Textination Newsline

Zurücksetzen
8 Ergebnisse
Foto Freudenberg Performance Materials
10.01.2023

Fraunhofer: Optimierte Produktion von Vliesstoffmasken

Die Produktion von Infektionsschutzkleidung ist material- und energieintensiv. Fraunhofer-Forschende haben nun eine Technologie entwickelt, die bei der Produktion von Vliesstoffen hilft, Material und Energie zu sparen. Auf Basis einer mathematischen Modellierung steuert ein Digitaler Zwilling wesentliche Prozessparameter der Herstellung. Neben der Verbesserung der Maskenherstellung eignet sich die Lösung ProQuIV auch dazu, die Produktionsparameter für andere Anwendungen der vielseitig einsetzbaren technischen Textilien zu optimieren. Die Hersteller können so flexibel auf Kundenwünsche und Marktveränderungen reagieren.

Die Produktion von Infektionsschutzkleidung ist material- und energieintensiv. Fraunhofer-Forschende haben nun eine Technologie entwickelt, die bei der Produktion von Vliesstoffen hilft, Material und Energie zu sparen. Auf Basis einer mathematischen Modellierung steuert ein Digitaler Zwilling wesentliche Prozessparameter der Herstellung. Neben der Verbesserung der Maskenherstellung eignet sich die Lösung ProQuIV auch dazu, die Produktionsparameter für andere Anwendungen der vielseitig einsetzbaren technischen Textilien zu optimieren. Die Hersteller können so flexibel auf Kundenwünsche und Marktveränderungen reagieren.

Infektionsschutzmasken aus Vlies sind nicht erst seit der Corona-Pandemie millionenfach verbreitet und gelten als simpler Massenartikel. Doch ihre Herstellung stellt hohe Anforderungen an Präzision und Zuverlässigkeit des Produktionsprozesses. Der Vliesstoff in der Maske muss bei der FFP-2-Maske nach DIN mindestens 94 Prozent, bei der FFP-3-Variante sogar 99 Prozent der Aerosole herausfiltern. Gleichzeitig muss die Maske ausreichend Luft durchlassen, damit der Mensch noch gut atmen kann. Viele Hersteller suchen nach Wegen, die Herstellung zu optimieren. Außerdem soll die Produktion flexibler werden, so dass Unternehmen in der Lage sind, die vielseitig verwendbaren Vliesstoffe für ganz unterschiedliche Anwendungen und Branchen zu bearbeiten und zu liefern.

Nun hat das Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM in Kaiserslautern mit ProQuIV eine Lösung vorgestellt, die beides leistet. Das Kürzel ProQuIV steht für »Produktions- und Qualitätsoptimierung von Infektionsschutzkleidung aus Vliesstoffen«. Die Grundidee: Prozessparameter der Herstellung werden bezüglich ihrer Auswirkungen auf die Gleichmäßigkeit des Vliesstoffs charakterisiert und diese wiederum mit Eigenschaften des Endprodukts, beispielsweise einer Schutzmaske, in Verbindung gesetzt. Diese Modellkette verknüpft alle relevanten Parameter mit einer Bildanalyse und bildet einen Digitalen Zwilling der Produktion. Mit dessen Hilfe lässt sich die Vliesstoffherstellung in Echtzeit überwachen, automatisch steuern und somit das Optimierungspotenzial nutzen.

Dr. Ralf Kirsch aus der Abteilung Strömungs- und Materialsimulation und Teamleiter Filtration und Separation erklärt: »Mit ProQuIV benötigen die Hersteller insgesamt weniger Material und sparen Energie. Dabei ist die Qualität des Endprodukts jederzeit gewährleistet.«

Vliesherstellung mit Hitze und Luftströmung
Vliesstoffe für Filtrationsanwendungen werden im sogenannten Meltblown-Prozess hergestellt. Dabei werden Kunststoffe wie Polypropylen geschmolzen, durch Düsen getrieben und kommen in Form von Fäden heraus, den sogenannten Filamenten. Diese werden auf zwei Seiten von Luftströmen erfasst, die sie mit annähernder Schallgeschwindigkeit nach vorne treiben und gleichzeitig verwirbeln, bevor sie auf ein Auffangband fallen. So werden die Fäden nochmals dünner. Die Dicke der Filamente liegt im Mikrometer- oder sogar Sub-Mikrometer-Bereich. Durch Abkühlung und Zugabe von Bindestoffen bildet sich der Vliesstoff. Je besser Temperatur, Luft- und Bandgeschwindigkeit aufeinander abgestimmt sind, desto gleichmäßiger sind am Ende die Fasern verteilt und desto homogener erscheint das Material dann bei der Prüfung im Durchlichtmikroskop. Hier lassen sich hellere und dunklere Stellen ausmachen. Fachleute sprechen von Wolkigkeit. Das Fraunhofer-Team hat eine Methode entwickelt, um einen Wolkigkeits-Index anhand von Bilddaten zu messen. Die hellen Stellen besitzen einen niedrigen Faservolumenanteil, sind also nicht so dicht und weisen eine niedrigere Filtrationsrate auf. Dunklere Stellen haben ein höheres Faservolumen und daher eine höhere Filtrationsrate. Andererseits führt der in diesen Bereichen erhöhte Luftwiderstand dazu, dass sie einen geringeren Anteil der Atemluft filtern. Der größere Anteil strömt durch die offeneren Bereiche, die eine geringere Filterwirkung haben.

Produktionsprozess mit Echtzeit-Steuerung
Die Durchlichtaufnahmen aus dem Mikroskop dienen bei ProQuIV für die Kalibrierung der Modelle vor dem Einsatz. Die Expertinnen und Experten analysieren den Ist-Zustand der Textilprobe und ziehen daraus Rückschlüsse, wie die Anlage optimiert werden kann. So könnten sie beispielsweise die Temperatur erhöhen, die Bandgeschwindigkeit senken oder die Stärke der Luftströme anpassen. »Ein wesentliches Ziel unseres Forschungsprojekts war, zentrale Parameter wie Filtrationsrate, Strömungswiderstand und Wolkigkeit eines Materials miteinander zu verknüpfen und darauf basierend eine Methode zu generieren, die alle Variablen im Produktionsprozess mathematisch modelliert«, sagt Kirsch. Der Digitale Zwilling überwacht und steuert die laufende Produktion in Echtzeit. Kleine Abweichungen der Anlage, wie etwa eine zu hohe Temperatur, werden in Sekunden automatisch korrigiert.

Schnelle und effiziente Herstellung
»Es ist dann nicht notwendig, die Produktion zu unterbrechen, Materialproben zu nehmen und die Maschinen neu einzustellen. Wenn die Modelle kalibriert sind, kann sich der Hersteller darauf verlassen, dass der Vliesstoff, der vom Band läuft, die Spezifikationen und Qualitätsnormen einhält«, erklärt Kirsch. Mit ProQuIV wird die Produktion deutlich effizienter. Es gibt weniger Ausschuss beim Material, und der Energieverbrauch sinkt ebenfalls. Ein weiterer Vorteil besteht darin, dass Hersteller schnell neue Produkte auf Vliesbasis entwickeln können. Dazu müssen lediglich die Zielvorgaben in der Modellierung geändert und die Parameter angepasst werden. So können produzierende Unternehmen flexibel auf Kundenwünsche oder Markttrends reagieren.

Was logisch klingt, ist in der Entwicklung komplex. Die Werte für Filtrationsleistung und Strömungswiderstand steigen nämlich keineswegs linear an und verhalten sich auch nicht proportional zum Faservolumenanteil. Eine doppelt so hohe Filament-Dichte bedeutet also nicht, dass auch Filtrationsleistung und Strömungswiderstand doppelt so hoch sind. Das Verhältnis zwischen den Parametern ist wesentlich komplexer. »Genau deshalb ist die mathematische Modellierung so wichtig. Sie hilft uns, das komplexe Verhältnis zwischen den einzelnen Prozessparametern zu verstehen«, sagt Fraunhofer-ITWM-Forscher Kirsch. Dabei kommt den Forschenden ihre langjährige Expertise bei Simulation und Modellierung zugute.

Weitere Anwendungen sind möglich
Der nächste Schritt besteht für das Fraunhofer-Team darin, den Atemwiderstand der Vliesstoffe für den Menschen bei gleicher Schutzwirkung zu reduzieren. Möglich wird dies durch die elektrische Aufladung der Fasern. Das Prinzip erinnert an die Arbeitsweise eines Staubwedels. Durch die elektrische Ladung zieht das Textilgewebe winzigste Partikel an, die andernfalls durch die Poren schlüpfen könnten. Die Stärke der elektrostatischen Ladung wird hierfür als Parameter in die Modellierung integriert.

Die Fraunhofer-Forschenden beschränken sich bei der Anwendung der Methode keineswegs nur auf Masken und Luftfilter. Ihre Technologie lässt sich ganz allgemein in der Produktion von Vliesstoffen einsetzen, beispielsweise auch bei Stoffen für die Filtration von Flüssigkeiten. Auch die Herstellung von schalldämmenden Vliesstoffen lässt sich mit ProQuIV-Methoden optimieren.

Quelle:

Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM

Foto: pixabay
19.10.2021

Mikromechanische Simulation der Resilienz von Vliesstoffen

Vliesstoffe sind ein wichtiger Bestandteil in diversen Produkten mit verschiedenen Anwendungsgebieten, z.B. Hygieneprodukte, Dämmstoffe oder Filter. In der Regel werden sie auf einer Reihe großer Anlagen hergestellt; daher gestalteten sich experimentelle Designstudien zur Optimierung dieser Vliesstoffstrukturen sehr aufwändig.

Einfluss Designparameter
Es gibt sehr viele Designparameter, wie z.B. Fasern, Flächengewicht oder Vliesverfestigungstyp, welche die Vliesstoffeigenschaften beeinflussen. Zum Austausch eines einzelnen Parameters, beispielsweise des Fasermaterials, muss der vollständige Produktionsprozess vom Faserspinnen über die Faserablage bis hin zur Vliesverfestigung umgestellt werden.

Vliesstoffe sind ein wichtiger Bestandteil in diversen Produkten mit verschiedenen Anwendungsgebieten, z.B. Hygieneprodukte, Dämmstoffe oder Filter. In der Regel werden sie auf einer Reihe großer Anlagen hergestellt; daher gestalteten sich experimentelle Designstudien zur Optimierung dieser Vliesstoffstrukturen sehr aufwändig.

Einfluss Designparameter
Es gibt sehr viele Designparameter, wie z.B. Fasern, Flächengewicht oder Vliesverfestigungstyp, welche die Vliesstoffeigenschaften beeinflussen. Zum Austausch eines einzelnen Parameters, beispielsweise des Fasermaterials, muss der vollständige Produktionsprozess vom Faserspinnen über die Faserablage bis hin zur Vliesverfestigung umgestellt werden.

Im Anschluss an die Produktion eines solchen Prototyps wird eine aufwändige experimentelle Charakterisierung der Vliesstoffeigenschaften benötigt. Aufgrund dieser kostenintensiven Produktion und Charakterisierung sind detaillierte Studien mit mehreren Designparametern unwirtschaftlich.

Daher werden bei uns im Projekt mikromechanische Simulationsmodelle entwickelt. Mithilfe dieser Modelle können die effektiven Vliesstoffeigenschaften numerisch für verschiedenste Designparameter vorhergesagt werden. Zum virtuellen Austausch einzelner Parameter werden in diesem Ansatz lediglich die entsprechenden Eingangsgrößen im Modell angepasst.

Schnelle Vorhersagen möglich
Der Fokus der numerischen Vorhersagen liegt hierbei vor allem auf dem zeitabhängigen Verhalten der Vliesstoffe. Die dynamischen Eigenschaften können durch numerische Nachbildung von zyklischen Messungen bestimmt werden. Dabei wird eine gute Übereinstimmung von Simulation und Messungen erzielt.

Im Gegensatz zu Experimenten verlängert sich die benötigte Simulationszeit für das Verhalten bei niedrigen Frequenzen nicht. Somit sind durch die numerischen Modelle schnelle Vorhersagen für das Langzeitverhalten (Monate bis Jahre) und die entsprechende Resilienz von Vliesstoffen möglich. Sehr viele Varianten können innerhalb weniger Stunden simuliert und studiert werden.

Ein weiterer Vorteil des mikromechanischen Ansatzes besteht darin, dass nicht nur effektive (makroskopische) Vliesstoffeigenschaften berechnet werden, sondern auch lokale Größen wie Spannungsverteilungen in Binder und Fasern bestimmt werden. Somit trägt die Simulation zum besseren Verständnis von Vliesstoffeigenschaft bei.

Zukünftige Entwicklungen beschäftigen sich mit der Erweiterung der Modelle in Richtung der Simulation des Herstellungsprozesses. Dies ermöglicht eine vollständige digitalisierte Auslegung von Vliesstoffen vom Herstellungsprozess bis hin zur Optimierung der Funktionalität.

 

Quelle:

Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM

Foto: pixabay
21.09.2021

Virtuelle Qualitätsprüfung optimiert Produktion von Filtervliesstoffen

Die Vliesstoffproduktion bekam zu Corona-Zeiten in der breiten Öffentlichkeit so viel Aufmerksamkeit wie selten zuvor, denn das technische Textil ist entscheidend für den Infektionsschutz. Die Feinst-Vliesstoffprodukte werden in sogenannten Meltblown-Verfahren hergestellt. Ein abteilungsübergreifendes Team des Fraunhofer-Instituts für Techno- und Wirtschaftsmathematik ITWM in Kaiserslautern optimiert im Projekt »ProQuIV« die gesamte Produktionskette. Dabei helfen Simulationen die Produktqualität des Filtermaterials trotz Schwankungen in der Herstellung zu garantieren.

Die Vliesstoffproduktion bekam zu Corona-Zeiten in der breiten Öffentlichkeit so viel Aufmerksamkeit wie selten zuvor, denn das technische Textil ist entscheidend für den Infektionsschutz. Die Feinst-Vliesstoffprodukte werden in sogenannten Meltblown-Verfahren hergestellt. Ein abteilungsübergreifendes Team des Fraunhofer-Instituts für Techno- und Wirtschaftsmathematik ITWM in Kaiserslautern optimiert im Projekt »ProQuIV« die gesamte Produktionskette. Dabei helfen Simulationen die Produktqualität des Filtermaterials trotz Schwankungen in der Herstellung zu garantieren.

Das Kürzel »ProQuIV« steht für »Produktions- und Qualitätsoptimierung von Infektionsschutzkleidung aus Vliesstoffen«. Denn gerade zu Beginn der Covid-19-Krise waren Engpässe bei der Produktion dieser Materialien zu beobachten. Für die Klasse der Meltblown-Vliesstoffe gestaltet sich diese Optimierung der Produktqualität zudem besonders schwierig, weil die Prozesse sehr sensitiv auf Schwankungen und Materialunreinheiten reagieren.

Digitaler Zwilling hat das große Ganze im Blick
»Meltblown« heißt der industrielle Herstellungsprozess, dessen Feinstfaser-Vliesstoffe dafür verantwortlich sind, dass z.B. in Gesichtsmasken die entscheidende Filterfunktion gegeben ist. Dabei wird das geschmolzene Polymer durch Düsen gepresst, und zwar in einen vorwärts strömenden Hochgeschwindigkeitsstrom. Es wird in einer stark turbulenten Luftströmung gedehnt und abgekühlt.

»Der Gesamtprozess der Filtervliesherstellung – von der Polymerschmelze bis zum Filtermedium – stellt in der Simulation eine große Herausforderung dar«, erklärt Dr. Konrad Steiner, Leiter der Abteilung »Strömungs- und Materialsimulation«. »Wir haben im Projekt das große Ganze im Blick und eine komplett durchgängige Bewertungskette als digitalen Zwilling entwickelt. Dabei berücksichtigen wir gleich mehrere Schlüsselkomponenten: Wir simulieren die typischen Produktionsprozesse von Vliesstoffen, die darauf basierende Entstehung der Faserstrukturen und anschließend die Materialeigenschaften – hier insbesondere die Filtereffizienz. Damit lassen sich dann die Einflüsse des Herstellungsprozesses auf die Produkteigenschaften quantitativ bewerten.« In jedem dieser Einzelbereiche gehört das Fraunhofer ITWM mit seinen Expertinnen und Experten international zu den führenden Forschungsgruppen.

Homogenität des Materials – weniger Wolken am Simulationshimmel
Beim Meltblown-Verfahren liegt ein Schlüsselfaktor auf dem Verhalten der Filamente im turbulenten, heißen und schnellen Luftstrom. Die Fäden werden durch diese Luftströmung stark in ihren Eigenschaften beeinflusst. Die Qualität der Filamente – und damit am Ende der Vliesstoffe –  wird durch viele Faktoren beeinflusst. Was das in der Praxis genauer heißt, weiß Dr. Dietmar Hietel, Leiter der Abteilung »Transportvorgänge«. Sein Team beschäftigt sich am Fraunhofer ITWM schon seit Jahren mit der Simulation von verschiedenen Prozessen rund um Filamente, Fäden und Fasern. »Im Fokus des Projekts steht die sogenannte Wolkigkeit, d.h. die Ungleichmäßigkeit, mit der die Fasern im Vliesstoff verteilt sind«, erklärt Hietel. »Wir gehen der Frage nach: Wie homogen ist der Stoff? Denn die Qualität der Produkte kann stark verbessert werden, wenn wir solche Ungleichmäßigkeiten optimieren. Unsere Simulationen helfen dabei herauszufinden, wie das gelingt.«

Objektive Bewertung der Homogenität der Vliesstoffe
Zur Quantifizierung dieser Wolkigkeit setzen die Forschenden zudem passende Bildanalysetechniken ein. Das Powerspektrum spielt dabei eine besondere Rolle. »Der Wolkigkeitsindex, abgekürzt CLI, beschreibt die Homogenität komplementär zu lokalem Flächengewicht und seiner Varianz,« beschreibt Dr. Katja Schladitz. Sie bringt ihre Expertise in der Bildverarbeitung in das Projekt mit ein. »Unser CLI stellt eine robuste Bewertung der Homogenität sicher und kann somit für verschiedene Materialklassen und Abbildungstechniken als objektives Maß genutzt werden« Die Frequenzen, die in die CLI-Berechnung eingehen, können so gewählt werden, dass der CLI aussagekräftig für das jeweilige Anwendungsgebiet ist.

Filtration: Wie effizient sind die Filter
Bei der Hochskalierung auf Industrieprozesse wie bei der Maskenproduktion fließt zudem die ITWM-Expertise rund um Filter in das Projekt mit ein. Das Team »Filtration und Separation« um Dr. Ralf Kirsch beschäftigt sich schon seit Jahren mit dem mathematischen Modellieren und Simulieren verschiedenster Trennprozesse.

»Das Besondere an diesem Projekt: Wir berechnen die Effizienz der Filter für unterschiedlich stark ausgeprägte Schwankungen des Faseranteils im Filtervlies«, betont Kirsch. »Dadurch können wir angeben, bis zu welchem Wolkigkeitsgrad die geforderte Filtereffizienz überhaupt erreichbar ist.« Als aktuelles Beispiel hierfür sieht man in der Grafik die Effizienz eines Filtermaterials für N95-Masken in Abhängigkeit von der Inhomogenität des Vliesstoffes.

ITMW-Methoden unterstützen über die ganze Prozesskette hinweg
Digitale Zwillinge und Berechnungen aus dem Hause Fraunhofer ITWM unterstützen in »ProQuIV« die Prozesse ganzheitlich zu überschauen und besser zu verstehen. Die Produktion der technischen Textilien wird damit nicht nur effizienter, sondern die Vliesstoffe lassen sich virtuell entwickeln, ohne dies vorab in einer Versuchsstätte zu realisieren. So können Produktionskapazitäten bei gleichbleibender Qualität gesteigert werden. Gemeinsam mit langjährigen Partnern aus der Industrie kann die Forschung schnell und effizient in der Praxis zum Einsatz kommen.

Simulationen sparen Textil-Unternehmen Experimente, erlauben neue Einblicke, ermöglichen systematische Parametervariationen und lösen Upscaling-Probleme, die sonst zu Fehlinvestitionen beim Übergang von der Laboranlage zur Industrieanlage führen können. Die virtuelle Umsetzung der Vliesstoffproduktion eröffnet aber auch neue Möglichkeiten zur Optimierung auf anderen Ebenen. So können auch akustische dämmende Vliesstoffe oder auch Hygiene-Vliesstoffe hinsichtlich ihrer Produktgüte genau auf die zu erzielende Materialeigenschaften hin optimiert werden – und das unter Berücksichtigung der auftretenden Prozessschwankungen.

Das Projekt ist Teil des Programms »Fraunhofer versus Corona« der Fraunhofer-Gesellschaft und wurde im April 2021 abgeschlossen. Die Ergebnisse fließen in mehrere Folgeprojekte mit der Vliesstoffindustrie ein.

Quelle:

Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM

(c) Fraunhofer ITWM
27.07.2021

Simulationssoftware TexMath - Technische Textilien realitätsnah simulieren

Von Hochleistungstextilien bis hin zu Kompressions- und Sportbekleidung: Das modulare Softwareprogramm »TexMath« des Fraunhofer-Instituts für Techno- und Wirtschaftsmathematik ITWM ermöglicht sowohl die Simulation mechanischer Materialeigenschaften als auch die Optimierung textiler Produkte.

Von Hochleistungstextilien bis hin zu Kompressions- und Sportbekleidung: Das modulare Softwareprogramm »TexMath« des Fraunhofer-Instituts für Techno- und Wirtschaftsmathematik ITWM ermöglicht sowohl die Simulation mechanischer Materialeigenschaften als auch die Optimierung textiler Produkte.

Eine beschleunigte Entwicklung und ein optimiertes Design technischer Textilien bei gleichzeitiger Reduzierung von Experimenten? Die Nachfrage für Techniken, die dies realisieren können, ist besonders in Bereichen wie der Sport-, Medizin- und Bekleidungsindustrie groß. Das Team »Technische Textilien« der Abteilung »Strömungs- und Materialsimulation« des Fraunhofer ITWM hat sich dieser Herausforderung angenommen und erforscht Simulationsmethoden, die eine effiziente Vorhersage des textilen Verhaltens bei Streckung, Schub, Biegung, Torsion oder Kompression ermöglicht. Auch die Faltenbildung unter Ausdehnung sowie Schrumpfung von Garnen oder kritische Scherwinkel können während des gesamten Herstellungsprozesses simuliert werden.

Die von ihnen entwickelte Simulationssoftware »TexMath« sorgt dafür, dass Prozessketten in der Produktion vorab an neue Materialien anpassbar werden. Komplizierte Muster und Schichten können mithilfe der Software abgebildet werden und ein direkter Anschluss an die Textilmaschine erfolgen. Gewünschte Web-, Strick- und Wirkprodukte werden mit der Software genau berechnet und deren Materialeigenschaften simuliert. Zusätzlich zu der Bewertung eines bestimmten Textil-Designs mithilfe von Simulation bieten die Tools auch die Optimierung der Leistungsmerkmale für verschiedene Designvarianten. Das Ziel der Software ist es, so Teamleiterin Dr. Julia Orlik, »das Design nach Produkteigenschaften und Zielkriterien« zu realisieren.

TexMath besteht aus mehreren Komponenten: »MeshUp«, »FibreFEM« und »FIFST«. Jede der in TexMath enthaltenen Komponenten hat ihren spezifischen Einsatzbereich. Darüber hinaus verfügen die Tools sowohl untereinander über Schnittstellen als auch über Verbindungen zu der Software »GeoDict®« der Fraunhofer-Ausgründung Math2Market auf, womit beispielsweise strömungsmechanische Simulationen an den Textilien durchgeführt werden können.

Ein Anwendungsbereich der TexMath Software ist die Optimierung von Kompressionstextilien für den medizinischen Bereich oder für den Sport. Für optimale Wirksamkeit kommt es hier ganz besonders auf Passgenauigkeit des Materials an. So kann der Strickvorgang beispielsweise zur Anfertigung einer Bandage mit vordefinierten Kompressionseigenschaften mit TexMath simuliert und dadurch das optimale Gestrick ausgelegt werden.

Diese virtuelle Bandage wird daraufhin in einer weiteren Simulation belastet und einem virtuellen Arm oder Bein angezogen. Dank TexMath wird mithilfe des berechneten Druckprofils eine vorab Bewertung der Kompressionseigenschaften der Bandage sowie auch die direkte Ansteuerung der Strickmaschine gemäß des optimalen Designs möglich.

»Mit TexMath lassen sich auch Abstandstextilien, wie sie beispielsweise für das Obermaterial von Sportschuhen und für die Herstellung von Hochleistungstextilien genutzt werden, designen und vorab struktur- und strömungsmechanisch optimieren«, nennen Dr. Julia Orlik und Abteilungsleiter Dr. Konrad Steiner weitere Einsatzbereiche der Software.

Das neu entwickelte Eingabeinterface ist besonders benutzerfreundlich. Die Textil-Klasse (Gestrick, Gewirke, Gewebe und Abstandgewirke) lässt sich unkompliziert einstellen. Die neue grafische Oberfläche erlaubt eine einfache und schnelle Konfiguration.

MeshUp zur Strukturgenerierung von Webmustern und Maschen
Gestricke und Gewebe werden mit Hilfe von Strick- bzw. Webmaschinen produziert. Jedem Textil liegt eine Bindungspatrone zugrunde, die in die Maschine eingelesen wird bzw. in der Maschine fest vordefiniert ist. MeshUp ist das Softwaremodul von TexMath, in dem Bindungspatronen für diverse Gewebe, Gewirke und Gestricke mit verschiedenen Bindungstypen, dem Fadenverlauf und allen Kontaktstellen zwischen verschiedenen Garnen erzeugt, grafisch abbildet und für weitere Simulationen in TexMath mit FISFT und FiberFEM in entsprechende Eingabeformate übersetzt werden. Darüber hinaus stellt MeshUp die Geometrie auch als Volumendaten (Voxelformat) für Berechnungstools wie GeoDict und FeelMath zur Verfügung.

FiberFEM zur Berechnung effektiver mechanischer Eigenschaften einer periodischen Textilstruktur
Mit FiberFEM können gewebte und geflochtene Textilien, Abstandsgewebe, Gelege sowie Fachwerke hinsichtlich ihrer effektiven mechanischen Materialeigenschaften berechnet und optimiert werden. Ein spezielles Merkmal von FiberFEM ist, dass neben Zug- und Schubeigenschaften auch effektive Biege- und Torsionseigenschaften von Textilien anhand ihrer textilen Struktur und der Garneigenschaften bestimmt werden können.

Als Eingangsgrößen benötigt FiberFEM neben der Mikrostrukturbeschreibung aus MeshUp die Faserquerschnittsgeometrie, sowie mechanische Fasereigenschaften wie Zugsteifigkeit und Reibung. Als Output werden die effektiven mechanischen Textilgrößen berechnet. Neben der Berechnung der effektiven mechanischen Materialeigenschaften für bereits existierende gewebte oder gestrickte Textilien für technische und medizinische Anwendungen, bietet der Ansatz auch das Potential zur gezielten Auslegung und Optimierung neuer Textilien mit vorgegebenem mechanischem Eigenschaftsprofil.

So kann das Relaxationsverhalten eines Textils aus dem Web- bzw. Strickmuster und den Garnrelaxationszeiten für viskoelastische Garne ermittelt werden. Auch Reibungskoeffizienten zwischen den Garnen werden berücksichtigt und werden direkt in die Simulation der effektiven Eigenschaften einbezogen bzw. aus der experimentellen Validierung mit dem Gewebe identifiziert.

FIFST zur Berechnung der Deformation und Belastung von Textilien
Das Model FIFST ist spezialisiert für dynamische Simulationen von Gestricken, sehr dehnbaren Geweben und Gewirken. So kann beispielsweise der Strickprozess simuliert, das Abziehen von der Strickmaschine, die Schrumpfung auf ein entspanntes Textil und auch die Wiederbelastung beim Anziehen berechnet werden. Somit kann auch das Design des Gestricks an vorgegebene Spannungsprofile angepasst werden und eine individualisierte Maschinensteuerung zur Produktion personalisierter Textilien oder produktspezifischer Designs ist möglich.

Die numerische Umsetzung nutzt die Finite-Element-Methode mit nichtlinearen Balken-Elementen, die für die Kontaktprobleme um eine zusätzliche interne Variable – das Gleiten von Fäden an Kontaktknoten – erweitert wurde. Das Reibungsgesetz ist mit dem Euler-Eutelwein-Modell umgesetzt, das um einen zusätzlichen Adhäsionsterm modelltechnisch ausgebaut wurde. Die Adhäsion erlaubt somit auch unterschiedliche Vorspannung in den jeweiligen Maschen. Die elastische Energie wird dabei direkt aus den Garn-Kraft-Dehnungskurven berechnet.  

Ein wichtigstes Alleinstellungsmerkmal von FIFST ist die spezielle Technologie der Zugehörigkeit mehrerer Elemente zu bestimmten Threads und deren Anordnung im Thread sowie das gleichzeitig Kontaktgleiten an Million von Knotenpunkten. Somit ermöglicht FIFST multiskalige Simulation von großen gestrickten oder gewebten Schalenbauteilen unter Berücksichtigung der lokalen Textilstruktur.

Eine weitere Funktionalität der Software ist, virtuell Textilien über eine im STL-Format gegebene Oberflächentriangulierung zu ziehen. Im Video wird gewebte Maske (gestrickt ist ebenfalls möglich) in der Ebene an 6 Punkten ausgedehnt und gegen die Gesichtsoberfläche gezogen. Ihre Knoten werden auf das Gesicht projiziert und gleiten auf der Oberfläche weiter, bis die Maske komplett anliegt. Wenn man Reibeigenschaften von Garnen am Gesicht kennt, kann man weitere Faltungsbildung untersuchen und auch sie gezielt beeinflussen. Als weiteres Optimierungspotential erlaubt FIFST Porengrößen von angezogenem Textil auf besonders gewölbten Oberflächenstellen zu minimieren, die durch Erhöhung der Vorspannung in Garnen oder eine Modifizierung des Lappingdiagramms bzw. der Bindepatrone erreicht werden kann.


Für eine Testversion wenden Sie sich bitte an das

Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM
Fraunhofer-Platz 1
67663 Kaiserslautern

Telefon: +49 631 31600-4342

texmath@itwm.fraunhofer.de    

Quelle:

Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM

(c) Porsche AG
04.05.2021

Fraunhofer: Leichtbau und Ökologie im Autobau

  • Das »Bioconcept-Car« fährt voran

Im Auto-Rennsport sind leichte Karosserien aus Kunststoff und Carbonfasern seit vielen Jahren Standard, weil man damit schneller ins Ziel kommt. Künftig könnten Leichtbaulösungen dazu beitragen, den Energieverbrauch und die Emissionen von Alltagsfahrzeugen zu senken. Der Haken an der Sache: Die Herstellung von Carbonfasern ist teuer sowie energie- und erdölintensiv. In Zusammenarbeit mit Porsche Motorsport und Four Motors ist es den Forschenden am Fraunhofer WKI gelungen, Carbonfasern in einer Autotür durch Naturfasern zu ersetzen. Sie wird bei Porsche bereits in Kleinserie verbaut. Nun geht das Projektteam den nächsten Schritt: Gemeinsam mit HOBUM Oleochemicals wollen sie den Anteil nachwachsender Rohstoffe in der Tür und anderen Karosserieteilen maximieren – mit biobasierten Kunststoffen und Lacken.

  • Das »Bioconcept-Car« fährt voran

Im Auto-Rennsport sind leichte Karosserien aus Kunststoff und Carbonfasern seit vielen Jahren Standard, weil man damit schneller ins Ziel kommt. Künftig könnten Leichtbaulösungen dazu beitragen, den Energieverbrauch und die Emissionen von Alltagsfahrzeugen zu senken. Der Haken an der Sache: Die Herstellung von Carbonfasern ist teuer sowie energie- und erdölintensiv. In Zusammenarbeit mit Porsche Motorsport und Four Motors ist es den Forschenden am Fraunhofer WKI gelungen, Carbonfasern in einer Autotür durch Naturfasern zu ersetzen. Sie wird bei Porsche bereits in Kleinserie verbaut. Nun geht das Projektteam den nächsten Schritt: Gemeinsam mit HOBUM Oleochemicals wollen sie den Anteil nachwachsender Rohstoffe in der Tür und anderen Karosserieteilen maximieren – mit biobasierten Kunststoffen und Lacken.

Carbonfasern verstärken Kunststoffe und verleihen somit Leichtbauteilen die nötige Stabilität. Naturfasern sind in Massenproduktion gefertigt nicht nur kostengünstiger, sie lassen sich deutlich nachhaltiger produzieren. Für das Pilotfahrzeug »Bioconcept-Car« haben Forschende des Fraunhofer WKI Karosserieteile mit 100 Prozent Naturfasern als Verstärkungskomponente entwickelt.

»Wir verwenden Naturfasern, etwa aus Hanf, Flachs oder Jute. Naturfasern weisen im Vergleich zu Carbonfasern zwar geringere Steifigkeiten und Festigkeiten auf, die erreichten Werte sind für viele Anwendungen aber ausreichend«, erläutert Ole Hansen, Projektleiter am Fraunhofer WKI. Durch ihre natürlich gewachsene Struktur dämpfen Naturfasern Schall und Schwingungen besser. Ihre geringere Splitterneigung kann dabei helfen, die Verletzungsgefahr bei Unfällen zu reduzieren. Außerdem lösen sie bei der Verarbeitung keine Hautirritationen aus.

Die biobasierten Verbundstoffe wurden durch den Rennstall Four Motors im »Bioconcept-Car« auf der Rennstrecke unter Extrembedingungen erfolgreich geprüft. Porsche verbaut bereits seit 2019 naturfaserverstärkte Kunststoffe in einer Kleinserie des Cayman GT4 Clubsport. Die Forschenden am Fraunhofer WKI führten während der Fertigung außerdem eine erste ökologische Bewertung anhand von Material- und Energiedaten durch. »Wir konnten feststellen, dass das verwendete Naturfasergewebe in seiner Herstellung, inklusive der Vorketten, ein besseres Umweltprofil als das Gewebe aus Carbon aufweist. Auch eine thermische Verwertung nach der Nutzungsphase sollte problemlos möglich sein«, schildert Hansen.

In der nächsten Projektphase des »Bioconcept-Cars« werden die Forschenden am Fraunhofer WKI gemeinsam mit den Kooperationspartnern HOBUM Oleochemicals GmbH, Porsche Motorsport und Four Motors eine Fahrzeugtür mit einem biogenen Anteil von 85 Prozent im Gesamtverbund aus Fasern und Harz entwickeln. Dies wollen sie unter anderem durch die Verwendung von biobasierten Harz-Härter-Mischungen sowie biobasierten Lacksystemen erreichen. Die Praxistauglichkeit der Tür und ggf. weiterer Bauteile soll wieder auf der Rennstrecke von Four Motors überprüft werden. Wenn die Forschenden Erfolg haben, kann ein Transfer der Erkenntnisse für die Serienproduktion bei Porsche möglich werden.

Das Bundesministerium für Ernährung und Landwirtschaft fördert das Projekt »Bioconcept-Car« über den Projektträger Fachagentur Nachwachsende Rohstoffe e. V. (FNR).

Zum Hintergrund
Nachhaltigkeit durch Nutzung nachwachsender Rohstoffe steht seit über 70 Jahren im Fokus des Fraunhofer WKI. Das Institut mit Standorten in Braunschweig, Hannover und Wolfsburg ist spezialisiert auf Verfahrenstechnik, Naturfaser-Verbundkunststoffe, Oberflächentechnologie, Holz- und Emissionsschutz, Qualitätssicherung von Holzprodukten, Werkstoff- und Produktprüfungen, Recyclingverfahren sowie den Einsatz von organischen Baustoffen und Holz im Bau. Nahezu alle Verfahren und Werkstoffe, die aus der Forschungstätigkeit hervorgehen, werden industriell genutzt.

 

  • EU-Projekt ALMA: Elektromobilität weiterdenken

E-Mobilität und Leichtbau sind zwei entscheidende Bausteine der modernen Fahrzeugentwicklung, um die Energiewende voranzutreiben. Sie stehen im ALMA-Projekt (Advanced Light Materials and Processes for the Eco-Design of Electric Vehicles) im Mittelpunkt. Neun europäische Organisationen arbeiten ab sofort im EU-Projekt daran, energieeffizientere und nachhaltigere Fahrzeuge zu entwickeln. Unternehmen aus Forschung und Industrie optimieren die Effizienz und Reichweite von Elektrofahrzeugen, u.a. indem das Gewicht des Gesamtfahrzeugs reduziert wird. Das Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM unterstützt mit mathematischer Simulationsexpertise.

Laut Strategie für emissionsarme Mobilität strebt die Europäische Union bis 2030 an, mindestens 30 Millionen emissionsfreie Fahrzeuge auf die Straßen zu bringen. Mehr Klimaschutz, neue Märkte, weniger Abhängigkeit von fossilen Energieträgern – Mobilität soll neu gedacht werden. Um den Verkehr klimafreundlicher zu gestalten, werden EU-Maßnahmen zur Förderung von Arbeitsplätzen, Investitionen und Innovationen ergriffen. Das Horizon 2020-Projekt der Europäischen Kommission ALMA stellt eine dieser Maßnahmen dar.

Weitere Informationen:
Leichtbau Fraunhofer WKI ITWM Automobil
Quelle:

Fraunhofer WKI, Fraunhofer ITWM

Emma4Drive (c) Fraunhofer ITWM
03.11.2020

EMMA4Drive – Dynamisches Menschmodell für mehr Sicherheit und Komfort in autonomen Fahrzeugen

  • DFG und Fraunhofer fördern trilaterales Projekt zum autonomen Fahren

Für viele Arbeitnehmerinnen und Arbeitnehmer ist es eine einladende Zukunftsvision: Mit dem eigenen Auto zur Arbeit fahren und die Fahrtzeit trotzdem sinnvoll nutzen: Nachrichten lesen, E-Mails checken oder entspannen und den ersten Kaffee des Tages genießen. In Zukunft werden Insassen von autonomen Fahrzeugen neuen Tätigkeiten nachgehen können. Dazu werden jedoch neue (Software-)Werkzeuge benötigt, um die Erwartungen der Kundinnen und Kunden zu verstehen, das Vertrauen zu stärken und die Sicherheit nachzuweisen. Mit dem Projekt EMMA4Drive fördern die Deutsche Forschungsgesellschaft (DFG) und die Fraunhofer-Gesellschaft die Entwicklung eines dynamischen Menschmodells für die Entwicklung (teil)autonom fahrender Fahrzeuge.

  • DFG und Fraunhofer fördern trilaterales Projekt zum autonomen Fahren

Für viele Arbeitnehmerinnen und Arbeitnehmer ist es eine einladende Zukunftsvision: Mit dem eigenen Auto zur Arbeit fahren und die Fahrtzeit trotzdem sinnvoll nutzen: Nachrichten lesen, E-Mails checken oder entspannen und den ersten Kaffee des Tages genießen. In Zukunft werden Insassen von autonomen Fahrzeugen neuen Tätigkeiten nachgehen können. Dazu werden jedoch neue (Software-)Werkzeuge benötigt, um die Erwartungen der Kundinnen und Kunden zu verstehen, das Vertrauen zu stärken und die Sicherheit nachzuweisen. Mit dem Projekt EMMA4Drive fördern die Deutsche Forschungsgesellschaft (DFG) und die Fraunhofer-Gesellschaft die Entwicklung eines dynamischen Menschmodells für die Entwicklung (teil)autonom fahrender Fahrzeuge.

Forschende des Fraunhofer-Instituts für Techno- und Wirtschaftsmathematik ITWM und der Firma fleXstructures entwickeln gemeinsam mit Wissenschaftlerinnen und Wissenschaftlern vom Institut für Technische und Numerische Mechanik (ITM) der Universität Stuttgart ein muskelaktiviertes Menschmodell.

Dieses simuliert dynamisch die Wechselwirkungen von menschlichen Körperteilen und dem Fahrzeugsitz bei Fahrmanövern. Der daraus entstehende Software-Prototyp EMMA4Drive wird als digitales Abbild des Insassen, dessen Sicherheit und Ergonomie bei Fahrmanövern analysieren und bewerten.

Realistische Bewegungen statt quasistatischer Untersuchungen
Bisher werden Menschmodelle entweder in Crash-Simulationen zur Abschätzung des Verletzungsrisikos oder in Ergonomie-Analysen verwendet. Bei Crash-Analysen werden detaillierte, rechenzeitintensive Modelle für Berechnungen im Millisekunden-Bereich eingesetzt, die für die Simulation dynamischer Fahrmanöver nicht geeignet sind, da hier längere Vorgänge simuliert werden müssen. Konträr dazu basieren Menschmodelle zur Ergonomie-Analyse auf der vereinfachten Kinematik eines Mehrkörpermodells und ermöglichen bisher ausschließlich quasistatische Untersuchungen. Realistische Haltungen und Bewegungen bei neuen Tätigkeiten lassen sich mit diesen Modellen nur mit viel Aufwand modellieren.

»Das von uns entwickelte prototypische Menschmodell EMMA berechnet hingegen mit einem Optimierungsalgorithmus automatisch neue Körperhaltungen und Bewegungsabläufe mit den dazugehörigen Muskelaktivitäten«, erklärt Dr. Joachim Linn, Abteilungsleiter »Mathematik für die digitale Fabrik« am Fraunhofer ITWM, die Besonderheit von EMMA. »Damit werden die neuen Bewegungsabläufe für das (teil)autonome Fahren vergleichsweise einfach im Simulationsmodell umgesetzt und untersucht – beispielsweise bei der Übernahme des Lenkrads durch den Fahrenden.«

EMMA4Drive ermöglicht somit eine vergleichsweise einfache Umsetzung neuer Bewegungsmuster und eine effiziente virtuelle Untersuchung von Sicherheit, Komfort und Ergonomie beim (teil )autonomen Fahren. »Unser Ziel ist es, am Ende des Projekts einen weiter entwickelten Prototypen unseres digitalen Menschmodells EMMA zur Verfügung zu haben, den wir zur Untersuchung und Verbesserung von Sitz- und Bedienkonzepten beim Fahren teil- oder vollautonomer Fahrzeuge einsetzen können«, erklärt Joachim Linn.

DFG und Fraunhofer fördern sechs trilaterale Projekte mit 5 Millionen Euro
In das trilaterale Projekt EMMA4Drive bringt die Universität Stuttgart umfassende Erfahrung in den Bereichen aktive Menschmodellierung, Fahrzeugsicherheit und Modellreduktion ein. Das Fraunhofer ITWM steuert Fachwissen über mehrkörperbasierte Menschmodellierung und Bewegungsoptimierung mittels Optimalsteuerung bei. Die Firma fleXstructures entwickelt, vertreibt und wartet die Softwarefamilie IPS inklusive des digitalen Menschmodells IPS IMMA, das Bewegungsabläufe bei Montagearbeiten simuliert.

»EMMA4Drive – Dynamisches Menschmodell für das autonome Fahren« ist eins der sechs von der DFG und von Fraunhofer geförderten Projekte. Ziel der Förderung von fünf Millionen Euro ist es, Unternehmen frühzeitig an Innovationen aus der Forschung zu beteiligen. Jeweils drei Projektpartner von Hochschulen, Fraunhofer-Instituten und aus der Wirtschaft kooperieren auf Grundlage eines gemeinsamen Arbeitsprogramms. Dabei übernehmen die Fraunhofer-Expertinnen und -Experten die Federführung bei der Verwertung der Projektergebnisse gegenüber den Anwendungspartnern oder bei weiteren Interessenten aus der Industrie.

Quelle:

Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM

Risiken in der Versorgungskette kostengünstig minimieren Foto: Pixabay
28.07.2020

Fraunhofer ITWM: Risiken in der Versorgungskette kostengünstig minimieren

  • Algorithmen für optimierte Supply Chains

Die Corona-Pandemie hat die Wirtschaft hart getroffen. Was lässt sich daraus lernen? Wie können sich Unternehmen künftig vor solchen Krisen möglichst gut schützen? Sicher braucht es dazu verschiedene Ansätze. Ein vielversprechendes Puzzlestück liefern neue mathematische Methoden vom Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM: Mit ihnen lässt sich berechnen, wie mit wenig Mehrkosten das Risiko für Lieferengpässe deutlich gesenkt werden kann.

  • Algorithmen für optimierte Supply Chains

Die Corona-Pandemie hat die Wirtschaft hart getroffen. Was lässt sich daraus lernen? Wie können sich Unternehmen künftig vor solchen Krisen möglichst gut schützen? Sicher braucht es dazu verschiedene Ansätze. Ein vielversprechendes Puzzlestück liefern neue mathematische Methoden vom Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM: Mit ihnen lässt sich berechnen, wie mit wenig Mehrkosten das Risiko für Lieferengpässe deutlich gesenkt werden kann.

Niemand hat damit gerechnet, schließlich lief die Versorgung der Krankenhäuser mit Atemmasken und anderen Hygieneartikeln bis dato reibungslos: Doch in der Corona-Krise kam es immer wieder zu Engpässen bei diesen Artikeln. Denn manche Versorgungsketten – auch Supply Chains genannt – die zuvor funktionierten, brachen aufgrund der notwendigen Einschränkungen im globalisierten Warenaustausch zusammen. Beispielsweise konnten chinesische Zuliefererfirmen oftmals bereits nicht mehr liefern, als hierzulande die Fabriken noch wie gewohnt produzierten – was daher auch die Herstellung von Gütern in Deutschland in Mitleidenschaft zog. Auch andere Unwägbarkeiten können internationale Zulieferer lahmlegen: Seien es Naturkatastrophen wie Tsunamis, Erdbeben, Stürme oder Hochwasser, seien es Streiks oder auch unvorhersehbare politische Veränderungen. Hängt die Produktion einer Firma an nur einem Zulieferer, um zunächst einmal Kosten zu sparen, kann das fatale Folgen bis hin zum Produktionsstillstand haben. Denn bis andere Zulieferer ihre Produktion entsprechend hochgefahren haben und die benötigten Produkte geliefert werden können, kann es durchaus eine ganze Weile dauern.
 
Versorgungsketten analysieren und absichern
Hier setzen mathematische Methoden aus dem Fraunhofer ITWM an. »Die Algorithmen analysieren, wie divers die Supply Chains in den verschiedenen Bereichen des Unternehmens aufgestellt sind, und wie groß dementsprechend das Risiko ist, sich im Ernstfall – also bei regionalen oder globalen Ausfällen – ein drastisches Lieferproblem einzuhandeln«, sagt Dr. Heiner Ackermann, stellvertretender Abteilungsleiter am Fraunhofer ITWM in Kaiserslautern. »Wie lässt sich eine mögliche Versorgungslücke klein halten, und zwar bei nur wenig erhöhten Kosten?« Das ist ähnlich wie bei einem Hauskauf: Setzt man auf möglichst geringe Zinsen, geht dafür aber das Risiko ein, eine deutlich schlechtere Anschlussfinanzierung abschließen zu müssen? Oder geht man auf Nummer sicher, zahlt etwas höhere Zinsen, hat die dennoch günstige Finanzierung dafür aber bis zum Schluss gesichert?
 
Auch für Unternehmen gilt es, zwischen Risiko und Kosten abzuwägen: Setzen die Firmen alleinig auf den kostengünstigsten Anbieter, gehen sie damit ein hohes Risiko ein. Beziehen sie einen Rohstoff dagegen von mehreren verschiedenen Anbietern, sinkt das Risiko erheblich. »Die Differenz in den Kosten ist dabei deutlich geringer als die Differenz im Risiko«, sagt Ackermann. Das heißt: Die Risiken sinken bereits bei einem moderaten Anstieg der Kosten von weniger Prozent immens – mit einem kleinen Kostenanstieg lässt sich also bereits viel Risiko umgehen. Wie das individuelle Optimum für eine Firma aussieht, lässt sich mittels der Algorithmen herausfinden. »Über diese können die Unternehmen ihre Supply Chains multikriteriell optimieren – sprich eine für sie optimale Balance zwischen Kosten und Risiken finden«, erläutert Ackermann. »Für die Algorithmen, die dahinter liegen, ist es egal, ob die Lieferausfälle durch ein Erdbeben oder einen Virus bedingt sind. Wir machen daher im Gegensatz zu bestehenden Software-Lösungen keine Annahmen, wie wahrscheinlich das Eintreten eines bestimmten Szenarios ist.« Die Unternehmer geben zunächst einmal verschiedene Parameter ein, etwa in welchem Gebiet sie einen Ausfall für wahrscheinlich halten, und wie lange dieser dauern könnte. Die Algorithmen errechnen dann für eben diesen Rohstoff verschiedene Kosten-Risiko-Werte samt den zugehörigen möglichen Lieferanten-Aufteilungen. Auch Optionen wie eine Lagerhaltung von kritischen Produkten, um kurzzeitige Lieferengpässe abfedern zu können, werden dabei berücksichtigt.
 
Rohstoffe bei Lieferengpässen ersetzen    
Eine weitere Möglichkeit, die die Algorithmen in Betracht ziehen: Lässt sich ein Rohstoff bei Lieferengpässen eventuell durch andere Materialien ersetzen? Wenn ja, kann dies von vornherein mit berücksichtigt werden. Die Methode errechnet also Kosten und Risiken für verschiedene Wege, die ein Unternehmen in punkto Zulieferer einschlagen kann. Bei der Firma Procter & Gamble ist bereits eine speziell auf die Bedürfnisse zugeschnittene Variante der Methodik im Einsatz – in Form einer Software.

Quelle:

Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM

Foto: Pixabay
28.04.2020

Meltblown Productive: Fraunhofer ITWM vs. Corona - Mit Mathematik gegen die Krise

  • Meltblown produktiv – ITWM-Software unterstützt bei Vliesstoffproduktion für Infektionsschutz

Simulationen des Fraunhofer-Instituts für Techno- und Wirtschaftsmathematik ITWM machen Prozesse bei der Herstellung von Vliesstoffen effizienter. So wird im Rahmen des Anti-Corona-Programms von Fraunhofer die Produktion von Infektionsschutz optimiert.
 
Die Vliesstoffproduktion hat in der breiten Öffentlichkeit zurzeit so viel Aufmerksamkeit wie selten, denn Vlies ist in Zeiten der Corona-Pandemie lebenswichtig für den Infektionsschutz im medizinischen Bereich und auch für den Schutz der Gesamtbevölkerung. Einmal-Bettwäsche in Krankenhäusern, OP-Kittel, Mundschutz, Wundschutzauflagen und Kompressen sind einige Beispiele für Vliesstoffprodukte.

  • Meltblown produktiv – ITWM-Software unterstützt bei Vliesstoffproduktion für Infektionsschutz

Simulationen des Fraunhofer-Instituts für Techno- und Wirtschaftsmathematik ITWM machen Prozesse bei der Herstellung von Vliesstoffen effizienter. So wird im Rahmen des Anti-Corona-Programms von Fraunhofer die Produktion von Infektionsschutz optimiert.
 
Die Vliesstoffproduktion hat in der breiten Öffentlichkeit zurzeit so viel Aufmerksamkeit wie selten, denn Vlies ist in Zeiten der Corona-Pandemie lebenswichtig für den Infektionsschutz im medizinischen Bereich und auch für den Schutz der Gesamtbevölkerung. Einmal-Bettwäsche in Krankenhäusern, OP-Kittel, Mundschutz, Wundschutzauflagen und Kompressen sind einige Beispiele für Vliesstoffprodukte.

Insbesondere in der Intensiv- und Altenpflege werden aufgrund der besonderen Hygieneanforderungen dazu Einmal-Produkte verwendet, die aus Vliesstoffen gefertigt sind. Momentan sind deutliche Engpässe bei der Produktion dieser Materialien zu beobachten. Für die Klasse der Meltblown-Vliesstoffe gestaltet sich eine Effizienzsteigerung der Produktion jedoch schwierig, weil Meltblown-Prozesse hochsensitiv auf Prozessschwankungen und Materialunreinheiten reagieren.  
 
Vlies ist zwar nicht gleich Vlies, aber allen industriell gefertigten Vliesstoffen verhältnismäßig gleich ist das grobe Prinzip ihrer Produktion: Geschmolzenes Polymer wird durch viele feine Düsen gepresst, in einem Luftstrom stark verstreckt und abgekühlt und so zu den typischen weißen Bahnen abgelegt. »Meltblown« heißt der FeinstfaserProzess, dessen Vliesstoffe dafür verantwortlich sind, dass in Gesichtsmasken die entscheidende Filterfunktion gegeben ist.  
 
Bei der Meltblown-Technologie werden nichtgewebte Stoffe direkt aus Granulat hergestellt. Ein spezielles Spinnverfahren in Kombination mit Hochgeschwindigkeits-Heißluft kommt zum Einsatz, um feinfaserige Vliesstoffe mit unterschiedlichen Strukturen zu produzieren. Die Fäden werden durch die turbulente Luftströmung hochgradig verstreckt. Dabei verwirbeln sie in der Luft, verschlingen sich und fallen mehr oder weniger zufällig auf ein Transportband, wo sie weiter verfestigt werden – ein sehr komplexer Prozess. Weltweit bemühen sich Vliesstoffhersteller, ihre Produktionskapazitäten massiv zu steigern.  
 
Digitaler Zwilling optimiert Meltblown-Prozess     
Hier kommt die Software des ITWM ins Spiel. »Mit unserem Fiber Dynamics Simulation Tool FIDYST werden die Bewegungen der Fasern, ihr Fallen und die Ausrichtung, mit der sie auf einem Transportband landen, vorausgesagt. Je nach Prozesseinstellungen entstehen spezifische Turbulenzen und damit Vliesqualitäten, die sich in Struktur, Faserdichte und Festigkeit unterscheiden«, erklärt Dr. Walter Arne vom Fraunhofer ITWM. Er beschäftigt sich am Institut schon seit Jahren mit der Simulation von verschiedenen Prozessen rund um Fäden, Fasern und Filamente.

Die Methodik ist gut übertragbar auf Meltblown-Prozesse. Bei diesen liegt eine der Besonderheiten auf der Simulation der Filamentverstreckung im turbulenten Luftstrom – wie die Verstreckung verläuft, die Dynamik der Filamente und die Durchmesserverteilung. Das sind alles komplexe Aspekte, die mit einbezogen werden müssen, aber auch das Strömungsfeld oder die Temperaturverteilung. Die Simulationen der Forschenden am Fraunhofer ITWM ermöglichen dann einen qualitativen und quantitativen Einblick in die Faserentstehung in solchen Meltblown-Prozessen – weltweit einzigartig in dieser Form, wenn es um die Abbildung eines turbulenten Spinnprozesses (Meltblown) geht.

Vliesstoffhersteller profitieren von Simulation
Was heißt das für die Industrie? Die Produktion von technischen Textilien kann so nicht nur deutlich effizienter werden, sondern die Vliesstoffe lassen sich entwickeln, ohne dies vorab in einer Versuchsstätte zu realisieren. Denn die Simulationen helfen, die Prozesse anhand eines digitalen Zwillings zu prognostizieren und dann zu optimieren. So können Produktionskapazitäten bei gleichbleibender Produktqualität gesteigert werden. Simulationen sparen Experimente, erlauben neue Einblicke, ermöglichen systematische Parametervariationen und lösen Upscaling-Probleme, die zu Fehlinvestitionen beim Übergang von der Laboranlage zur Industrieanlage führen können.

Mit langjähriger Expertise einen Beitrag zur Bewältigung der Krise leisten
»Exemplarisch wollen wir dies im Projekt an einer typischen Meltblown-Anlage demonstrieren – hierzu stehen wir mit Partnerunternehmen in Kontakt«, so Dr. Dietmar Hietel, Abteilungsleiter »Transportvorgänge« am Fraunhofer ITWM. »Im Rahmen des Anti-Corona-Programms von Fraunhofer wollen wir so mit unserer gewachsenen Expertise und unserem Netzwerk einen Beitrag zur Bewältigung der Krise leisten«, berichtet Hietel. In seiner Abteilung am Fraunhofer ITWM wird die Forschung im Bereich der technischen Textilien seit rund 20 Jahren verfolgt. Das Projekt ist aufgrund der aktuellen Relevanz nicht nur schnell gestartet, sondern auch mit der Umsetzung und Ergebnissen soll es jetzt schnell gehen: Die Laufzeit ist vom 15.04.2020 bis 14.08.2020 angesetzt. Das Kickoff-Meeting fand am 17.04.2020 per Videokonferenz statt.
 
Das Projekt »Meltblown produktiv« und die Ergebnisse sind sicher interessant für Vliesstoffproduzenten. Die Produktion vieler Massenprodukte wurde in den vergangenen Jahrzehnten vielfach nach Asien ausgelagert; die in Deutschland und Europa verbliebenen Vliesstoffhersteller fokussieren sich eher auf hochwertige technische Textilien. Mittel- und längerfristig sind dies auch wissenschaftliche Vorarbeiten, falls Produktionskapazitäten in Deutschland und Europa durch neue Anlagen ausgebaut werden. Denn eine Lehre aus der Krise wird auch sein, die Abhängigkeit von Produzenten in Asien insbesondere als Vorsorge für Krisenszenarien einzudämmen.

Quelle:

Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM