwertigen Produkten recycelt. Zu den Produkten gehören unter anderem Reißfasern, Naturfasern, Kunstfasern und Fasermischungen.

Bel & Bo
Bel&Bo ist ein belgisches Familienunternehmen mit rund 95 Einzelhandelsgeschäften in ganz Belgien. Sein Ziel ist es, farbenfrohe, modische und nachhaltig produzierte Kleidung für Männer, Frauen und Kinder zu einem erschwinglichen Preis anzubieten.

CETI
Das Europäische Zentrum für innovative Textilien (CETI) ist eine gemeinnützige Organisation, die sich der Entwicklung, Erprobung und Prototypisierung innovativer textiler Materialien und Produkte durch private und gemeinschaftliche Forschungs- und Entwicklungsprojekte widmet.

circular.fashion
circular.fashion bietet Software für Kreislauf-Design, intelligente Textilsortierung und Kreislauf-Recycling, einschließlich der Circular Design Software und der circularity.ID®, sowie Schulungen und praktische Unterstützung für Modemarken an.

Decathlon
Mit mehr als 315 Geschäften in Frankreich und 1.511 auf der ganzen Welt ist Decathlon seit 1976 ein innovatives Unternehmen, das sich zum Hauptakteur für sportliche Menschen entwickelt hat. Das Unternehmen setzt sich für die Reduzierung der Umweltauswirkungen durch eine Reihe von Maßnahmen ein.

ESG
Die European Spinning Group (ESG) ist ein Textilkonzern mit Sitz in Belgien, der eine Reihe von Garnen anbietet, die mit einer hochtechnologischen Open-End-Spinnerei für verschiedene Anwendungen hergestellt werden, z. B. für Heimtextilien, Mode und technische Textilien.

ESTIA
ESTIA ist ein französi-sches Institut, das seit 20 Jahren Aus- und Weiterbildungen im Bereich der industriellen Technologien anbietet. Seit 2017 hat ESTIA ein Programm, das sich auf neue Materialien und disruptive Prozesse in der Mode- und Textilindustrie konzentriert.

FFACT
FFact ist eine Gruppe von Unternehmensberatern, die die Umsetzung von Nachhaltigkeit aus unternehmerischer Sicht erleichtert und Fakten in nützliche Managementinformationen umsetzt. FFact hat seinen Sitz in den Niederlanden und Belgien.

Flanders DC
Die Flanders District of Creativity, eine gemeinnützige Organisation mit Sitz in Belgien, informiert, coacht, fördert und inspiriert kreative Unternehmer in verschiedenen Branchen, einschließlich der Modeindustrie, die ihr Unternehmen aufbauen oder erweitern möchten.

HNST
HNST ist eine belgische Circular-Denim-Marke, die gebrauchte Jeans zurückgewinnt und in der EU zu neuen Stoffen recycelt. So entstehen haltbare und zu 100 % recycelbare Jeans, die 82 % weniger Wasser verbrauchen und 76 % weniger Kohlendioxid ausstoßen als herkömmliche Jeans.

Petit Bateau
Petit Bateau ist eine französische Bekleidungsmarke, die sich auf Strickwaren spezialisiert hat. Als vertikales Unternehmen führt Petit Bateau sein eigenes Stricken, Färben, Konfektionieren und Ladenmanagement mit der Unterstützung von 3.000 Mitarbeitern durch.

Prospex Institute
Das Prospex-Institut hat sich zum Ziel gesetzt, die Beteiligung von Bürgern und Interessenvertretern an einem gesellschaftlich relevanten Entscheidungsdialog und an der Entwicklung zu fördern, indem es mit Theoretikern und Praktikern in Belgien und im Ausland zusammenarbeitet.

IID-SII
Das Institut für nachhaltige Innovation ist ein französischer gemeinnütziger Verband mit Sitz in Paris. Das IID-SII wurde von LGI, einem französischen KMU, initiiert und hat die Aufgabe, als Denkfabrik für nachhaltige Innovationen zu fungieren, um die Einführung neuer Lösungen zu unterstützen.

TU Wien
Die TU Wien ist eine offene wissenschaftliche Einrichtung, an der seit 200 Jahren unter dem Motto "Technik für Menschen" geforscht, gelehrt und gelernt wird. Einer ihrer Forschungsschwerpunkte liegt in den Bereichen Recyclingtechnologie und Faserinnovation

BOKU
Die Forschung am Institut für Umweltbiotechnologie der BOKU in Wien konzentriert sich auf die Nutzung von Enzymen als leistungsstarke Biokatalysatoren für die Verarbeitung von Biomaterialien im Rahmen von Recyclinganwendungen.

Valvan
Valvan Baling Systems verfügt über 30 Jahre Erfahrung in der Entwicklung und dem Bau von maßgeschneiderten Maschinen und ist spezialisiert auf Ballenpressen und Sortieranlagen für Faserhersteller, Sammler, Sortierer und Recycler von Textilien.

VITO
VITO, eine führende unabhängige europäische Forschungs- und Technologieorganisation in den Bereichen Cleantech und nachhaltige Entwicklung, zielt darauf ab, den Übergang zu einer nachhaltigen Gesellschaft durch die Entwicklung nachhaltiger Technologien zu beschleunigen.

Xandres
Xandres ist eine Marke, die von und für Frauen inspiriert ist. Sie ist in einer hoch angesehenen Modetradition verwurzelt, von Qualität getrieben und für das Leben, das Frauen heute führen, geschaffen. Xandres bietet innovative Designs mit Rücksicht auf Luxus und Umwelt.

14.12.2021

Förderprojekt Rohstoffklassifizierung recycelter Fasern

Schon seit Jahrhunderten werden aus Alttextilien Reißfasern hergestellt und zu neuen textilen Produkten verarbeitet. Dieses effektive Recycling ist einer der ältesten Materialkreisläufe der Welt. Heute geht es nicht nur um Bekleidung, sondern auch um hochwertige technische Textilien. So wie sich die Produkte der Textilindustrie weiterentwickeln, steigen auch die Anforderungen an das Textilrecycling. Grundlage dafür sind eine klare Beurteilung und Klassifizierung der Rohstoffe.

Schon seit Jahrhunderten werden aus Alttextilien Reißfasern hergestellt und zu neuen textilen Produkten verarbeitet. Dieses effektive Recycling ist einer der ältesten Materialkreisläufe der Welt. Heute geht es nicht nur um Bekleidung, sondern auch um hochwertige technische Textilien. So wie sich die Produkte der Textilindustrie weiterentwickeln, steigen auch die Anforderungen an das Textilrecycling. Grundlage dafür sind eine klare Beurteilung und Klassifizierung der Rohstoffe.

Im Forschungsprojekt der Deutschen Institute für Textil- und Faserforschung Denkendorf (DITF) und dem Sächsischen Textilforschungsinstitut e.V. (STFI) wird eine Methodik entwickelt, die es ermöglicht, den Reiß als auch die nachfolgenden Prozesse in Bezug auf die Faserqualität zu analysieren. Durch die systematische Analyse soll es gelingen, die nachfolgenden Spinnprozesse so zu optimieren, dass der Recyclinganteil im Garn erhöht werden kann, ohne, dass sich die Garneigenschaften gegenüber einem aus 100% Gutfasern bestehenden Garn wesentlich unterscheiden. Diese Garne können anschließend zu nachhaltigen textilen Produkten wie zum Beispiel Kleidung oder Verbundbauteile verarbeitet werden.

Das vom BMWi/IGF geförderte Projekt hat eine Laufzeit von zwei Jahren und endet am 31.12.2022. Der Nutzen für die teilnehmenden Unternehmen liegt insbesondere darin, ihnen den verstärkten Einsatz von Sekundärrohstoffen zu ermöglichen, neue Märkte durch im Projekt entwickelte Technologien oder Produkte zu erschließen, Synergien und langfristige Kooperationen anzubahnen sowie einen gemeinsamen Marktauftritt vorzubereiten.

Das Projekt umfasst verschiedene Arbeitsschritte:

  • Materialauswahl und Beschaffung
    Zu verarbeitende Baumwollfasern werden aus Alttextilien (T-Shirts) und Abfällen aus der Baumwollspinnerei gewonnen. Die Aramidfasern werden aus gebrauchter Schutzbekleidung und technischen Textilien aufbereitet.
  • Optimierung der Aufbereitung / Auflösung der Textilien
    Damit die Fasern aus den entsprechenden Textilien möglichst schonend und mit einer nicht zu hohen Einkürzung herausgelöst werden, sind exakte Einstellungen beim Reißprozess zu finden, welche technologisch sehr anspruchsvoll sind und viel Erfahrung voraussetzen.
  • Ermittlung der Qualitätskriterien zur Beurteilung der Faserauflösung
    Um die Qualitätskriterien zu definieren werden die aus der Reißerei kommenden Fasern mittels MDTA-4 Messgerät der Textechno GmbH & Co. KG ermittelt. Mit den ermittelten Kriterien soll die (möglichst geringe) Fasereinkürzung durch den Reißprozess charakterisiert werden.
  • Ermittlung optimierter Einstellungen beim Spinnprozess
    Um die optimalen Einstellungen zur Erzeugung eines Garnes aus den Recyclingfasern zu ermitteln, werden diese nach dem Rotorspinnprozess ersponnen. Durch Anpassung des Spinnprozesses soll ein Garn hergestellt werden, das eine gute Gleichmäßigkeit und auch eine entsprechende Festigkeit aufweist.
  • Herstellung und Vergleich von Garnen aus recycelten Rohstoffen
    Damit aus den Recyclingfasern - bestehend aus Aramid und Baumwolle - jeweils ein Flächengebilde hergestellt werden kann, soll das Material im industriellen Maßstab verarbeitet werden. Dazu werden die Fasern über eine komplette Putzereilinie mit anschließender Bandherstellung über angepasste Karden verarbeitet. Nach dem Verstrecken und der anschließenden Vorgarnherstellung werden Garne nach dem Rotor- bzw. nach dem Ringspinnverfahren hergestellt. Mit den fertiggestellten Garnen werden Gestricke produziert.
  • Koordination, Analyse der Ergebnisse und Erstellung der Berichte
    Die Erstellung des Abschlussberichtes erfolgt durch die DITF und das STFI. Ein Ergebnistransfer erfolgt durch Veröffentlichungen, Fachinformationen an Verbände und Messeauftritte. Begleitend sind regelmäßige Sitzungen mit den beteiligten Firmen geplant.

Textination sprach mit Stephan Baz, dem Stv. Leiter Kompetenzzentrum Stapelfaser, Weberei & Simulation Leitung Stapelfasertechnologie und Markus Baumann, Wissenschaftlicher Mitarbeiter am Kompetenzzentrum Stapelfaser, Weberei & Simulation (beide DITF) sowie Bernd Gulich, Abteilungsleiter Vliesstoffe/Recycling und Johannes Leis, wissenschaftlicher Mitarbeiter Schwerpunkt Vliesstoffe/Recycling (beide STFI) über den aktuellen Stand des Förderprojektes.

Wie ist der aktuelle Stand des Projekts?
Aktuell befinden wir uns in der Phase der Versuchsdurchführungen und der iterativen Optimierung gleich mehrerer Projektbausteine. Erwartungsgemäß sind für die mechanische Aufbereitung selbst und auch die Einstellung des Spinnprozesses mit den verschiedenen Varianten mehrere Schleifen notwendig. Letztendlich zielt das Projekt ja darauf ab, die Prozesse der mechanischen Aufbereitung und der Spinnerei als Verarbeitung aufeinander abzustimmen, um optimale Ergebnisse zu erzielen. Gleichzeitig ist die Ermittlung der Qualitätskriterien der erzeugten Fasern nicht trivial. Hierfür braucht es zudem die Weiterentwicklung von Prozessen und Prüfmethoden, welche in der Industrie produktiv umsetzbar sind und welche eine Beurteilung der Qualität der erzeugten Fasern tatsächlich und unbeeinflusst von z.B. Restgarnen ermöglichen. Wirklich bemerkenswert ist das Interesse und die Bereitschaft der Industrie die Projektarbeit voranzutreiben. Die in beträchtlichem Umfang benötigten Mengen an Materialien für unsere Versuche haben wir von der ReSales Textilhandel und -recycling GmbH, von der Altex Textil-Recycling GmbH & Co. KG und der Gebrüder Otto GmbH & Co. KG erhalten. Des Weiteren sind mit der Temafa Maschinenfabrik GmbH, Nomaco GmbH & Co. KG, Schill + Seilacher GmbH, Spinnerei Neuhof GmbH & Co. KG und Maschinenfabrik Rieter AG viele Mitglieder des projektbegleitenden Ausschusses von der Beratung bis hin zu der Bereitstellung von Technologien aktiv in das Projekt involviert. Die Firma Textechno Herbert Stein GmbH & Co. KG hat für die Dauer des Projektes ein Prüfgerät des Typ MDTA4 zur Verfügung gestellt und unterstützt unserer Arbeit in Bezug auf die Beurteilung der mechanisch aufbereiteten Fasern. Hierüber sind wir natürlich besonders froh, denn so konnten wir sowohl in der mechanischen Aufbereitung, der Prüfung als auch der Spinnerei mehrere Technologien betrachten und analysieren. Wir erwarten, zu Beginn des kommenden Jahres detailliertere Aussagen treffen zu können.

Welche Ansätze halten Sie für besonders vielversprechend?
Bezogen auf Technologien müssen wir auf die Auswertung und Analyse der Versuchsdurchführungen verweisen, welche derzeit noch andauern. Im ersten Quartal des nächsten Jahres werden wir hierzu mehr ins Detail gehen können.

Es zeichnen sich natürlich schon Dinge ab. Bei den meta-Aramid-Abfällen ließen sich sehr schnell vielversprechende Ansätze finden, bei der Post-Consumer-Baumwolle ist dies deutlich komplexer. Offensichtlich ist die Verbindung zwischen Qualität des Ausgangsmaterials und der Qualität der Erzeugnisse. Wir haben in den beschafften Waren teilweise bereits sehr niedrige mittlere Faserlängen feststellen können, diese spiegeln sich zu einem gewissen Grad natürlich direkt im Output unserer Prozesse wider. Daraus leitet sich, das ist keine neue Erkenntnis, erneut eine große Bedeutung des Designs der Textilien ab.

Worin liegen die Herausforderungen?
Neben dem zu erwartenden hohen Kurzfaseranteil sind die Restgarne nach dem Reißprozess ein Thema mit besonderem Fokus. Zwischen den Materialien und Aufbereitungstechnologien kann der Anteil dieser Restgarne variieren, aber die weitere Auflösung der Produkte des Reißprozesses ist essenziell.
Werden die Prozesse in einer Nutzungsphase weitergedacht, stellt sich die Frage des Designs natürlich auch für die bestmögliche Verwendung von recycelten Fasern. Viele Probleme, aber auch die Lösungsansätze für die Verwendung von vergleichsweise kurzen Fasern sind auch auf die (mehrfache) Verwendung von mechanisch recycelten Fasern zu erwarten.

Kann man beim Endprodukt von einem Upcycling sprechen?
Wir sehen das Garn-zu-Garn-Recycling weder als Up- noch als Downcycling, sondern als Kreislaufführung. Hintergrund ist, dass die Erzeugnisse in dieselbe Anwendung gehen sollen aus der sie gekommen sind und dabei mit Primärmaterial konkurrieren müssen. Dies bedeutet, dass gewisse spezifische Anforderungen zu erfüllen sind und gleichzeitig erheblicher Preisdruck herrscht. Beim Downcycling wird eine deutliche Verringerung der Eigenschaften in Kauf genommen, beim Upcycling kann aufgrund der höherpreisigen Anwendung der Aufbereitungsaufwand aufgefangen werden. Bei dem Bestreben, aus Garnmaterial wieder Garnmaterial zu fertigen, ist beides nur in geringem Maß zulässig. Dies stellt die besondere Herausforderung dar.

Was bedeutet ein aus Alttextilien aufbereitetes Rezyklat für den Spinnprozess?
Ein Teil dieser Fragestellung soll im Projekt durch die detaillierte Klassifizierung der aufbereiteten Fasern beantwortet werden und ist somit Gegenstand der aktuell laufenden Untersuchungen. Es zeigt sich, dass es neben den eher offensichtlichen Punkten wie deutlich reduzierte Faserlänge, Prozessstörungen durch unaufgelöste Gewebe und Garnstücke auch weniger offensichtliche Aspekte wie z.B. eine deutlich erhöhte Abgangsmenge für die Verarbeitung im Spinnprozess zu beachten sind. Die Abgangsmenge ist dabei von besonderem Interesse, denn am Ende soll im neu hergestellten Garn auch ein erheblicher Anteil an aufbereiteten Fasern enthalten sein.

Welche Konsequenzen hat das für den Textilmaschinenbau?
Die Konsequenzen, die zum aktuellen Zeitpunkt bereits abgeschätzt werden können, sind, dass insbesondere bei der Verarbeitung von Baumwolle der Maschinenpark im Spinnereivorwerk auf die Verarbeitung von (Neu-)Naturfasern mit einem gewissen Schmutzanteil spezialisiert ist. Bei aufbereiteten Fasern handelt es sich im Gegensatz zu den Neufasern um saubere Fasern mit deutlich höherem Kurzfaseranteil. Elemente, die gut Schmutz entfernen können, scheiden auch vermehrt kurze Fasern aus, das kann unter Umständen zu ungewollt hohen Abgangsmengen führen. Es ist somit notwendig die etablierte Maschinentechnologie an das neue Anforderungsprofil des Rohstoffes „aufbereitete Fasern“ anzupassen. Analoge Anpassungen sind vermutlich über die komplette Verarbeitungskette bis ins Garn notwendig. Im Streckwerk der Spinnmaschine natürlich eher bedingt durch den hohen Kurzfaseranteil als durch Elemente, die auf das Ausreinigen von Schmutz und Fremdbestandteilen hin optimiert wurden.

Weitere Informationen:
DITF STFI Fasern Recycling Spinnerei
Quelle:

Textination GmbH

(c) Toray
23.11.2021

Toray Industries: Ein Konzept, um Leben zu verändern

Das im Januar 1926 gegründete japanische Chemieunternehmen Toray Industries, Inc. mit Firmensitz in Tokio ist bekannt als der weltweit größte Hersteller von Kohlenstofffasern auf PAN (Polyacrylnitril)-Basis. Doch das Gesamtportfolio umfasst weit mehr. Textination sprach mit Koji Sasaki, dem General Manager der Textile Division von Toray Industries, Inc., über innovative Produktlösungen, neue Verantwortungen und die besondere Rolle von Chemieunternehmen in der heutigen Zeit.

Toray Industries ist ein japanisches Unternehmen, das sich – 1926 als Produzent von Viskosegarnen entstanden – auf der Zielgerade zu seinem 100. Geburtstag befindet. Aktuell gehören zur Toray Gruppe 102 japanische Firmen und 180 in Übersee. Sie sind in 29 Ländern tätig. Welche Bedeutung hat der Geschäftsbereich Fasern und Textilien aktuell für Ihren Unternehmenserfolg?

Das im Januar 1926 gegründete japanische Chemieunternehmen Toray Industries, Inc. mit Firmensitz in Tokio ist bekannt als der weltweit größte Hersteller von Kohlenstofffasern auf PAN (Polyacrylnitril)-Basis. Doch das Gesamtportfolio umfasst weit mehr. Textination sprach mit Koji Sasaki, dem General Manager der Textile Division von Toray Industries, Inc., über innovative Produktlösungen, neue Verantwortungen und die besondere Rolle von Chemieunternehmen in der heutigen Zeit.

Toray Industries ist ein japanisches Unternehmen, das sich – 1926 als Produzent von Viskosegarnen entstanden – auf der Zielgerade zu seinem 100. Geburtstag befindet. Aktuell gehören zur Toray Gruppe 102 japanische Firmen und 180 in Übersee. Sie sind in 29 Ländern tätig. Welche Bedeutung hat der Geschäftsbereich Fasern und Textilien aktuell für Ihren Unternehmenserfolg?

Das Geschäft mit Fasern und Textilien ist zugleich Ausgangspunkt und Grundlage der heutigen Geschäftsentwicklung von Toray. Wir begannen 1926 mit der Produktion von Viskosegarnen und führten bereits 1940 eigene Forschung und Entwicklung im Bereich Nylonfasern durch. Und da neue Materialien meist auch neue Verarbeitungsmethoden erfordern, begann Toray früh damit, auch in eigene Verfahrenstechnologie zu investieren. So möchten wir einerseits unsere Umsätze steigern und andererseits die Anwendungsmöglichkeiten für unsere Materialien erweitern. Aus diesem Grund begann Toray auch, das Geschäft vom reinen Fasergeschäft auf Textilien und sogar Bekleidung auszuweiten. So sind wir in der Lage, besser auf die Bedürfnisse unserer Kunden einzugehen und gleichzeitig stets an der Spitze der Innovation zu bleiben.

Laufe der Jahrzehnte hat Toray viel Wissen in der Polymerchemie und der organischen Synthesechemie angesammelt – und dieses Know-how ist die Grundlage für fast alle unsere anderen Geschäftsvorhaben. Heute produzieren wir eine breite Palette fortschrittlicher Materialien und Produkte mit hoher Wertschöpfung in den Bereichen Kunststoffe, Chemikalien, Folien, Kohlefaserverbundwerkstoffe, Elektronik und Informationsmaterialien, Pharmazeutika, Medizin und Wasseraufbereitung. Fasern und Textilien sind jedoch nach wie vor unser wichtigstes Geschäftsfeld, auf das rund 40 % des Umsatzes des Unternehmens entfallen.

Welches Verständnis, welches Erbe ist Ihnen bis heute wichtig? Und wie leben Sie konkret im Textilbereich eine Unternehmensphilosophie, die Sie so formulieren "einen gesellschaftlichen Beitrag leisten durch die Schaffung neuer Werte mit innovativen Ideen, Technologien und Produkten (Contributing to society through the creation of new value with innovative ideas, technologies and products)"?

Toray hat immer wieder neue Materialien entwickelt, die es so in der Welt noch nie gegeben hat. Wir tun dies, indem wir uns auf unsere vier Kerntechnologien konzentrieren: Polymerchemie, organische synthetische Chemie, Biotechnologie und Nanotechnologie. Für den Textilbereich bedeutet dies, dass wir neue Polymerstrukturen, Spinntechnologien und Verarbeitungsmethoden einsetzen, um Garne mit noch nie dagewesenen Eigenschaften zu entwickeln. Dabei orientieren wir uns stets an den Bedürfnissen und Problemstellungen des Marktes und unserer Kunden.

Dieser Ansatz ermöglicht es uns, Textilien mit neuen Funktionen in unseren Alltag zu integrieren, die natürliche Fasern und Materialien nicht erreichen können. So bieten wir beispielsweise Sport- und Unterwäsche, die hervorragend Wasser absorbieren und sehr schnell trocknen, oder Regen- und Outdoor-Bekleidung mit ausgezeichneten wasserabweisenden Eigenschaften, die mit einem weniger voluminösen Innenfutter aufwarten kann. Weitere Beispiele sind antibakterielle Unterwäsche, Uniformen oder Innenausstattungen, die für ein hygienisches Umfeld sorgen und das Wachstum von geruchsverursachenden Bakterien beeinträchtigen. Die Menschen genießen jeden Tag die Annehmlichkeiten dieser innovativen Textilien, und wir hoffen, damit zu ihrem täglichen Komfort beitragen und ihr Leben in gewisser Weise verbessern zu können.

Im Jahr 2015 verabschiedeten die Vereinten Nationen 17 nachhaltige Entwicklungsziele – kurz Agenda 2030 genannt, die zum 01. Januar 2016 in Kraft trat. Den Ländern blieben 15 Jahre, um sie bis 2030 zu erreichen. In Ihrem Unternehmen gibt es eine TORAY VISION 2030 und eine TORAY SUSTAINABILITY VISION. Wie wenden Sie diese Grundsätze und Ziele auf das Textilgeschäft an? Welche Rolle spielt die Nachhaltigkeit für dieses Geschäftsfeld?

Nachhaltigkeit ist eines der wichtigsten Themen, denen sich die Welt heute gegenübersieht – nicht nur in der Textilbranche, sondern in allen Industriezweigen. Wir in der Toray-Gruppe sind davon überzeugt, mit unseren fortschrittlichen Materialien zur Lösung verschiedener Probleme in diesem Kontext beitragen zu können. Gleichzeitig bietet der Trend in Richtung Nachhaltigkeit interessante neue Geschäftsansätze. In unserer Nachhaltigkeitsvision haben wir vier Ziele festgelegt, die die Welt bis 2050 erreichen sollte. Und wir haben definiert, welche Probleme dafür angegangen werden müssen.

Wir müssen:

  1. Maßnahmen zur Bekämpfung des Klimawandels beschleunigen,
  2. bei der Nutzung von Ressourcen und in der Produktion nachhaltige, recyclingorientierte Lösungen realisieren,
  3. sauberes Wasser und saubere Luft bereitstellen und
  4. einen Beitrag leisten zu einer besseren medizinischen Versorgung und Hygiene für Menschen auf der ganzen Welt.

Wir werden diese Agenda vorantreiben, indem wir den Einsatz von Materialien, die auf Umweltprobleme reagieren, fördern und ausweiten. Im Textilbereich bieten wir zum Beispiel wärmende und kühlende Textilien an – indem sie in bestimmten Situationen Klimaanlagen oder Heizungen überflüssig machen, können sie dazu beitragen, Energiekosten zu senken. Wir stellen außerdem umweltfreundliche Textilien her, die auf bestimmte schädliche Stoffe wie Fluor verzichten, sowie Textilien aus Biomasse, bei denen anstelle von konventionellen petrochemischen Materialien pflanzliche Fasern zum Einsatz kommen. Auch recycelte Materialien, die Abfall reduzieren und eine effektive Nutzung von Ressourcen fördern, haben wir im Sortiment.

Die TORAY VISION 2030 wiederum ist unser mittelfristiger Strategieplan und betrachtet das Thema Nachhaltigkeit aus einem anderen Blickwinkel: Toray hat darin den Weg zu einem nachhaltigen und gesunden Unternehmenswachstum festgelegt. Dabei konzentrieren wir uns auf zwei große Wachstumsbereiche: Unser Green Innovation Business, das auf die Lösung von Umwelt-, Ressourcen- und Energieproblemen abzielt, und das Life Innovation Business, das sich auf die Verbesserung der medizinischen Versorgung, der öffentlichen Gesundheit, der persönlichen Sicherheit und letztlich einer längeren Lebenserwartung konzentriert.

Innovation by Chemistry lautet der Claim der Toray-Gruppe. In einer Welt, in der REACH und Fridays for Future die Spielräume der Chemieindustrie stark einengen, stellt sich die Frage, welchen Platz die Chemie in der Textilindustrie haben kann. Wie passen hier Chemie, Innovation und Nachhaltigkeit zusammen?

Die chemische Industrie befindet sich heute an einem Wendepunkt. Die Vorteile, die diese Industrie für die Zivilisation bringen kann, sind zwar nach wie vor enorm, aber zugleich treten Nachteile wie Ressourcenverschwendung und die negativen Auswirkungen auf Umwelt und Ökosysteme, immer deutlicher zu Tage. In Zukunft wird die chemische Industrie viel stärker im Sinne der Nachhaltigkeit arbeiten müssen – daran führt kein Weg vorbei.

Was Textilien betrifft, so gibt es unserer Meinung nach mehrere Möglichkeiten, synthetische Materialien in Zukunft nachhaltiger zu gestalten. Eine davon sind wie gesagt Materialien, die aus Pflanzen statt aus petrochemischen Rohstoffen hergestellt werden. Eine andere besteht darin, die Menge an Rohstoffen, die bei der Produktion verwendet werden, von vornherein zu reduzieren – dies kann zum Beispiel gelingen, indem Abfallstoffe aus Produktion oder Verkauf gesammelt und recycelt werden. Biologisch abbaubare Materialien, die die Auswirkungen von Abfallprodukten auf die Umwelt verringern, sind eine weitere Möglichkeit, die zu verfolgen es lohnt, ebenso wie die Reduzierung von umweltschädlichen Substanzen, die im Produktionsprozess verwendet werden. All diese Möglichkeiten prüfen wir bereits im synthetischen Textilien-Geschäft von Toray. Zugleich achten wir übrigens darauf, in unserer eigenen Produktion Energie zu sparen und den Einfluss auf die Umwelt möglichst gering zu halten.

Toray konzentriert sich im Segment Fasern & Textilien auf synthetische Fasern wie Nylon, Polyester und Acryl sowie andere Funktionsfasern. Auf dem Markt ist in den vergangenen Jahren ein deutlicher Trend zu cellulosischen Fasern zu beobachten, die auch als Alternativen zu synthetischen Produkten gehandelt werden. Wie sehen Sie diese Entwicklung – zum einen für das Unternehmen Toray, zum anderen unter dem Aspekt Nachhaltigkeit, den die cellulosischen Wettbewerber mit der nachwachsenden Rohstoffbasis für sich reklamieren?

Naturfasern, einschließlich Cellulosefasern und Wolle, sind insofern umweltfreundlich, als sie leicht recycelt werden können und nach der Entsorgung schnell biologisch abbaubar sind. Um ihre Umweltauswirkungen wirklich beurteilen zu können, müssen jedoch auch eine Reihe anderer Faktoren berücksichtigt werden: In erster Linie ist da die Frage der Beständigkeit: gerade weil Naturfasern natürlich sind, ist es schwierig, auf einen schnellen Anstieg der Nachfrage zu reagieren, und die Qualität ist aufgrund von Wetter- und anderen Faktoren nicht immer stabil.

Klimatische Veränderungen wie extreme Hitze, Dürre, Wind, Überschwemmungen und Kälteschäden können die Quantität und Qualität der Produktion von Naturfasern beeinträchtigen, so dass die Versorgung nicht immer gesichert ist. Um die Produktion hochzufahren, müssen nicht nur Flächen gerodet, sondern auch große Mengen an Wasser und Pestiziden eingesetzt werden, um diese zu bewirtschaften - all das ist schädlich für die Umwelt.

Synthetische Fasern hingegen sind Industrieprodukte, die in kontrollierten Fabrikumgebungen hergestellt werden. Das macht es einfacher, Schwankungen im Produktionsvolumen zu bewältigen und eine gleichbleibende Qualität zu gewährleisten. Darüber hinaus können bestimmte funktionelle Eigenschaften wie Widerstandsfähigkeit, Wasseraufnahme, schnelles Trocknen und anti-bakterielle Eigenschaften in das Material eingearbeitet werden, was dazu führen kann, dass Textilien länger im Gebrauch sind.

Synthetische Fasern und Naturfasern, einschließlich Cellulosefasern, haben also ihre eigenen Vor- und Nachteile – es gibt hier kein Allheilmittel, zumindest nicht im Moment. Wir glauben: Es ist wichtig, sicherzustellen, dass es Optionen gibt, die dem Bewusstsein und dem Lebensstil des Verbrauchers entsprechen. Dazu gehören Komfort im Alltag und Nachhaltigkeit gleichermaßen.

Inwiefern ist die Nachfrage nach recycelten Produkten gestiegen? Unter dem Markennamen &+™ bietet Toray eine Faser an, die aus recycelten PET-Flaschen hergestellt wird. Gerade bei der „Rohstoffbasis: PET-Flaschen“ können sich Probleme beim Weißgrad der Faser ergeben. Was unterscheidet Ihr Verfahren von dem anderer Unternehmen und inwiefern können Sie qualitativ mit neuen Fasern konkurrieren?

Bei der Herstellung der "&+"-Faser werden die gesammelten PET-Flaschen mit speziellen Wasch- und Filterverfahren von sämtlichen Fremdstoffen befreit. Durch diese Verfahren konnten wir nicht nur das Problem des Weißgrades der Fasern lösen – indem wir gefilterte, hoch reine recycelte Polyester späne verwenden, können wir auch sehr feine Fasern und Fasern mit einzigartigen Querschnitten herstellen. Mit unseren bewährten Verfahrenstechnologien können zudem bestimmte Texturen und Funktionen von Toray in die Faser eingebaut werden. Darüber hinaus enthält "&+" eine spezielle Substanz im Polyester, die eine Rückverfolgung des Materials auf die darin verwendeten recycelten PET-Flaschenfasern ermöglicht.

Wir glauben, dass diese Kombination aus Ästhetik, Nachhaltigkeit und Funktionalität die recycelte Polyester-faser "&+" wettbewerbsfähiger macht als die anderer Unternehmen. Und in der Tat haben wir festgestellt, dass die Zahl der Anfragen stetig zunimmt, da Unternehmen bereits in der Produktplanungsphase ein stärkeres Bewusstsein für Nachhaltigkeit entwickeln.

Wie wird Innovationsmanagement in der Textilabteilung von Toray gelebt, und auf welche Entwicklungen, an denen Toray in der letzten Zeit gearbeitet hat, sind Sie besonders stolz?

Die Textilabteilung besteht aus drei Unterabteilungen, die sich auf die Entwicklung und den Verkauf von Modetextilien (WOMEN'S & MEN'S WEAR FABRICS DEPT.), Sport- und Outdoor-Textilien (SPORTS WEAR & CLOTHING MATERIALS FABRICS DEPT.) und, speziell für Japan, Textilien für Uniformen in Schulen, Unternehmen und dem öffentlichen Sektor (UNIFORM & ADVANCED TEXTILES DEPT.) konzentrieren.

In der Vergangenheit entwickelte jede Abteilung ihre eigenen Materialien für ihre jeweiligen Märkte und Kunden. Im Jahr 2021 haben wir jedoch einen kollaborativen Raum für die Zusammenarbeit eingerichtet, um die Synergie zu erhöhen und Informationen über die in verschiedenen Bereichen entwickelten Textilien mit der gesamten Abteilung zu teilen. So können die Verkäufer ihren Kunden auch in anderen Abteilungen entwickelte Materialien anbieten und selbst Ideen für die Entwicklung neuer Textilien bekommen.

Ich glaube, dass die neue Struktur uns auch helfen wird, besser auf Veränderungen im Markt zu reagieren. Wir sehen zum Beispiel, dass die Grenzen zwischen Arbeitsbekleidung und Outdoor verschwimmen – Marken wie Engelbert Strauss sind ein gutes Beispiel für diesen Trend. Eine weitere Entwicklung, die sich unserer Meinung nach der Corona-Pandemie noch beschleunigen wird, ist die Betonung grüner Technologien und Materialien. Dies gilt für alle Textilbereiche, und wir müssen enger zusammenarbeiten, um hier ganz vorne mitzuspielen.

Welche Bedeutung haben in Ihren Forschungsvorhaben biobasierte Polyester? Wie schätzen Sie die künftige Bedeutung solcher Alternativen ein?

Ich glaube, dass diese Materialien in den kommenden Jahren eine große Rolle spielen werden. Polyester wird aus gereinigter Terephthalsäure (PTA) hergestellt, die wiederum aus Paraxylen (PX) und Ethylenglykol (EG) besteht. In einem ersten Schritt bieten wir bereits ein Material namens ECODEAR™ an, das Zuckerrohrmelasse-Abfällen als Rohmaterial für die EG-Herstellung verwendet.

Etwa 30 % dieser zumindest ansatzweise Bio-Polyesterfaser sind somit biologisch hergestellt, und das Material wird in großem Umfang für Sportbekleidung und Uniformen verwendet. Im nächsten Schritt arbeiten wir an der Entwicklung einer vollständig biobasierten Polyesterfaser, bei der auch der PTA-Bestandteil aus Biomasse-Rohstoffen, wie den nicht genießbaren Teilen von Zuckerrohr und Holzabfällen, gewonnen wird.

Bereits 2011 ist es uns gelungen, einen Prototyp einer solchen vollständig aus Biomasse hergestellten Polyesterfaser zu produzieren. Die Ausweitung der Produktion bei dem PX-Hersteller, mit dem wir zusammenarbeiten, hat sich jedoch als schwierig erwiesen. Derzeit stellen wir nur kleine Muster-Mengen her, aber wir hoffen, in den 2020er Jahren mit der Massenproduktion starten zu können.

Ursprünglich vom Garn kommend, inzwischen seit Jahrzehnten ein weltweit führender Produzent synthetischer Fasern, arbeiten Sie auch bis zum fertig konfektionierten Produkt. Die Palette reicht von Schutzkleidung gegen Staub und Infektionen bis zu smart textiles und Funktionstextilien, die biometrische Daten erfassen. Was planen Sie in diesen Segmenten?

Im Bereich der Schutzkleidung ist unsere Marke LIVMOA™ unser Vorzeige-Material. Es vereint hohe Atmungsaktivität, um Feuchtigkeit im Inneren der Kleidung zu reduzieren, mit blockierenden Eigenschaften, die Staub und andere Partikel von außen fernhalten. Das Textil eignet sich für eine Vielzahl von Arbeitsumgebungen, darunter auch Anwendungen mit hohem Staub- oder Fettaufkommen und sogar Reinräume. LIVMOA™ 5000, eine hochwertige Qualität, zeigt auch antivirale Eigenschaften und hilft, medizinisches Personal zu entlasten. Das Material bildet eine wirksame Barriere gegen Bakterien und Viren und ist beständig gegenüber hygroskopischem Druck. Durch die hohe Atmungsaktivität bietet es außerdem hohen Tragekomfort.

Unser smart textile heißt hitoe™. Bei diesem hochleit-fähigen Gewebe wird ein leitfähiges Polymer – also eine Polymerverbindung, die Elektrizität hindurchlässt – in das Nanofasergewebe eingearbeitet. hitoe™ ist ein leistungsfähiges Material zur Erfassung von Biosignalen, schwachen elektrischen Signalen, die wir unbewusst von unserem Körper aussenden. In Japan hat Toray Produkte für elektrokardiografische Messungen (EKGs) entwickelt, die den Sicherheits- und Wirksamkeitsstandards medizinischer Geräte entsprechen. Und 2016 haben wir bei den japanischen medizinischen Verwaltungsbehörden eine Anmeldung für die Registrierung eines Geräts mit hitoe™ als allgemeines Medizinprodukt eingereicht – dieser Registrierungsprozess ist nun abgeschlossen. Insgesamt erwarten wir, dass der Gesundheitssektor, insbesondere medizinische und pflegerische Anwendungen, wachsen wird – nicht zuletzt wegen zunehmender Infektionskrankheiten und ein wachsendes Gesundheitsbewusstsein unter der älteren Bevölkerung. Wir werden daher weiterhin neue Produkte für diesen Markt entwickeln und verkaufen.

Joseph Wilson Swan hat 1885 die Bezeichnung „artifical silk“ für die von ihm künstlich erzeugten Nitratcellulosefilamente einführt. Später wurden auch die auf Basis von Cellulose ersponnenen Kupfer-, Viskose- und Acetatfilamentgarne als Kunstseide bezeichnet. Toray hat eine neue innovative Spinntechnologie unter dem Namen NANODESIGN™ entwickelt, die die Kontrolle der Feinheit und Form der synthetischen Fasern auf Nanoebene ermöglicht. Damit sollen Funktionen, Ästhetik und Texturen entstehen, die es bisher nicht gab. Für welche Anwendungen wollen Sie diese Produkte einsetzen?

Bei der NANODESIGN™-Technologie wird das Polymer in eine Reihe mikroskopisch kleiner Ströme aufgespalten, die dann in einem bestimmten Muster zu einer neuen Faser rekombiniert werden. Durch eine äußerst präzise Steuerung des Polymerstroms können Feinheit und Querschnittsform der Faser viel genauer bestimmt werden, als es mit herkömmlichen Mikrofaser- und Nanofaser-Spinntechnologien bisher möglich war. Darüber hinaus ermöglicht diese Technologie die Kombination von drei oder mehr Polymertypen mit unterschiedlichen Eigenschaften in einer Faser – herkömmliche Technologien schaffen nur zwei Polymertypen. Diese Technologie ermöglicht es Toray daher, bei der Herstellung von Kunstfasern eine Vielzahl von Texturen und Funktionen festzulegen, die mit herkömmlichen Kunstfasern nicht möglich waren – und sogar die Textur und die Haptik von Naturfasern zu übertreffen. Kinari, unsere mit der NANODESIGN-Technologie entwickelte Kunstseide, ist hier ein Paradebeispiel, aber die Technologie birgt noch viele weitere Möglichkeiten – nicht zuletzt im Hinblick auf unsere Nachhaltigkeitsziele.

Was hat die zurückliegende Zeit der Pandemie für das das Textilgeschäft von Toray bisher bedeutet? Inwiefern war sie eine Belastung, in welchen Bereichen aber auch ein Innovationstreiber? Was erwarten Sie von den kommenden 12 Monaten?

Die Corona-Katastrophe hat sich dramatisch auf die Ergebnisse des Unternehmens ausgewirkt: Im Geschäftsjahr 2020 sanken der Gesamtumsatz von Toray um rund 10% auf 188,36 Milliarden Yen (ca. 1,44 Milliarden Euro) und der Betriebsgewinn um rund 28% auf 90,3 Milliarden Yen (ca. 690 Millionen Euro). Die Auswirkungen auf den Faser- und Textilbereich waren ebenfalls beträchtlich: Die Umsätze gingen um rund 13 % auf 719,2 Mrd. Yen (ca. 5,49 Mrd. Euro) zurück und das Betriebsergebnis um rund 39 % auf 36,6 Mrd. Yen (ca. 280 Mio. Euro).

Im Geschäftsjahr 2021 sieht es im Bereich Fasern und Textilien jedoch deutlich besser aus: Bislang hat das Segment die Ziele insgesamt übertroffen, auch wenn es in den einzelnen Bereichen und Anwendungen Schwankungen gibt. Im Zeitraum April bis Juni haben wir sogar wieder das Niveau von 2019 erreicht. Dies ist zum Teil auf den sich erholenden Sport- und Outdoor-Sektor zurückzuführen. Der Markt für Modebekleidung hingegen bleibt aufgrund der veränderten Lebensgewohnheiten, die Schließungen und Homeoffice mit sich gebracht haben, weiterhin schwierig. Wir sind der Meinung, dass eine vollständige Erholung des Geschäfts erst dann eintreten wird, wenn die Reise- und Freizeitbranche wieder das Vor-Corona-Niveau erreicht hat.

Eine andere Nebenwirkung der Pandemie, die wir sehr stark spüren, ist die wachsende Sorge über Umweltfragen und den Klimawandel. Infolgedessen hat die Nachfrage nach nachhaltigen Materialien auch im Bekleidungssegment zugenommen. Nachhaltigkeit wird in Zukunft für die Entwicklung und Vermarktung neuer Textilien in allen Marktsegmenten ein Muss sein. Andererseits wird sich immer die Frage stellen, wie nachhaltig ein Produkt wirklich ist, und Daten und Rückverfolgbarkeit werden immer wichtiger werden. In den kommenden Jahren wird die Textilabteilung diese Entwicklungen genau im Auge behalten und Materialien entwickeln, die den Bedürfnissen der Kunden entsprechen.

Zur Person:
Koji Sasaki stieß 1987 zu Toray. In seinen mehr als 30 Jahren im Unternehmen hatte er verschiedene Positionen inne, darunter eine vierjährige Amtszeit als Managing Director der Toray International Europe GmbH in Frankfurt von 2016 bis 2020. Seit 2020 ist Koji Sasaki für die Textilsparte von Toray verantwortlich und fungiert als amtierender Vorsitzender von Toray Textiles Europe Ltd. In diesen Funktionen beaufsichtigt er die Entwicklungs-, Verkaufs- und Marketingaktivitäten des Unternehmens im Bekleidungssegment, darunter die Bereiche Mode, Sport und Arbeits- oder Schuluniformen.

Das Interview führte Ines Chucholowius, Geschäftsführerin der Textination GmbH

Foto: pixabay
21.09.2021

Virtuelle Qualitätsprüfung optimiert Produktion von Filtervliesstoffen

Die Vliesstoffproduktion bekam zu Corona-Zeiten in der breiten Öffentlichkeit so viel Aufmerksamkeit wie selten zuvor, denn das technische Textil ist entscheidend für den Infektionsschutz. Die Feinst-Vliesstoffprodukte werden in sogenannten Meltblown-Verfahren hergestellt. Ein abteilungsübergreifendes Team des Fraunhofer-Instituts für Techno- und Wirtschaftsmathematik ITWM in Kaiserslautern optimiert im Projekt »ProQuIV« die gesamte Produktionskette. Dabei helfen Simulationen die Produktqualität des Filtermaterials trotz Schwankungen in der Herstellung zu garantieren.

Die Vliesstoffproduktion bekam zu Corona-Zeiten in der breiten Öffentlichkeit so viel Aufmerksamkeit wie selten zuvor, denn das technische Textil ist entscheidend für den Infektionsschutz. Die Feinst-Vliesstoffprodukte werden in sogenannten Meltblown-Verfahren hergestellt. Ein abteilungsübergreifendes Team des Fraunhofer-Instituts für Techno- und Wirtschaftsmathematik ITWM in Kaiserslautern optimiert im Projekt »ProQuIV« die gesamte Produktionskette. Dabei helfen Simulationen die Produktqualität des Filtermaterials trotz Schwankungen in der Herstellung zu garantieren.

Das Kürzel »ProQuIV« steht für »Produktions- und Qualitätsoptimierung von Infektionsschutzkleidung aus Vliesstoffen«. Denn gerade zu Beginn der Covid-19-Krise waren Engpässe bei der Produktion dieser Materialien zu beobachten. Für die Klasse der Meltblown-Vliesstoffe gestaltet sich diese Optimierung der Produktqualität zudem besonders schwierig, weil die Prozesse sehr sensitiv auf Schwankungen und Materialunreinheiten reagieren.

Digitaler Zwilling hat das große Ganze im Blick
»Meltblown« heißt der industrielle Herstellungsprozess, dessen Feinstfaser-Vliesstoffe dafür verantwortlich sind, dass z.B. in Gesichtsmasken die entscheidende Filterfunktion gegeben ist. Dabei wird das geschmolzene Polymer durch Düsen gepresst, und zwar in einen vorwärts strömenden Hochgeschwindigkeitsstrom. Es wird in einer stark turbulenten Luftströmung gedehnt und abgekühlt.

»Der Gesamtprozess der Filtervliesherstellung – von der Polymerschmelze bis zum Filtermedium – stellt in der Simulation eine große Herausforderung dar«, erklärt Dr. Konrad Steiner, Leiter der Abteilung »Strömungs- und Materialsimulation«. »Wir haben im Projekt das große Ganze im Blick und eine komplett durchgängige Bewertungskette als digitalen Zwilling entwickelt. Dabei berücksichtigen wir gleich mehrere Schlüsselkomponenten: Wir simulieren die typischen Produktionsprozesse von Vliesstoffen, die darauf basierende Entstehung der Faserstrukturen und anschließend die Materialeigenschaften – hier insbesondere die Filtereffizienz. Damit lassen sich dann die Einflüsse des Herstellungsprozesses auf die Produkteigenschaften quantitativ bewerten.« In jedem dieser Einzelbereiche gehört das Fraunhofer ITWM mit seinen Expertinnen und Experten international zu den führenden Forschungsgruppen.

Homogenität des Materials – weniger Wolken am Simulationshimmel
Beim Meltblown-Verfahren liegt ein Schlüsselfaktor auf dem Verhalten der Filamente im turbulenten, heißen und schnellen Luftstrom. Die Fäden werden durch diese Luftströmung stark in ihren Eigenschaften beeinflusst. Die Qualität der Filamente – und damit am Ende der Vliesstoffe –  wird durch viele Faktoren beeinflusst. Was das in der Praxis genauer heißt, weiß Dr. Dietmar Hietel, Leiter der Abteilung »Transportvorgänge«. Sein Team beschäftigt sich am Fraunhofer ITWM schon seit Jahren mit der Simulation von verschiedenen Prozessen rund um Filamente, Fäden und Fasern. »Im Fokus des Projekts steht die sogenannte Wolkigkeit, d.h. die Ungleichmäßigkeit, mit der die Fasern im Vliesstoff verteilt sind«, erklärt Hietel. »Wir gehen der Frage nach: Wie homogen ist der Stoff? Denn die Qualität der Produkte kann stark verbessert werden, wenn wir solche Ungleichmäßigkeiten optimieren. Unsere Simulationen helfen dabei herauszufinden, wie das gelingt.«

Objektive Bewertung der Homogenität der Vliesstoffe
Zur Quantifizierung dieser Wolkigkeit setzen die Forschenden zudem passende Bildanalysetechniken ein. Das Powerspektrum spielt dabei eine besondere Rolle. »Der Wolkigkeitsindex, abgekürzt CLI, beschreibt die Homogenität komplementär zu lokalem Flächengewicht und seiner Varianz,« beschreibt Dr. Katja Schladitz. Sie bringt ihre Expertise in der Bildverarbeitung in das Projekt mit ein. »Unser CLI stellt eine robuste Bewertung der Homogenität sicher und kann somit für verschiedene Materialklassen und Abbildungstechniken als objektives Maß genutzt werden« Die Frequenzen, die in die CLI-Berechnung eingehen, können so gewählt werden, dass der CLI aussagekräftig für das jeweilige Anwendungsgebiet ist.

Filtration: Wie effizient sind die Filter
Bei der Hochskalierung auf Industrieprozesse wie bei der Maskenproduktion fließt zudem die ITWM-Expertise rund um Filter in das Projekt mit ein. Das Team »Filtration und Separation« um Dr. Ralf Kirsch beschäftigt sich schon seit Jahren mit dem mathematischen Modellieren und Simulieren verschiedenster Trennprozesse.

»Das Besondere an diesem Projekt: Wir berechnen die Effizienz der Filter für unterschiedlich stark ausgeprägte Schwankungen des Faseranteils im Filtervlies«, betont Kirsch. »Dadurch können wir angeben, bis zu welchem Wolkigkeitsgrad die geforderte Filtereffizienz überhaupt erreichbar ist.« Als aktuelles Beispiel hierfür sieht man in der Grafik die Effizienz eines Filtermaterials für N95-Masken in Abhängigkeit von der Inhomogenität des Vliesstoffes.

ITMW-Methoden unterstützen über die ganze Prozesskette hinweg
Digitale Zwillinge und Berechnungen aus dem Hause Fraunhofer ITWM unterstützen in »ProQuIV« die Prozesse ganzheitlich zu überschauen und besser zu verstehen. Die Produktion der technischen Textilien wird damit nicht nur effizienter, sondern die Vliesstoffe lassen sich virtuell entwickeln, ohne dies vorab in einer Versuchsstätte zu realisieren. So können Produktionskapazitäten bei gleichbleibender Qualität gesteigert werden. Gemeinsam mit langjährigen Partnern aus der Industrie kann die Forschung schnell und effizient in der Praxis zum Einsatz kommen.

Simulationen sparen Textil-Unternehmen Experimente, erlauben neue Einblicke, ermöglichen systematische Parametervariationen und lösen Upscaling-Probleme, die sonst zu Fehlinvestitionen beim Übergang von der Laboranlage zur Industrieanlage führen können. Die virtuelle Umsetzung der Vliesstoffproduktion eröffnet aber auch neue Möglichkeiten zur Optimierung auf anderen Ebenen. So können auch akustische dämmende Vliesstoffe oder auch Hygiene-Vliesstoffe hinsichtlich ihrer Produktgüte genau auf die zu erzielende Materialeigenschaften hin optimiert werden – und das unter Berücksichtigung der auftretenden Prozessschwankungen.

Das Projekt ist Teil des Programms »Fraunhofer versus Corona« der Fraunhofer-Gesellschaft und wurde im April 2021 abgeschlossen. Die Ergebnisse fließen in mehrere Folgeprojekte mit der Vliesstoffindustrie ein.

Quelle:

Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM

Foto: pixabay
24.08.2021

Luft, Wasser, Öl: Was PLA-Biokunststoff gut filtern kann - und was nicht

Luftfilter sind im Kampf gegen die Pandemie in aller Munde. Mit Filtermaterial aus Vliesstoff versperren sie virenbehafteten Aerosolen den Weg zurück in Räume. Doch wie können diese Geräte nicht nur die Gesundheit schützen, sondern auch mit möglichst umweltfreundlichem Filtermaterial betrieben werden?

Luftfilter sind im Kampf gegen die Pandemie in aller Munde. Mit Filtermaterial aus Vliesstoff versperren sie virenbehafteten Aerosolen den Weg zurück in Räume. Doch wie können diese Geräte nicht nur die Gesundheit schützen, sondern auch mit möglichst umweltfreundlichem Filtermaterial betrieben werden?

Dafür eignet sich unter klar definierten Bedingungen der Biokunststoff Polylactid (PLA), auch als Polymilchsäure bekannt. Das lässt sich aus Ergebnissen von Forschenden der Zuse-Gemeinschaft im kürzlich abgeschlossenen Forschungsprojekt „BioFilter“ ableiten. Die Schlüsselfrage für diesen und andere mögliche Anwendungsbereiche der Bio-Filter lautet: Wie wirken sich die besonderen Eigenschaften von PLA auf Filterleistung und Haltbarkeit der Filter aus? Denn gegenüber seinen fossilen Konkurrenten kann PLA in der Praxis Nachteile haben. Das Material neigt zur Sprödigkeit und es mag hohe Temperaturen jenseits von 60 Grad Celsius nicht besonders. Als biogener Stoff ist Polymilchsäure auch potenziell anfälliger für Abnutzung und organische Abbauprozesse. Das kann bei Nutzung von Filtern z.B. in Kläranlagen eine noch größere Rolle spielen als bei Luftfiltern. Industriekunden indes wollen aber naturgemäß ein beständiges, verlässliches Produkt.

Vom Monofilament zum Vliesstoff
Vor diesem Hintergrund untersuchten die Forschenden die PLA-Eigenschaften, um auf dieser Basis Vliesstoffe für Bio-Filter zu erproben. Beteiligt waren das Deutsche Textilforschungszentrum Nord-West (DTNW) und das Sächsische Textilforschungsinstitut (STFI), wo die Vliesstoffe hergestellt wurden. Verwendet wurde Granulat verschiedener marktgängiger Hersteller. Am Anfang der Untersuchungen standen jedoch nicht die Vliesstoffe, in denen die Fasern dicht aneinander in verschiedenen Schichten abgelegt sind, sondern so genannte Monofilamente, also mit Fäden vergleichbare Fasern aus PLA. An diesen Monofilamenten führten das DTNW und das STFI zunächst Tests durch, so z.B. im Klimaschrank auf Alterung und Haltbarkeit.

Wie im Bild zu sehen ist, wurden die Monofilamente bei höheren Temperaturen ab 70 Grad Celsius bereits nach zwei Wochen brüchig, worüber die DTNW-Autorinnen und -Autoren kürzlich im Journal Applied Polymer Materials berichteten. Unter Normbedingungen indes weisen die Monofilamente auch nach fast drei Jahren keine messbar verringerte Stabilität auf und auch die PLA-Vliesstoffe standen, ihren auf fossiler Basis hergestellten Pendants in Punkto Filterleistung in nichts nach. „Der Fokus für die Nutzung von PLA als Filtermaterial wird meiner Ansicht nach auf Anwendungen liegen, bei denen relativ geringe Temperaturen vorliegen, mit denen PLA sehr gut zurechtkommt.“, sagt DTNW-Wissenschaftlerin Christina Schippers.

Neben Temperatur und Luftfeuchtigkeit weitere Faktoren beachten
Für die Forschenden ging es in dem vom Bundeswirtschaftsministerium geförderten Projekt allerdings nicht nur um die Eignung von Polylactid für Luftfilter, sondern auch um andere Umgebungen, z.B. für das Filtern von Wasser. Zudem ergaben die Untersuchungen, dass es bei der Bewertung der Filtermedien aus biobasierten und bio-abbaubaren Vliesstoffen neben der Temperatur und der Luftfeuchtigkeit weitere Einflussfaktoren wie mechanische Belastungen durch Luftströme zu beachten gilt. „Der innovative Kern des Projekts bestand darin, die Möglichkeiten und Einsatzgrenzen von PLA-Vliesstoffen als Filtermedien mit ausreichenden mechanischen Eigenschaften und Langzeitstabilität zu bewerten“, sagt Projektleiterin Dr. Larisa Tsarkova. Wie ihre Kollegen vom STFI, so ist das DTNW engagiert im Cluster Bioökonomie der Zuse-Gemeinschaft, in dem die Forschenden der gemeinnützigen Institute unter dem Leitsatz „Forschen mit der Natur“ kooperieren. „Für uns ist die Bioökonomie ein branchenübergreifendes Top-Thema, das zahlreiche Institute der Zuse-Gemeinschaft verbindet und durch Kooperationen wie beim ‚Bio-Filter‘ gelebt wird“, erklärt die künftige STFI-Geschäftsführerin Dr. Heike Illing-Günther.

Kooperation im Cluster Bioökonomie
Mit den erzielten Ergebnissen aus dem Projekt „Bio-Filter“ wollen das DTNW und das STFI nun weiterarbeiten, um künftig Ableitungen für klar beschriebene Einsatzgebiete der PLA-Vliesstoff-Filter treffen zu können. Diese möglichen Einsatzfelder reichen weit über Raumluftfilter und damit über die Pandemie hinaus. So ist die wasserabweisende Eigenschaft von PLA potenziell interessant für Filter in Großküchen zur Wasser-Öl-Filtration oder auch in der Industrie bei Motorenölen.

Die Forschung ist auch deshalb so wichtig, weil PLA in einzelnen verbrauchernahen Segmenten - Stichwort Tragebeutel - schon recht gut eingeführt ist. Traditionell nutzte man Milchsäure zur Haltbarmachung von Lebensmitteln, so bei Sauerkraut. Heute gewinnt man PLA über eine mehrstufige Synthese aus Zucker, der zu Milchsäure fermentiert und diese zu PLA polymerisiert, wie Kunststoffe.de erklärt. PLA gehört zu den bekanntesten Biokunststoffen, ist jedoch aufgrund der starken Nachfrage in den vergangenen Jahren nicht immer gut verfügbar gewesen. Das in den Niederlanden ansässige Unternehmen Total Corbion hat angekündigt, bis 2024 im französischen Grandpuits eine PLA-Anlage mit einer Jahreskapazität von 100.000 t in Betrieb zu nehmen. Es wäre die größte Anlage dieser Art in Europa, bisher ist Asien führend.

Quelle:

Deutsche Industrieforschungsgemeinschaft Konrad Zuse e.V.

Volker Nienstedt, Coco Ruch, Frithjof Rödel (c) Marcel Krummrich. Volker Nienstedt, Coco Ruch, Frithjof Rödel
01.06.2021

TextilKunst: Mensch braucht Kunst - Kunst braucht Mensch

Mit ihrem textilen Projekt „kunst.werke“ macht die Künstlerin Britta Schatton, auf die vielfältige Kunst- und Kulturlandschaft Thüringens aufmerksam. Gemeinsam mit dem Fotografen Marcel Krummrich setzt sie neun Akteure aus der Thüringer Kunstwelt in Szene. Entscheidendes und verbindendes Accessoire ist dabei ein individuell für jeden Künstler gefertigter handgefärbter und -bedruckter Schal aus Merinowolle-Seiden-Filz - jedes Unikat gestaltet aus der persönlichen Wahrnehmung heraus der jeweiligen Trägerin und des Trägers.

Pandemie-Zeiten haben viele Kunstschaffende aufgrund der Einschränkungen dazu gezwungen, sich ein anderes, ein virtuelles Publikum zu suchen. Nicht immer konnte das gelingen. Deshalb ist es Teil des Projektes, allen Portraitierten ein Sprachrohr zu ihrer persönlichen Situation in der von Corona bestimmten Zeit, geben. Diese Statements sollen auf virtuellen Bühnen Gehör finden.

Mit ihrem textilen Projekt „kunst.werke“ macht die Künstlerin Britta Schatton, auf die vielfältige Kunst- und Kulturlandschaft Thüringens aufmerksam. Gemeinsam mit dem Fotografen Marcel Krummrich setzt sie neun Akteure aus der Thüringer Kunstwelt in Szene. Entscheidendes und verbindendes Accessoire ist dabei ein individuell für jeden Künstler gefertigter handgefärbter und -bedruckter Schal aus Merinowolle-Seiden-Filz - jedes Unikat gestaltet aus der persönlichen Wahrnehmung heraus der jeweiligen Trägerin und des Trägers.

Pandemie-Zeiten haben viele Kunstschaffende aufgrund der Einschränkungen dazu gezwungen, sich ein anderes, ein virtuelles Publikum zu suchen. Nicht immer konnte das gelingen. Deshalb ist es Teil des Projektes, allen Portraitierten ein Sprachrohr zu ihrer persönlichen Situation in der von Corona bestimmten Zeit, geben. Diese Statements sollen auf virtuellen Bühnen Gehör finden.

Britta Schatton betont: „Wir alle teilen das Grundbedürfnis, Kunst und Kultur als festen Bestandteil des Lebens - auch in Pandemiezeiten - regelmäßig zu erfahren und zu gestalten. Mensch braucht Kunst - Kunst braucht Mensch. Erst recht in pandemischen Zeiten, in denen Kunst und Kultur zunehmend existenziell bedroht sind.“
          
Die freischaffende Künstlerin Britta Schatton arbeitet bevorzugt mit Filz und hat dazu eine Ausbildung an der baden-württembergischen Filzschule Oberrot bei Inge Bauer, Beatriz Schaaf-Giesser und Lyda Rump absolviert. Seit 2012 erfolgten Qualifizierungen bei nationalen und internationalen Textilkünstlerinnen wie Liz Clay (GB), Pam de Groot (AU), Britta Ankenbauer (DE), Ricarda Aßmann (DE) und Ute Herre (DE). 2014 wurde sie Mitglied der Künstlergruppe TAT Textil Art Thüringen.

2021 erhielt sie ein Sonderstipendium des Freistaates Thüringen für das Projekt „kunst.werke“ und wurde für die Gestaltung der Ehrenpreise zur Bundesgartenschau, die 2021 in Erfurt stattfindet, verpflichtet.

Eine Ausstellung der Portraits ist in der Ladengalerie ARTenVielfalt von Britta Schatton in Erfurt zu sehen. Mit einem Teil des Verkaufserlöses der Schals und Loops aus der limitierten Serie wird einer Einrichtung zur Jugendkunstförderung unterstützt.

(c) Schweizerische Textilfachschule STF
23.02.2021

Sustainability Management in Textiles - Interview mit Sonja Amport, Direktorin der STF

Kontaktbeschränkungen, Maskenpflicht, Homeoffice: Das Coronavirus hat unseren Alltag auf den Kopf gestellt und das öffentliche Leben nahezu auf Null reduziert. Durch die Auswirkungen der Pandemie hat sich der bestehende Handlungsdruck zur Erreichung der Sustainable Development Goals noch weiter erhöht. Und so ist es nicht verwunderlich, dass die Themenkomplexe Nachhaltigkeit, Klimaschutz und Digitalisierung im Bewusstsein von Industrie und Konsumenten an Boden gewinnen. Neue Managementqualitäten sind gefordert.

Textination sprach mit Sonja Amport, der Direktorin der Schweizerischen Textilfachschule über den neuen Ausbildungsgang Sustainability Management in Textiles. Nach Stationen in der Industrie und im Verbandswesen bringt die Betriebsökonomin mit Master im International Management ihr Wissen aus Textil, Bildung, Betriebswirtschaft sowie Marketing und Sales mit Elan und Herzblut seit 2015 bei der STF ein.

Kontaktbeschränkungen, Maskenpflicht, Homeoffice: Das Coronavirus hat unseren Alltag auf den Kopf gestellt und das öffentliche Leben nahezu auf Null reduziert. Durch die Auswirkungen der Pandemie hat sich der bestehende Handlungsdruck zur Erreichung der Sustainable Development Goals noch weiter erhöht. Und so ist es nicht verwunderlich, dass die Themenkomplexe Nachhaltigkeit, Klimaschutz und Digitalisierung im Bewusstsein von Industrie und Konsumenten an Boden gewinnen. Neue Managementqualitäten sind gefordert.

Textination sprach mit Sonja Amport, der Direktorin der Schweizerischen Textilfachschule über den neuen Ausbildungsgang Sustainability Management in Textiles. Nach Stationen in der Industrie und im Verbandswesen bringt die Betriebsökonomin mit Master im International Management ihr Wissen aus Textil, Bildung, Betriebswirtschaft sowie Marketing und Sales mit Elan und Herzblut seit 2015 bei der STF ein.

Die Geschichte der STF Schweizerische Textilfachschule hat 1881 begonnen. In diesem Jahr wurden Pablo Picasso geboren und Billy the Kid erschossen. Hoffmanns Erzählungen von Jacques Offenbach erlebten ihre Uraufführung und Thomas Alva Edison baute das erste Elektrizitätswerk der Welt. Am Stuttgarter Marktplatz öffnete das Warenhaus Breuninger und in Wismar das erste Geschäft von Rudolph Karstadt.
Was führte in dieser Zeit parallel zur Gründung der STF und welchen Werten fühlen Sie sich bis heute verpflichtet?

1881 blühte die Textilindustrie in der Schweiz. Unternehmen im Bereich Spinnerei, Weberei, Veredlung und weitere keimten auf. Jedoch fehlten ausgebildete Fachkräfte, welche die Maschinen hätten bedienen oder reparieren können. So kam es, dass die Unternehmen sich zusammentaten und die Schweizerische Textilfachschule gründeten. Ein Ort zur Aus- und Weiterbildung von Fachkräften für die Schweizer Textil- und Bekleidungsindustrie. Aus diesem Grund ist die STF auch heute noch genossenschaftlich organisiert. Entsprechend fühlen wir uns den Werten Kompetenz, Kundenorientierung, Innovation, Inspiration und Passion bis heute verpflichtet.

Wenn Sie jemandem, der die Schweizerische Textilfachschule nicht kennt, Ihre Bildungseinrichtung in 100 Worten vorstellen müssten: Wie definiert sich die Schule heute und auf welche Betätigungsfelder konzentriert sie sich?
Die STF Schweizerische Textilfachschule steht für eine nachhaltige Bildungskompetenz rund um den gesamten Lebenszyklus eines Textil-, Fashion oder Lifestyleproduktes. Mit dem «STF-LAB» positioniert sich die STF als Bildungsdienstleisterin mit drei Businessfeldern. Das Kernfeld ist die «Education», wo die STF zahlreiche Aus- und Weiterbildungen, von der Grundbildung über Bachelordiplome bis hin zum Master-Abschluss anbietet. Im «Incubator & Makerspace» (STF Studio) liegt der Hauptfokus auf der geteilten Infrastruktur, gegenseitiger Inspiration und damit dem gemeinsamen Vorwärtskommen. Im dritten Businessfeld dem «ThinkTank & Consulting» steht die Schule als Denkfabrik zur Verfügung, Fachexperten können «gemietet» werden und es wird Management auf Zeit angeboten.

Stichwort lebenslanges Lernen: Welche Weiterbildungsangebote hält die STF für die Textil- und Bekleidungsindustrie auch nach einem erfolgreichen Studienabschluss bereit?
Welche Branchenbereiche und welche Länder haben Sie im Fokus?

Einerseits bieten wir der Textil- und Bekleidungsindustrie und dem Handel vielseitige informelle Modulkurse, in welchen man sich innerhalb von 45 Lektionen einen guten Überblick zu einem speziellen Fachthema bilden kann. Beispiele dafür sind: Welding & Bonding, Smart & Functional Textiles, Start-up in Fashion oder das Steiger Stitch Modul, bei welchem man lernt, eigene Strickdesigns zu programmieren und diese anschließend an der STF an einer „Shared Machine“ ausstricken kann. Auch bieten wir jeweils zweiwöchige Intensiv-Sommerkurse an, wie beispielsweise in Sustainable Fashion Design. In der formalen Bildung kann ich unseren Master in Product Management Fashion & Textile in Deutsch oder unsere beiden CAS in Sustainability Management in Textiles empfehlen. Einmal mit Präsenzunterricht in deutscher Sprache und einmal per E-Learning in englischer Sprache. Derzeit fokussieren wir unsere Angebote auf die DACH-Region. Unsere Internationalisierungsstrategie wurde wegen Covid-19 jäh gestoppt. Dabei hatten wir mit englischen Masterangeboten insbesondere die Märkte Indien und China im Fokus. Wir stellen uns nun mit englischsprachigen Angeboten strategisch neu auf und starten ab 2022 wieder mit der Vermarktung. Das Ziel sind flexible, modulare Masterangebote mit einem hohen E-Learning-Anteil, so dass die Kosten moderat bleiben und das Reisen reduziert stattfinden kann.

Nachhaltigkeit – oder Sustainability – hat sich von einem Buzzword zu einer Selbstverständlichkeit gewandelt: Die jüngste OTTO Trendstudie sagt sogar, nachhaltiger Konsum ist im Mainstream der Gesellschaft angekommen. Was bedeutet das für die Textil- und Bekleidungsindustrie? Sind die Unternehmen personalseitig so aufgestellt, dass sie diesen Themenkomplex professionell in ihrem Leistungsportfolio verankert haben?
Die Schweizer Unternehmen haben erkannt, dass sie gegenüber den Mitbewerbern im Ausland nur eine Chance haben, wenn sie innovationsfähig sind, konsequent in einer Nische agieren und sich durch eine nachhaltige Produktion abheben können. Die Nachhaltigkeit ist somit ein absolut zentraler USP. In diesem Sinne beschäftigen sich viele Firmen damit und entsenden ihre Mitarbeitenden natürlich auch zu uns in die Weiterbildung.

Die STF bietet - im deutschsprachigen Raum bisher einzigartig - eine international anerkannte Weiterbildung im Bereich des textilen Sustainability Managements als Certificate of Advanced Studies CAS an.
Welche Teilbereiche von Design, Produktion, Prozessoptimierung bis zur Vermarktung bildet das Zertifikat ab?

Die STF bietet das international anerkannt Fachhoch-schulzertifikat in Zusammenarbeit mit SUPSI, der Scuola Universitaria Professionale della Svizzera Italiana im Tessin, an.

Im Studiengang betrachten wir aus ganzheitlicher Sicht und rund um die gesamte Wertschöpfungskette eines Textils, d.h. vom Design über die Produktion bis hin zur Vermarktung, die globalen Herausforderungen, wo Nachhaltigkeit als multilaterales Lösungskonzept fungiert. Zudem werden das normative und strategische Management der Nachhaltigkeit, Themen rund um die soziale Verantwortung sowie Initiativen und Standards für den Textilbereich beleuchtet. Ein wichtiger Bestandteil des CAS bilden Rohstoffe und Produkte, d.h. nebst nachhaltigen Fasern auch Stoffe oder der Einsatz von chemischen Mitteln. Nicht zuletzt werden auch Aspekte rund um Biodiversität, Animal Welfare, das Marketing, Labeling sowie mögliche Zukunftsszenarien und Best Practice Beispiele beleuchtet.

Für wen könnte das CAS Sustainability Management in Textiles spannend sein und warum? Welchen Push kann das Zertifikat im Berufsleben bewirken?
Das CAS ist einerseits für Führungspersonen interessant, die sich generell Gedanken über die strategische Ausrichtung eines Unternehmens machen, wie auch für Fach-Mitarbeitende in Design, Produktentwicklung, Einkauf, Verkauf oder im Qualitätsmanagement, wenn diese die Operationalisierung der Nachhaltigkeitsstrategie verantworten. Und selbstverständlich begrüßen wir jederzeit gerne junge Designer/innen mit eigenen Labels, die neue, nachhaltige Wege gehen und sich von anderen dadurch abheben möchten. Der Push im Berufsleben hängt stark mit der eigenen Persönlichkeit zusammen. Bisher haben jedoch alle Absolvierenden den Besuch der Weiterbildung als äußerst fruchtbar für den eigenen Karriereweg empfunden.

Wie steht es um die formalen Aspekte des CAS? Gibt es beispielsweise Auswahlkriterien, bis wann muss man sich anmelden, wie sieht der Stundenplan aus, auf welche Kosten müssen sich Interessenten einstellen?
Wir starten jeweils Ende August mit den Bildungsgängen. Eine frühzeitige Anmeldung, möglichst bis Mitte Mai, ist zu empfehlen, um sich einen Platz zu sichern. Im Präsenzlehrgang finden 120 Lektionen in Zürich und im Tessin statt, und es ist mit Kosten von CHF 5‘900.-, inkl. Lehrmittel und Prüfungsgebühren, zu rechnen. Im E-Learning-Kurs, mit einigen wenigen Präsenztagen vor Ort, werden die Inhalte synchron per MS-Teams durch i.d.R. dieselben Dozenten vermittelt. Hier beträgt der Studienpreis CHF 5‘600.-.

In diesen Kosten sind die persönlichen Auslagen sowie die Reise- und Übernachtungskosten noch nicht inkludiert. Interessierte entnehmen die Facts & Figures unserer Homepage:
(www.stf.ch/kurse/cas oder www.stf.ch/kurse/cas-online)

Die COVID19-Pandemie hat uns die Grenzen der Mobilität deutlich aufgezeigt. Wie haben Sie als Bildungseinrichtung darauf reagiert?
Die physischen Grenzen kann man mit E-Learning leicht überwinden. Unter anderem ein Grund, weshalb unser Unterricht während der gesamten Pandemie-Zeit ganz normal weiterlief. Für die Zeit nach Covid-19 planen wir, nebst Präsenz-Studienmodulen, auch weitere reine Online-Seminare, wie unseren CAS-Online. Diese werden vermehrt auch in englischer Sprache angeboten werden. Derzeit testen wir zudem mögliche Formen des hybriden Unterrichts. Dies bedeutet, während die einen vor Ort in Zürich beschult werden, können Personen mit langem Anfahrtsweg, wie z.B. aus der DACH-Region, dem Unterricht virtuell und live aus der Ferne beiwohnen.

Das letzte Jahr hat in der Textil- und Bekleidungsbranche deutliche Spuren hinterlassen. Wenn Sie auf ein Jahr „Ausnahmezustand“ zurückblicken – was nehmen Sie an positiven Erfahrungen mit, wo sehen Sie Nachbesserungsbedarf?
Es war definitiv ein Jahr des Ausnahmezustands! Positiv zu werten ist, dass wir an der STF bereit waren und ab Tag eins des Lockdowns online unterrichten konnten. Die Lernenden, Studierenden und mein Team zeig-ten alle größtes Verständnis und höchste Flexibilität. Doch als Institut im Textil-, Fashion- und Lifestyle-Bereich lebt der Unterricht auch von Anschauungsmaterialien. Die Garne und Stoffe fühlen und riechen zu können sowie über die Erfahrungen und das Erlebte persönlich zu diskutieren, sind wichtige Lernerfahrungen. Es ist definitiv eine Herausforderung, solche zentralen Lernelemente online umzusetzen. Alles in allem hat uns Covid-19 als Institution, rund um das Thema Digitalisierung, um gefühlte zwei Jahre nach vorne katapultiert. Dankbar wäre ich nun allerdings, wenn wir baldmöglichst zu einer Normalität zurückfinden könnten und zu einem Alltag mit „weniger Distanz“.

Neue Wege zu gehen, bedeutet Entscheidungsfreudigkeit, Überwindung von Ängsten - und damit auch Mut zum Scheitern. Nicht jedes Projekt kann gelingen. Über welche Entscheidung, die Sie für das Profil der STF getroffen haben, sind Sie im Nachhinein besonders froh?
Ich bin stolz sagen zu dürfen, dass die meisten in Angriff genommenen Projekte gelingen. Es gibt fast immer einen Weg. Manchmal muss man während dem Voranschreiten einfach etwas die Richtung anpassen, um ans Ziel zu gelangen. Eine wegweisende Neuerung war sicherlich die Modularisierung (fast) aller Studiengänge. Studierende haben so die Möglichkeit, von einer vielseitigen Wahlmöglichkeit zu profitieren und sich ihr eigenes Curriculum zusammenzustellen.

Eine zweite Entscheidung, über die ich dankbar bin, war, dass wir als kleines Institut bereits sehr früh sehr viel in den Ausbau unserer digitalen Fähigkeiten und in die Infrastruktur investiert haben. Das kommt uns nun zu Gute. Mit sehr gut ausgebildeten Dozierenden und einer Lernplattform, einer VM-Plattform und mo-dernster 3D-Software in verschiedenen Themenbereichen, zählen wir uns europaweit zu einem Vorreiter in Sachen E-Learning und Digitalisierung. Fähigkeiten, die zudem auch auf das Thema Nachhaltigkeit einzahlen.

Das Interview führte Ines Chucholowius, Geschäftsführerin der Textination GmbH

 

Weitere Informationen:

Foto: Pixabay
16.02.2021

Kohlenstoff mit mehreren Leben: Innovationen beim Recycling von Carbonfasern an den Markt bringen

Geht es um die Zukunft der motorisierten Mobilität, reden alle vom Antrieb: Wie viel E-Auto, wie viel Verbrenner verträgt die Umwelt und braucht der Mensch? Zugleich stellen neue Antriebe erhöhte Anforderungen nicht nur an den Motor, sondern auch an dessen Gehäuse und die Karosse: Für solch anspruchsvolle Anwendungen kommen häufig Carbonfasern zum Einsatz. Wie der Antrieb der Zukunft, sollten auch die Werkstoffe am Fahrzeug umweltfreundlich sein. Deshalb ist Recycling von Carbonfasern gefragt. Lösungen dafür haben Institute der Zuse-Gemeinschaft entwickelt.

Geht es um die Zukunft der motorisierten Mobilität, reden alle vom Antrieb: Wie viel E-Auto, wie viel Verbrenner verträgt die Umwelt und braucht der Mensch? Zugleich stellen neue Antriebe erhöhte Anforderungen nicht nur an den Motor, sondern auch an dessen Gehäuse und die Karosse: Für solch anspruchsvolle Anwendungen kommen häufig Carbonfasern zum Einsatz. Wie der Antrieb der Zukunft, sollten auch die Werkstoffe am Fahrzeug umweltfreundlich sein. Deshalb ist Recycling von Carbonfasern gefragt. Lösungen dafür haben Institute der Zuse-Gemeinschaft entwickelt.

Carbonfasern, auch als Kohlenstofffasern oder verkürzt als Kohlefasern bekannt, bestehen fast vollständig aus reinem Kohlenstoff. Sehr energieaufwändig wird er  bei 1.300 Grad Celsius aus dem Kunststoff Polyacrylnitril gewonnen. Die Vorteile der Carbonfasern: Sie haben kaum Eigengewicht, sind enorm bruchfest und stabil. Solche Eigenschaften benötigt man z.B. am Batteriekasten von E-Mobilen oder in Strukturbauteilen der Karosserie. So arbeitet das Sächsische Textilforschungsinstitut e.V. (STFI) aktuell gemeinsam mit Industriepartnern daran, statisch-mechanische Stärken der Carbonfasern mit Eigenschaften zur Schwingungsdämpfung zu verknüpfen, um die Gehäuse von E-Motoren im Auto zu verbessern. Angedacht ist in dem vom Bundeswirtschaftsministerium geförderten Projekt die Entwicklung sogenannter Hybridvliesstoffe, die neben der Carbonfaser als Verstärkung weitere Faserstoffe enthalten. „Wir wollen, die Vorteile unterschiedlicher Faserstoffe verbinden und so ein optimal auf die Anforderungen abgestimmtes Produkt entwickeln“, erläutert Marcel Hofmann, STFI-Abteilungsleiter Textiler Leichtbau.

Damit würden die Chemnitzer Forschenden bisherige Vliesstoff-Lösungen ergänzen. Sie blicken auf eine 15-jährige Geschichte in der Arbeit mit recycelten Carbonfasern zurück. Der globale Jahresbedarf der hochwertigen Fasern hat sich im vergangenen Jahrzehnt fast vervierfacht, laut Angaben der Industrievereinigung AVK auf zuletzt rd. 142.000 t. „Die steigende Nachfrage hat das Recycling immer stärker in den Fokus gerückt“, betont Hofmann. Carbonfaserabfälle sind ihm zufolge für etwa ein Zehntel bis ein Fünftel des Preises von Primärfasern erhältlich, müssen aber  noch aufbereitet werden. Dreh- und Angelpunkt für den Forschungserfolg der recycelten Fasern sind konkurrenzfähige Anwendungen. Die hat das STFI nicht nur am Auto, sondern auch im Sport-Freizeitsektor sowie in der Medizintechnik gefunden, so in Komponenten für Computertomographen. "Während Metalle oder Glasfasern als potenzielle Konkurrenzprodukte Schatten werfen, stört Carbon die Bilddarstellung nicht und kann seine Vorteile voll ausspielen“, erläutert Hofmann.

Papier-Knowhow nutzen
Können recycelte Carbonfasern nochmals den Produktkreislauf durchlaufen, verbessert das ihre CO2-Bilanz deutlich. Zugleich gilt: Je kürzer die Carbonfasern, desto unattraktiver sind sie für die weitere Verwertung. Vor diesem Hintergrund entwickelten das Forschungsinstitut Cetex und die Papiertechnische Stiftung (PTS), beide Mitglieder der Zuse-Gemeinschaft, im Rahmen eines Forschungsvorhabens ein neues Verfahren, das bislang wenig geeignet erscheinende Recycling-Carbonfasern ein zweites Produktleben gibt. „Während klassische Textilverfahren die ohnehin sehr spröden Recycling-Carbonfasern in Faserlängen von mind. 80 mm trocken verarbeiten, beschäftigten wir uns mit einem Verfahren aus der Papierindustrie, welches die Materialien nass verarbeitet. Am Ende des Prozesses erhielten wir, stark vereinfacht gesprochen, eine flächige Matte aus recycelten Carbonfasern und Kunststofffasern“, erläutert Cetex-Projektingenieur Johannes Tietze das Verfahren, mit dem auch 40 mm kurze Carbonfasern zu attraktiven Zwischenprodukten recycelt werden können. Das danach in einem Heißpressprozess entstandene Erzeugnis dient als Grundmaterial für hochbelastbare Strukturbauteile. Zusätzlich wurden die mechanischen Eigenschaften der Halbzeuge durch die Kombination mit endlosfaserverstärkten Tapes verbessert. Das Recyclingprodukt soll, so die Erwartung der Forschenden, glasfaserverstärkten Kunststoffen, Konkurrenz machen, z.B. bei Anwendungen im Schienen- und Fahrzeugbau. Die Ergebnisse fließen nun in weiterführende Forschung und Entwicklung im Kooperationsnetzwerk Ressourcetex ein, einem geförderten Verbund von 18 Partnern aus Industrie und Wissenschaft.

Erfolgreiche Umsetzung in der Autoindustrie
Industriereife Lösungen für die Verwertung von Carbonfaser-Produktionsab-fällen werden im Thüringischen Institut für Textil- und Kunststoff-Forschung Rudolstadt (TITK) entwickelt. Mehrere dieser Entwicklungen wurden mit Partnern beim Unternehmen SGL Composites in Wackersdorf industriell umgesetzt. Die Aufbereitung der so genannten trockenen Abfälle, hauptsächlich aus Verschnittresten, erfolgt nach einem eigenen Verfahren. „Dabei  führen wir die geöffneten Fasern verschiedenen Prozessen zur Vliesherstellung zu“, sagt die zuständige Abteilungsleiterin im TITK, Dr. Renate Lützkendorf1).  Neben den Entwicklungen für den Einsatz  z.B. im BMW i3 in Dach oder Hintersitzschale  wurden im TITK spezielle Vliesstoffe und Verfahren für die Herstellung von Sheet Molding Compounds (SMC) etabliert, das sind duroplastische Werkstoffe, die aus Reaktionsharzen und Verstärkungsfasern bestehen und zum Pressen von Faser-Kunststoff-Verbunden verwendet werden. Eingang fand dies z.B. in einem Bauteil für die C-Säule des 7er BMW. „In seinen Projekten setzt das TITK vor allem auf die Entwicklung leistungsfähigerer Prozesse und kombinierter Verfahren, um den Carbonfaser-Recyclingmaterialien auch von den Kosten her bessere Chancen in Leichtbauanwendungen einzuräumen“, betont Lützkendorf.  So liege der Fokus gegenwärtig auf dem Einsatz von CF-Recyclingfasern in thermoplastischen Prozessen zur Platten- und Profilextrusion. „Ziel ist es, die Kombination von Kurz- und Endlosfaserverstärkung in einem einzigen, leistungsfähigen Prozessschritt  zu realisieren.“

1) Seit 01.02.2021 hat Dr.-Ing. Thomas Reußmann die Nachfolge von Frau Dr.-Ing. Renate Lützkendorf angetreten, die am 31.01. in den Ruhestand verabschiedet wurde.

Quelle:

Zuse-Gemeinschaft

(c) Pixabay
15.12.2020

Schutz vor Corona: Fortschritte in der Materialforschung an Instituten der Zuse-Gemeinschaft

Mit dem Jahresende wachsen die Erwartungen an einen baldigen Impfschutz gegen COVID-19. Bis es für weite Teile der Bevölkerung so weit ist, bieten 2020 in Forschung und Industrie erzielte Erfolge zum Schutz vor dem Virus eine gute Ausgangsbasis im Kampf gegen Corona und darüber hinaus. An Instituten der Zuse-Gemeinschaft wurden Fortschritte nicht nur in der Medizin-, sondern auch in der Materialforschung erzielt.

Mit dem Jahresende wachsen die Erwartungen an einen baldigen Impfschutz gegen COVID-19. Bis es für weite Teile der Bevölkerung so weit ist, bieten 2020 in Forschung und Industrie erzielte Erfolge zum Schutz vor dem Virus eine gute Ausgangsbasis im Kampf gegen Corona und darüber hinaus. An Instituten der Zuse-Gemeinschaft wurden Fortschritte nicht nur in der Medizin-, sondern auch in der Materialforschung erzielt.

Zu diesen Erfolgen in der der Materialforschung gehören Neuerungen in der Beschichtung von Oberflächen. „Im Zuge der Pandemie ist die Nachfrage nach antiviral und antimikrobiell ausgestatteten Oberflächen stark gestiegen, und wir haben unsere Forschung in diesem Bereich erfolgreich intensiviert“, erklärt Dr. Sebastian Spange, Bereichsleiter Oberflächentechnik beim Jenaer Forschungsinstitut INNOVENT. Er rechnet künftig zunehmend mit Produkten, die über antiviral ausgestattete Oberflächen verfügen „Unsere Tests mit Modellorganismen zeigen, dass eine entsprechende Beschichtung von Oberflächen wirkt“, betont Spange. Zum Spektrum der von INNOVENT genutzten Techniken gehören Beflammung, Plasmabeschichtung und das sogenannte Sol-Gel-Verfahren, bei dem organische und anorganische Stoffe bei relativ niedrigen Temperaturen in einer Schicht verbunden werden können. Als Material für die Beschichtungen kommen laut Spange antibakteriell wirkende Metallverbindungen ebenso infrage wie Naturstoffe mit antiviralem Potenzial.

Vliesstoffe für Maskenhersteller produziert
Die textile Expertise zahlreicher Institute der Zuse-Gemeinschaft hat 2020 dafür gesorgt, dass anwendungsnahe Forschung sich in der Praxis der Pandemiebekämpfung bewähren konnte. Nach der in Deutschland zu Beginn der Pandemie aufgetretenen Knappheit bei der Versorgung mit Masken reagierten Textilforschungseinrichtungen, um in die Bresche zu springen. So stellte das Sächsische Textilforschungsinstitut (STFI) seine Forschungsanlagen auf die Produktion von Vliesstoff zur Belieferung deutscher und europäischer Hersteller von partikelfilternden Schutzmasken um. „Von März bis November 2020 haben wir Vliesstoff an verschiedene Hersteller geliefert, um die Maskenproduktion bestmöglich zu unterstützen und somit zur Eindämmung der Pandemie beizutragen. In einer für Industrie und Bevölkerung kritischen Zeit konnten wir zur Entlastung kritischer Produktionskapazität beitragen - für ein Forschungsinstitut eine ungewohnte Rolle, die wir aber in ähnlichen Situationen erneut annehmen würden“, erklärt Andreas Berthel, Geschäfts-führender Kaufmännischer Direktor des STFI.

Entwicklung wiederverwendbarer medizinischer Gesichtsmasken
Zur Verbesserung von Alltags- wie auch medizinischen Gesichtsmasken arbeiten die Deutschen Institute für Textil- und Faserforschung (DITF). In Kooperation mit einem Industriepartner entwickelt man in Denkendorf aktuell u.a. wiederverwendbare, medizinische Gesichtsmasken aus leistungsfähigem Präzisionsgewebe in Jacquard-Webtechnik. Die Mehrfachnutzung vermeidet Abfall und etwaige Lieferengpässe.
Für alle Arten von Masken gibt es Regularien, nun auch für Alltagsmasken. Bei Hohenstein wird die Einhaltung von Standards für Masken überprüft. Ein neuer europäischer Leitfaden legt Mindestanforderungen für Konstruktion, Leistungsbeurteilung, Kennzeichnung und Verpackung von Alltagsmasken fest. „Als Prüflabor für Medizinprodukte testen wir die Funktionalität medizinischer Gesichtsmasken unter mikrobiologisch-hygienischen und physikalischen Gesichtspunkten“, erläutert Hohenstein-Geschäftsführer Prof. Dr. Stefan Mecheels. Hohenstein unterstützt damit Hersteller u.a. bei der technischen Dokumentation zum Nachweis der Wirksamkeit und Sicherheit.
Atemschutzmasken (FFP 1, FFP 2 und FFP 3) werden seit Mitte dieses Jahres am Kunststoff-Zentrum (SKZ) in Würzburg geprüft. Getestet werden u.a. Einatem- und Ausatemwiderstand und der Durchlass von Partikeln. Zudem ist das SKZ selbst in die Maskenforschung eingestiegen. In Zusammenarbeit mit einem Medizintechnikspezialisten entwickelt das SKZ eine innovative Maske, die aus einem reinig- und sterilisierbaren Maskenträger und austauschbaren Filterelementen besteht.

ILK-Tests: Bei „Nase raus“ gelangen 90 Prozent der Partikel in die Umgebung
Der Kampf gegen Corona wird durch die Beiträge der Menschen gewonnen: Von Forschenden in Laboren, von Entwicklern und Herstellern in der Industrie sowie von den Bürgerinnen und Bürgern auf der Straße. Das Institut für Luft- und Kältetechnik (ILK) in Dresden hat vor diesem Hintergrund Untersuchungen zur Durchlässigkeit des Mund-Nasenschutzes (MNS) durchgeführt, und zwar zu   möglichen Beeinträchtigungen beim Atmen durch die Maske ebenso wie zur Schutzfunktion von Alltagsmasken.
Ergebnis: Obwohl die eingesetzten Materialien des Mund-Nasenschutzes rund 95 Prozent der ausgeatmeten Tröpfchen zurückhalten können ist „unter praktischen Gesichtspunkten und Berücksichtigung von Leckagen“ davon auszugehen, dass etwa 50 Prozent bis 70 Prozent der Tröpfchen in den Raum gelangen, so das ILK. Werde die Maske nur unterhalb der Nase getragen, so sei aufgrund des großen Anteils der Nasenatmung sogar davon auszugehen, dass ca. 90 Prozent der abgeatmeten Partikel in den Raum gelangen. Das verdeutlicht die Bedeutung des eng anliegenden und richtig getragenen Mund- und Nasenschutzes. „Hingegen sprechen aus physikalischer Sicht keine Gründe gegen das Tragen einer Maske“, betont ILK-Geschäftsführer Prof. Dr. Uwe Franzke. Die Forschenden untersuchten den CO2-Gehalt in der Atemluft ebenso wie den höheren Aufwand für die Atmung und legten dafür das Überwinden des Druckverlustes als Kriterium zugrunde. „Die Untersuchungen zum Druckverlust zeigten einen geringen, praktisch aber nicht relevanten Anstieg“, erläutert Franzke.

Der komplette ILK-Bericht „Untersuchungen zur Wirkung des Mund- und Nasenschutzes (MNS)“ ist hier abrufbar.

 

Pixabay: INNO4COV-19 (c) Pixabay
08.12.2020

Fraunhofer FEP: INNO4COV-19 - Förderung von Innovationen zur Covid-19 Diagnose, Prävention und Überwachung

Das kürzlich gestartete und von der Europäischen Kommission geförderte 6,1-Millionen-Euro-Projekt INNO4COV-19 (Förderkennzeichen 101016203) soll die Vermarktung neuer Produkte zur Bekämpfung von COVID-19 in den nächsten zwei Jahren in ganz Europa unterstützen. Das Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP trägt hierzu sein Know-how in der Sterilisation mithilfe beschleunigter Elektronen und in der augennahen Visualisierung bei.

Das kürzlich gestartete und von der Europäischen Kommission geförderte 6,1-Millionen-Euro-Projekt INNO4COV-19 (Förderkennzeichen 101016203) soll die Vermarktung neuer Produkte zur Bekämpfung von COVID-19 in den nächsten zwei Jahren in ganz Europa unterstützen. Das Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP trägt hierzu sein Know-how in der Sterilisation mithilfe beschleunigter Elektronen und in der augennahen Visualisierung bei.

Im Rahmen des 6,1 Millionen Euro-Projekts INNO4COV-19 soll in den nächsten zwei Jahren die Kommerzialisierung neuer Produkte zur Bekämpfung von COVID-19 in ganz Europa unterstützt werden. Auf der Suche nach einer raschen Entwicklung von Produkten – angefangen bei Medizintechnologien bis hin zu Überwachungslösungen - wird das Projekt Innovationen zur Bekämpfung des neuen Coronavirus fördern, die Technologieführerschaft Europas und die Industrie stärken, um die Sicherheit und das Wohl der Bürger zu schützen.

Der virtuelle Auftakt des am 1. Oktober gestarteten Projekts fand vom 6. bis 7. Oktober 2020 mit Unterstützung zweier Vertreter der Europäischen Kommission statt.

Unter der Leitung des INL – International Iberian Nanotechnology Laboratory suchen die 11 Konsortialpartner nun nach effizienten und schnellen Lösungen, die gemeinsam mit den anderen aktiv beteiligten Industrie- und RTO-Partnern im Kampf gegen COVID-19 helfen können.

Ziel des Projekts INNO4COV-19 ist es, mit einer „Lab-to-Fab“-Plattform eine gemeinsame Ressourcenplattform zur Zusammenarbeit zu schaffen, auf der Unternehmen und Referenzlabors die richtigen Werkzeuge zur Entwicklung und Implementierung innovativer Technologien finden – von der ersten Ideenbewertung bis zur Markteinführung. Diese Arbeiten werden im Rahmen der Coronavirus-Initiative der Europäischen Union und in enger Zusammenarbeit mit allen dort geförderten Projekten durchgeführt, um die Markteinführungszeit erfolgversprechender Produkte zu verkürzen.

INNO4COV-19 wird bis zu 30 Testfälle und Anwendungen aus verschiedenen Bereichen unterstützen, die von der Medizintechnik über Umweltüberwachungssystemen, Sensoren, Schutz von Mitarbeitern des Gesundheitswesens bis hin zu künstlicher Intelligenz und Data Mining reichen. Um dies zu realisieren, vergibt INNO4COV-19 die Hälfte des Budgets an 30 Unternehmen, die im ersten Jahr des Projekts im Rahmen offener Aufrufe ausgewählt wurden.

Der erste Aufruf wird im November 2020 auf mehreren Plattformen veröffentlicht. Die ausgewählten Firmen erhalten jeweils bis zu 100.000 € und profitieren von der technischen, regulatorischen und geschäftlichen Expertise des INNO4COV-19-Konsortiums.

Rolle-zu-Rolle- und Elektronenstrahltechnologien zur großflächigen Sterilisation von textilen Materialien
Bei Pandemie-Ereignissen wie COVID-19, MERS, SARS oder Ebola wurde aufgrund der der plötzlichen Nachfragespitzen ein erheblicher Mangel an sterilem Material für medizinische Zwecke festgestellt. Das Fraunhofer FEP wird hierfür seine Rolle-zu-Rolle Anlagentechnik und Elektronenstrahltechnologien für die Sterilisation von Textilmaterialien auf großen Flächen in das Projekt INNO4COV-19 einbringen.

Normalerweise wird das Textilmaterial unter unsterilen Bedingungen hergestellt und muss daher vor der Auslieferung an die Verbraucher (z. B. Krankenhäuser) sterilisiert werden. Die Sterilisation auf Produkt-Level (Sterilisation der fertig hergestellten Masken) ist im Durchsatz begrenzt, da eine hohe Anzahl von einzelnen kleinen Stücken sterilisiert werden muss.

Projektleiter Dr. Steffen Guenther vom Fraunhofer FEP erläutert die Rolle und die Ziele des Instituts näher: "INNO4COV-19 wird eine Prozesskette für die Elektronenstrahl-Sterilisation von Gewebematerial in Rollenform mit hohem Durchsatz (4500 m²/h) in einer einzigen Pilotmaschine TRL 7 aufbauen und verifizieren, um eine effiziente Herstellung von sterilen Gesichtsmasken und anderen gewebebasierten Sterilprodukten zu ermöglichen, ohne dass das Endprodukt sterilisiert werden muss.“

OLED-Mikrodisplays zur Erkennung infizierter Personen
Ein weiteres Thema des Fraunhofer FEP im Rahmen von INNO4COV-19 befasst sich mit der frühestmöglichen Erkennung von infizierten Personen. Eine weit verbreitete Strategie zur Früherkennung von Personen mit Krankheitssymptomen ist das Körpertemperatur-Screening mit Wärmebildkameras.
Eine Option, um eine kontinuierliche Überwachung der Körpertemperatur zu ermöglichen, ist die Integration einer Wärmekamera in ein intelligentes, tragbares Gerät. Das Fraunhofer FEP setzt dazu seine OLED-Mikrodisplay-Technologie ein. Damit können kleine (< 3 × 2 cm²), ultradünne (< 5 mm einschließlich Steuerschaltkreis) und extrem stromsparende Geräte (< 5 mW) visuelle Informationen anzeigen. In Kombination mit einem Infrarotsensor wird eine Wärmebildkamera realisiert, die sowohl die Körpertemperatur misst als auch das Ergebnis direkt über eine augennahe Visualisierung anzeigt. Das System kann in intelligente Brillen, Kopfbedeckungen, Kappen oder persönliche Gesichtsschutzschilde eingebettet werden.

Zum Projekt:
Das Projekt wird im Rahmen des Horizon 2020 Forschungs- und Innovationsprogramms der Europäischen Union gefördert.
Förderkennzeichen: 101016203

Quelle:

Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

Risiken in der Versorgungskette kostengünstig minimieren Foto: Pixabay
28.07.2020

Fraunhofer ITWM: Risiken in der Versorgungskette kostengünstig minimieren

  • Algorithmen für optimierte Supply Chains

Die Corona-Pandemie hat die Wirtschaft hart getroffen. Was lässt sich daraus lernen? Wie können sich Unternehmen künftig vor solchen Krisen möglichst gut schützen? Sicher braucht es dazu verschiedene Ansätze. Ein vielversprechendes Puzzlestück liefern neue mathematische Methoden vom Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM: Mit ihnen lässt sich berechnen, wie mit wenig Mehrkosten das Risiko für Lieferengpässe deutlich gesenkt werden kann.

  • Algorithmen für optimierte Supply Chains

Die Corona-Pandemie hat die Wirtschaft hart getroffen. Was lässt sich daraus lernen? Wie können sich Unternehmen künftig vor solchen Krisen möglichst gut schützen? Sicher braucht es dazu verschiedene Ansätze. Ein vielversprechendes Puzzlestück liefern neue mathematische Methoden vom Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM: Mit ihnen lässt sich berechnen, wie mit wenig Mehrkosten das Risiko für Lieferengpässe deutlich gesenkt werden kann.

Niemand hat damit gerechnet, schließlich lief die Versorgung der Krankenhäuser mit Atemmasken und anderen Hygieneartikeln bis dato reibungslos: Doch in der Corona-Krise kam es immer wieder zu Engpässen bei diesen Artikeln. Denn manche Versorgungsketten – auch Supply Chains genannt – die zuvor funktionierten, brachen aufgrund der notwendigen Einschränkungen im globalisierten Warenaustausch zusammen. Beispielsweise konnten chinesische Zuliefererfirmen oftmals bereits nicht mehr liefern, als hierzulande die Fabriken noch wie gewohnt produzierten – was daher auch die Herstellung von Gütern in Deutschland in Mitleidenschaft zog. Auch andere Unwägbarkeiten können internationale Zulieferer lahmlegen: Seien es Naturkatastrophen wie Tsunamis, Erdbeben, Stürme oder Hochwasser, seien es Streiks oder auch unvorhersehbare politische Veränderungen. Hängt die Produktion einer Firma an nur einem Zulieferer, um zunächst einmal Kosten zu sparen, kann das fatale Folgen bis hin zum Produktionsstillstand haben. Denn bis andere Zulieferer ihre Produktion entsprechend hochgefahren haben und die benötigten Produkte geliefert werden können, kann es durchaus eine ganze Weile dauern.
 
Versorgungsketten analysieren und absichern
Hier setzen mathematische Methoden aus dem Fraunhofer ITWM an. »Die Algorithmen analysieren, wie divers die Supply Chains in den verschiedenen Bereichen des Unternehmens aufgestellt sind, und wie groß dementsprechend das Risiko ist, sich im Ernstfall – also bei regionalen oder globalen Ausfällen – ein drastisches Lieferproblem einzuhandeln«, sagt Dr. Heiner Ackermann, stellvertretender Abteilungsleiter am Fraunhofer ITWM in Kaiserslautern. »Wie lässt sich eine mögliche Versorgungslücke klein halten, und zwar bei nur wenig erhöhten Kosten?« Das ist ähnlich wie bei einem Hauskauf: Setzt man auf möglichst geringe Zinsen, geht dafür aber das Risiko ein, eine deutlich schlechtere Anschlussfinanzierung abschließen zu müssen? Oder geht man auf Nummer sicher, zahlt etwas höhere Zinsen, hat die dennoch günstige Finanzierung dafür aber bis zum Schluss gesichert?
 
Auch für Unternehmen gilt es, zwischen Risiko und Kosten abzuwägen: Setzen die Firmen alleinig auf den kostengünstigsten Anbieter, gehen sie damit ein hohes Risiko ein. Beziehen sie einen Rohstoff dagegen von mehreren verschiedenen Anbietern, sinkt das Risiko erheblich. »Die Differenz in den Kosten ist dabei deutlich geringer als die Differenz im Risiko«, sagt Ackermann. Das heißt: Die Risiken sinken bereits bei einem moderaten Anstieg der Kosten von weniger Prozent immens – mit einem kleinen Kostenanstieg lässt sich also bereits viel Risiko umgehen. Wie das individuelle Optimum für eine Firma aussieht, lässt sich mittels der Algorithmen herausfinden. »Über diese können die Unternehmen ihre Supply Chains multikriteriell optimieren – sprich eine für sie optimale Balance zwischen Kosten und Risiken finden«, erläutert Ackermann. »Für die Algorithmen, die dahinter liegen, ist es egal, ob die Lieferausfälle durch ein Erdbeben oder einen Virus bedingt sind. Wir machen daher im Gegensatz zu bestehenden Software-Lösungen keine Annahmen, wie wahrscheinlich das Eintreten eines bestimmten Szenarios ist.« Die Unternehmer geben zunächst einmal verschiedene Parameter ein, etwa in welchem Gebiet sie einen Ausfall für wahrscheinlich halten, und wie lange dieser dauern könnte. Die Algorithmen errechnen dann für eben diesen Rohstoff verschiedene Kosten-Risiko-Werte samt den zugehörigen möglichen Lieferanten-Aufteilungen. Auch Optionen wie eine Lagerhaltung von kritischen Produkten, um kurzzeitige Lieferengpässe abfedern zu können, werden dabei berücksichtigt.
 
Rohstoffe bei Lieferengpässen ersetzen    
Eine weitere Möglichkeit, die die Algorithmen in Betracht ziehen: Lässt sich ein Rohstoff bei Lieferengpässen eventuell durch andere Materialien ersetzen? Wenn ja, kann dies von vornherein mit berücksichtigt werden. Die Methode errechnet also Kosten und Risiken für verschiedene Wege, die ein Unternehmen in punkto Zulieferer einschlagen kann. Bei der Firma Procter & Gamble ist bereits eine speziell auf die Bedürfnisse zugeschnittene Variante der Methodik im Einsatz – in Form einer Software.

Quelle:

Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM

Foto: Pixabay
28.04.2020

Meltblown Productive: Fraunhofer ITWM vs. Corona - Mit Mathematik gegen die Krise

  • Meltblown produktiv – ITWM-Software unterstützt bei Vliesstoffproduktion für Infektionsschutz

Simulationen des Fraunhofer-Instituts für Techno- und Wirtschaftsmathematik ITWM machen Prozesse bei der Herstellung von Vliesstoffen effizienter. So wird im Rahmen des Anti-Corona-Programms von Fraunhofer die Produktion von Infektionsschutz optimiert.
 
Die Vliesstoffproduktion hat in der breiten Öffentlichkeit zurzeit so viel Aufmerksamkeit wie selten, denn Vlies ist in Zeiten der Corona-Pandemie lebenswichtig für den Infektionsschutz im medizinischen Bereich und auch für den Schutz der Gesamtbevölkerung. Einmal-Bettwäsche in Krankenhäusern, OP-Kittel, Mundschutz, Wundschutzauflagen und Kompressen sind einige Beispiele für Vliesstoffprodukte.

  • Meltblown produktiv – ITWM-Software unterstützt bei Vliesstoffproduktion für Infektionsschutz

Simulationen des Fraunhofer-Instituts für Techno- und Wirtschaftsmathematik ITWM machen Prozesse bei der Herstellung von Vliesstoffen effizienter. So wird im Rahmen des Anti-Corona-Programms von Fraunhofer die Produktion von Infektionsschutz optimiert.
 
Die Vliesstoffproduktion hat in der breiten Öffentlichkeit zurzeit so viel Aufmerksamkeit wie selten, denn Vlies ist in Zeiten der Corona-Pandemie lebenswichtig für den Infektionsschutz im medizinischen Bereich und auch für den Schutz der Gesamtbevölkerung. Einmal-Bettwäsche in Krankenhäusern, OP-Kittel, Mundschutz, Wundschutzauflagen und Kompressen sind einige Beispiele für Vliesstoffprodukte.

Insbesondere in der Intensiv- und Altenpflege werden aufgrund der besonderen Hygieneanforderungen dazu Einmal-Produkte verwendet, die aus Vliesstoffen gefertigt sind. Momentan sind deutliche Engpässe bei der Produktion dieser Materialien zu beobachten. Für die Klasse der Meltblown-Vliesstoffe gestaltet sich eine Effizienzsteigerung der Produktion jedoch schwierig, weil Meltblown-Prozesse hochsensitiv auf Prozessschwankungen und Materialunreinheiten reagieren.  
 
Vlies ist zwar nicht gleich Vlies, aber allen industriell gefertigten Vliesstoffen verhältnismäßig gleich ist das grobe Prinzip ihrer Produktion: Geschmolzenes Polymer wird durch viele feine Düsen gepresst, in einem Luftstrom stark verstreckt und abgekühlt und so zu den typischen weißen Bahnen abgelegt. »Meltblown« heißt der FeinstfaserProzess, dessen Vliesstoffe dafür verantwortlich sind, dass in Gesichtsmasken die entscheidende Filterfunktion gegeben ist.  
 
Bei der Meltblown-Technologie werden nichtgewebte Stoffe direkt aus Granulat hergestellt. Ein spezielles Spinnverfahren in Kombination mit Hochgeschwindigkeits-Heißluft kommt zum Einsatz, um feinfaserige Vliesstoffe mit unterschiedlichen Strukturen zu produzieren. Die Fäden werden durch die turbulente Luftströmung hochgradig verstreckt. Dabei verwirbeln sie in der Luft, verschlingen sich und fallen mehr oder weniger zufällig auf ein Transportband, wo sie weiter verfestigt werden – ein sehr komplexer Prozess. Weltweit bemühen sich Vliesstoffhersteller, ihre Produktionskapazitäten massiv zu steigern.  
 
Digitaler Zwilling optimiert Meltblown-Prozess     
Hier kommt die Software des ITWM ins Spiel. »Mit unserem Fiber Dynamics Simulation Tool FIDYST werden die Bewegungen der Fasern, ihr Fallen und die Ausrichtung, mit der sie auf einem Transportband landen, vorausgesagt. Je nach Prozesseinstellungen entstehen spezifische Turbulenzen und damit Vliesqualitäten, die sich in Struktur, Faserdichte und Festigkeit unterscheiden«, erklärt Dr. Walter Arne vom Fraunhofer ITWM. Er beschäftigt sich am Institut schon seit Jahren mit der Simulation von verschiedenen Prozessen rund um Fäden, Fasern und Filamente.

Die Methodik ist gut übertragbar auf Meltblown-Prozesse. Bei diesen liegt eine der Besonderheiten auf der Simulation der Filamentverstreckung im turbulenten Luftstrom – wie die Verstreckung verläuft, die Dynamik der Filamente und die Durchmesserverteilung. Das sind alles komplexe Aspekte, die mit einbezogen werden müssen, aber auch das Strömungsfeld oder die Temperaturverteilung. Die Simulationen der Forschenden am Fraunhofer ITWM ermöglichen dann einen qualitativen und quantitativen Einblick in die Faserentstehung in solchen Meltblown-Prozessen – weltweit einzigartig in dieser Form, wenn es um die Abbildung eines turbulenten Spinnprozesses (Meltblown) geht.

Vliesstoffhersteller profitieren von Simulation
Was heißt das für die Industrie? Die Produktion von technischen Textilien kann so nicht nur deutlich effizienter werden, sondern die Vliesstoffe lassen sich entwickeln, ohne dies vorab in einer Versuchsstätte zu realisieren. Denn die Simulationen helfen, die Prozesse anhand eines digitalen Zwillings zu prognostizieren und dann zu optimieren. So können Produktionskapazitäten bei gleichbleibender Produktqualität gesteigert werden. Simulationen sparen Experimente, erlauben neue Einblicke, ermöglichen systematische Parametervariationen und lösen Upscaling-Probleme, die zu Fehlinvestitionen beim Übergang von der Laboranlage zur Industrieanlage führen können.

Mit langjähriger Expertise einen Beitrag zur Bewältigung der Krise leisten
»Exemplarisch wollen wir dies im Projekt an einer typischen Meltblown-Anlage demonstrieren – hierzu stehen wir mit Partnerunternehmen in Kontakt«, so Dr. Dietmar Hietel, Abteilungsleiter »Transportvorgänge« am Fraunhofer ITWM. »Im Rahmen des Anti-Corona-Programms von Fraunhofer wollen wir so mit unserer gewachsenen Expertise und unserem Netzwerk einen Beitrag zur Bewältigung der Krise leisten«, berichtet Hietel. In seiner Abteilung am Fraunhofer ITWM wird die Forschung im Bereich der technischen Textilien seit rund 20 Jahren verfolgt. Das Projekt ist aufgrund der aktuellen Relevanz nicht nur schnell gestartet, sondern auch mit der Umsetzung und Ergebnissen soll es jetzt schnell gehen: Die Laufzeit ist vom 15.04.2020 bis 14.08.2020 angesetzt. Das Kickoff-Meeting fand am 17.04.2020 per Videokonferenz statt.
 
Das Projekt »Meltblown produktiv« und die Ergebnisse sind sicher interessant für Vliesstoffproduzenten. Die Produktion vieler Massenprodukte wurde in den vergangenen Jahrzehnten vielfach nach Asien ausgelagert; die in Deutschland und Europa verbliebenen Vliesstoffhersteller fokussieren sich eher auf hochwertige technische Textilien. Mittel- und längerfristig sind dies auch wissenschaftliche Vorarbeiten, falls Produktionskapazitäten in Deutschland und Europa durch neue Anlagen ausgebaut werden. Denn eine Lehre aus der Krise wird auch sein, die Abhängigkeit von Produzenten in Asien insbesondere als Vorsorge für Krisenszenarien einzudämmen.

Quelle:

Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM

INVENTING TECHNOLOGIES NO ONE CAN COPY… I.S.T © I.S.T Corporation
03.03.2020

INVENTING TECHNOLOGIES NO ONE CAN COPY… I.S.T

NEUE HIGH-TECH FASERN UND GARNE FÜR DEN SPORT- UND FREIZEITMARKT

Mit seiner Messepremiere auf der diesjährigen ISPO Munich Ende Januar ist einem Newcomer im Sportswear- und Outdoormarkt ein vielbeachteter Auftritt gelungen: Das japanische Unternehmen I.S.T Corporation stellte mit umfangreicher Augmented-Reality-Technik seine neue High-Tech-Faser und eine einzigartige Spinntechnologie erstmals in Europa vor. In der Sportindustrie ist I.S.T nur wenigen bekannt, obwohl es in den letzten Saisons bereits erste Kooperationen mit namhaften Herstellern wie beispielsweise Patagonia gegeben hat.

NEUE HIGH-TECH FASERN UND GARNE FÜR DEN SPORT- UND FREIZEITMARKT

Mit seiner Messepremiere auf der diesjährigen ISPO Munich Ende Januar ist einem Newcomer im Sportswear- und Outdoormarkt ein vielbeachteter Auftritt gelungen: Das japanische Unternehmen I.S.T Corporation stellte mit umfangreicher Augmented-Reality-Technik seine neue High-Tech-Faser und eine einzigartige Spinntechnologie erstmals in Europa vor. In der Sportindustrie ist I.S.T nur wenigen bekannt, obwohl es in den letzten Saisons bereits erste Kooperationen mit namhaften Herstellern wie beispielsweise Patagonia gegeben hat.

Den Fragen von Textination stellte sich die Geschäftsführerin, Toshiko “Toko” Sakane. Sie leitet das von ihrem Vater gegründete Unternehmen seit November 2016. Nach ihrem Bachelor in Soziologie / Humanwissenschaften arbeitete sie im Büro des Abgeordnetenhauses des japanischen Parlaments sowie des ehemaligen japanischen Ministers für Gesundheit und Soziales. Später war sie Geschäftsführerin der im Jahr 2000 gegründeten I.S.T Corporation mit Sitz in Parlin, New Jersey, USA, einem Hersteller spezieller hochtemperaturbeständiger Harzmaterialien.
               
I.S.T ist ein japanisches Unternehmen mit einer vergleichsweise jungen Geschichte. 1983 ursprünglich als F&E-Company gegründet, sind Sie inzwischen ebenso in den USA und in China zu Hause. Wenn Sie sich jemandem, der das Unternehmen nicht kennt, in 100 Worten vorstellen müssten: Was macht Sie einzigartig?
Der I.S.T-Konzern ist ein forschungs- und entwicklungsorientiertes japanisches Unternehmen für Werkstoffe, das sich über den Anspruch definiert, „Technologien zu erfinden, die niemand nachahmen kann“. Was uns in unserer Kompetenz einzigartig macht, sind die unternehmenseigene Entwicklung von Materialien, von Produktionsmethoden und fortschrittlicher Produktionstechnologien. Durch diese Komplettlösungsstrategie oder den End-to-End-Lösungsansatz können wir verschiedene Vorteile erzielen, darunter die Entwicklung komplett originärer Produkte, die Sicherstellung der besten Qualitätskontrollen und vor allem die Entdeckung neuer Innovationen.
I.S.T setzt sich dafür ein, ständig neue Technologien zu entwickeln, damit diese dazu beitragen können, das Leben der Menschen eindeutig zu bereichern.
 
Ihr Slogan lautet: “make the impossible possible”. In welchen Märkten und von welchen Branchen fühlen Sie sich besonders herausgefordert? Und mit welchen Produktinnovationen für die Textilindustrie glauben Sie am meisten bewegen zu können?
Der Schwerpunkt von I.S.T liegt auf der Sportartikel- und Bekleidungsindustrie, da die in dieser Branche verwendeten Materialien nach einem breiten Spektrum von Funktionen verlangen, die wahrscheinlich unter extremen Bedingungen eingesetzt werden. Wir finden es sowohl herausfordernd als auch aufregend, unsere fortschrittlichen Innovationen anzubieten. Bezogen auf die Textilindustrie glauben wir, dass unsere KARL KARL™-Spinntechnologie eine neue großartige Lösung für winteraktive Funktionswäsche darstellt, da sie alle gewünschten Funktionen bietet, wie z. B. Wärme, geringes Gewicht und einfache Pflege.

Eine zentrale Leitlinie des Unternehmens ist das Motto „Inventing technologies no-one can copy“. Patentschutz und eine konsequente Markenpolitik zeichnen Ihre Aktivitäten im Markt aus. Doch Patente können auslaufen und Marken kopiert werden, was macht Sie unkopierbar?
Ein Patent oder eine Marke kann kopiert werden. Was es jedoch unmöglich macht, uns zu kopieren, ist, dass unsere Kerntechnologien in unseren integrierten Prozess der Materialentwicklung, der internen Produktionsmethoden und der Weiterentwicklung der Produktionstechnologien eingebettet sind. Unsere KARL KARL™-Technologie ist beispielsweise eine Spinntechnologie, die mehrere Funktionen in einem Garn vereint anbietet oder auch auf alle Arten von Garnen und Hybridgarnen angewendet werden kann.
Es gibt einige andere Unternehmen, die behaupten, ihre Garne hätten eine ähnliche Funktion wie die unsrigen, aber dies sind immer nur einzelne Funktionen, die zudem einen spezifischen Garntyp verlangen. Darin liegt der grundlegende und bedeutende Unterschied zwischen unseren Technologien und jenen der Wettbewerber. Andere Unternehmen können möglicherweise eine einzelne Funktion von uns kopieren, aber es wird niemals dasselbe sein wie unsere Produkte, die das Ergebnis unserer integrierten Innovationen auf verschiedensten Ebenen sind.
          
Zunächst darauf ausgerichtet, Technologien zu verkaufen, sind Sie inzwischen selbst ein bedeutender Faserproduzent. Darüber hinaus haben Sie in den letzten 15 Jahren - beispielsweise im Woll-Markt - durch Übernahmen in Japan und China ihr Portfolio erweitert. Wo sehen Sie I.S.T als Player im Textilsektor 2030?
So wie Sie ein GORE-TEX-Etikett an der Oberbekleidung sehen, würde ich gerne von I.S.T produzierte Marken auf jeder Sport- und Modekleidung sehen, und wissen, dass die Leute das sofort als Zeichen modernster Funktionsmaterialien erkennen.

Auf der ISPO Munich 2020 waren Sie im Januar diesen Jahres erstmals als Aussteller präsent, um die High-Tech-Faser IMIDETEX® und neue KARL KARL™ Garne der Sportartikel- und Outdoorindustrie vorzustellen. Was ist an diesen beiden Produkten so besonders, und was macht sie für den Einsatz in diesen Märkten so geeignet?  
IMIDETEX®, das aus 100% Polyimidharz hergestellt und üblicherweise im Weltraum eingesetzt wird, weist verschiedene vorteilhafte Eigenschaften auf, die andere existierende Superfasern nicht bieten konnten, einschließlich einer hohen UV- und Hitzebeständigkeit, geringer Wasseraufnahme und hoher Zugfestigkeit.
Beispiele möglicher Anwendungen für den Outdoor-Markt wie bei Verbundwerkstoffen sind widerstandsfähige und langlebige Golf- und Tennisschläger, die den Aufprall auf den Spieler minimieren, oder ein Fahrrad, das in der Lage ist, Stöße, ausgelöst durch Bodenunebenheiten während eines langen und wettbewerbsorientierten Rennens, zu absorbieren.
Im textilen Bereich kann es als unglaublich haltbares Segel verwendet werden, das auch gleißender Sonne standhält. Schließlich kann aus IMIDETEX®-Garn ein leichtes, aber superstarkes Seil hergestellt werden, dem Menschen ihr Leben anvertrauen können. IMIDETEX® bietet unter extremen Naturbedingungen hervorragende Eigenschaften.

KARL KARL™ ist die patentierte Spinntechnologie, die einen Kernfaden mit einem anderen Faden multipliziert. Durch die Ausdehnung der Garnstruktur selbst, werden Leichtigkeit und Wärme erreicht, so dass zwei scheinbar gegensätzliche Merkmale nebeneinander existieren. Diese Technologie kann auf Wolle, Baumwolle, Seide, Polyester, Nylon und andere angewendet werden. Außerdem gibt es unzählige Möglichkeiten, neue Garne zu entwickeln, indem verschiedene charakteristische Garne kombiniert werden.
Diese Materialien von I.S.T sind konkurrenzlos und bieten unendliche Möglichkeiten für komplexere Designs in der Sportmode-Szene.

Chemiefasern haben es in einer Welt, in der aktuell besonders großer Wert auf Natur und natürliche Materialien gelegt wird, nicht immer einfach. Auf Ihrer Website postulieren Sie, I.S.T trage durch Chemie dazu bei, den Lebensstil der Menschen auf der ganzen Welt zu verbessern. Auf welche Argumente können Sie diese Aussage stützen?
Unser brandneues Produkt, Faux-Fur, das mit der KARL KARL™-Technologie hergestellt wird, ist ein gutes Beispiel für unseren Beitrag, das Gleichgewicht zwischen natürlich und synthetisch zu bewahren.
Echtes Fell ist zwar modisch, aber heutzutage ein Symbol für Tiermisshandlung. Um die Natur zu schützen, bietet unser KARL KARL™ Kunstpelz eine Alternative für die Mode und verhindert gleichzeitig, dass der Ozean durch die Verwendung von Mikrofasern verschmutzt wird.

Auf welchen gesellschaftlich relevanten Themenfeldern sehen Sie in den nächsten 5 Jahren besonders großen Innovations- und Handlungsbedarf? Wie ist Ihre Einschätzung, dass Ihr Unternehmen mit seinen Produkten dafür Lösungen anbieten können wird?
Wir glauben, dass Leichtgewichtigkeit ein wichtiger Schlüsselfaktor für ein besseres Leben und für den Planeten ist, weil sie ermöglicht, Energie zu sparen und den Nutzeffekt zu steigern.
Als ersten Schritt bringen wir unsere Leichtgewichts-Technologien wie IMIDETEX®-Verbundwerkstoffe und die KARL KARL™-Technologie in Sportartikel und -bekleidung ein, um unseren aktiven Lebensstil zu unterstützen, bevor wir diese Technologien auf alle anderen Märkte ausweiten, die davon profitieren können.
 
Für Nachhaltigkeit gibt es die verschiedensten Definitionen. Kunden erwarten unter diesem Begriff alles – von Klimaschutz bis Ökologie, von vor Ort-Produktion in der Region bis zum Ausschluss von Kinderarbeit usw. Was tun Sie, um diesen Begriff für Ihr Unternehmen mit Leben zu füllen und auf welche Aktivitäten und Zertifizierungen setzen Sie?
I.S.T nimmt dieses Thema in jeder Hinsicht ernst. Wir erforschen und entwickeln konsequent Technologien und Materialien, die unseren Planeten und das Leben der Menschen unterstützen, und bringen nachhaltige Methoden und Materialien in unsere Prozesse ein. Gleiches gilt für das Einbringen nachhaltiger Methoden und Materialien in unsere Produktionsprozesse. So entwickeln wir beispielsweise ein Garn aus Zellulose, das aus gebrauchten Papieren und ohne schädliche Chemikalien für den Menschen hergestellt wird. Außerdem haben wir in eine hochmoderne Produktionsanlage mit geringen Emissionen investiert, um Polyimid-Materialien herzustellen.
Was Wolle betrifft, sind wir nach dem RWS (Responsible Wool Standard) zertifizierte Garnspinner und verwenden RWS-zertifizierte Wollfasern. Bei Polyester verwenden wir GRS (Global Recycled Standard) zertifiziertes Recycling-Polyester und bei Baumwolle organische Baumwollfasern. Darüber hinaus legt unser Unternehmen Wert darauf, Materialien zu produzieren, die ewig halten, und keine Abfälle und/oder Materialien für den einmaligen Gebrauch zu produzieren.
          
Woher erhalten Sie Ihre Inspirationen, an bestimmten Technologien oder Produkten zu forschen? Welche Aufträge oder Anfragen aus der textilen Lieferkette spielen dabei eine entscheidende Rolle?
Sie mögen denken, dass unser Leben bereits mit Dingen gefüllt ist und es nichts gibt, was wir auf dieser Welt nicht bekommen können. Und ja, wir haben alles. Es gibt jedoch einige Funktionen, die Sie sich zusätzlich zu diesen Dingen wünschen.
Die ursprüngliche Idee bei der Entwicklung der KARL KARL™-Technologie war, dass wir Funktionen wie Leichtigkeit, Wärme, Schnelltrocknung und Pflegeleichtigkeit, wie sie Kunstfasern haben, auch für Naturfasern wie Wolle und Baumwolle verfügbar machen wollten, da Naturfasern ganz offensichtlich deutlich positiver für Mensch und Erde sind als Fasern auf Erdölbasis.
Wir glauben an unsere Unternehmensmissionen und halten sie aufrecht: „Entwickle und fertige Produkte, die noch niemand zuvor ausprobiert hat“ und „Kümmere dich um Produkte mit hohem Mehrwert“. Unsere Inspirationen für Forschung und Entwicklung stammen aus unserer Überzeugung, „einen Wunsch in die Realität umzusetzen“. Wir lassen uns nicht von anderen inspirieren. Unsere Innovationen inspirieren Kunden und den Markt.
 
Neue Wege zu gehen, bedeutet Entscheidungsfreudigkeit, Überwindung von Ängsten - und damit auch Mut zum Scheitern. Nicht jedes Projekt kann gelingen. Über welche unternehmerische Entscheidung sind Sie im Nachhinein besonders froh, sie getroffen zu haben?
Tatsächlich gibt es für uns keine fehlgeschlagenen Projekte, weil wir nie aufgeben, bis jedes einzelne Projekt erfolgreich ist.
Durch die Fortsetzung unserer ursprünglichen Unternehmensmissionen „Entwickle und fertige Produkte, die noch niemand zuvor ausprobiert hat“ und „Sich Schwierigkeiten stellen“, die mein Vater, der Gründer von I.S.T, vor fast vierzig Jahren aufgestellt hat, haben I.S.T-Mitglieder, einschließlich mir, die Freude gelernt, Probleme zu überwinden und den Sieg zu spüren.
Als ich das Geschäft übernahm, habe ich mir zum Ziel gesetzt, „auf den globalen Markt vorzudringen, um die Welt mit unseren Technologien zu inspirieren“.
Aufgrund der kürzlich getroffenen Entscheidung, in den Markt für Sportartikel und Bekleidung einzusteigen und der sehr positiven Rückmeldungen auf der ISPO München 2020, freue ich mich sehr, einen Schritt nach vorne in Richtung dieses Ziels gemacht haben.


Das Interview führte Ines Chucholowius, CEO Textination GmbH

03.12.2019

INDUSTRIE UND WISSENSCHAFT FÜR FÖRDERUNG VON WASSERSTOFFTECHNOLOGIEN

Der Schutz des Klimas ist eine der größten Herausforderungen unserer Zeit. Immer deutlicher wird, dass eine erhebliche Transformation von industriellen Wertschöpfungsketten und Produktionsprozessen erforderlich ist, um die Pariser Klimaziele einzuhalten. Dabei wird CO2-frei erzeugter Wasserstoff eine entscheidende Rolle spielen: Das Diskussionspapier, das Industrieakteure nun gemeinsam mit Wissenschaftlerinnen und Wissenschaftlern veröffentlichen, zeigt die essenzielle Funktion des Energieträgers für die Energiewende, skizziert die Herausforderungen, die im Aufbau der nötigen Infrastruktur liegen, und richtet sich mit klaren Handlungsempfehlungen auch an die Politik.

Diskussionsbeitrag der AG Wasserstoff von IN4climate.NRW zur Entwicklung der nationalen Wasserstoffstrategie.

Der Schutz des Klimas ist eine der größten Herausforderungen unserer Zeit. Immer deutlicher wird, dass eine erhebliche Transformation von industriellen Wertschöpfungsketten und Produktionsprozessen erforderlich ist, um die Pariser Klimaziele einzuhalten. Dabei wird CO2-frei erzeugter Wasserstoff eine entscheidende Rolle spielen: Das Diskussionspapier, das Industrieakteure nun gemeinsam mit Wissenschaftlerinnen und Wissenschaftlern veröffentlichen, zeigt die essenzielle Funktion des Energieträgers für die Energiewende, skizziert die Herausforderungen, die im Aufbau der nötigen Infrastruktur liegen, und richtet sich mit klaren Handlungsempfehlungen auch an die Politik.

Diskussionsbeitrag der AG Wasserstoff von IN4climate.NRW zur Entwicklung der nationalen Wasserstoffstrategie.

Nationale und globale Energie- und Klimaschutzszenarien machen deutlich, dass CO2-frei erzeugter Wasserstoff in Zukunft eine tragende Säule der Energiewende wird. Für eine klimaneutrale Produktion in der Chemie- und Stahlindustrie ist Wasserstoff von entscheidender Bedeutung. Zudem kann er sowohl in der Industrie, aber auch im Verkehrs- und Mobilitätssektor fossile Energieträger ersetzen. Er lässt sich gut transportieren und speichern, und leistet so einen wesentlichen Beitrag zur Sektorenkopplung. Deshalb ist zukünftig mit einem hohen Wasserstoffbedarf zu rechnen – dieser kann aktuellen Szenarien zufolge bei über 600 Terrawattstunden pro Jahr liegen.

»Nordrhein-Westfalen ist durch seine zentrale Lage in Europa und dank seiner Potenziale in Industrie und Forschung die ideale Modellregion und Ausgangspunkt in Deutschland und Europa für den Aufbau einer Wasserstoffwirtschaft«, erläutert Prof. Manfred Fischedick, Vizepräsident des Wuppertal Institutes und Leiter der Arbeitsgruppe Wasserstoff bei IN4climate.NRW. Acht Industrieunternehmen (AirLiquide, Amprion, BP, Covestro, Open Grid Europe, RWE, Shell und thyssenkrupp) und vier Forschungsinstitute (Wuppertal Institut, Fraunhofer UMSICHT, BFI sowie das IW Köln) haben das Papier gemeinsam erarbeitet. Die Autorinnen und Autoren sehen Wasserstoff als Schlüssel für eine erfolgreiche Industrietransformation und klimaneutrale Zukunft. Gleichzeitig bietet Wasserstoff auch große Chancen für die wirtschaftliche Entwicklung in NRW und Deutschland – zu rechnen ist mit einem Wertschöpfungspotenzial in Milliardenhöhe und großen Potenzialen für zukunftsfähige Arbeitsplätze.

Alle am Papier beteiligten Unternehmen engagieren sich bereits in Projekten, die Wasserstofftechnologien voranbringen und den Einstieg in eine Wasserstoffzukunft ermöglichen. So befassen sich die Projekte mit einer CO2-freien Stahlproduktion, der Erzeugung von Wasserstoff durch Elektrolyse im industriellen Maßstab, dem Aufbau der Transportinfrastruktur durch die Umwandlung von Erdgaspipelines, dem Einsatz von grünem Wasserstoff in Raffinerien und dem Voranbringen der Sektorenkopplung.

Neue Wasserstoffstrategie
»Wir brauchen nun die notwendigen regulatorischen Voraussetzungen und positive wirtschaftliche Anreize, um klimaneutral erzeugten Wasserstoff für die gesamte Industrie zugänglich zu machen«, erklärt Klaus Kesseler, Leiter Klimaschutz, CO2, Genehmigungen bei der thyssenkrupp Steel AG. »Wir begrüßen es, dass die Bundesregierung die Bedeutung von Wasserstoff im Klimaschutzprogramm 2030 hervorhebt und eine nationale Wasserstoffstrategie erarbeitet, wobei aus unserer Sicht die Gestaltung einer leistungsfähigen Transportinfrastruktur von entscheidender Bedeutung ist. Derzeit ist klimaneutral erzeugter Wasserstoff nicht wettbewerbsfähig – die Wasserstoffstrategie muss das ändern. Zudem brauchen wir zusätzliche Kapazitäten für die Produktion von Strom aus erneuerbaren Energien für die Herstellung von Wasserstoff«, so Kesseler weiter.

Entstanden ist das Papier im Rahmen der Arbeitsgruppe Wasserstoff von IN4climate.NRW. Hier entwickeln die Teilnehmenden branchenübergreifend neue Ideen, um industrielle, klimafreundliche Prozesse und Produkte voranzubringen. Das Diskussionspapier zum Thema Wasserstoff ist die erste Veröffentlichung aus IN4climate.NRW.

 

Weitere Informationen:
Wasserstoff
Quelle:

Quelle: Fraunhofer-Institut für Umwelt-, Sicherheits- und Energietechnik UMSICHT

Das neue AddiTex-Compound kommt als Filament für den 3D-Druck aus dem Extruder. © Fraunhofer UMSICHT
12.11.2019

FRAUNHOFER UMSICHT: COMPOUNDS FÜR ADDITIVE FERTIGUNG, GEOTEXTILIEN UND WEARABLES

Ob biologisch abbaubare Geotextilien, Wearables aus thermoplastischen Elastomeren oder Funktions-Textilien aus dem 3D-Drucker – die Bandbreite der am Fraunhofer Institut für Umwelt-, Sicherheits- und Energietechnik UMSICHT entwickelten Kunststoffe ist groß.

Einblicke in diese Projekte gab es vom 16. bis 23. Oktober in Düsseldorf: Auf der K stellten Wissenschaftlerinnen und Wissenschaftler ihre Arbeit an thermisch und elektrisch leitfähigen, biologisch abbaubaren, biobasierten sowie für die additive Fertigung geeigneten Compounds vor.

Ob biologisch abbaubare Geotextilien, Wearables aus thermoplastischen Elastomeren oder Funktions-Textilien aus dem 3D-Drucker – die Bandbreite der am Fraunhofer Institut für Umwelt-, Sicherheits- und Energietechnik UMSICHT entwickelten Kunststoffe ist groß.

Einblicke in diese Projekte gab es vom 16. bis 23. Oktober in Düsseldorf: Auf der K stellten Wissenschaftlerinnen und Wissenschaftler ihre Arbeit an thermisch und elektrisch leitfähigen, biologisch abbaubaren, biobasierten sowie für die additive Fertigung geeigneten Compounds vor.

Textile Verbundwerkstoffe aus dem 3D-Drucker
Im Projekt »AddiTex« sind Kunststoffe entstanden, die mit Hilfe des 3D-Drucks schichtweise auf Textilien aufgetragen werden und diesen funktionale Eigenschaften verleihen. Eine besondere Herausforderung bei der Entwicklung war die permanente Haftung: Der aufgedruckte Kunststoff sollte sowohl eine feste Verbindung mit dem Textil eingehen als auch ausreichend flexibel sein, um Bewegungen und Drehungen mitmachen zu können.

Entwickelt wurden ein flexibles und flammgeschütztes Compound, das sich besonders für die Anwendung im Bereich des textilen Sonnen- und Schallschutzes eignet, sowie ein steifes Compound, das u. a. bei der Formverstärkung für Schutz- und Funktionsbekleidung zum Einsatz kommt.

Geotextilfilter für die technisch-biologische Ufersicherung
Geotextilfilter für die technisch-biologische Ufersicherung stehen im Zentrum des Projektes »Bioshoreline«. Dahinter verbergen sich stufenweise biologisch abbaubare Vliese, die eine naturnahe Ufergestaltung von Binnenwasserstraßen mit Pflanzen ermöglichen. Sie bestehen aus nachwachsenden Rohstoffen und sollen im Anfangszustand den Boden im Uferbereich stabilisieren, bis die Pflanzenwurzeln ausreichend gewachsen sind, und sowohl Filter- als auch Rückhaltefunktionen übernehmen. Die Alterung und der biologische Abbau der Vliese beginnen unmittelbar nach der Installation, bis die Vliese nach und nach vollständig abgebaut sind.

Aktuell werden Prototypen der Geotextilfilter geprüft. Wissenschaftlerinnen bewerten die ober- und unterirdisch gebildete Pflanzenmasse mit und ohne Geotextilfilter sowie den Einfluss des Bodentyps auf das Pflanzenwachstum und den biologischen Abbau des Filters.

Wearables aus thermoplastischen Elastomeren
Darüber hinaus werden am Fraunhofer UMSICHT neuartige, elektrisch leitfähig eingestellte und flexible Compounds entwickelt, die zu Thermoplast-basierten Bipolarplatten verarbeitet werden können. Diese Kunststoffe sind elektrisch hochleitfähig, flexibel, mechanisch stabil, gasdicht und chemisch resistent sowie – in Abhängigkeit des Füllgrades an elektrisch leitfähigen Additiven – vielfältig nutzbar. Zum Beispiel in elektrochemischen Speichern (Batterien), in Energiewandlern (Brennstoffzellen), in chemikalienresistenten Wärmeübertragern oder als Widerstandsheizelemente.

Ein weiteres mögliches Einsatzgebiet dieser Kunststoffe: Wearables. Diese tragbaren Materialien lassen sich mit den neuen Compounds nämlich einfach und günstig herstellen. Denkbar ist u. a., Kleidungsstücke wie eine Weste mit Hilfe von Widerstandsheizelementen zu formen. Der Gedanke dahinter heißt Power-to-Heat und ermöglicht die direkte Umwandlung von Energie in Wärme.

FÖRDERHINWEISE
»AddiTex« wird gefördert mit einer Zuwendung des Landes Nordrhein-Westfalen unter Einsatz von Mitteln aus dem Europäischen Fonds für regionale Entwicklung (EFRE) 2014-2020 »Investitionen in Wachstum und Beschäftigung«. Projektträger: LeitmarktAgentur.NRW • Projektträger Jülich.
Die Förderung des Vorhabens »Bioshoreline« (Förderkennzeichen: 22000815) erfolgt aus Mitteln des Bundesministeriums für Ernährung und Landwirtschaft (BMEL) aufgrund eines Beschlusses des deutschen Bundestages.

Nähere Informationen online unter: https://www.umsicht.fraunhofer.de/de/referenzen/additex.html

 

Weitere Informationen:
Fraunhofer-Institute UMSICHT K 2019
Quelle:

Fraunhofer-Institut für Umwelt-, Sicherheits- und Energietechnik UMSICHT