Textination Newsline

Zurücksetzen
35 Ergebnisse
Foto: TheDigitalArtist, Pixabay
31.01.2024

Vliesstoff-Nanokomposit-Folien für tragbare Elektronik, Fahrzeuge und Gebäude

  • Kleine, leichte, dehnbare und kosteneffiziente thermoelektrische Komponenten bedeuten einen Durchbruch in der nachhaltigen Energieentwicklung und Abwärme-Rückgewinnung.
  • Flexible Energiegewinnungssysteme der nächsten Generation werden ihre Effizienz der Integration von Graphen-Nanoröhren verdanken. Sie bieten einfache Verarbeitbarkeit, stabile thermoelektrische Leistung, Flexibilität und robuste mechanische Eigenschaften.
  • Nanokomposite haben ein hohes Marktpotenzial bei der Herstellung von Generatoren für medizinische und intelligente Wearables, Fahrzeugsensoren und effizientes Gebäudemanagement.

Etwa die Hälfte der weltweit nutzbaren Energie wird aufgrund der begrenzten Effizienz von Energieumwandlungsgeräten als Wärme verschwendet. So geht zum Beispiel ein Drittel der Energie eines Fahrzeugs als Abwärme in den Abgasen verloren. Gleichzeitig enthalten die Fahrzeuge immer mehr elektronische Geräte, die elektrische Energie benötigen.

  • Kleine, leichte, dehnbare und kosteneffiziente thermoelektrische Komponenten bedeuten einen Durchbruch in der nachhaltigen Energieentwicklung und Abwärme-Rückgewinnung.
  • Flexible Energiegewinnungssysteme der nächsten Generation werden ihre Effizienz der Integration von Graphen-Nanoröhren verdanken. Sie bieten einfache Verarbeitbarkeit, stabile thermoelektrische Leistung, Flexibilität und robuste mechanische Eigenschaften.
  • Nanokomposite haben ein hohes Marktpotenzial bei der Herstellung von Generatoren für medizinische und intelligente Wearables, Fahrzeugsensoren und effizientes Gebäudemanagement.

Etwa die Hälfte der weltweit nutzbaren Energie wird aufgrund der begrenzten Effizienz von Energieumwandlungsgeräten als Wärme verschwendet. So geht zum Beispiel ein Drittel der Energie eines Fahrzeugs als Abwärme in den Abgasen verloren. Gleichzeitig enthalten die Fahrzeuge immer mehr elektronische Geräte, die elektrische Energie benötigen. Ein weiteres Beispiel sind leichte, am Körper zu tragende Sensoren für die Gesundheits- und Umweltüberwachung, die ebenfalls zunehmend gefragt sind. Die Möglichkeit, Abwärme oder Sonnenenergie in nutzbare elektrische Energie umzuwandeln, hat sich als Chance für ein nachhaltigeres Energiemanagement erwiesen. Praktische thermoelektrische Generatoren (TEGs) haben derzeit nur einen geringen Wirkungsgrad und sind relativ groß und schwer. Sie bestehen aus teuren oder korrosionsanfälligen Materialien, sind starr und enthalten oft giftige Elemente.
 
Kürzlich entwickelte, leicht zu verarbeitende, selbsttragende und flexible Vliesstoff-Nanokomposit-Folien zeigen hervorragende thermoelektrische Eigenschaften in Kombination mit guter mechanischer Robustheit. In einem aktuellen Artikel in ACS Applied Nano Materials wird erläutert, wie die Forscher ein thermoplastisches Polyurethan (TPU) mit TUBALLTM Graphen-Nanoröhrchen kombinieren, um ein Nanokompositmaterial herzustellen, das elektrische Energie aus Abwärmequellen gewinnen kann.
 
Dank ihres hohen Aspektverhältnisses und ihrer spezifischen Oberfläche verleihen Graphen-Nanoröhrchen dem TPU elektrische Leitfähigkeit, wodurch eine hohe thermoelektrische Leistung bei gleichbleibenden oder verbesserten mechanischen Eigenschaften erreicht werden kann. "Steifigkeit, Festigkeit und Zugzähigkeit wurden im Vergleich zu Bucky Papers um das 7-, 25- bzw. 250-fache verbessert. Die Nanokompositfolie zeigt einen niedrigen elektrischen Widerstand von 7,5*10-3 Ohm×cm, einen hohen E-Modul von 1,8 GPa, eine Bruchfestigkeit von 80 MPa und eine Bruchdehnung von 41%", sagt Dr. Beate Krause, Gruppenleiterin am Leibniz-Institut für Polymerforschung Dresden e. V.

Da es sich bei Graphen-Nanoröhren um ein grundlegend neues Material handelt, bietet sich die Möglichkeit, die derzeitigen TEG-Materialien durch umweltfreundlichere zu ersetzen. Die von solch thermoelektrischen Generatoren betriebenen Sensoren könnten als "intelligente Haut" für Fahrzeuge und Gebäude fungieren, indem sie Sensorfunktionen zur Leistungsüberwachung und Vermeidung potenzieller Probleme bereitstellen, bevor diese zu Ausfällen führen, und so eine optimale Betriebseffizienz gewährleisten. In Flugzeugen könnten drahtlose Nanokomposite als eigenständige Sensoren zur Überwachung von Enteisungssystemen dienen, wodurch ein umfangreiches Netz von elektrischen Kabeln überflüssig würde. Die hohe Flexibilität, Festigkeit und Zuverlässigkeit der mit Graphen-Nanoröhrchen ausgestatteten thermoelektrischen Materialien ermöglichen auch Anwendungen im Bereich der intelligenten tragbaren und medizinischen Geräte.

Quelle:

Leibniz-Institut für Polymerforschung Dresden e. V. / OCSiAl

TiHive gewinnt RISE® Innovationspreis für seine SAPMonit Technologie Foto INDA
03.10.2023

TiHive gewinnt RISE® Innovationspreis für SAPMonit Technologie

Auf der RISE®-Konferenz (Research, Innovation & Science for Engineered Fabrics) am 26. und 27. September in Raleigh, NC, trafen sich Führungskräfte aus der Wirtschaft, Produktentwickler und Technologie-Scouts, um zwei Tage lang wertvolle Einblicke in Materialwissenschaft, Prozess- und Nachhaltigkeitsinnovationen zu erhalten. Die RISE wird gemeinsam von der INDA und dem Nonwovens Institute der North Carolina State University organisiert.

Experten aus Industrie, Hochschulen und Behörden tauschten ihr Fachwissen zu folgenden Schlüsselbereichen aus:

Auf der RISE®-Konferenz (Research, Innovation & Science for Engineered Fabrics) am 26. und 27. September in Raleigh, NC, trafen sich Führungskräfte aus der Wirtschaft, Produktentwickler und Technologie-Scouts, um zwei Tage lang wertvolle Einblicke in Materialwissenschaft, Prozess- und Nachhaltigkeitsinnovationen zu erhalten. Die RISE wird gemeinsam von der INDA und dem Nonwovens Institute der North Carolina State University organisiert.

Experten aus Industrie, Hochschulen und Behörden tauschten ihr Fachwissen zu folgenden Schlüsselbereichen aus:

  • Die Zukunft der Vliesstoffherstellung
  • Praktische Anwendungen und Fortschritte bei Filtermedien
  • rPolymere und Nachhaltigkeit
  • Innovative Strategien und Kreislauflösungen
  • Fortschritte bei nachhaltigen Vliesstoffanwendungen
  • Marktstatistiken und Datentrends

Ein Highlight war eine Posterpräsentation der grundlegenden Vliesstoff-Forschung durch die Studenten des Nonwovens Institute. Als zusätzliches Angebot offerierte das Nonwovens Institute den RISE-Teilnehmern eine Führung durch seine weltweit anerkannten Einrichtungen auf dem Centennial Campus der North Carolina State University, die über die umfangreichste Ausstattung im Labor- und Pilotmaßstab verfügen, einschließlich aller Vliesstoffplattformen und Testtechnologien.

Gewinner des RISE®-Innovationspreises
TiHive hat den RISE Innovation Award 2023 für seine SAPMonit-Technologie gewonnen. Die Innovation von TiHive, SAPMonit - ein technologischer Durchbruch - prüft wöchentlich Millionen von Windeln. SAPMonit ermöglicht eine blitzschnelle Inline-Inspektion von Gewicht und Verteilung der Superabsorber, optimiert die Ressourcen, erkennt Fehler und beschleunigt Forschung und Entwicklung. SAPMonit nutzt fortschrittliche, intelligente Kameras, Hochgeschwindigkeits-Vision-Algorithmen und eine sichere Cloud-Integration und revolutioniert damit die Industrienormen. SAPMonit hat ein großes Potenzial für Nachhaltigkeit, Kostensenkung und verbesserte Kundenzufriedenheit, da pro Maschine Hunderte von Tonnen Kunststoffabfall pro Jahr vermieden werden.

Zu den Finalisten des RISE Innovation Award gehörten Curt. G. Joa, Inc. für ihren ESC-8 - The JOA® Electronic Size Change, Fiberpartner Aps für ihre BicoBio Fiber und Reifenhäuser REICOFIL GmbH & Co. KG für ihr Reifenhäuser Reicofil RF5 XHL.  Zusammen haben die Innovationen dieser Finalisten das Potenzial, den Kunststoffabfall um Millionen von Kilogramm zu reduzieren.

DiaperRecycle erhielt den RISE® Innovation Award 2022 für seine innovative Technologie zur Wiederverwertung gebrauchter Windeln zu saugfähigem und spülbarem Katzenstreu. Durch die Rücknahme gebrauchter Windeln aus Haushalten und Einrichtungen und die Trennung von Plastik und Fasern ist DiaperRecycle in der Lage, die klimaschädlichen Emissionen von Windeln aus Mülldeponien zu verringern.

2023 INDA Lifetime Technical Achievement Award
Ed Thomas, Präsident von Nonwoven Technology Associates, LLC, erhielt den INDA Lifetime Technical Achievement Award 2023 für seine jahrzehntelangen Beiträge zum Wachstum und Erfolg der Vliesstoffindustrie.

RISE 2024 findet vom 1. bis 2. Oktober 2024 in der James B. Hunt Jr. Library der North Carolina State University in Raleigh, NC, statt.

Weitere Informationen:
INDA RISE® Vliesstoffe
Quelle:

INDA

Aerogel (c) Outlast Technologies GmbH
31.01.2023

Aerogel: Gefrorener Rauch für Bekleidung und Arbeitsschutz

Mit einem Luftanteil von bis zu 99,8 Prozent ist Aerogel der leichteste Feststoff der Welt. Das aufgrund seiner optischen und physikalischen Eigenschaften auch als „gefrorener Rauch“ bezeichnete Material hat eine außerordentlich geringe Wärmeleitfähigkeit, die andere Isolierungen um ein Vielfaches übertrifft. Die NASA nutzt Aerogel daher seit vielen Jahren für Raumfahrt-Projekte.

Mit einem Luftanteil von bis zu 99,8 Prozent ist Aerogel der leichteste Feststoff der Welt. Das aufgrund seiner optischen und physikalischen Eigenschaften auch als „gefrorener Rauch“ bezeichnete Material hat eine außerordentlich geringe Wärmeleitfähigkeit, die andere Isolierungen um ein Vielfaches übertrifft. Die NASA nutzt Aerogel daher seit vielen Jahren für Raumfahrt-Projekte.

Dennoch war es in der rund 90-jährigen Geschichte des Werkstoffes bisher nicht gelungen, ihn in hoher Konzentration an Textilien zu binden und eine unkomplizierte Weiterverarbeitung zu ermöglichen. Die Outlast Technologies GmbH hat nun ein neuartiges zum Patent angemeldetes Verfahren entwickelt, mit dem sich große Mengen Aerogel dauerhaft an unterschiedliche Träger wie Vliesstoffe, Filze und Verbundmaterialien heften lassen. Deren ursprüngliche Eigenschaften bleiben erhalten, sodass sie sich in herkömmlichen Fertigungsprozessen problemlos weiterverarbeiten lassen.
 
Die unter dem Namen Aersulate vertriebenen Textilien sind nur 1 bis 3 mm dick und erreichen sehr hohe Isolationswerte, die selbst unter Druck und Feuchtigkeit weitestgehend erhalten bleiben. Trotz ihrer hohen Leistungsfähigkeit sind sie weich und bieten sich für Schuhe, Bekleidung und Arbeitsschutzprodukte an, aber auch für Schlafsäcke oder technische Anwendungen.

„Aufgrund der außerordentlichen physikalischen Eigenschaften nutzt die NASA Aerogel bereits seit vielen Jahren“, weiß Volker Schuster, Leiter Forschung und Entwicklung bei Outlast Technologies, „zum Beispiel zur Isolierung bei ihren Mars-Rovern oder zum Einfangen von Staub aus dem Schweif eines Kometen bei der Stardust-Mission.“ Seit der Entwicklung von Aerogel durch den US-amerikanischen Wissenschaftler und Chemieingenieur Samuel Stephens Kistler im Jahr 1931 war es trotz intensiver Forschung allerdings niemandem gelungen, den vielseitigen Werkstoff in größeren Mengen auf Textilien aufzubringen, ohne deren ursprüngliche Eigenschaften zu verändern. Damit waren die Produkte nicht nur häufig sehr starr, sondern machten durch ihren großen Staubabrieb auch eine Verarbeitung in herkömmlichen Produktionsprozessen unmöglich. Mit der neuentwickelten Aersulate-Technologie, die im Juni 2022 erstmals vorgestellt wurde, schlägt der in Heidenheim ansässige Spezialist für textile Thermoregulierung ein anderes Kapitel in der Isolierungs-Geschichte auf.

High-Performance-Isolierung - 1-3 mm dick
„Die Konsistenz von Aerogel lässt sich am besten als flüssige Staubkörner beschreiben, die sich aufgrund ihrer geringen Dichte innerhalb von Sekunden unkontrollierbar im Raum verteilen“, so Schuster. „Daher ist die Verarbeitung eine große Herausforderung.“ Es brauchte eine rund fünfjährige Entwicklungszeit, bis Outlast Technologies das neuartige Verfahren, Aerogel zwischen mehrere Stofflagen einzukleben, zur Marktreife brachte. Je nach Anwendungsbereich können Vliesstoffe, Filze oder unterschiedliche Verbundmaterialien als Träger genutzt werden. Die Eigenschaften der jeweiligen Textilien werden durch die Aersulate-Technologie nicht beeinträchtigt, sodass sie sich – trotz ihrer zugewonnenen thermischen Eigenschaften – problemlos in herkömmlichen Prozessen und unter industriellen Bedingungen weiterverarbeiten lassen.
 
Als Feststoff auf Silicatbasis wird Aerogel aus natürlichem Quarzsand gewonnen, verfügt jedoch über eine 1.000 Mal geringere Dichte als aus demselben Rohstoff hergestellte Gläser. Die außerordentliche Isolierungsleistung verdankt das Material seiner extrem porigen Struktur, die einen Luftanteil von bis zu 99,8 Prozent ermöglicht.
 
„Ein Liter Aerogel wiegt gerade einmal 50 g“, erläutert Schuster. „Schon 10 g davon verfügen allerdings über die Oberfläche eines Fußballfeldes.“ Dank dieser Eigenschaften übertreffen die Aersulate-Textilien bei einer deutlich geringeren Dicke sämtliche bisher bekannte Isolierungsmaterialien in ihrer Performance. So haben Tests der Deutschen Institute für Textil- und Faserforschung Denkendorf (DITF) mithilfe des Alambeta-Verfahrens ergeben, dass sich der Wärmedurchgangswiderstand eines Aersulate-Vlieses im Vergleich zu einem herkömmlichen Vlies mit identischer Dicke mehr als verdoppelt. Hinzu kommt, dass die Isolierungsleistung von Aersulate-Produkten trotz Druck und Nässe hoch bleibt, während sie bei anderen gebräuchlichen Stoffen wie Filzen oder Polyurethan-Schäumen (PU) unter diesen Bedingungen massiv abnimmt.

Arbeitsschutz und Funktionskleidung mit Aersulate
Dank des textilen Trägers eignen sich die dünnen Aersulate-Produkte besonders für die Schuh- und Bekleidungsindustrie sowie sämtliche Bereiche des Arbeitsschutzes. Je nach Einsatzzweck kommen dem Anwender die unterschiedlichen Eigenschaften zugute: „Mit einem Handschuh aus nur 1 mm dickem Aersulate kann man zum Beispiel problemlos in kochendes Wasser greifen, ohne sich zu verbrühen“, erklärt Schuster. „Hier spielen uns die extrem hydrophoben Eigenschaften wortwörtlich in die Hände.“ Bei dem Kniebesatz von Arbeits- sowie Funktionshosen oder bei Schuhen bzw. -sohlen werden dagegen auch die Materialeigenschaften bei Kompression relevant. Denn die Isolierungsleistung anderer Stoffe würde einerseits durch die Feuchtigkeit – von außen sowie als Schweiß von innen – und andererseits durch die permanente Einwirkung des Körpergewichts nach und nach abnehmen.
          
Abgesehen vom eigenen Körper lassen sich mit Aersulate auch Gepäck oder technische Geräte vor extremen Temperaturen sowie Witterungseinflüssen schützen. Zu diesem Zweck können bspw. entsprechende Handy- oder Equipmenttaschen in Kleidungsstücke eingenäht werden, um die Akkulaufzeit auch bei sehr kalten Außentemperaturen zu erhalten oder die Geräte bei starker Wärmeeinwirkung vor Überhitzen zu bewahren. „Mit der breiten Palette an möglichen textilen Trägermaterialien eignet sich Aersulate für alle Anwendungen, die einerseits eine hohe Isolierungsleistung erfordern, bei denen andererseits aber nur wenig Platz vorhanden und mit Kompression sowie Feuchtigkeit zu rechnen ist“, fasst Schuster die Vorteile zusammen.

Quelle:

Outlast Technologies / Textination

Foto Freudenberg Performance Materials
10.01.2023

Fraunhofer: Optimierte Produktion von Vliesstoffmasken

Die Produktion von Infektionsschutzkleidung ist material- und energieintensiv. Fraunhofer-Forschende haben nun eine Technologie entwickelt, die bei der Produktion von Vliesstoffen hilft, Material und Energie zu sparen. Auf Basis einer mathematischen Modellierung steuert ein Digitaler Zwilling wesentliche Prozessparameter der Herstellung. Neben der Verbesserung der Maskenherstellung eignet sich die Lösung ProQuIV auch dazu, die Produktionsparameter für andere Anwendungen der vielseitig einsetzbaren technischen Textilien zu optimieren. Die Hersteller können so flexibel auf Kundenwünsche und Marktveränderungen reagieren.

Die Produktion von Infektionsschutzkleidung ist material- und energieintensiv. Fraunhofer-Forschende haben nun eine Technologie entwickelt, die bei der Produktion von Vliesstoffen hilft, Material und Energie zu sparen. Auf Basis einer mathematischen Modellierung steuert ein Digitaler Zwilling wesentliche Prozessparameter der Herstellung. Neben der Verbesserung der Maskenherstellung eignet sich die Lösung ProQuIV auch dazu, die Produktionsparameter für andere Anwendungen der vielseitig einsetzbaren technischen Textilien zu optimieren. Die Hersteller können so flexibel auf Kundenwünsche und Marktveränderungen reagieren.

Infektionsschutzmasken aus Vlies sind nicht erst seit der Corona-Pandemie millionenfach verbreitet und gelten als simpler Massenartikel. Doch ihre Herstellung stellt hohe Anforderungen an Präzision und Zuverlässigkeit des Produktionsprozesses. Der Vliesstoff in der Maske muss bei der FFP-2-Maske nach DIN mindestens 94 Prozent, bei der FFP-3-Variante sogar 99 Prozent der Aerosole herausfiltern. Gleichzeitig muss die Maske ausreichend Luft durchlassen, damit der Mensch noch gut atmen kann. Viele Hersteller suchen nach Wegen, die Herstellung zu optimieren. Außerdem soll die Produktion flexibler werden, so dass Unternehmen in der Lage sind, die vielseitig verwendbaren Vliesstoffe für ganz unterschiedliche Anwendungen und Branchen zu bearbeiten und zu liefern.

Nun hat das Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM in Kaiserslautern mit ProQuIV eine Lösung vorgestellt, die beides leistet. Das Kürzel ProQuIV steht für »Produktions- und Qualitätsoptimierung von Infektionsschutzkleidung aus Vliesstoffen«. Die Grundidee: Prozessparameter der Herstellung werden bezüglich ihrer Auswirkungen auf die Gleichmäßigkeit des Vliesstoffs charakterisiert und diese wiederum mit Eigenschaften des Endprodukts, beispielsweise einer Schutzmaske, in Verbindung gesetzt. Diese Modellkette verknüpft alle relevanten Parameter mit einer Bildanalyse und bildet einen Digitalen Zwilling der Produktion. Mit dessen Hilfe lässt sich die Vliesstoffherstellung in Echtzeit überwachen, automatisch steuern und somit das Optimierungspotenzial nutzen.

Dr. Ralf Kirsch aus der Abteilung Strömungs- und Materialsimulation und Teamleiter Filtration und Separation erklärt: »Mit ProQuIV benötigen die Hersteller insgesamt weniger Material und sparen Energie. Dabei ist die Qualität des Endprodukts jederzeit gewährleistet.«

Vliesherstellung mit Hitze und Luftströmung
Vliesstoffe für Filtrationsanwendungen werden im sogenannten Meltblown-Prozess hergestellt. Dabei werden Kunststoffe wie Polypropylen geschmolzen, durch Düsen getrieben und kommen in Form von Fäden heraus, den sogenannten Filamenten. Diese werden auf zwei Seiten von Luftströmen erfasst, die sie mit annähernder Schallgeschwindigkeit nach vorne treiben und gleichzeitig verwirbeln, bevor sie auf ein Auffangband fallen. So werden die Fäden nochmals dünner. Die Dicke der Filamente liegt im Mikrometer- oder sogar Sub-Mikrometer-Bereich. Durch Abkühlung und Zugabe von Bindestoffen bildet sich der Vliesstoff. Je besser Temperatur, Luft- und Bandgeschwindigkeit aufeinander abgestimmt sind, desto gleichmäßiger sind am Ende die Fasern verteilt und desto homogener erscheint das Material dann bei der Prüfung im Durchlichtmikroskop. Hier lassen sich hellere und dunklere Stellen ausmachen. Fachleute sprechen von Wolkigkeit. Das Fraunhofer-Team hat eine Methode entwickelt, um einen Wolkigkeits-Index anhand von Bilddaten zu messen. Die hellen Stellen besitzen einen niedrigen Faservolumenanteil, sind also nicht so dicht und weisen eine niedrigere Filtrationsrate auf. Dunklere Stellen haben ein höheres Faservolumen und daher eine höhere Filtrationsrate. Andererseits führt der in diesen Bereichen erhöhte Luftwiderstand dazu, dass sie einen geringeren Anteil der Atemluft filtern. Der größere Anteil strömt durch die offeneren Bereiche, die eine geringere Filterwirkung haben.

Produktionsprozess mit Echtzeit-Steuerung
Die Durchlichtaufnahmen aus dem Mikroskop dienen bei ProQuIV für die Kalibrierung der Modelle vor dem Einsatz. Die Expertinnen und Experten analysieren den Ist-Zustand der Textilprobe und ziehen daraus Rückschlüsse, wie die Anlage optimiert werden kann. So könnten sie beispielsweise die Temperatur erhöhen, die Bandgeschwindigkeit senken oder die Stärke der Luftströme anpassen. »Ein wesentliches Ziel unseres Forschungsprojekts war, zentrale Parameter wie Filtrationsrate, Strömungswiderstand und Wolkigkeit eines Materials miteinander zu verknüpfen und darauf basierend eine Methode zu generieren, die alle Variablen im Produktionsprozess mathematisch modelliert«, sagt Kirsch. Der Digitale Zwilling überwacht und steuert die laufende Produktion in Echtzeit. Kleine Abweichungen der Anlage, wie etwa eine zu hohe Temperatur, werden in Sekunden automatisch korrigiert.

Schnelle und effiziente Herstellung
»Es ist dann nicht notwendig, die Produktion zu unterbrechen, Materialproben zu nehmen und die Maschinen neu einzustellen. Wenn die Modelle kalibriert sind, kann sich der Hersteller darauf verlassen, dass der Vliesstoff, der vom Band läuft, die Spezifikationen und Qualitätsnormen einhält«, erklärt Kirsch. Mit ProQuIV wird die Produktion deutlich effizienter. Es gibt weniger Ausschuss beim Material, und der Energieverbrauch sinkt ebenfalls. Ein weiterer Vorteil besteht darin, dass Hersteller schnell neue Produkte auf Vliesbasis entwickeln können. Dazu müssen lediglich die Zielvorgaben in der Modellierung geändert und die Parameter angepasst werden. So können produzierende Unternehmen flexibel auf Kundenwünsche oder Markttrends reagieren.

Was logisch klingt, ist in der Entwicklung komplex. Die Werte für Filtrationsleistung und Strömungswiderstand steigen nämlich keineswegs linear an und verhalten sich auch nicht proportional zum Faservolumenanteil. Eine doppelt so hohe Filament-Dichte bedeutet also nicht, dass auch Filtrationsleistung und Strömungswiderstand doppelt so hoch sind. Das Verhältnis zwischen den Parametern ist wesentlich komplexer. »Genau deshalb ist die mathematische Modellierung so wichtig. Sie hilft uns, das komplexe Verhältnis zwischen den einzelnen Prozessparametern zu verstehen«, sagt Fraunhofer-ITWM-Forscher Kirsch. Dabei kommt den Forschenden ihre langjährige Expertise bei Simulation und Modellierung zugute.

Weitere Anwendungen sind möglich
Der nächste Schritt besteht für das Fraunhofer-Team darin, den Atemwiderstand der Vliesstoffe für den Menschen bei gleicher Schutzwirkung zu reduzieren. Möglich wird dies durch die elektrische Aufladung der Fasern. Das Prinzip erinnert an die Arbeitsweise eines Staubwedels. Durch die elektrische Ladung zieht das Textilgewebe winzigste Partikel an, die andernfalls durch die Poren schlüpfen könnten. Die Stärke der elektrostatischen Ladung wird hierfür als Parameter in die Modellierung integriert.

Die Fraunhofer-Forschenden beschränken sich bei der Anwendung der Methode keineswegs nur auf Masken und Luftfilter. Ihre Technologie lässt sich ganz allgemein in der Produktion von Vliesstoffen einsetzen, beispielsweise auch bei Stoffen für die Filtration von Flüssigkeiten. Auch die Herstellung von schalldämmenden Vliesstoffen lässt sich mit ProQuIV-Methoden optimieren.

Quelle:

Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM

(c) MAI Carbon
24.05.2022

Vom Abfall zum Sekundärrohstoff – Nassvliese aus recycelten Carbonfasern

MAI Scrap SeRO | From Scrap to Secondary Ressources – Highly Orientated Wet-Laid-Nonwovens from CFRP-Waste

Das Projekt »Scrap SeRO« ist als internationales Verbundvorhaben im Themengebiet »Recycling von Carbonfasern« angesiedelt.

Als technisches Projektziel ist die Demonstration einer durchgehenden Prozessroute zur Verarbeitung von pyrolytisch recycelten Carbonfasern (rCF) in leistungsfähigen Second-Life-Bauteilstrukturen definiert. Neben der technologischen Ebene steht insbesondere der internationale Transfer-Charakter im Fokus des Projekts, im Sinne einer Cross-Cluster Initiative zwischen Spitzencluster MAI Carbon (Deutschland) und CVC (Südkorea).    

MAI Scrap SeRO | From Scrap to Secondary Ressources – Highly Orientated Wet-Laid-Nonwovens from CFRP-Waste

Das Projekt »Scrap SeRO« ist als internationales Verbundvorhaben im Themengebiet »Recycling von Carbonfasern« angesiedelt.

Als technisches Projektziel ist die Demonstration einer durchgehenden Prozessroute zur Verarbeitung von pyrolytisch recycelten Carbonfasern (rCF) in leistungsfähigen Second-Life-Bauteilstrukturen definiert. Neben der technologischen Ebene steht insbesondere der internationale Transfer-Charakter im Fokus des Projekts, im Sinne einer Cross-Cluster Initiative zwischen Spitzencluster MAI Carbon (Deutschland) und CVC (Südkorea).    

Durch eine direkte Zusammenarbeit marktführender Unternehmen und Forschungseinrichtungen der teilnehmenden Cluster-Mitglieder erfolgt die technische Projektbearbeitung im Kontext der global geprägten Herausforderung des Recyclings, sowie der Notwendigkeit zu erhöhter Ressourceneffizienz, mit Bezug auf den wirtschaftsstrategischen Werkstoff Carbonfasern.

Effiziente Verarbeitung von recycelten Carbonfasern
Die technologische Prozessroute innerhalb des Projektes verläuft entlang der industriellen Nassvliestechnologie, die mit der klassischen Papierherstellung vergleichbar ist. Diese ermöglicht eine robuste Herstellung von hochqualitativen rCF-Vliesstoffen, die sich u.a. durch besonders hohe Homogenität und Kennwertstabilität auszeichnen.

Besonderer Entwicklungsfokus liegt auf einer spezifischen Prozessführung, welche die Erzeugung einer Orientierung der Einzelfaserfilamente im Vlieswerkstoff erlaubt.

Die gegebene Faservorzugsrichtung der diskontinuierlichen Faserstruktur eröffnet neben einer lastpfadgerechten Mechanik zusätzlich starke Synergieeffekte in Bezug auf erhöhte Packungsdichten, d.h. Faservolumengehalte, sowie ein deutlich optimiertes Verarbeitungsverhalten in Bezug auf Imprägnierung, Umformung und Konsolidierung.

Die innovativen Nassvliesstoffe werden im Folgenden unter Einsatz großserienfähiger Imprägnierverfahren jeweils zu duromeren sowie thermoplastischen Halbzeugen, d.h. Prepregs bzw. Organoblechen, weiterverarbeitet. Durch einen Slitting-Zwischenschritt werden hieraus rCF-Tapes hergestellt. Mittels automatisiertem Fibre-Placement können somit lastpfadoptimierte Preforms abgelegt werden, die abschließend zu komplexen Demonstrator-Bauteilen konsolidiert werden.

Die Prozesskette wird an entscheidenden Schnittstellen von innovativer zerstörungsfreier Messtechnik überwacht und durch umfangreiche Charakterisierungsmethodik ergänzt.

Explizit für die Verarbeitung von pyrolytisch recycelten Carbonfasern, die beispielsweise aus End-of-Life-Abfällen oder PrePreg-Verschnittresten zurückgewonnen wurden, ergeben sich für die hier dargestellte Gesamt-Prozessroute vollkommen neue Potentiale mit signifikantem Mehrwert gegenüber dem aktuellen Stand der Technik.

Internationaler Transfer
Die grundlegend global ausgerichtete Herausforderung des Recyclings bzw. das Bestreben nach gesteigerter Nachhaltigkeit wird stark durch nationale Verwertungsstrategien infolge länderspezifischer Rahmenbedingungen beeinflusst. Die globalisierte Handlungsweise von Unternehmen im Umgang mit hochvolumigen Materialströmen stellt zusätzliche Anforderungen an eine funktionierende Kreislaufwirtschaft. Nur auf Basis und unter Beachtung der jeweiligen Richtlinien und Strukturfaktoren kann eine vernetzte Lösung entstehen.

Im Falle des Hochleistungswerkstoffes Carbonfaser besteht ein besonders hoher technischer Anspruch für eine ökologisch wie ökonomisch tragfähige Recyclingwirtschaft. Gleichzeitig eröffnet die spezifische Marktgröße bereits interessante Skalierungseffekte und Potentiale zur Marktdurchdringung.

Das Projekt ScrapSeRO verbindet dabei zwei der weltweit führenden Spitzencluster im Bereich Carbon Composites aus den Ländern Südkorea und Deutschland auf Basis einer Cross-Cluster Initiative. Im Rahmen dieses ersten aussichtsreichen Technologieprojekts soll dabei der Grundstein für eine zukünftige Zusammenarbeit entstehen, die ein effektives Recycling von Carbonfasern unterstützt.
 
Das Projekt leistet hierbei einen wichtigen Beitrag zur Schließung des Stoffkreislaufs für Carbonfasern und ebnet damit den Weg für einen erneuten Einsatz im Rahmen weiterer Lebenszyklen dieses hochwertigen und energieintensiven Werkstoffs.

Info »Scrap SeRO«

  • Laufzeit: 05/2019 – 10/2022
  • Förderung: BMBF
  • Fördersumme: 2.557.000 €

Konsortium:

  • Fraunhofer Institut für Gießerei-,
  • Composites- und Verarbeitungstechnik IGCV
  • ELG Carbon Fibre
  • J.M. Voith SE & Co. KG
  • Neenah Gessner
  • SURAGUS GmbH
  • LAMILUX Composites GmbH
  • Covestro Deutschland AG
  • BA Composites GmbH
  • SGL Carbon
  • ELG Carbon Fibre
  • Procotex
  • Gen2Carbon
  • KCarbon
  • Hyundai
  • Sangmyung University
  • TERA Engineering
Quelle:

Fraunhofer Institut für Gießerei-, Composites- und Verarbeitungstechnik IGCV

(c) A3/Christian Strohmayr
10.05.2022

Fraunhofer reduziert CO2-Footprint und recycelt Trendleichtbauwerkstoff Carbon

Neo-Ökologie mittels innovativer Papiertechnik

Neo-Ökologie mittels innovativer Papiertechnik

Carbonfaserverbundwerkstoffe sind u. a. aufgrund ihres Leichtbaupotenzials überall im Einsatz, z. B. in der Luftfahrtindustrie, in Windkraftenergieanlagen, im Automotive-Bereich und bei der Herstellung von Sportgeräten. Entlang der Prozesskette und am Ende der Nutzungsphase entstehen verschiedene Arten von Abfällen, die man eigentlich wiederverwenden kann. Mit einer hochmodernen Nassvliesanlage forscht das Fraunhofer-Institut für Gießerei-, Composite- und Verarbeitungstechnik IGCV in Augsburg nun an der Rückführung rezyklierter Carbonfasern. Die Anlagenprozesse ähneln der einer Papierherstellungsanlage. Der entscheidende Unterschied: nicht Papierfasern werden zu Papier, sondern recycelte Carbonfasern werden zu Vliesstoff-Rollwaren verarbeitet. Die Carbonfaser bekommt somit ein zweites Leben und findet sich umweltfreundlich in Form von Vliesstoffen z. B. in Türverkleidungen, Motorhauben, Dachstrukturen, als Unterbodenschutz (Automobil), Hitzeschilder (Helikopter-Heckausleger) sowie im Flugzeug-Interieur wieder.

»Die Nassvliestechnologie für die Verarbeitung technischer Fasern erfährt derzeit eine Revolution, die auf eine jahrhundertealte Tradition der Papierherstellung zurückgeht.«
Michael Sauer; Forscher am Fraunhofer IGCV

Die angewendete Technologie, die Nassvliestechnologie, ist eines der ältesten Vliesbildungsverfahren (um 140 v. Chr. bis 100 n. Chr.). Als bedeutender Industriezweig mit vielseitigen Anwendungsfeldern finden sich Nassvliesstoffe längst nicht mehr nur in klassischem Papier. Vielmehr erstrecken sich die Anwendungsfelder beispielsweise von Klebstoff-Trägerfilmen über Verpackungsmaterial bis hin zu Banknoten sowie deren prozessintegrierten Wasserzeichen und Sicherheitsmerkmalen. Zukünftig kommen besonders nachhaltige Technologiefelder rund um Batteriekomponenten, Brennstoffzellenelemente, Filtrations-Schichten, bis hin zu funktionsintegrierten Werkstofflösungen z. B. mit EMI-Abschirmfunktion hinzu.

Die Nassvliesanlage am Augsburger Standort kann jegliche Fasermaterialien wie Natur-, Regenerat- und Synthetikfasern – vor allem recycelte Carbonfasern – zu innovativen und neuartigen Vliesstoffen verarbeiten. Dabei ist die Anlage gezielt als Pilot-Linie im Technikums-Maßstab ausgelegt und bietet größtmögliche Flexibilität hinsichtlich Materialvarianten und Prozessparametern. Zudem wird eine ausreichend hohe Produktivität gewährleistet, um nachfolgend skalierte Verarbeitungsversuche (z. B. Demonstrator-Fertigung) zu ermöglichen.

Der Hauptarbeitsbereich der Nassvliesanlage bezieht sich auf folgende Kenngrößen:

  • Prozessgeschwindigkeit bis zu 30 m/min
  • Rollenbreite von 610 mm
  • Flächengewichte realisierbar zwischen 20 und 300 gsm
  • Gesamtanlage in der Schutzklasse ≥ IP65 für die Verarbeitung z. B. leitfähiger Faserwerkstoffe
  • Anlagen-Design auf Basis einer Schrägsieb-Anordnung mit hoher Entwässerungsleistung (u. a. für die Verarbeitung stark verdünnter Faser-suspensionen oder für Materialvarianten mit hohem Wasserrückhaltevermögen)
  • Modulares Anlagendesign mit höchstmöglicher Flexibilität für schnellen Wechsel der Materialvariante oder der Prozessparameter

Forschungsschwerpunkt: Carbonrecycling am Ende des Lebenszyklus
Im Bereich technischer Stapelfasern wird an der Verarbeitung recycelter Carbonfasern geforscht. Weitere aktuelle Forschungsinhalte umfassen in diesem Zusammenhang die Erforschung, Optimierung und Weiterentwicklung von Bindermittelsystemen, Faserlängen bzw. Faserlängenverteilungen, Faserorientierung sowie Vliesstoffhomogenität. Zudem steht die Integration von digitalen sowie KI-gestützten Methoden im Rahmen eines Online-Prozess-Monitorings im Fokus. Weitere Forschungsthemen, wie die Herstellung von Gasdiffusionsschichten für Brennstoffzellenkomponenten, die Weiterentwicklung von Batterieelementen sowie Filtrationsanwendungen (Medizintechnik) befinden sich derzeit im Aufbau.

Quelle:

Fraunhofer-Institut für Giesserei-, Composite- und Verarbeitungstechnik IGCV

14.12.2021

Förderprojekt Rohstoffklassifizierung recycelter Fasern

Schon seit Jahrhunderten werden aus Alttextilien Reißfasern hergestellt und zu neuen textilen Produkten verarbeitet. Dieses effektive Recycling ist einer der ältesten Materialkreisläufe der Welt. Heute geht es nicht nur um Bekleidung, sondern auch um hochwertige technische Textilien. So wie sich die Produkte der Textilindustrie weiterentwickeln, steigen auch die Anforderungen an das Textilrecycling. Grundlage dafür sind eine klare Beurteilung und Klassifizierung der Rohstoffe.

Schon seit Jahrhunderten werden aus Alttextilien Reißfasern hergestellt und zu neuen textilen Produkten verarbeitet. Dieses effektive Recycling ist einer der ältesten Materialkreisläufe der Welt. Heute geht es nicht nur um Bekleidung, sondern auch um hochwertige technische Textilien. So wie sich die Produkte der Textilindustrie weiterentwickeln, steigen auch die Anforderungen an das Textilrecycling. Grundlage dafür sind eine klare Beurteilung und Klassifizierung der Rohstoffe.

Im Forschungsprojekt der Deutschen Institute für Textil- und Faserforschung Denkendorf (DITF) und dem Sächsischen Textilforschungsinstitut e.V. (STFI) wird eine Methodik entwickelt, die es ermöglicht, den Reiß als auch die nachfolgenden Prozesse in Bezug auf die Faserqualität zu analysieren. Durch die systematische Analyse soll es gelingen, die nachfolgenden Spinnprozesse so zu optimieren, dass der Recyclinganteil im Garn erhöht werden kann, ohne, dass sich die Garneigenschaften gegenüber einem aus 100% Gutfasern bestehenden Garn wesentlich unterscheiden. Diese Garne können anschließend zu nachhaltigen textilen Produkten wie zum Beispiel Kleidung oder Verbundbauteile verarbeitet werden.

Das vom BMWi/IGF geförderte Projekt hat eine Laufzeit von zwei Jahren und endet am 31.12.2022. Der Nutzen für die teilnehmenden Unternehmen liegt insbesondere darin, ihnen den verstärkten Einsatz von Sekundärrohstoffen zu ermöglichen, neue Märkte durch im Projekt entwickelte Technologien oder Produkte zu erschließen, Synergien und langfristige Kooperationen anzubahnen sowie einen gemeinsamen Marktauftritt vorzubereiten.

Das Projekt umfasst verschiedene Arbeitsschritte:

  • Materialauswahl und Beschaffung
    Zu verarbeitende Baumwollfasern werden aus Alttextilien (T-Shirts) und Abfällen aus der Baumwollspinnerei gewonnen. Die Aramidfasern werden aus gebrauchter Schutzbekleidung und technischen Textilien aufbereitet.
  • Optimierung der Aufbereitung / Auflösung der Textilien
    Damit die Fasern aus den entsprechenden Textilien möglichst schonend und mit einer nicht zu hohen Einkürzung herausgelöst werden, sind exakte Einstellungen beim Reißprozess zu finden, welche technologisch sehr anspruchsvoll sind und viel Erfahrung voraussetzen.
  • Ermittlung der Qualitätskriterien zur Beurteilung der Faserauflösung
    Um die Qualitätskriterien zu definieren werden die aus der Reißerei kommenden Fasern mittels MDTA-4 Messgerät der Textechno GmbH & Co. KG ermittelt. Mit den ermittelten Kriterien soll die (möglichst geringe) Fasereinkürzung durch den Reißprozess charakterisiert werden.
  • Ermittlung optimierter Einstellungen beim Spinnprozess
    Um die optimalen Einstellungen zur Erzeugung eines Garnes aus den Recyclingfasern zu ermitteln, werden diese nach dem Rotorspinnprozess ersponnen. Durch Anpassung des Spinnprozesses soll ein Garn hergestellt werden, das eine gute Gleichmäßigkeit und auch eine entsprechende Festigkeit aufweist.
  • Herstellung und Vergleich von Garnen aus recycelten Rohstoffen
    Damit aus den Recyclingfasern - bestehend aus Aramid und Baumwolle - jeweils ein Flächengebilde hergestellt werden kann, soll das Material im industriellen Maßstab verarbeitet werden. Dazu werden die Fasern über eine komplette Putzereilinie mit anschließender Bandherstellung über angepasste Karden verarbeitet. Nach dem Verstrecken und der anschließenden Vorgarnherstellung werden Garne nach dem Rotor- bzw. nach dem Ringspinnverfahren hergestellt. Mit den fertiggestellten Garnen werden Gestricke produziert.
  • Koordination, Analyse der Ergebnisse und Erstellung der Berichte
    Die Erstellung des Abschlussberichtes erfolgt durch die DITF und das STFI. Ein Ergebnistransfer erfolgt durch Veröffentlichungen, Fachinformationen an Verbände und Messeauftritte. Begleitend sind regelmäßige Sitzungen mit den beteiligten Firmen geplant.

Textination sprach mit Stephan Baz, dem Stv. Leiter Kompetenzzentrum Stapelfaser, Weberei & Simulation Leitung Stapelfasertechnologie und Markus Baumann, Wissenschaftlicher Mitarbeiter am Kompetenzzentrum Stapelfaser, Weberei & Simulation (beide DITF) sowie Bernd Gulich, Abteilungsleiter Vliesstoffe/Recycling und Johannes Leis, wissenschaftlicher Mitarbeiter Schwerpunkt Vliesstoffe/Recycling (beide STFI) über den aktuellen Stand des Förderprojektes.

Wie ist der aktuelle Stand des Projekts?
Aktuell befinden wir uns in der Phase der Versuchsdurchführungen und der iterativen Optimierung gleich mehrerer Projektbausteine. Erwartungsgemäß sind für die mechanische Aufbereitung selbst und auch die Einstellung des Spinnprozesses mit den verschiedenen Varianten mehrere Schleifen notwendig. Letztendlich zielt das Projekt ja darauf ab, die Prozesse der mechanischen Aufbereitung und der Spinnerei als Verarbeitung aufeinander abzustimmen, um optimale Ergebnisse zu erzielen. Gleichzeitig ist die Ermittlung der Qualitätskriterien der erzeugten Fasern nicht trivial. Hierfür braucht es zudem die Weiterentwicklung von Prozessen und Prüfmethoden, welche in der Industrie produktiv umsetzbar sind und welche eine Beurteilung der Qualität der erzeugten Fasern tatsächlich und unbeeinflusst von z.B. Restgarnen ermöglichen. Wirklich bemerkenswert ist das Interesse und die Bereitschaft der Industrie die Projektarbeit voranzutreiben. Die in beträchtlichem Umfang benötigten Mengen an Materialien für unsere Versuche haben wir von der ReSales Textilhandel und -recycling GmbH, von der Altex Textil-Recycling GmbH & Co. KG und der Gebrüder Otto GmbH & Co. KG erhalten. Des Weiteren sind mit der Temafa Maschinenfabrik GmbH, Nomaco GmbH & Co. KG, Schill + Seilacher GmbH, Spinnerei Neuhof GmbH & Co. KG und Maschinenfabrik Rieter AG viele Mitglieder des projektbegleitenden Ausschusses von der Beratung bis hin zu der Bereitstellung von Technologien aktiv in das Projekt involviert. Die Firma Textechno Herbert Stein GmbH & Co. KG hat für die Dauer des Projektes ein Prüfgerät des Typ MDTA4 zur Verfügung gestellt und unterstützt unserer Arbeit in Bezug auf die Beurteilung der mechanisch aufbereiteten Fasern. Hierüber sind wir natürlich besonders froh, denn so konnten wir sowohl in der mechanischen Aufbereitung, der Prüfung als auch der Spinnerei mehrere Technologien betrachten und analysieren. Wir erwarten, zu Beginn des kommenden Jahres detailliertere Aussagen treffen zu können.

Welche Ansätze halten Sie für besonders vielversprechend?
Bezogen auf Technologien müssen wir auf die Auswertung und Analyse der Versuchsdurchführungen verweisen, welche derzeit noch andauern. Im ersten Quartal des nächsten Jahres werden wir hierzu mehr ins Detail gehen können.

Es zeichnen sich natürlich schon Dinge ab. Bei den meta-Aramid-Abfällen ließen sich sehr schnell vielversprechende Ansätze finden, bei der Post-Consumer-Baumwolle ist dies deutlich komplexer. Offensichtlich ist die Verbindung zwischen Qualität des Ausgangsmaterials und der Qualität der Erzeugnisse. Wir haben in den beschafften Waren teilweise bereits sehr niedrige mittlere Faserlängen feststellen können, diese spiegeln sich zu einem gewissen Grad natürlich direkt im Output unserer Prozesse wider. Daraus leitet sich, das ist keine neue Erkenntnis, erneut eine große Bedeutung des Designs der Textilien ab.

Worin liegen die Herausforderungen?
Neben dem zu erwartenden hohen Kurzfaseranteil sind die Restgarne nach dem Reißprozess ein Thema mit besonderem Fokus. Zwischen den Materialien und Aufbereitungstechnologien kann der Anteil dieser Restgarne variieren, aber die weitere Auflösung der Produkte des Reißprozesses ist essenziell.
Werden die Prozesse in einer Nutzungsphase weitergedacht, stellt sich die Frage des Designs natürlich auch für die bestmögliche Verwendung von recycelten Fasern. Viele Probleme, aber auch die Lösungsansätze für die Verwendung von vergleichsweise kurzen Fasern sind auch auf die (mehrfache) Verwendung von mechanisch recycelten Fasern zu erwarten.

Kann man beim Endprodukt von einem Upcycling sprechen?
Wir sehen das Garn-zu-Garn-Recycling weder als Up- noch als Downcycling, sondern als Kreislaufführung. Hintergrund ist, dass die Erzeugnisse in dieselbe Anwendung gehen sollen aus der sie gekommen sind und dabei mit Primärmaterial konkurrieren müssen. Dies bedeutet, dass gewisse spezifische Anforderungen zu erfüllen sind und gleichzeitig erheblicher Preisdruck herrscht. Beim Downcycling wird eine deutliche Verringerung der Eigenschaften in Kauf genommen, beim Upcycling kann aufgrund der höherpreisigen Anwendung der Aufbereitungsaufwand aufgefangen werden. Bei dem Bestreben, aus Garnmaterial wieder Garnmaterial zu fertigen, ist beides nur in geringem Maß zulässig. Dies stellt die besondere Herausforderung dar.

Was bedeutet ein aus Alttextilien aufbereitetes Rezyklat für den Spinnprozess?
Ein Teil dieser Fragestellung soll im Projekt durch die detaillierte Klassifizierung der aufbereiteten Fasern beantwortet werden und ist somit Gegenstand der aktuell laufenden Untersuchungen. Es zeigt sich, dass es neben den eher offensichtlichen Punkten wie deutlich reduzierte Faserlänge, Prozessstörungen durch unaufgelöste Gewebe und Garnstücke auch weniger offensichtliche Aspekte wie z.B. eine deutlich erhöhte Abgangsmenge für die Verarbeitung im Spinnprozess zu beachten sind. Die Abgangsmenge ist dabei von besonderem Interesse, denn am Ende soll im neu hergestellten Garn auch ein erheblicher Anteil an aufbereiteten Fasern enthalten sein.

Welche Konsequenzen hat das für den Textilmaschinenbau?
Die Konsequenzen, die zum aktuellen Zeitpunkt bereits abgeschätzt werden können, sind, dass insbesondere bei der Verarbeitung von Baumwolle der Maschinenpark im Spinnereivorwerk auf die Verarbeitung von (Neu-)Naturfasern mit einem gewissen Schmutzanteil spezialisiert ist. Bei aufbereiteten Fasern handelt es sich im Gegensatz zu den Neufasern um saubere Fasern mit deutlich höherem Kurzfaseranteil. Elemente, die gut Schmutz entfernen können, scheiden auch vermehrt kurze Fasern aus, das kann unter Umständen zu ungewollt hohen Abgangsmengen führen. Es ist somit notwendig die etablierte Maschinentechnologie an das neue Anforderungsprofil des Rohstoffes „aufbereitete Fasern“ anzupassen. Analoge Anpassungen sind vermutlich über die komplette Verarbeitungskette bis ins Garn notwendig. Im Streckwerk der Spinnmaschine natürlich eher bedingt durch den hohen Kurzfaseranteil als durch Elemente, die auf das Ausreinigen von Schmutz und Fremdbestandteilen hin optimiert wurden.

Weitere Informationen:
DITF STFI Fasern Recycling Spinnerei
Quelle:

Textination GmbH

(c) nova-Institut GmbH
07.12.2021

Finalisten für „Cellulose Fibre Innovation of the Year 2022” stehen fest

Zellulosefaser-Innovation des Jahres 2022: Zellulosefaser-Lösungen erweitern sich von Hygieneartikeln und Textilien sowie Vliesstoffen bis hin zu Alternativen für Carbonfasern für Leichtbauanwendungen.

Die Auswahl der Finalisten für den Innovationspreis war aufgrund der hochklassigen Einreichungen eine Herausforderung: Alle bieten vielversprechende nachhaltige Lösungen für die Wertschöpfungskette von Zellulosefasern. Sechs von ihnen erhalten die Chance, ihr Potenzial einem breiten Publikum vor Ort in Köln und Online zu demonstrieren.

Zellulosefaser-Innovation des Jahres 2022: Zellulosefaser-Lösungen erweitern sich von Hygieneartikeln und Textilien sowie Vliesstoffen bis hin zu Alternativen für Carbonfasern für Leichtbauanwendungen.

Die Auswahl der Finalisten für den Innovationspreis war aufgrund der hochklassigen Einreichungen eine Herausforderung: Alle bieten vielversprechende nachhaltige Lösungen für die Wertschöpfungskette von Zellulosefasern. Sechs von ihnen erhalten die Chance, ihr Potenzial einem breiten Publikum vor Ort in Köln und Online zu demonstrieren.

Das nova-Institut kürt zum zweiten Mal die „Cellulose Fibre Innovation of the Year“ im Rahmen der „International Conference on Cellulose Fibres 2022“ (2.-3. Februar 2022). Der Konferenzbeirat hat sechs Produkte nominiert, von Zellulose aus Orangen- und Holzzellstoff bis hin zu einer neuartigen Technologie zur Zellulosefaserherstellung. Die Präsentationen der Kandidaten, die Wahl des Gewinners durch das Konferenzpublikum und die Preisverleihung finden am ersten Tag der Konferenz statt.

Zellulosefasern weisen ein immer breiteres Anwendungsspektrum auf, während die Märkte gleichzeitig durch technologische Entwicklungen und politische Rahmenbedingungen, insbesondere Verbote und Beschränkungen für Kunststoffe und steigende Nachhaltigkeitsanforderungen, bewegt werden. Die Konferenz bietet einen ausführlichen Überblick über die Perspektiven für Zellulosefasern durch eine Einschätzung der politischen Rahmenbedingungen, eine Session zu Nachhaltigkeit, Recycling und alternativen Rohstoffen sowie Informationen zu den neuesten Entwicklungen in Zellstoff, Zellulosefasern und Garne. Dazu gehören Anwendungen wie Vliesstoffe, Verpackungen und Verbundwerkstoffe.

Das sind die Nominierten:
Kohlenstofffasern aus Holz - Deutsche Institute für Textil- und Faserforschung Denkendorf (Deutschland)
Die HighPerCellCarbon®-Technologie ist ein nachhaltiges und alternatives Verfahren zur Herstellung von Kohlenstofffasern aus Holz. Die Technologie beginnt mit dem Nassspinnen von Zellulosefasern unter Verwendung ionischer Flüssigkeiten (IL) als direktes Lösungsmittel in einem umweltfreundlichen, geschlossenen Filamentspinnverfahren (HighPerCell®-Technologie). Diese Filamente werden durch einen Niederdruck-Stabilisierungsprozess direkt in Kohlenstofffasern umgewandelt, gefolgt von einem geeigneten Karbonisierungsprozess. Während des gesamten Prozesses entstehen keine Abgase oder giftige Nebenprodukte. Darüber hinaus ermöglicht das Verfahren ein vollständiges Recycling von Lösungsmittel und Vorläuferfasern, wodurch ein einzigartiger und umweltfreundlicher Prozess entsteht. Kohlenstofffasern werden in vielen Leichtbauanwendungen eingesetzt und sind eine nachhaltige Alternative zu Fasern auf fossiler Basis.

Fibers365, Wirklich kohlenstoffnegative Frischfasern aus Stroh – Fibers365 (Deutschland)
Fibers365 sind die ersten kohlenstoffnegativen Fasern aus frischem Stroh auf dem Markt. Das Fibers365-Konzept basiert auf einem einzigartigen, hochmodernen Verfahren zur Herstellung funktioneller, kohlenstoffnegativer und wettbewerbsfähiger Nichtholz-Biomasseprodukte wie Frischfasern für Papier- Verpackungs- und Textilzwecke sowie hochwertige Prozessenergie-, Biopolymer- und Düngemittel-Nebenströme. Die Produkte werden aus den Stängeln einjähriger Nahrungspflanzen wie Stroh durch eine chemikalienfreie, regionale, bäuerliche Dampfexplosionsauflösungstechnologie gewonnen, die eine einfache Trennung der Fasern von Zucker, Lignin, organischer Säure und Mineralien ermöglicht. Bei einjährigen Pflanzen werden die CO2-Emissionen innerhalb von 12 Monaten nach dem Produktionsdatum zurückgewonnen, so dass ein sofortiger jährlicher Ausgleich der entsprechenden Emissionen möglich ist.

Iroony® Hanf- und Flachszellulose – RBX Créations (Frankreich)
Iroony® ist eine Marken-Zellulose, die von RBX Créations aus Hanf hergestellt wird. Die widerstandsfähige Hanfpflanze wächst schnell innerhalb weniger Monate, bindet massiv Kohlenstoff und weist einen hohen Zellulosegehalt auf. Die Biomasse wird direkt von französischen Landwirten geerntet, die sie ohne Chemikalien und Bewässerung in ausgedehnten Rotationszyklen anbauen und so zur Regeneration des Bodens und zur Artenvielfalt beitragen. Für ein diversifiziertes Angebot kann der Hanf mit biologisch angebautem Flachs kombiniert werden. Durch sein patentiertes Verfahren gewinnt RBX Créations hochreine Zellulose, die sich perfekt für Spinntechnologien wie HighPerCell® des DITF-Forschungszentrums eignet. Die daraus gewonnenen Fasern weisen vielseitige Eigenschaften wie Feinheit, Festigkeit und Dehnbarkeit auf und eignen sich für Anwendungen wie Bekleidung oder technische Textilien. Iroony® vereint geringe Umweltauswirkungen, Nachverfolgbarkeit und Leistung.

SPINNOVA, Nachhaltige Textilfasern ohne schädliche Chemikalien – Spinnova (Finnland)
Die innovative Technologie von Spinnova ermöglicht die Herstellung nachhaltiger Textilfasern in einem mechanischen Verfahren, ohne Auflösen oder schädliche Chemikalien. Das Verfahren umfasst die Verwendung von Zellstoff in Papierqualität und die mechanische Raffination zur Herstellung mikrofibrillierter Zellulose (MFC). Die aus MFC bestehende Fasersuspension wird ohne Regenerationsverfahren zu Textilfasern extrudiert. Beim Spinnova-Verfahren fallen keine Nebenabfälle an, und der ökologische Fußabdruck von SPINNOVA® umfasst 65 % weniger CO2-Emissionen und 99 % weniger Wasser im Vergleich zur Baumwollproduktion. Die Lösung von Spinnova ist außerdem skalierbar: Spinnova strebt an, in den nächsten 10 bis 12 Jahren eine jährliche Produktionskapazität von 1 Million Tonnen zu erreichen.

Nachhaltige Menstruationsunterwäsche: Anwendungsorientierte Funktionalisierung von Fasern – Kelheim Fibres (Deutschland)
Die pflanzlichen und biologisch abbaubaren Fasern von Kelheim leisten einen wichtigen Beitrag für eine nachhaltige Zukunft im Bereich der wiederverwendbaren Hygienetextilien. Durch innovative Funktionalisierung werden sie gezielt auf die Anforderungen der einzelnen Lagen abgestimmt und erreichen dadurch eine vergleichbare Leistungsfähigkeit wie synthetische Fasern. Es entsteht eine einzigartige Dualität in der Fasertechnologie: nachhaltig hergestellte Zellulosefasern, die einen hohen Tragekomfort und Wiederverwendbarkeit bei außergewöhnlicher, langlebiger Leistung ermöglichen. Die Faserkonzepte umfassen Celliant® Viscose, eine faserinterne Infrarotlösung und Danufil®-Fasern in der Oberschicht, Galaxy, eine trilobale Faser für die ADL, Bramante, eine Viskosehohlfaser, im absorbierenden Kern und ein wasserabweisendes Gewebe, eine biologisch abbaubare PLA-Folie oder eine nachhaltige Beschichtung als Unterschicht.

Lyocellfaser der Marke TENCEL™ aus Orangen- und Holzzellstoff – Orange Fiber (Italien)
Orange Fiber ist das weltweit erste Unternehmen, das eine nachhaltige Textilfaser aus einem patentierten Verfahren zur Gewinnung von Zellulose herstellt, die aus den Resten von Zitrusfrüchten gesponnen wird, von denen allein in Italien mehr als 1 Million Tonnen pro Jahr anfallen. Das Ergebnis der Partnerschaft mit der Lenzing Gruppe, dem weltweit führenden Hersteller von Spezialfasern auf Holzbasis, ist die erste Lyocellfaser der Marke TENCEL™, die aus Orangen- und Holzzellstoff hergestellt wird. Eine neuartige Zellulosefaser, die die Nachhaltigkeit in der gesamten Wertschöpfungskette weiter vorantreibt und die Grenzen der Innovation verschiebt. Diese Faser, die Teil der TENCEL™ Limited Edition Initiative ist, zeichnet sich durch eine weiche Anmutung und eine hohe Feuchtigkeitsaufnahme aus. Sie hat bereits das OEKO-TEX Standard 100 Zertifikat erhalten und wird derzeit einer Reihe weiterer Nachhaltigkeitsbewertungen unterzogen.

Foto: Pixabay
09.11.2021

NGST - Next Generation Schutztextilien

  • Effiziente Produktion neuartiger, qualitativ hochwertiger Infektions-Schutztextilien

 
Bei Schutztextilien, insbesondere bei Atemschutzmasken, traten während der SARS-CoV-2-Pandemie beträchtliche Engpässe auf, die dadurch verschärft wurden, dass es zu dieser Zeit keine ausreichenden Produktionskapazitäten in Deutschland und der EU gab. Kurzfristig erfolgte Umrüstungen bei EU-Unternehmen sowie der Import von Ware führten oftmals nicht zum Erfolg, da diese Schutztextilien von stark schwankender Qualität waren, die sich negativ auf die Sicherheit auswirkte.

Die Initiative »Next Generation Schutztextilien« möchte hier Abhilfe schaffen, indem sie an neuen Ansätzen für die Produktion qualitativ hochwertiger Schutztextilien forscht.

Das Projekt »NGST« gliedert sich in mehrere Teilaufgaben
Das Projekt umfasst:

  • Effiziente Produktion neuartiger, qualitativ hochwertiger Infektions-Schutztextilien

 
Bei Schutztextilien, insbesondere bei Atemschutzmasken, traten während der SARS-CoV-2-Pandemie beträchtliche Engpässe auf, die dadurch verschärft wurden, dass es zu dieser Zeit keine ausreichenden Produktionskapazitäten in Deutschland und der EU gab. Kurzfristig erfolgte Umrüstungen bei EU-Unternehmen sowie der Import von Ware führten oftmals nicht zum Erfolg, da diese Schutztextilien von stark schwankender Qualität waren, die sich negativ auf die Sicherheit auswirkte.

Die Initiative »Next Generation Schutztextilien« möchte hier Abhilfe schaffen, indem sie an neuen Ansätzen für die Produktion qualitativ hochwertiger Schutztextilien forscht.

Das Projekt »NGST« gliedert sich in mehrere Teilaufgaben
Das Projekt umfasst:

  • qualifizierte Auswahl der Grundmaterialien
  • Untersuchungen zur Hochskalierung, um die Voraussetzungen für eine rasche Ausweitung von Produktionskapazitäten zu schaffen
  • Entwicklung neuartiger antiviraler Beschichtungen
  • umfassende biologische und materialwissenschaftliche Analytik, die zur Verifizierung der verbesserten Eigenschaften dient und zudem neue Methoden der Qualitätskontrolle erschließt.

Die im Projekt zu entwickelnden Schutztextilien haben über den Einsatz im medizinischen Bereich und beim Bevölkerungsschutz hinaus vielfältige Einsatzmöglichkeiten. Prinzipiell überall dort, wo eine unmittelbare Reinigung und Desinfektion schwierig oder spezielle Filtrationsaufgaben notwendig sind, wie beispielsweise bei mobilen oder stationären Filteranlagen zur Luftreinigung oder für den individuellen Personenschutz.

Im Projekt forscht das Fraunhofer IGCV an der Entwicklung eines Herstellungsprozesses für Vliesstoffe als Basis von Infektionsschutz- und Filtrationsmedien auf Basis der Nassvliestechnologie. Gegenüber dem Stand der Technik (Meltblown-Technologie) zeichnet sich diese potentiell durch deutlich erhöhte Produktionskapazitäten sowie eine erhöhte Flexibilität bzgl. Materialvielfalt aus. Die wichtigsten Herausforderungen bestehen hierbei insbesondere in den sehr hohen Qualitätsanforderungen auf Basis niedriger Flächengewichte für die Verarbeitung möglichst feiner Mikro-Stapelfasern.
          
Verfolgung neuartiger Ansätze zur Steigerung der Qualität und Produktivität in der Produktion von Schutztextilien
Ziel ist die Bereitstellung optimierter Vlieswerkstoffe als Ausgangsstoff für die nachfolgenden antiviralen Beschichtungen sowie die Abschätzung und Demonstration des hohen Technologiepotentials der Nassvliestechnologie in diesem Anwendungsfeld.

Dazu wurde eine bestehende Pilot-Nassvliesanlage im Technikums-Maßstab gezielt modifiziert. Somit ist es möglich Vlieswerkstoffe aus Mikro-Stapelfasern in der geforderten sehr hohen Qualität in Bezug auf Gleichmäßigkeit, Flächengewicht, Durchmischung und Dickenprofil mit hoher Reproduzierbarkeit herzustellen. Als Vergleichssystem wurde ein Standard-PP-Vlies herangezogen, welches gemäß aktuellem Stand der Technik mittels Meltblown-Technologie produziert wurde. Neben den PP-Vergleichsvarianten wurde jedoch auch die Verarbeitung von u.a. PLA-, Viskose- und PET-Stapelfasern untersucht. Der Fokus liegt hier jeweils auf einer maximalen Faserfeinheit (Mikrofasern), um eine möglichst große spezifische Faseroberfläche bzw. Wirkfläche im Vliesstoff zu erzielen. Um die deutlich erhöhte Flexibilität der Nassvliestechnologie hervorzuheben werden auch besonders innovative Varianten auf Basis von modifizierten Bi-Komponenten-Fasern mit maximierter Faser-Oberfläche sowie Split-Fasern konzeptionell geprüft.

Neben Aspekten der direkten Material- und Prozessentwicklung ergeben sich auf Basis des Maßstabs der Pilotanlage umfangreiche Datengrundlagen zur Abschätzung einer späteren Skalierung in eine industrielle Serie. Damit soll eine technologische Ausgangsbasis für den Ramp-up einer effizienten, nationalen Produktion von vliesbasierten Infektionsschutzmaterialien auf Basis der Wet-Laying-Technologie geschaffen werden.

Weitere Informationen:
Coronakrise Schutzkleidung Fraunhofer
Quelle:

Fraunhofer-Institut für Gießerei-, Composite- und Verarbeitungstechnik IGCV

Foto: pixabay
19.10.2021

Mikromechanische Simulation der Resilienz von Vliesstoffen

Vliesstoffe sind ein wichtiger Bestandteil in diversen Produkten mit verschiedenen Anwendungsgebieten, z.B. Hygieneprodukte, Dämmstoffe oder Filter. In der Regel werden sie auf einer Reihe großer Anlagen hergestellt; daher gestalteten sich experimentelle Designstudien zur Optimierung dieser Vliesstoffstrukturen sehr aufwändig.

Einfluss Designparameter
Es gibt sehr viele Designparameter, wie z.B. Fasern, Flächengewicht oder Vliesverfestigungstyp, welche die Vliesstoffeigenschaften beeinflussen. Zum Austausch eines einzelnen Parameters, beispielsweise des Fasermaterials, muss der vollständige Produktionsprozess vom Faserspinnen über die Faserablage bis hin zur Vliesverfestigung umgestellt werden.

Vliesstoffe sind ein wichtiger Bestandteil in diversen Produkten mit verschiedenen Anwendungsgebieten, z.B. Hygieneprodukte, Dämmstoffe oder Filter. In der Regel werden sie auf einer Reihe großer Anlagen hergestellt; daher gestalteten sich experimentelle Designstudien zur Optimierung dieser Vliesstoffstrukturen sehr aufwändig.

Einfluss Designparameter
Es gibt sehr viele Designparameter, wie z.B. Fasern, Flächengewicht oder Vliesverfestigungstyp, welche die Vliesstoffeigenschaften beeinflussen. Zum Austausch eines einzelnen Parameters, beispielsweise des Fasermaterials, muss der vollständige Produktionsprozess vom Faserspinnen über die Faserablage bis hin zur Vliesverfestigung umgestellt werden.

Im Anschluss an die Produktion eines solchen Prototyps wird eine aufwändige experimentelle Charakterisierung der Vliesstoffeigenschaften benötigt. Aufgrund dieser kostenintensiven Produktion und Charakterisierung sind detaillierte Studien mit mehreren Designparametern unwirtschaftlich.

Daher werden bei uns im Projekt mikromechanische Simulationsmodelle entwickelt. Mithilfe dieser Modelle können die effektiven Vliesstoffeigenschaften numerisch für verschiedenste Designparameter vorhergesagt werden. Zum virtuellen Austausch einzelner Parameter werden in diesem Ansatz lediglich die entsprechenden Eingangsgrößen im Modell angepasst.

Schnelle Vorhersagen möglich
Der Fokus der numerischen Vorhersagen liegt hierbei vor allem auf dem zeitabhängigen Verhalten der Vliesstoffe. Die dynamischen Eigenschaften können durch numerische Nachbildung von zyklischen Messungen bestimmt werden. Dabei wird eine gute Übereinstimmung von Simulation und Messungen erzielt.

Im Gegensatz zu Experimenten verlängert sich die benötigte Simulationszeit für das Verhalten bei niedrigen Frequenzen nicht. Somit sind durch die numerischen Modelle schnelle Vorhersagen für das Langzeitverhalten (Monate bis Jahre) und die entsprechende Resilienz von Vliesstoffen möglich. Sehr viele Varianten können innerhalb weniger Stunden simuliert und studiert werden.

Ein weiterer Vorteil des mikromechanischen Ansatzes besteht darin, dass nicht nur effektive (makroskopische) Vliesstoffeigenschaften berechnet werden, sondern auch lokale Größen wie Spannungsverteilungen in Binder und Fasern bestimmt werden. Somit trägt die Simulation zum besseren Verständnis von Vliesstoffeigenschaft bei.

Zukünftige Entwicklungen beschäftigen sich mit der Erweiterung der Modelle in Richtung der Simulation des Herstellungsprozesses. Dies ermöglicht eine vollständige digitalisierte Auslegung von Vliesstoffen vom Herstellungsprozess bis hin zur Optimierung der Funktionalität.

 

Quelle:

Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM

Foto: pixabay
21.09.2021

Virtuelle Qualitätsprüfung optimiert Produktion von Filtervliesstoffen

Die Vliesstoffproduktion bekam zu Corona-Zeiten in der breiten Öffentlichkeit so viel Aufmerksamkeit wie selten zuvor, denn das technische Textil ist entscheidend für den Infektionsschutz. Die Feinst-Vliesstoffprodukte werden in sogenannten Meltblown-Verfahren hergestellt. Ein abteilungsübergreifendes Team des Fraunhofer-Instituts für Techno- und Wirtschaftsmathematik ITWM in Kaiserslautern optimiert im Projekt »ProQuIV« die gesamte Produktionskette. Dabei helfen Simulationen die Produktqualität des Filtermaterials trotz Schwankungen in der Herstellung zu garantieren.

Die Vliesstoffproduktion bekam zu Corona-Zeiten in der breiten Öffentlichkeit so viel Aufmerksamkeit wie selten zuvor, denn das technische Textil ist entscheidend für den Infektionsschutz. Die Feinst-Vliesstoffprodukte werden in sogenannten Meltblown-Verfahren hergestellt. Ein abteilungsübergreifendes Team des Fraunhofer-Instituts für Techno- und Wirtschaftsmathematik ITWM in Kaiserslautern optimiert im Projekt »ProQuIV« die gesamte Produktionskette. Dabei helfen Simulationen die Produktqualität des Filtermaterials trotz Schwankungen in der Herstellung zu garantieren.

Das Kürzel »ProQuIV« steht für »Produktions- und Qualitätsoptimierung von Infektionsschutzkleidung aus Vliesstoffen«. Denn gerade zu Beginn der Covid-19-Krise waren Engpässe bei der Produktion dieser Materialien zu beobachten. Für die Klasse der Meltblown-Vliesstoffe gestaltet sich diese Optimierung der Produktqualität zudem besonders schwierig, weil die Prozesse sehr sensitiv auf Schwankungen und Materialunreinheiten reagieren.

Digitaler Zwilling hat das große Ganze im Blick
»Meltblown« heißt der industrielle Herstellungsprozess, dessen Feinstfaser-Vliesstoffe dafür verantwortlich sind, dass z.B. in Gesichtsmasken die entscheidende Filterfunktion gegeben ist. Dabei wird das geschmolzene Polymer durch Düsen gepresst, und zwar in einen vorwärts strömenden Hochgeschwindigkeitsstrom. Es wird in einer stark turbulenten Luftströmung gedehnt und abgekühlt.

»Der Gesamtprozess der Filtervliesherstellung – von der Polymerschmelze bis zum Filtermedium – stellt in der Simulation eine große Herausforderung dar«, erklärt Dr. Konrad Steiner, Leiter der Abteilung »Strömungs- und Materialsimulation«. »Wir haben im Projekt das große Ganze im Blick und eine komplett durchgängige Bewertungskette als digitalen Zwilling entwickelt. Dabei berücksichtigen wir gleich mehrere Schlüsselkomponenten: Wir simulieren die typischen Produktionsprozesse von Vliesstoffen, die darauf basierende Entstehung der Faserstrukturen und anschließend die Materialeigenschaften – hier insbesondere die Filtereffizienz. Damit lassen sich dann die Einflüsse des Herstellungsprozesses auf die Produkteigenschaften quantitativ bewerten.« In jedem dieser Einzelbereiche gehört das Fraunhofer ITWM mit seinen Expertinnen und Experten international zu den führenden Forschungsgruppen.

Homogenität des Materials – weniger Wolken am Simulationshimmel
Beim Meltblown-Verfahren liegt ein Schlüsselfaktor auf dem Verhalten der Filamente im turbulenten, heißen und schnellen Luftstrom. Die Fäden werden durch diese Luftströmung stark in ihren Eigenschaften beeinflusst. Die Qualität der Filamente – und damit am Ende der Vliesstoffe –  wird durch viele Faktoren beeinflusst. Was das in der Praxis genauer heißt, weiß Dr. Dietmar Hietel, Leiter der Abteilung »Transportvorgänge«. Sein Team beschäftigt sich am Fraunhofer ITWM schon seit Jahren mit der Simulation von verschiedenen Prozessen rund um Filamente, Fäden und Fasern. »Im Fokus des Projekts steht die sogenannte Wolkigkeit, d.h. die Ungleichmäßigkeit, mit der die Fasern im Vliesstoff verteilt sind«, erklärt Hietel. »Wir gehen der Frage nach: Wie homogen ist der Stoff? Denn die Qualität der Produkte kann stark verbessert werden, wenn wir solche Ungleichmäßigkeiten optimieren. Unsere Simulationen helfen dabei herauszufinden, wie das gelingt.«

Objektive Bewertung der Homogenität der Vliesstoffe
Zur Quantifizierung dieser Wolkigkeit setzen die Forschenden zudem passende Bildanalysetechniken ein. Das Powerspektrum spielt dabei eine besondere Rolle. »Der Wolkigkeitsindex, abgekürzt CLI, beschreibt die Homogenität komplementär zu lokalem Flächengewicht und seiner Varianz,« beschreibt Dr. Katja Schladitz. Sie bringt ihre Expertise in der Bildverarbeitung in das Projekt mit ein. »Unser CLI stellt eine robuste Bewertung der Homogenität sicher und kann somit für verschiedene Materialklassen und Abbildungstechniken als objektives Maß genutzt werden« Die Frequenzen, die in die CLI-Berechnung eingehen, können so gewählt werden, dass der CLI aussagekräftig für das jeweilige Anwendungsgebiet ist.

Filtration: Wie effizient sind die Filter
Bei der Hochskalierung auf Industrieprozesse wie bei der Maskenproduktion fließt zudem die ITWM-Expertise rund um Filter in das Projekt mit ein. Das Team »Filtration und Separation« um Dr. Ralf Kirsch beschäftigt sich schon seit Jahren mit dem mathematischen Modellieren und Simulieren verschiedenster Trennprozesse.

»Das Besondere an diesem Projekt: Wir berechnen die Effizienz der Filter für unterschiedlich stark ausgeprägte Schwankungen des Faseranteils im Filtervlies«, betont Kirsch. »Dadurch können wir angeben, bis zu welchem Wolkigkeitsgrad die geforderte Filtereffizienz überhaupt erreichbar ist.« Als aktuelles Beispiel hierfür sieht man in der Grafik die Effizienz eines Filtermaterials für N95-Masken in Abhängigkeit von der Inhomogenität des Vliesstoffes.

ITMW-Methoden unterstützen über die ganze Prozesskette hinweg
Digitale Zwillinge und Berechnungen aus dem Hause Fraunhofer ITWM unterstützen in »ProQuIV« die Prozesse ganzheitlich zu überschauen und besser zu verstehen. Die Produktion der technischen Textilien wird damit nicht nur effizienter, sondern die Vliesstoffe lassen sich virtuell entwickeln, ohne dies vorab in einer Versuchsstätte zu realisieren. So können Produktionskapazitäten bei gleichbleibender Qualität gesteigert werden. Gemeinsam mit langjährigen Partnern aus der Industrie kann die Forschung schnell und effizient in der Praxis zum Einsatz kommen.

Simulationen sparen Textil-Unternehmen Experimente, erlauben neue Einblicke, ermöglichen systematische Parametervariationen und lösen Upscaling-Probleme, die sonst zu Fehlinvestitionen beim Übergang von der Laboranlage zur Industrieanlage führen können. Die virtuelle Umsetzung der Vliesstoffproduktion eröffnet aber auch neue Möglichkeiten zur Optimierung auf anderen Ebenen. So können auch akustische dämmende Vliesstoffe oder auch Hygiene-Vliesstoffe hinsichtlich ihrer Produktgüte genau auf die zu erzielende Materialeigenschaften hin optimiert werden – und das unter Berücksichtigung der auftretenden Prozessschwankungen.

Das Projekt ist Teil des Programms »Fraunhofer versus Corona« der Fraunhofer-Gesellschaft und wurde im April 2021 abgeschlossen. Die Ergebnisse fließen in mehrere Folgeprojekte mit der Vliesstoffindustrie ein.

Quelle:

Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM

Foto: pixabay
24.08.2021

Luft, Wasser, Öl: Was PLA-Biokunststoff gut filtern kann - und was nicht

Luftfilter sind im Kampf gegen die Pandemie in aller Munde. Mit Filtermaterial aus Vliesstoff versperren sie virenbehafteten Aerosolen den Weg zurück in Räume. Doch wie können diese Geräte nicht nur die Gesundheit schützen, sondern auch mit möglichst umweltfreundlichem Filtermaterial betrieben werden?

Luftfilter sind im Kampf gegen die Pandemie in aller Munde. Mit Filtermaterial aus Vliesstoff versperren sie virenbehafteten Aerosolen den Weg zurück in Räume. Doch wie können diese Geräte nicht nur die Gesundheit schützen, sondern auch mit möglichst umweltfreundlichem Filtermaterial betrieben werden?

Dafür eignet sich unter klar definierten Bedingungen der Biokunststoff Polylactid (PLA), auch als Polymilchsäure bekannt. Das lässt sich aus Ergebnissen von Forschenden der Zuse-Gemeinschaft im kürzlich abgeschlossenen Forschungsprojekt „BioFilter“ ableiten. Die Schlüsselfrage für diesen und andere mögliche Anwendungsbereiche der Bio-Filter lautet: Wie wirken sich die besonderen Eigenschaften von PLA auf Filterleistung und Haltbarkeit der Filter aus? Denn gegenüber seinen fossilen Konkurrenten kann PLA in der Praxis Nachteile haben. Das Material neigt zur Sprödigkeit und es mag hohe Temperaturen jenseits von 60 Grad Celsius nicht besonders. Als biogener Stoff ist Polymilchsäure auch potenziell anfälliger für Abnutzung und organische Abbauprozesse. Das kann bei Nutzung von Filtern z.B. in Kläranlagen eine noch größere Rolle spielen als bei Luftfiltern. Industriekunden indes wollen aber naturgemäß ein beständiges, verlässliches Produkt.

Vom Monofilament zum Vliesstoff
Vor diesem Hintergrund untersuchten die Forschenden die PLA-Eigenschaften, um auf dieser Basis Vliesstoffe für Bio-Filter zu erproben. Beteiligt waren das Deutsche Textilforschungszentrum Nord-West (DTNW) und das Sächsische Textilforschungsinstitut (STFI), wo die Vliesstoffe hergestellt wurden. Verwendet wurde Granulat verschiedener marktgängiger Hersteller. Am Anfang der Untersuchungen standen jedoch nicht die Vliesstoffe, in denen die Fasern dicht aneinander in verschiedenen Schichten abgelegt sind, sondern so genannte Monofilamente, also mit Fäden vergleichbare Fasern aus PLA. An diesen Monofilamenten führten das DTNW und das STFI zunächst Tests durch, so z.B. im Klimaschrank auf Alterung und Haltbarkeit.

Wie im Bild zu sehen ist, wurden die Monofilamente bei höheren Temperaturen ab 70 Grad Celsius bereits nach zwei Wochen brüchig, worüber die DTNW-Autorinnen und -Autoren kürzlich im Journal Applied Polymer Materials berichteten. Unter Normbedingungen indes weisen die Monofilamente auch nach fast drei Jahren keine messbar verringerte Stabilität auf und auch die PLA-Vliesstoffe standen, ihren auf fossiler Basis hergestellten Pendants in Punkto Filterleistung in nichts nach. „Der Fokus für die Nutzung von PLA als Filtermaterial wird meiner Ansicht nach auf Anwendungen liegen, bei denen relativ geringe Temperaturen vorliegen, mit denen PLA sehr gut zurechtkommt.“, sagt DTNW-Wissenschaftlerin Christina Schippers.

Neben Temperatur und Luftfeuchtigkeit weitere Faktoren beachten
Für die Forschenden ging es in dem vom Bundeswirtschaftsministerium geförderten Projekt allerdings nicht nur um die Eignung von Polylactid für Luftfilter, sondern auch um andere Umgebungen, z.B. für das Filtern von Wasser. Zudem ergaben die Untersuchungen, dass es bei der Bewertung der Filtermedien aus biobasierten und bio-abbaubaren Vliesstoffen neben der Temperatur und der Luftfeuchtigkeit weitere Einflussfaktoren wie mechanische Belastungen durch Luftströme zu beachten gilt. „Der innovative Kern des Projekts bestand darin, die Möglichkeiten und Einsatzgrenzen von PLA-Vliesstoffen als Filtermedien mit ausreichenden mechanischen Eigenschaften und Langzeitstabilität zu bewerten“, sagt Projektleiterin Dr. Larisa Tsarkova. Wie ihre Kollegen vom STFI, so ist das DTNW engagiert im Cluster Bioökonomie der Zuse-Gemeinschaft, in dem die Forschenden der gemeinnützigen Institute unter dem Leitsatz „Forschen mit der Natur“ kooperieren. „Für uns ist die Bioökonomie ein branchenübergreifendes Top-Thema, das zahlreiche Institute der Zuse-Gemeinschaft verbindet und durch Kooperationen wie beim ‚Bio-Filter‘ gelebt wird“, erklärt die künftige STFI-Geschäftsführerin Dr. Heike Illing-Günther.

Kooperation im Cluster Bioökonomie
Mit den erzielten Ergebnissen aus dem Projekt „Bio-Filter“ wollen das DTNW und das STFI nun weiterarbeiten, um künftig Ableitungen für klar beschriebene Einsatzgebiete der PLA-Vliesstoff-Filter treffen zu können. Diese möglichen Einsatzfelder reichen weit über Raumluftfilter und damit über die Pandemie hinaus. So ist die wasserabweisende Eigenschaft von PLA potenziell interessant für Filter in Großküchen zur Wasser-Öl-Filtration oder auch in der Industrie bei Motorenölen.

Die Forschung ist auch deshalb so wichtig, weil PLA in einzelnen verbrauchernahen Segmenten - Stichwort Tragebeutel - schon recht gut eingeführt ist. Traditionell nutzte man Milchsäure zur Haltbarmachung von Lebensmitteln, so bei Sauerkraut. Heute gewinnt man PLA über eine mehrstufige Synthese aus Zucker, der zu Milchsäure fermentiert und diese zu PLA polymerisiert, wie Kunststoffe.de erklärt. PLA gehört zu den bekanntesten Biokunststoffen, ist jedoch aufgrund der starken Nachfrage in den vergangenen Jahren nicht immer gut verfügbar gewesen. Das in den Niederlanden ansässige Unternehmen Total Corbion hat angekündigt, bis 2024 im französischen Grandpuits eine PLA-Anlage mit einer Jahreskapazität von 100.000 t in Betrieb zu nehmen. Es wäre die größte Anlage dieser Art in Europa, bisher ist Asien führend.

Quelle:

Deutsche Industrieforschungsgemeinschaft Konrad Zuse e.V.

Foto: pixabay
20.07.2021

Pilotprojekt zum Closed-Loop-Recycling von Einweg-Gesichtsmasken

  • Kunststoffe im Kreislauf halten: Fraunhofer, SABIC und Procter & Gamble kooperieren

Der Fraunhofer Cluster of Excellence Circular Plastics Economy CCPE und das Fraunhofer Institut für Umwelt-, Sicherheits- und Energietechnik UMSICHT haben ein innovatives Recyclingverfahren für Altkunststoffe entwickelt. Das Pilotprojekt, an dem auch SABIC und Procter & Gamble beteiligt sind, soll zeigen, dass Einweg-Gesichtsmasken für das sogenannte Closed-Loop-Recycling geeignet sind.

Der Übergang von einer Linear- zu einer Kreislaufwirtschaft in der Kunststoffproduktion kann dann gelingen, wenn die beteiligten Akteure und Akteurinnen zusammenarbeiten. Der Fraunhofer Cluster of Excellence Circular Plastics Economy CCPE bündelt die Kompetenzen von sechs Fraunhofer-Instituten und setzt auf eine enge Zusammenarbeit mit Partnern aus der Industrie.

  • Kunststoffe im Kreislauf halten: Fraunhofer, SABIC und Procter & Gamble kooperieren

Der Fraunhofer Cluster of Excellence Circular Plastics Economy CCPE und das Fraunhofer Institut für Umwelt-, Sicherheits- und Energietechnik UMSICHT haben ein innovatives Recyclingverfahren für Altkunststoffe entwickelt. Das Pilotprojekt, an dem auch SABIC und Procter & Gamble beteiligt sind, soll zeigen, dass Einweg-Gesichtsmasken für das sogenannte Closed-Loop-Recycling geeignet sind.

Der Übergang von einer Linear- zu einer Kreislaufwirtschaft in der Kunststoffproduktion kann dann gelingen, wenn die beteiligten Akteure und Akteurinnen zusammenarbeiten. Der Fraunhofer Cluster of Excellence Circular Plastics Economy CCPE bündelt die Kompetenzen von sechs Fraunhofer-Instituten und setzt auf eine enge Zusammenarbeit mit Partnern aus der Industrie.

Durch den Transfer von wissenschaftlichen Erkenntnissen in die Wirtschaft, Gesellschaft und Politik zählt das Fraunhofer-Institut für Umwelt-, Sicherheits- und Energietechnik UMSICHT zu den Vorreitern beim nachhaltigen Umgang mit Energieträgern und Rohstoffen. Gemeinsam mit verschiedenen Partnern und Partnerinnen erforschen und entwickeln die Wissenschaftlerinnen und Wissenschaftler am Fraunhofer UMSICHT spannende Produkte, Prozesse und Dienstleistungen zum Thema Nachhaltigkeit.  

Das Fraunhofer-Institut UMSICHT, SABIC und Procter & Gamble (P&G) arbeiten im Rahmen eines innovativen Pilotprojekts zur Kreislaufwirtschaft zusammen, das die Möglichkeiten zur Rückführung von Einweg-Gesichtsmasken in den Verwertungskreislauf aufzeigen soll.

Die milliardenfache Verwendung von Einweg-Gesichtsmasken zum Schutz vor dem Coronavirus birgt große Gefahren für die Umwelt, insbesondere wenn die Masken in der Öffentlichkeit, z.B. in Parks, bei Open-Air-Veranstaltungen oder an Stränden, gedankenlos weggeworfen werden. Neben der Herausforderung, eine nachhaltige Lösung für derart große Mengen unverzichtbarer Hygieneartikel zu finden, bedeutet die bloße Entsorgung der gebrauchten Masken auf Mülldeponien oder in Verbrennungsanlagen einen Verlust an wertvollem Rohstoff, mit dem sich neue Materialien herstellen ließen.

»Vor diesem Hintergrund haben wir untersucht, wie gebrauchte Gesichtsmasken wieder zurück in die Wertschöpfungskette der Maskenproduktion gelangen könnten«, so Dr. Peter Dziezok, Director R&D Open Innovation bei P&G. »Doch für eine echte Kreislauflösung, die sowohl nachhaltige als auch wirtschaftliche Kriterien erfüllt, braucht es Partner. Deshalb haben wir uns mit den Expertinnen und Experten vom Fraunhofer CCPE und Fraunhofer UMSICHT sowie den Technologie- und Innovations-Fachleuten von SABIC zusammengetan, um Lösungen zu finden.«

Im Rahmen des Pilotprojekts sammelte P&G an seinen Produktions- und Forschungsstandorten in Deutschland gebrauchte Gesichtsmasken von Mitarbeitenden und Besuchenden ein. Auch wenn diese Masken immer ordnungsgemäß entsorgt werden, fehlte es doch an Möglichkeiten, diese effizient zu recyceln. Um hierbei alternative Herangehensweisen aufzuzeigen, wurden extra dafür vorgesehene Sammelbehälter aufgestellt und die eingesammelten Altmasken an Fraunhofer zur Weiterverarbeitung in einer speziellen Forschungspyrolyseanlage geschickt.

»Einmal-Medizinprodukte wie Gesichtsmasken haben hohe Hygieneanforderungen, sowohl in Bezug auf die Entsorgung als auch hinsichtlich der Produktion. Mechanisches Recycling wäre hier keine Lösung«, erklärt Dr. Alexander Hofmann, Abteilungsleiter Kreislaufwirtschaft am Fraunhofer UMSICHT. »Unser Konzept sieht zunächst die automatische Zerkleinerung und anschließend die thermochemische Umwandlung in Pyrolyseöl vor.

Unter Druck und Hitze wird der Kunststoff bei der Pyrolyse in molekulare Fragmente zerlegt, wodurch unter anderem Rückstände von Schadstoffen oder Krankheitserregern wie dem Coronavirus zerstört werden. Im Anschluss können daraus neuwertige Rohstoffe für die Kunststoffproduktion gewonnen werden, die zudem die Anforderungen an Medizinprodukte erfüllen«, ergänzt Hofmann, der auch Leiter der Forschungsabteilung Advanced Recycling am Fraunhofer CCPE ist.

Das Pyrolyseöl wurde im nächsten Schritt an SABIC weitergereicht, wo es als Ausgangsmaterial für die Herstellung von neuwertigem Polypropylen (PP) zum Einsatz kam. Das Polymer wurde nach dem allgemein anerkannten Massenbilanz-Prinzip hergestellt, bei dem das alternative Ausgangsmaterial im Produktionsprozess mit fossilen Rohstoffen kombiniert wird. Das Massenbilanz-Prinzip gilt als wichtige Brückenlösung zwischen der heutigen Linearwirtschaft und der nachhaltigeren Kreislaufwirtschaft der Zukunft.

»Das in diesem Pilotprojekt gewonnene, hochwertige zirkuläre PP-Polymer zeigt deutlich, dass Closed-Loop-Recycling durch die aktive Zusammenarbeit von Akteuren aus der gesamten Wertschöpfungskette erreicht werden kann«, betont Mark Vester, Global Circular Economy Leader bei SABIC. »Das Kreislaufmaterial ist Teil unseres TRUCIRCLE™-Portfolios, mit dem wertvolle Altkunststoffe wiederverwertet und fossile Ressourcen eingespart werden sollen.«

Mit der abschließenden Lieferung des PP-Polymers an P&G, das dort zu Faservliesstoffen verarbeitet wurde, schloss sich der Kreis. »Durch dieses Pilotprojekt konnten wir besser beurteilen, ob der Kreislaufansatz auch für Kunststoffe, die bei der Herstellung von Hygiene- und Medizinprodukten zum Einsatz kommen, geeignet wäre«, so Hansjörg Reick, Senior Director Open Innovation bei P&G. »Natürlich muss das Verfahren noch verbessert werden. Die bisherigen Ergebnisse sind jedoch durchaus vielversprechend.«

Das gesamte Kreislaufprojekt – von der Einsammlung der Gesichtsmasken bis hin zur Produktion – wurde innerhalb von nur sieben Monaten entwickelt und umgesetzt. Der Einsatz innovativer Recyclingverfahren bei der Verarbeitung anderer Materialien und chemischer Produkte wird im Fraunhofer CCPE weiter erforscht.

Foto: Pixabay
16.02.2021

Kohlenstoff mit mehreren Leben: Innovationen beim Recycling von Carbonfasern an den Markt bringen

Geht es um die Zukunft der motorisierten Mobilität, reden alle vom Antrieb: Wie viel E-Auto, wie viel Verbrenner verträgt die Umwelt und braucht der Mensch? Zugleich stellen neue Antriebe erhöhte Anforderungen nicht nur an den Motor, sondern auch an dessen Gehäuse und die Karosse: Für solch anspruchsvolle Anwendungen kommen häufig Carbonfasern zum Einsatz. Wie der Antrieb der Zukunft, sollten auch die Werkstoffe am Fahrzeug umweltfreundlich sein. Deshalb ist Recycling von Carbonfasern gefragt. Lösungen dafür haben Institute der Zuse-Gemeinschaft entwickelt.

Geht es um die Zukunft der motorisierten Mobilität, reden alle vom Antrieb: Wie viel E-Auto, wie viel Verbrenner verträgt die Umwelt und braucht der Mensch? Zugleich stellen neue Antriebe erhöhte Anforderungen nicht nur an den Motor, sondern auch an dessen Gehäuse und die Karosse: Für solch anspruchsvolle Anwendungen kommen häufig Carbonfasern zum Einsatz. Wie der Antrieb der Zukunft, sollten auch die Werkstoffe am Fahrzeug umweltfreundlich sein. Deshalb ist Recycling von Carbonfasern gefragt. Lösungen dafür haben Institute der Zuse-Gemeinschaft entwickelt.

Carbonfasern, auch als Kohlenstofffasern oder verkürzt als Kohlefasern bekannt, bestehen fast vollständig aus reinem Kohlenstoff. Sehr energieaufwändig wird er  bei 1.300 Grad Celsius aus dem Kunststoff Polyacrylnitril gewonnen. Die Vorteile der Carbonfasern: Sie haben kaum Eigengewicht, sind enorm bruchfest und stabil. Solche Eigenschaften benötigt man z.B. am Batteriekasten von E-Mobilen oder in Strukturbauteilen der Karosserie. So arbeitet das Sächsische Textilforschungsinstitut e.V. (STFI) aktuell gemeinsam mit Industriepartnern daran, statisch-mechanische Stärken der Carbonfasern mit Eigenschaften zur Schwingungsdämpfung zu verknüpfen, um die Gehäuse von E-Motoren im Auto zu verbessern. Angedacht ist in dem vom Bundeswirtschaftsministerium geförderten Projekt die Entwicklung sogenannter Hybridvliesstoffe, die neben der Carbonfaser als Verstärkung weitere Faserstoffe enthalten. „Wir wollen, die Vorteile unterschiedlicher Faserstoffe verbinden und so ein optimal auf die Anforderungen abgestimmtes Produkt entwickeln“, erläutert Marcel Hofmann, STFI-Abteilungsleiter Textiler Leichtbau.

Damit würden die Chemnitzer Forschenden bisherige Vliesstoff-Lösungen ergänzen. Sie blicken auf eine 15-jährige Geschichte in der Arbeit mit recycelten Carbonfasern zurück. Der globale Jahresbedarf der hochwertigen Fasern hat sich im vergangenen Jahrzehnt fast vervierfacht, laut Angaben der Industrievereinigung AVK auf zuletzt rd. 142.000 t. „Die steigende Nachfrage hat das Recycling immer stärker in den Fokus gerückt“, betont Hofmann. Carbonfaserabfälle sind ihm zufolge für etwa ein Zehntel bis ein Fünftel des Preises von Primärfasern erhältlich, müssen aber  noch aufbereitet werden. Dreh- und Angelpunkt für den Forschungserfolg der recycelten Fasern sind konkurrenzfähige Anwendungen. Die hat das STFI nicht nur am Auto, sondern auch im Sport-Freizeitsektor sowie in der Medizintechnik gefunden, so in Komponenten für Computertomographen. "Während Metalle oder Glasfasern als potenzielle Konkurrenzprodukte Schatten werfen, stört Carbon die Bilddarstellung nicht und kann seine Vorteile voll ausspielen“, erläutert Hofmann.

Papier-Knowhow nutzen
Können recycelte Carbonfasern nochmals den Produktkreislauf durchlaufen, verbessert das ihre CO2-Bilanz deutlich. Zugleich gilt: Je kürzer die Carbonfasern, desto unattraktiver sind sie für die weitere Verwertung. Vor diesem Hintergrund entwickelten das Forschungsinstitut Cetex und die Papiertechnische Stiftung (PTS), beide Mitglieder der Zuse-Gemeinschaft, im Rahmen eines Forschungsvorhabens ein neues Verfahren, das bislang wenig geeignet erscheinende Recycling-Carbonfasern ein zweites Produktleben gibt. „Während klassische Textilverfahren die ohnehin sehr spröden Recycling-Carbonfasern in Faserlängen von mind. 80 mm trocken verarbeiten, beschäftigten wir uns mit einem Verfahren aus der Papierindustrie, welches die Materialien nass verarbeitet. Am Ende des Prozesses erhielten wir, stark vereinfacht gesprochen, eine flächige Matte aus recycelten Carbonfasern und Kunststofffasern“, erläutert Cetex-Projektingenieur Johannes Tietze das Verfahren, mit dem auch 40 mm kurze Carbonfasern zu attraktiven Zwischenprodukten recycelt werden können. Das danach in einem Heißpressprozess entstandene Erzeugnis dient als Grundmaterial für hochbelastbare Strukturbauteile. Zusätzlich wurden die mechanischen Eigenschaften der Halbzeuge durch die Kombination mit endlosfaserverstärkten Tapes verbessert. Das Recyclingprodukt soll, so die Erwartung der Forschenden, glasfaserverstärkten Kunststoffen, Konkurrenz machen, z.B. bei Anwendungen im Schienen- und Fahrzeugbau. Die Ergebnisse fließen nun in weiterführende Forschung und Entwicklung im Kooperationsnetzwerk Ressourcetex ein, einem geförderten Verbund von 18 Partnern aus Industrie und Wissenschaft.

Erfolgreiche Umsetzung in der Autoindustrie
Industriereife Lösungen für die Verwertung von Carbonfaser-Produktionsab-fällen werden im Thüringischen Institut für Textil- und Kunststoff-Forschung Rudolstadt (TITK) entwickelt. Mehrere dieser Entwicklungen wurden mit Partnern beim Unternehmen SGL Composites in Wackersdorf industriell umgesetzt. Die Aufbereitung der so genannten trockenen Abfälle, hauptsächlich aus Verschnittresten, erfolgt nach einem eigenen Verfahren. „Dabei  führen wir die geöffneten Fasern verschiedenen Prozessen zur Vliesherstellung zu“, sagt die zuständige Abteilungsleiterin im TITK, Dr. Renate Lützkendorf1).  Neben den Entwicklungen für den Einsatz  z.B. im BMW i3 in Dach oder Hintersitzschale  wurden im TITK spezielle Vliesstoffe und Verfahren für die Herstellung von Sheet Molding Compounds (SMC) etabliert, das sind duroplastische Werkstoffe, die aus Reaktionsharzen und Verstärkungsfasern bestehen und zum Pressen von Faser-Kunststoff-Verbunden verwendet werden. Eingang fand dies z.B. in einem Bauteil für die C-Säule des 7er BMW. „In seinen Projekten setzt das TITK vor allem auf die Entwicklung leistungsfähigerer Prozesse und kombinierter Verfahren, um den Carbonfaser-Recyclingmaterialien auch von den Kosten her bessere Chancen in Leichtbauanwendungen einzuräumen“, betont Lützkendorf.  So liege der Fokus gegenwärtig auf dem Einsatz von CF-Recyclingfasern in thermoplastischen Prozessen zur Platten- und Profilextrusion. „Ziel ist es, die Kombination von Kurz- und Endlosfaserverstärkung in einem einzigen, leistungsfähigen Prozessschritt  zu realisieren.“

1) Seit 01.02.2021 hat Dr.-Ing. Thomas Reußmann die Nachfolge von Frau Dr.-Ing. Renate Lützkendorf angetreten, die am 31.01. in den Ruhestand verabschiedet wurde.

Quelle:

Zuse-Gemeinschaft

(c) Pixabay
15.12.2020

Schutz vor Corona: Fortschritte in der Materialforschung an Instituten der Zuse-Gemeinschaft

Mit dem Jahresende wachsen die Erwartungen an einen baldigen Impfschutz gegen COVID-19. Bis es für weite Teile der Bevölkerung so weit ist, bieten 2020 in Forschung und Industrie erzielte Erfolge zum Schutz vor dem Virus eine gute Ausgangsbasis im Kampf gegen Corona und darüber hinaus. An Instituten der Zuse-Gemeinschaft wurden Fortschritte nicht nur in der Medizin-, sondern auch in der Materialforschung erzielt.

Mit dem Jahresende wachsen die Erwartungen an einen baldigen Impfschutz gegen COVID-19. Bis es für weite Teile der Bevölkerung so weit ist, bieten 2020 in Forschung und Industrie erzielte Erfolge zum Schutz vor dem Virus eine gute Ausgangsbasis im Kampf gegen Corona und darüber hinaus. An Instituten der Zuse-Gemeinschaft wurden Fortschritte nicht nur in der Medizin-, sondern auch in der Materialforschung erzielt.

Zu diesen Erfolgen in der der Materialforschung gehören Neuerungen in der Beschichtung von Oberflächen. „Im Zuge der Pandemie ist die Nachfrage nach antiviral und antimikrobiell ausgestatteten Oberflächen stark gestiegen, und wir haben unsere Forschung in diesem Bereich erfolgreich intensiviert“, erklärt Dr. Sebastian Spange, Bereichsleiter Oberflächentechnik beim Jenaer Forschungsinstitut INNOVENT. Er rechnet künftig zunehmend mit Produkten, die über antiviral ausgestattete Oberflächen verfügen „Unsere Tests mit Modellorganismen zeigen, dass eine entsprechende Beschichtung von Oberflächen wirkt“, betont Spange. Zum Spektrum der von INNOVENT genutzten Techniken gehören Beflammung, Plasmabeschichtung und das sogenannte Sol-Gel-Verfahren, bei dem organische und anorganische Stoffe bei relativ niedrigen Temperaturen in einer Schicht verbunden werden können. Als Material für die Beschichtungen kommen laut Spange antibakteriell wirkende Metallverbindungen ebenso infrage wie Naturstoffe mit antiviralem Potenzial.

Vliesstoffe für Maskenhersteller produziert
Die textile Expertise zahlreicher Institute der Zuse-Gemeinschaft hat 2020 dafür gesorgt, dass anwendungsnahe Forschung sich in der Praxis der Pandemiebekämpfung bewähren konnte. Nach der in Deutschland zu Beginn der Pandemie aufgetretenen Knappheit bei der Versorgung mit Masken reagierten Textilforschungseinrichtungen, um in die Bresche zu springen. So stellte das Sächsische Textilforschungsinstitut (STFI) seine Forschungsanlagen auf die Produktion von Vliesstoff zur Belieferung deutscher und europäischer Hersteller von partikelfilternden Schutzmasken um. „Von März bis November 2020 haben wir Vliesstoff an verschiedene Hersteller geliefert, um die Maskenproduktion bestmöglich zu unterstützen und somit zur Eindämmung der Pandemie beizutragen. In einer für Industrie und Bevölkerung kritischen Zeit konnten wir zur Entlastung kritischer Produktionskapazität beitragen - für ein Forschungsinstitut eine ungewohnte Rolle, die wir aber in ähnlichen Situationen erneut annehmen würden“, erklärt Andreas Berthel, Geschäfts-führender Kaufmännischer Direktor des STFI.

Entwicklung wiederverwendbarer medizinischer Gesichtsmasken
Zur Verbesserung von Alltags- wie auch medizinischen Gesichtsmasken arbeiten die Deutschen Institute für Textil- und Faserforschung (DITF). In Kooperation mit einem Industriepartner entwickelt man in Denkendorf aktuell u.a. wiederverwendbare, medizinische Gesichtsmasken aus leistungsfähigem Präzisionsgewebe in Jacquard-Webtechnik. Die Mehrfachnutzung vermeidet Abfall und etwaige Lieferengpässe.
Für alle Arten von Masken gibt es Regularien, nun auch für Alltagsmasken. Bei Hohenstein wird die Einhaltung von Standards für Masken überprüft. Ein neuer europäischer Leitfaden legt Mindestanforderungen für Konstruktion, Leistungsbeurteilung, Kennzeichnung und Verpackung von Alltagsmasken fest. „Als Prüflabor für Medizinprodukte testen wir die Funktionalität medizinischer Gesichtsmasken unter mikrobiologisch-hygienischen und physikalischen Gesichtspunkten“, erläutert Hohenstein-Geschäftsführer Prof. Dr. Stefan Mecheels. Hohenstein unterstützt damit Hersteller u.a. bei der technischen Dokumentation zum Nachweis der Wirksamkeit und Sicherheit.
Atemschutzmasken (FFP 1, FFP 2 und FFP 3) werden seit Mitte dieses Jahres am Kunststoff-Zentrum (SKZ) in Würzburg geprüft. Getestet werden u.a. Einatem- und Ausatemwiderstand und der Durchlass von Partikeln. Zudem ist das SKZ selbst in die Maskenforschung eingestiegen. In Zusammenarbeit mit einem Medizintechnikspezialisten entwickelt das SKZ eine innovative Maske, die aus einem reinig- und sterilisierbaren Maskenträger und austauschbaren Filterelementen besteht.

ILK-Tests: Bei „Nase raus“ gelangen 90 Prozent der Partikel in die Umgebung
Der Kampf gegen Corona wird durch die Beiträge der Menschen gewonnen: Von Forschenden in Laboren, von Entwicklern und Herstellern in der Industrie sowie von den Bürgerinnen und Bürgern auf der Straße. Das Institut für Luft- und Kältetechnik (ILK) in Dresden hat vor diesem Hintergrund Untersuchungen zur Durchlässigkeit des Mund-Nasenschutzes (MNS) durchgeführt, und zwar zu   möglichen Beeinträchtigungen beim Atmen durch die Maske ebenso wie zur Schutzfunktion von Alltagsmasken.
Ergebnis: Obwohl die eingesetzten Materialien des Mund-Nasenschutzes rund 95 Prozent der ausgeatmeten Tröpfchen zurückhalten können ist „unter praktischen Gesichtspunkten und Berücksichtigung von Leckagen“ davon auszugehen, dass etwa 50 Prozent bis 70 Prozent der Tröpfchen in den Raum gelangen, so das ILK. Werde die Maske nur unterhalb der Nase getragen, so sei aufgrund des großen Anteils der Nasenatmung sogar davon auszugehen, dass ca. 90 Prozent der abgeatmeten Partikel in den Raum gelangen. Das verdeutlicht die Bedeutung des eng anliegenden und richtig getragenen Mund- und Nasenschutzes. „Hingegen sprechen aus physikalischer Sicht keine Gründe gegen das Tragen einer Maske“, betont ILK-Geschäftsführer Prof. Dr. Uwe Franzke. Die Forschenden untersuchten den CO2-Gehalt in der Atemluft ebenso wie den höheren Aufwand für die Atmung und legten dafür das Überwinden des Druckverlustes als Kriterium zugrunde. „Die Untersuchungen zum Druckverlust zeigten einen geringen, praktisch aber nicht relevanten Anstieg“, erläutert Franzke.

Der komplette ILK-Bericht „Untersuchungen zur Wirkung des Mund- und Nasenschutzes (MNS)“ ist hier abrufbar.

 

Messegelände Messe Frakfurt (c) Mese Frankfurt GmbH
22.09.2020

Heimtextil 2021 findet im Mai statt

Die Heimtextil 2021 wird vom Januar auf den 4. bis 7. Mai 2021 verlegt und findet dann parallel zur Techtextil und Texprocess 2021 in Frankfurt am Main statt. Es ergeben sich spannende Synergie-Effekte für die Branche, so die Messeleitung.
 
Die aktuelle Situation im Rahmen der Corona-Pandemie und die damit verbundenen internationalen Reisebeschränkungen haben die Messe Frankfurt dazu bewogen, die Heimtextil, weltgrößte Fachmesse für Wohn- und Objekttextilien, vom Januar auf den 4. bis 7. Mai 2021 zu verlegen.
     

Die Heimtextil 2021 wird vom Januar auf den 4. bis 7. Mai 2021 verlegt und findet dann parallel zur Techtextil und Texprocess 2021 in Frankfurt am Main statt. Es ergeben sich spannende Synergie-Effekte für die Branche, so die Messeleitung.
 
Die aktuelle Situation im Rahmen der Corona-Pandemie und die damit verbundenen internationalen Reisebeschränkungen haben die Messe Frankfurt dazu bewogen, die Heimtextil, weltgrößte Fachmesse für Wohn- und Objekttextilien, vom Januar auf den 4. bis 7. Mai 2021 zu verlegen.
     
„Aus großen Teilen der internationalen Wohn- und Objekttextilienbranche gibt es den Wunsch, die Heimtextil 2021 stattfinden zu lassen. Viele Unternehmen erhoffen sich vom Messeauftritt einen Anschub ihrer Geschäfte nach dem Re-Start. Dieser Notwendigkeit fühlen wir uns mehr denn je verpflichtet“, erklärt Detlef Braun, Geschäftsführer der Messe Frankfurt. „Allerdings stellen die aktuellen Reisebeschränkungen und die erneut ansteigenden Infektionszahlen für unsere sehr internationale Veranstaltung eine große Hürde dar. Wir stehen im intensiven Austausch mit unseren Ausstellern wie auch den zuständigen Behörden und setzen uns mit ganzer Kraft für eine sichere und erfolgversprechende Ausrichtung der Heimtextil 2021 ein.“

Über 90 Prozent der Messeteilnehmer kommen aus dem Ausland zur Heimtextil nach Frankfurt. Zur Vorbereitung einer so internationalen Messe im Januar gehört, dass im September Standbauunternehmen sowie die Verschiffung der Waren, Flüge und Hotels gebucht und beauftragt werden müssen. Aufgrund der aktuellen Reiserestriktionen bietet ein späterer Messetermin im Mai 2021 somit für alle Beteiligten größere Planungssicherheit.
 
„Die trendorientierten Orderzyklen der Wohn-und Objekttextilienbranche erfordern eine jährliche Veranstaltung zum Jahresbeginn. Techtextil und Texprocess finden alle zwei Jahre und turnusgemäß wieder im Mai 2021 statt. Für die Heimtextil bietet das die Chance, gemeinsam mit den beiden international erfolgreichen Textilfachmessen die gesamte textile Wertschöpfungskette zeitgleich auf dem Frankfurter Messegelände abzubilden“, betont Olaf Schmidt, Vice President Textiles and Textile Technologies.

Darüber hinaus eröffnet die Parallelität mit der Techtextil, internationale Leitmesse für Technische Textilien und Vliesstoffe, sowie mit der Texprocess, internationale Leitmesse für die Verarbeitung von textilen und flexiblen Materialien, spannende Synergie-Effekte für die Branche.

Durch die räumliche Nähe zu den Anbietern und Einkäufern von technischen Textilien und Vliesstoffen mit innovativen Funktionalitäten sowie von Maschinen und neuesten Technologien zur Verarbeitung von textilen und flexiblen Materialien, ergeben sich sowohl für Besucher als auch für Aussteller der Heimtextil interessante neue Perspektiven. Bereits jetzt spricht das Messe-Duo mit dem Segment „Hometech“ die Heimtextilien-Branche an.
 
„Wir sind zuversichtlich, dass sich die Rahmenbedingungen durch die Corona-Pandemie im Mai kommenden Jahres noch einmal deutlich entspannen werden und freuen uns darauf, gemeinsam mit unseren Branchenpartnern dann eine erfolgversprechende und sichere Veranstaltung auf die Beine zu stellen“, ist sich Schmidt sicher.

NEU: Nextrade - der digitale Marktplatz
Erstmals wird es zur Heimtextil 2021 mit Nextrade einen zusätzlichen digitalen Service der Messe Frankfurt geben. Das Order- und Datenmanagement-Portal Nextrade bietet gerade vor dem Hintergrund der aktuellen Pandemie mit einer digitalen 24/7-Geschäftsbeziehung zwischen den Messeteilnehmern neue Chancen. Hier können Händler rund um die Uhr und damit unabhängig von aktuellen behördlichen Maßnahmen ihre Order bei den angebundenen Lieferanten platzieren. Auch Lieferanten bietet Nextrade ganz neue Absatz- und Vertriebskanäle, vor allem im Ausland. Nextrade wurde im Rahmen der Konsumgüter- und Lifestylemessen Ambiente, Tendence und Nordstil eingeführt. Als erster digitaler B2B-Marktplatz für Home & Living führt die Plattform Angebot und Nachfrage der gesamten Branche digital zusammen und schafft damit einen großen Mehrwert für beide Seiten: www.nextrade.market

Techtextil / Texprocess
Auf der internationalen Leitmesse Techtextil in Frankfurt am Main zeigen internationale Aussteller alle zwei Jahre das gesamte Spektrum technischer Textilien, funktionaler Bekleidungstextilien und textiler Technologien für alle Anwendungsbereiche. Parallel zur Techtextil findet mit der Texprocess die Leitmesse für die Bekleidungs- und textilverarbeitende Industrie statt, die sich vor allem an Hersteller von Bekleidung, Mode, Polstermöbeln und Lederprodukten richtet.

Weitere Informationen:
Heimtextil 2021
Quelle:

Messe Frankfurt GmbH

Foto: Pixabay
28.04.2020

Meltblown Productive: Fraunhofer ITWM vs. Corona - Mit Mathematik gegen die Krise

  • Meltblown produktiv – ITWM-Software unterstützt bei Vliesstoffproduktion für Infektionsschutz

Simulationen des Fraunhofer-Instituts für Techno- und Wirtschaftsmathematik ITWM machen Prozesse bei der Herstellung von Vliesstoffen effizienter. So wird im Rahmen des Anti-Corona-Programms von Fraunhofer die Produktion von Infektionsschutz optimiert.
 
Die Vliesstoffproduktion hat in der breiten Öffentlichkeit zurzeit so viel Aufmerksamkeit wie selten, denn Vlies ist in Zeiten der Corona-Pandemie lebenswichtig für den Infektionsschutz im medizinischen Bereich und auch für den Schutz der Gesamtbevölkerung. Einmal-Bettwäsche in Krankenhäusern, OP-Kittel, Mundschutz, Wundschutzauflagen und Kompressen sind einige Beispiele für Vliesstoffprodukte.

  • Meltblown produktiv – ITWM-Software unterstützt bei Vliesstoffproduktion für Infektionsschutz

Simulationen des Fraunhofer-Instituts für Techno- und Wirtschaftsmathematik ITWM machen Prozesse bei der Herstellung von Vliesstoffen effizienter. So wird im Rahmen des Anti-Corona-Programms von Fraunhofer die Produktion von Infektionsschutz optimiert.
 
Die Vliesstoffproduktion hat in der breiten Öffentlichkeit zurzeit so viel Aufmerksamkeit wie selten, denn Vlies ist in Zeiten der Corona-Pandemie lebenswichtig für den Infektionsschutz im medizinischen Bereich und auch für den Schutz der Gesamtbevölkerung. Einmal-Bettwäsche in Krankenhäusern, OP-Kittel, Mundschutz, Wundschutzauflagen und Kompressen sind einige Beispiele für Vliesstoffprodukte.

Insbesondere in der Intensiv- und Altenpflege werden aufgrund der besonderen Hygieneanforderungen dazu Einmal-Produkte verwendet, die aus Vliesstoffen gefertigt sind. Momentan sind deutliche Engpässe bei der Produktion dieser Materialien zu beobachten. Für die Klasse der Meltblown-Vliesstoffe gestaltet sich eine Effizienzsteigerung der Produktion jedoch schwierig, weil Meltblown-Prozesse hochsensitiv auf Prozessschwankungen und Materialunreinheiten reagieren.  
 
Vlies ist zwar nicht gleich Vlies, aber allen industriell gefertigten Vliesstoffen verhältnismäßig gleich ist das grobe Prinzip ihrer Produktion: Geschmolzenes Polymer wird durch viele feine Düsen gepresst, in einem Luftstrom stark verstreckt und abgekühlt und so zu den typischen weißen Bahnen abgelegt. »Meltblown« heißt der FeinstfaserProzess, dessen Vliesstoffe dafür verantwortlich sind, dass in Gesichtsmasken die entscheidende Filterfunktion gegeben ist.  
 
Bei der Meltblown-Technologie werden nichtgewebte Stoffe direkt aus Granulat hergestellt. Ein spezielles Spinnverfahren in Kombination mit Hochgeschwindigkeits-Heißluft kommt zum Einsatz, um feinfaserige Vliesstoffe mit unterschiedlichen Strukturen zu produzieren. Die Fäden werden durch die turbulente Luftströmung hochgradig verstreckt. Dabei verwirbeln sie in der Luft, verschlingen sich und fallen mehr oder weniger zufällig auf ein Transportband, wo sie weiter verfestigt werden – ein sehr komplexer Prozess. Weltweit bemühen sich Vliesstoffhersteller, ihre Produktionskapazitäten massiv zu steigern.  
 
Digitaler Zwilling optimiert Meltblown-Prozess     
Hier kommt die Software des ITWM ins Spiel. »Mit unserem Fiber Dynamics Simulation Tool FIDYST werden die Bewegungen der Fasern, ihr Fallen und die Ausrichtung, mit der sie auf einem Transportband landen, vorausgesagt. Je nach Prozesseinstellungen entstehen spezifische Turbulenzen und damit Vliesqualitäten, die sich in Struktur, Faserdichte und Festigkeit unterscheiden«, erklärt Dr. Walter Arne vom Fraunhofer ITWM. Er beschäftigt sich am Institut schon seit Jahren mit der Simulation von verschiedenen Prozessen rund um Fäden, Fasern und Filamente.

Die Methodik ist gut übertragbar auf Meltblown-Prozesse. Bei diesen liegt eine der Besonderheiten auf der Simulation der Filamentverstreckung im turbulenten Luftstrom – wie die Verstreckung verläuft, die Dynamik der Filamente und die Durchmesserverteilung. Das sind alles komplexe Aspekte, die mit einbezogen werden müssen, aber auch das Strömungsfeld oder die Temperaturverteilung. Die Simulationen der Forschenden am Fraunhofer ITWM ermöglichen dann einen qualitativen und quantitativen Einblick in die Faserentstehung in solchen Meltblown-Prozessen – weltweit einzigartig in dieser Form, wenn es um die Abbildung eines turbulenten Spinnprozesses (Meltblown) geht.

Vliesstoffhersteller profitieren von Simulation
Was heißt das für die Industrie? Die Produktion von technischen Textilien kann so nicht nur deutlich effizienter werden, sondern die Vliesstoffe lassen sich entwickeln, ohne dies vorab in einer Versuchsstätte zu realisieren. Denn die Simulationen helfen, die Prozesse anhand eines digitalen Zwillings zu prognostizieren und dann zu optimieren. So können Produktionskapazitäten bei gleichbleibender Produktqualität gesteigert werden. Simulationen sparen Experimente, erlauben neue Einblicke, ermöglichen systematische Parametervariationen und lösen Upscaling-Probleme, die zu Fehlinvestitionen beim Übergang von der Laboranlage zur Industrieanlage führen können.

Mit langjähriger Expertise einen Beitrag zur Bewältigung der Krise leisten
»Exemplarisch wollen wir dies im Projekt an einer typischen Meltblown-Anlage demonstrieren – hierzu stehen wir mit Partnerunternehmen in Kontakt«, so Dr. Dietmar Hietel, Abteilungsleiter »Transportvorgänge« am Fraunhofer ITWM. »Im Rahmen des Anti-Corona-Programms von Fraunhofer wollen wir so mit unserer gewachsenen Expertise und unserem Netzwerk einen Beitrag zur Bewältigung der Krise leisten«, berichtet Hietel. In seiner Abteilung am Fraunhofer ITWM wird die Forschung im Bereich der technischen Textilien seit rund 20 Jahren verfolgt. Das Projekt ist aufgrund der aktuellen Relevanz nicht nur schnell gestartet, sondern auch mit der Umsetzung und Ergebnissen soll es jetzt schnell gehen: Die Laufzeit ist vom 15.04.2020 bis 14.08.2020 angesetzt. Das Kickoff-Meeting fand am 17.04.2020 per Videokonferenz statt.
 
Das Projekt »Meltblown produktiv« und die Ergebnisse sind sicher interessant für Vliesstoffproduzenten. Die Produktion vieler Massenprodukte wurde in den vergangenen Jahrzehnten vielfach nach Asien ausgelagert; die in Deutschland und Europa verbliebenen Vliesstoffhersteller fokussieren sich eher auf hochwertige technische Textilien. Mittel- und längerfristig sind dies auch wissenschaftliche Vorarbeiten, falls Produktionskapazitäten in Deutschland und Europa durch neue Anlagen ausgebaut werden. Denn eine Lehre aus der Krise wird auch sein, die Abhängigkeit von Produzenten in Asien insbesondere als Vorsorge für Krisenszenarien einzudämmen.

Quelle:

Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM

TECHNISCHE TEXTILIEN VERGRÖßERN KONTINUIERLICH ANTEIL AN GESAMTER EU-TEXTILPRODUKTION Foto: Gerd Altmann, Pixabay
26.11.2019

TECHNISCHE TEXTILIEN VERGRÖßERN KONTINUIERLICH ANTEIL AN GESAMTER EU-TEXTILPRODUKTION

  • Der europäische Textil- und Bekleidungssektor konsolidiert 2018 seine zufriedenstellende Entwicklung

Die Textil- und Bekleidungsindustrie in der EU hat das Jahr 2018 mit einer Konsolidierung der positiven Kennzahlen der letzten 5 Jahre abgeschlossen. Erste von Eurostat veröffentlichte Daten, die von EURATEX um eigene Berechnungen und Schätzungen ergänzt wurden, zeigen einen Gesamtumsatz der Branche von 178 Mrd. EUR, was einen minimalen Anstieg gegenüber dem Vorjahreswert von 177,6 Mrd. EUR bedeutet, der jedoch deutlich über dem Wert von 163,8 Mrd. EUR aus dem Jahr 2013 lag. Die Investitionssumme in Höhe von 5,0 Mrd. € hat sich wie in allen vergangenen Jahren seit 2013 erneut leicht erhöht.
 

  • Der europäische Textil- und Bekleidungssektor konsolidiert 2018 seine zufriedenstellende Entwicklung

Die Textil- und Bekleidungsindustrie in der EU hat das Jahr 2018 mit einer Konsolidierung der positiven Kennzahlen der letzten 5 Jahre abgeschlossen. Erste von Eurostat veröffentlichte Daten, die von EURATEX um eigene Berechnungen und Schätzungen ergänzt wurden, zeigen einen Gesamtumsatz der Branche von 178 Mrd. EUR, was einen minimalen Anstieg gegenüber dem Vorjahreswert von 177,6 Mrd. EUR bedeutet, der jedoch deutlich über dem Wert von 163,8 Mrd. EUR aus dem Jahr 2013 lag. Die Investitionssumme in Höhe von 5,0 Mrd. € hat sich wie in allen vergangenen Jahren seit 2013 erneut leicht erhöht.
 
Die Beschäftigtenzahl in Höhe von 1,66 Millionen verzeichnete einen kleinen Rückgang im Vergleich zu 2017, blieb jedoch in den letzten 5 Jahren im Wesentlichen unverändert - eine bemerkenswerte Leistung für einen Sektor, der weiterhin seine Arbeitseffizienz ausbaut. Infolgedessen stieg der durchschnittliche Umsatz pro Mitarbeiter von 97.000 € im Jahr 2013 auf 107.000 € im Jahr 2018. In den letzten 10 Jahren sind Umsatz und Wertschöpfung pro Mitarbeiter um über 30% gestiegen.

Ein besonderer Lichtblick ist erneut der Export, der gegenüber dem Vorjahr um 7% zulegte und erstmals 50 Mrd. € erreichte. Die Exporte der Branche in außereuropäische Länder, die heute 28% des Jahresumsatzes ausmachen und vor 10 Jahren noch bei unter 20% lagen, sind der deutlichste Beweis für die zunehmende globale Wettbewerbsfähigkeit der europäischen Textil- und Bekleidungsunternehmen.
Sowohl in einkommensstarken Ländern wie den Vereinigten Staaten (der größte Exportmarkt innerhalb der außereuropäischen Länder mit 6 Mrd. €), der Schweiz, Japan oder Kanada als auch in Schwellenländern wie China und Hongkong (kombinierte Exporte über 6,7 Mrd. EUR), Russland, der Türkei und dem Nahen Osten sind europäische Qualitätstextilien und Premium-Modeprodukte zunehmend gefragt,.

Die europäischen Exporte profitieren von einem schnelleren Wirtschaftswachstum in vielen außereuropäischen Märkten, aber auch von einem besseren Marktzugang als Ergebnis erfolgreicher EU-Handelsverhandlungen mit Ländern wie Südkorea, Kanada oder Japan.

Seit 2015 hat das Exportwachstum das Importwachstum leicht übertroffen, was bedeutet, dass sich das EU-Handelsbilanzdefizit von rund 65 Mrd. EUR nicht mehr vergrößert. Statt eines absoluten Importwachstums haben sich in den letzten Jahren deutliche Veränderungen in den wichtigsten Importländern ergeben. Während China die bei weitem wichtigste Importquelle bleibt, gewannen Niedriglohnländer wie Bangladesch, Kambodscha, Myanmar und Vietnam relativ an Bedeutung, insbesondere für Bekleidung.

Technische Textilien sind unbestritten eine Erfolgsgeschichte der europäischen Industrie. Genaue Zahlen für diesen Teil der Industrie sind schwierig zu berechnen, da viele Garne und Gewebe sowohl für technische als auch für konventionelle Anwendungen verwendet werden können. Nationale Statistiken erscheinen nur mit erheblicher zeitlicher Verzögerung oder bleiben für kleinere EU-Länder unveröffentlicht. Für 2016 schätzt EURATEX, dass der Umsatz der EU-Industrie mit technischen Textilien (einschließlich Garnen, Geweben und Vliesstoffen, jedoch ohne konfektionierte Artikel) rund 24 Mrd. EUR oder 27% des gesamten Umsatzes der Textilindustrie erreicht hat. Im Laufe der Jahre ist dieser Prozentsatz stetig gestiegen und wird dies voraussichtlich auch in Zukunft weiterhin tun.

Italien und Deutschland sind die größten europäischen Hersteller technischer Textilien. Sie produzieren jährlich technische Textilien im Wert von jeweils über 4,5 Mrd. EUR. Der höchste Anteil technischer Textilien am nationalen Textilumsatz ist in skandinavischen Ländern wie Schweden und Finnland sowie in mitteleuropäischen Ländern wie Deutschland, der Tschechischen Republik oder Slowenien zu verzeichnen. Das schnellste Wachstum bei technischen Textilien in den letzten 10 Jahren wurde von Polen erzielt, gefolgt von Belgien, Österreich und Portugal. Dies zeigt deutlich, dass technische Textilien europaweit an Bedeutung gewinnen.

Die Arbeitsproduktivität der Branche ist im Bereich technischer Textilien viel höher. Der Umsatz pro Mitarbeiter liegt bei 215.000 € und ist damit mehr als doppelt so hoch wie der Durchschnitt der Textil- und Bekleidungsindustrie. EURATEX‘ Innovation & Skills Direktor, Lutz Walter betonte in diesem Zusammenhang, wie wichtig „Innovation und Fachwissen der Mitarbeiter sind, um die starke Position der EU-Industrie im Bereich technischer Textilien zu erreichen und zu verteidigen“.

Im internationalen Handel sind sowohl die Exporte als auch die Importe von technischen Textilien im Laufe der Jahre kontinuierlich gewachsen, wobei die Handelsbilanz in Euro nahezu Null betrug. Bei der Betrachtung der Produktkategorien wird jedoch deutlich, dass die Handelsbilanz Europas bei Produkten mit höherer Wertschöpfung wie medizinischen Textilien, hochtechnischen Fertiggeweben und Vliesstoffen massiv positiv ist, jedoch negativ wird in Kategorien wie Taschen, Säcken und Planen oder Reinigungstücher.    

Die USA sind erneut Europas größter Kunde für technische Textilien, gefolgt von China, das in den letzten Jahren ein sehr schnelles Wachstum verzeichnete.

 

Weitere Informationen:
Euratex Technische Textilien
Quelle:

EURATEX

Fotos: (c) ITMA
25.06.2019

INTERNATIONALERE ITMA 2019 STELLT MIT GRÖßTER AUSSTELLERZAHL NEUEN REKORD AUF

Seit seiner Einführung im Jahr 1951 genießt die ITMA als weltweit größte Ausstellung für Textil- und Bekleidungstechnologie in der Branche große Anerkennung. Die diesjährige Ausgabe in Barcelona festigt ihren Ruf mit der größten Zahl von Ausstellern in ihrer Geschichte. Die Rekordzahl von 1.717 Ausstellern aus 45 Ländern hat einen neuen Meilenstein gesetzt.

Auf der Pressekonferenz am Eröffnungstag der 18. Ausgabe der Ausstellung sagte Fritz P. Mayer, Präsident des Europäischen Ausschusses der Textilmaschinenhersteller (CEMATEX): „Die Weltwirtschaft steht immer noch vor Herausforderungen, die durch gespannte Beziehungen und Störungen im Handel hervorgehoben werden. Allerdings hat sich die Textilindustrie als älteste verarbeitende Industrie der Welt im Laufe der Jahre als robust erwiesen.

Seit seiner Einführung im Jahr 1951 genießt die ITMA als weltweit größte Ausstellung für Textil- und Bekleidungstechnologie in der Branche große Anerkennung. Die diesjährige Ausgabe in Barcelona festigt ihren Ruf mit der größten Zahl von Ausstellern in ihrer Geschichte. Die Rekordzahl von 1.717 Ausstellern aus 45 Ländern hat einen neuen Meilenstein gesetzt.

Auf der Pressekonferenz am Eröffnungstag der 18. Ausgabe der Ausstellung sagte Fritz P. Mayer, Präsident des Europäischen Ausschusses der Textilmaschinenhersteller (CEMATEX): „Die Weltwirtschaft steht immer noch vor Herausforderungen, die durch gespannte Beziehungen und Störungen im Handel hervorgehoben werden. Allerdings hat sich die Textilindustrie als älteste verarbeitende Industrie der Welt im Laufe der Jahre als robust erwiesen.

„Dies ist entspricht auch der Haltung unserer Aussteller, die ständig neue Technologien und Lösungen entwickeln und einführen. Wir freuen uns, dass die ITMA den Textilmaschinenherstellern eine seriöse Plattform für die Vermarktung ihrer Innovationen bietet. Dadurch konnten wir die höchste Ausstellerzahl in der Geschichte der ITMA verzeichnen.“
 
Die Exponate werden auf einer Nettoausstellungsfläche von 114.500 Quadratmetern präsentiert, eine Steigerung von 9 Prozent gegenüber der vorherigen Ausgabe im Jahr 2015. Die Ausstellung belegt alle neun Hallen der Gran Via, einschließlich der Fläche im Verbindungsbereich „Under the Linkway“ Um mehr Unternehmen die Teilnahme zu ermöglichen, wurde vielen Ausstellern weniger Standfläche zugeteilt als ursprünglich beantragt.

Charles Beauduin, Vorsitzender von ITMA Services, dem Veranstalter der ITMA 2019, schwärmte: „Die Ausstellung wäre größer gewesen, wenn wir Bewerber aus Platzgründen nicht hätten abweisen müssen. Eine Warteliste von rund 250 Bewerbern, die rund 8.200 Quadratmeter gebucht hatten, konnten wir leider nicht berücksichtigen.“ Er fügte hinzu: „Die ITMA hat sich darüber hinaus zu einer internationaleren Messe mit einer großen Vielfalt an Technologieangeboten aus Ost und West entwickelt. Fast die Hälfte der Aussteller stammt aus Nicht-CEMATEX-Ländern. Dies ist ein gutes Zeichen für die Entwicklung der ITMA hin zu einer allgemein gültigen Textil- und Bekleidungsplattform für die Industrie.“

Internationale Beteiligung
Von der Gesamtzahl der Aussteller stammt mehr als die Hälfte aus CEMATEX-Ländern. Der restliche Teil setzt sich aus Unternehmen aus anderen Teilen Europas, Asiens, des Nahen Ostens und beiden Amerikas zusammen. Entsprechend der internationalen Zusammensetzung der Teilnehmer kommen die meisten Aussteller aus Italien (364 Aussteller), China (276 Aussteller), Deutschland (222 Aussteller), Indien (169 Aussteller) und der Türkei (164 Aussteller).

Die CEMATEX-Länder belegen weiterhin die größte Ausstellungsfläche und machen 65% der gesamten Nettoausstellungsfläche aus. Italien buchte 26% der Fläche, gefolgt von Deutschland mit 18%. Die wichtigsten Nicht-CEMATEX-Länder sind die Türkei mit 9%, China mit 8% und Indien mit 5% der gebuchten Fläche.

Produktbereiche
In 19 Ausstellungsbereichen erwartet die Besucher eine breite Palette integrierter Lösungen über die gesamte Wertschöpfungskette. Die Drucktechnik, die in den letzten Jahren viele Fortschritte gemacht hat, ist ein spannender Wachstumssektor. Mit einer Steigerung der Ausstellerzahl von 38 Prozent gegenüber der Vorgängermesse gehört dieser Bereich zu den Top 5 auf der ITMA 2019:

  • Veredlung - 325 Aussteller
  • Spinnerei - 281 Aussteller
  • Weberei - 182 Aussteller
  • Drucktechnik - 157 Aussteller
  • Strickerei - 136 Aussteller

Vliesstoffe und technische Textilien sind auf der ITMA 2019 aufgrund ihres breiten Anwendungsspektrums nach wie vor ein wichtiger Sektor. Die durch Digitalisierung und Fast Fashion geprägte Bekleidungsherstellung nimmt auch auf der ITMA eine größere Rolle ein.

Mayer sagte: „Wir freuen uns außerordentlich, dass die Bekleidungs-Technologie auf der ITMA wieder in den Fokus gerückt ist. Obwohl die ITMA traditionell stark in der Textilherstellung verankert  ist, freuen wir uns, dass wir für die Bekleidungsherstellung Lösungen von einigen der weltweit renommiertesten Technologieanbieter präsentieren können. Deren Ausstellerzahl ist gegenüber der ITMA 2015 um 27 Prozent gestiegen." Der Ausstellungsbereich Fasern, Garne und Stoffe vervollständigt die komplette Wertschöpfungskette. Die Aufnahme innovativer Stoffe in das Segment Faser und Garn auf der ITMA rundet das Einkaufserlebnis für Einkäufer weiter ab.
 
Innovation im Fokus

Das Thema der ITMA 2019 lautet „Innovating the World of Textiles“. Um die Innovationsoffensive zu unterstützen, hat CEMATEX das ITMA Innovation Lab eingeführt. Das Labor ist eine neue Dachmarke einer Reihe von Aktivitäten und umfasst den Forschungs- und Innovationspavillon, die ITMA-Sprecherplattform, den ITMA-Preis für nachhaltige Innovation und die Präsentation des Innovationsvideo. Auf der Speakers Platform, die vom 21. bis 25. Juni stattfindet, wurden Redner aus der Branche eingeladen, ihre Perspektiven und Erfahrungen auszutauschen. Am 21. Juni fand zudem ein Finanzforum statt.

Events im Umfeld und Branchenveranstaltungen
Um Wissensaustausch, Zusammenarbeit und Vernetzung zu fördern, werden parallel zur ITMA 2019 mehrere Veranstaltungen durchgeführt. Das ITMA-EDANA-Forum für Vliesstoffe und das Forum für führende Textilfarbstoffe und Chemikalien stießen auf so überwältigende Resonanz, dass die Anzahl der Sitzplätze aufgestockt werden musste. Ähnliche Resonanz fanden auch weitere Partnerveranstaltungen, darunter das Better Cotton Initiative-Seminar, die European Digital Textile Conference, TexSummit Global, Planet Textiles, das SAC & ZDHC Manufacturer Forum und Texmeeting von TEXFOR.
 
„Die Reihe von Veranstaltungen am selben Ort ist Teil des ITMA-Kontaktprogramms, um Industriepartner einzubeziehen und eine integrative Plattform für die globale Textil- und Bekleidungsgemeinschaft zu schaffen. Wir haben über 190 internationale, regionale und lokale Organisationen, die unsere Ausstellung unterstützen“, so Mayer. Die ITMA 2019 findet bis zum 26. Juni auf dem Gelände der Fira de Barcelona Gran Via statt. Die Öffnungszeiten sind täglich von 10.00 bis 18.00 Uhr, am 26. Juni schließt die Messe um 16.00 Uhr.

Über CEMATEX & ITMA
Der europäische Zusammenschluss der Textilmaschinenhersteller (European Committee of Textile Machinery Manufacturers CEMATEX) umfasst die nationale Textilmaschinenverbände aus Belgien, Frankreich, Deutschland, Italien, den Niederlanden, Spanien, Schweden, der Schweiz und dem Vereinigten Königreich. Er ist der Eigentümer der ITMA und der ITMA ASIA. Die ITMA gilt als „Olympiade“ der Textilmaschinenmessen und kann auf eine 68-jährige Geschichte zurückblicken, in der sie die neuesten Technologien für jeden einzelnen Arbeitsprozess der Textil- und Bekleidungsherstellung vorstellt. Sie findet alle vier Jahre in Europa statt.

 

Weitere Informationen:
ITMA 2019
Quelle:

CEMATEX & ITMA Services

(c) Messe Frankfurt Exhibition GmbH
30.04.2019

NACHHALTIGKEIT IST WICHTIGES THEMA AUF DER TECHTEXTIL UND TEXPROCESS

Mit „Sustainability at Techtextil“ und „Sustainability at Texprocess“ stellen die internationalen Leitmessen für technische Textilien und Vliesstoffe sowie für die Verarbeitung textiler und flexibler Materialien erstmals die Nachhaltigkeitsansätze ihrer Aussteller explizit in den Fokus. Hinzu kommt ein umfangreiches Rahmenprogramm zu dem Thema. Dabei sprechen unter anderem Branchengrößen wie Kering, Lenzing oder Zalando.

Mit „Sustainability at Techtextil“ und „Sustainability at Texprocess“ stellen die internationalen Leitmessen für technische Textilien und Vliesstoffe sowie für die Verarbeitung textiler und flexibler Materialien erstmals die Nachhaltigkeitsansätze ihrer Aussteller explizit in den Fokus. Hinzu kommt ein umfangreiches Rahmenprogramm zu dem Thema. Dabei sprechen unter anderem Branchengrößen wie Kering, Lenzing oder Zalando.

Fasern aus recyceltem Polyester, biobasierte Hightech-Textilien, wassersparende Färbe- und Finishingverfahren, Funktions- und Arbeitskleidung, die mit weniger bis keinen Lösungs- und Bindemitteln auskommt: Im Bereich der technischen Textilien und in der Verarbeitung textiler und flexibler Materialien setzen immer mehr Unternehmen auf Ansätze für mehr Nachhaltigkeit. Mit „Sustainability at Techtextil“ und „Sustainability at Texprocess“ machen die internationalen Leitmessen vom 14. bis 17. Mai 2019 entsprechende Ansätze ihrer Aussteller sichtbar. Zusätzlich greifen zahlreiche Eventformate das Thema Nachhaltigkeit auf beiden Messen auf.

Messeguide für ausgewählte Aussteller
Im Vorfeld der Techtextil und Texprocess konnten Aussteller beider Messen ihre Ansätze und entsprechende Nachweise für Aktivitäten rund um Nachhaltigkeit bei den Messeorganisatoren einreichen. Eine unabhängige, internationale Jury aus Nachhaltigkeitsexperten bewertete die Einreichungen individuell auf Basis gängiger nationaler und internationaler Nachhaltigkeitssiegel, darunter aktuell vor allem Bluesign, Cradle-to-Cradle, EU Eco Label, ISO 14001, GOTS, GRS sowie SteP by Oeko-Tex.

Insgesamt wurden 47 Unternehmen, davon 44 Aussteller der Techtextil, und drei der Texprocess ausgewählt. Interessierte Besucher finden die kuratierten Unternehmen in einem eigenen Messe-Guide, der auf der Messe ausliegt, per Filterfunktion unter „Sustainability“ in der Online-Ausstellersuche und in den Apps beider Messen. Zudem weisen die ausgewählten Aussteller an ihren Messeständen auf ihre Teilnahme hin.
Mitglieder der internationalen Expertenjury: Vorsitzender: Max Gilgenmann, Consulting Service International Ltd. (Deutschland/China); Claudia Som, Empa (Schweiz); Jan Laperre, Centexbel (Belgien); Heike Illing-Günther, Sächsisches Textilinstitut e.V. (Deutschland); Karla Magruder, Fabrikology (USA); Lauren Zahringer, SAC Social Apparel Coalition (Niederlande).

Techtextil Forum mit Themenblock zu Nachhaltigkeit
Unter dem Motto „Towards Sustainability“ bietet das Techtextil Forum am 14. Mai zwischen 11 und 15 Uhr eine Reihe an Beiträgen, die sich ausschließlich um nachhaltige Textilinnovationen drehen. Moderiert von Braz Costa, Geschäftsführer des portugiesischen Technologiezentrums CITEVE, stehen unter anderem diese Themen auf dem Programm:
Textilrecycling (TWD Fibres, Velener Textil), nachhaltiges Bauen mit Wolle (Minet S.A.; Rumänien), nachhaltige Textilbeschichtungen (Centexbel), Biopolymere (RWTH Aachen), die Nachverfolgbarkeit gentechnikfreier Baumwolle (Hohenstein Institute) sowie biobasierte kostengünstige Karbonfasern (Textilforschungsinstitute Jules Verne, Frankreich).

Techtextil Innovation Award
Erstmals prämiert der Techtextil Innovation Award zwei Unternehmen mit einem Award in der Kategorie Nachhaltigkeit. Die Gewinner werden am ersten Messetag während der feierlichen Eröffnung der Messe bekannt gegeben und ausgezeichnet. Messebesucher können sich zusätzlich während der gesamten Dauer der Messe auf dem Ausstellungsareal des Techtextil Innovation Award in der Halle 4.2 über die Preisträger und deren ausgezeichnete Projekte informieren.

Texprocess Forum mit Ableger der Fashionsustain-Konferenz
Mit einem Ableger der Fashionsustain Berlin, der Konferenz der Messe Frankfurt rund um nachhaltige Textilinnovationen, bietet das Texprocess Forum am 14. Mai Vormittags einen Themenblock ausschließlich rund um Nachhaltigkeit in der Textil- und Modebranche. Die erste Keynote “Sustainable innovation – a matter of survival” kommt von Mick Magnusson, Co-Gründer des schwedischen Start-Ups We are Spindye.
Unter der Fragestellung „Is Sustainability the Key to Textile Innovations?“ diskutieren anschließend Branchenführer wie Clariant Plastics and Coatings, Indorama, Lenzing, Perpetual Global, Procalçado S.A. sowie Kering und Zalando. Moderiert wird die Fashionsustain unter anderem von Karla Magruder, Gründerin von Fabrikology International.

Innovation Roadshow zu nachhaltiger Schuhproduktion
Im Fortgang der Fashionsustain-Konferenz präsentieren der Faserhersteller Lenzing, der Strickmaschinenproduzent Santoni und Schuhkomponenten-Fabrikant Procalçado S.A. die Innovation Roadshow mit dem Titel „The Future of Eco-Conscious Footwear Manufacturing“. Die Roadshow wird unterstützt vom Texpertise Network der Messe Frankfurt. Sie stellt exemplarisch den nachhaltigen Produktionsprozess eines Schuhs dar und zeigt so, wie ein Nachhaltigkeitswandel der Mode- und Textilindustrie bereits heute Realität sein kann. Moderiert wird das Panel von Marte Hentschel, Gründerin des B2B-Netzwerks für die Modebranche Sourcebook.