Textile Aktuatoren aus Formgedächtnispolymeren und 3D-Druck für soziale Interaktion in der virtuellen Realität
Fibres Sensor Technology Smart Textiles
Abstract
Im Rahmen des Projekts wurde ein Konzept für programmierbare 4D-Textilien entwickelt, das die Kombination aus additiver Fertigung, textiler Vorspannung und Formgedächtnispolymeren nutzt. Durch die Untersuchung verschiedener Geometrien und Stickarten konnten Strukturen identifiziert werden, die eine stabile bistabile Bewegung ermöglichen. Besonders effektiv erwies sich die Beinwicklung auf der Sonnenstruktur, die eine zuverlässige Umwandlung zwischen zwei stabilen Zuständen gewährleistet.
Auf Grundlage dieser Ergebnisse wurde ein Kissen mit integrierten textilen Aktuatoren realisiert. Die Aktivierung erfolgt über eine steuerbare Heizfolie, die das Garn thermisch anspricht und gezielte Bewegungen im Kissen ermöglicht. Damit zeigt das Projekt, wie 4D-Textilien als aktive, formveränderliche Komponenten in interaktiven Produkten eingesetzt werden können, insbesondere im Kontext von Virtual Reality, um physische Rückmeldungen und immersive Erlebnisse zu ermöglichen.
Abbildung 5: Nackenkissen mit integrierten textilen Aktuatoren und steuerbarer Heizfolie zur thermischen Aktivierung.
Report
Abstract
Mit zunehmendem Alter sinkt oft die soziale Teilhabe, was häufig mit einem stärkeren Gefühl von Einsamkeit einhergeht. Da gängige Kommunikationstechnologien wie Smartphones oder Tablets von vielen älteren Menschen nur begrenzt genutzt werden, setzt das Projekt ZEIT auf eine neue, intuitive Lösung: eine immersive Virtual-Reality-Technologie, integriert in ein Kissen mit programmierbaren Textilien. Diese Kombination aus interaktiver VR-Umgebung, Emotionserkennung und taktilem Feedback ermöglicht es älteren Menschen, soziale Kontakte auf neue Weise zu erleben und Emotionen wie Freude oder eine Umarmung virtuell zu teilen und in der Realität zu spüren. Erste Ergebnisse zeigen eine hohe Akzeptanz und weisen darauf hin, dass das System soziale Bindungen stärken und Einsamkeit im Alter wirksam reduzieren kann. Das Projekt verdeutlicht das Potenzial virtueller Realität als Schlüsseltechnologie für eine digitale, sozial vernetzte Gesellschaft. Der Beitrag stellt programmierbare Textilien vor, die mithilfe von 3D-Druck und Formgedächtnispolymeren (SMP) entwickelt wurden.
Programmierbare Textilien stellen eine neue Generation funktionaler Materialien dar, die auf äußere Reize reagieren und dadurch ihre Form oder Funktion verändern können. Eine zentrale Rolle spielen dabei weiche Aktuatoren, die im Vergleich zu konventionellen Aktuatoren durch ihre hohe Flexibilität, Anpassungsfähigkeit und Konfigurierbarkeit überzeugen. Diese Eigenschaften ermöglichen vielseitige Anwendungen, etwa in der Medizintechnik, Robotik oder interaktiven Textiloberflächen.
Eine Schlüsseltechnologie zur Herstellung solcher Strukturen ist der 3D-Druck, ein additives Fertigungsverfahren, bei dem Bauteile schichtweise aus flüssigen oder pulverförmigen Materialien aufgebaut werden. Unter den gängigen Verfahren wie Fused Deposition Modeling (FDM), Stereolithografie (SLA) und Selektivem Lasersintern (SLS) steht im Fokus dieser Arbeit das FDM-Verfahren, das aufgrund seiner Materialvielfalt und Zugänglichkeit besonders geeignet ist.
Durch die Erweiterung des 3D-Drucks um die zeitabhängige Dimension entsteht der 4D-Druck, bei dem Strukturen ihre Form oder Funktion im Laufe der Zeit in Reaktion auf äußere Reize wie Temperatur, Feuchtigkeit oder Licht verändern. In Kombination mit textilen Substraten entstehen daraus 4D-Textilien, die gezielte Bewegungen wie Falten, Biegen oder Dehnen ermöglichen und so als programmierbare Textilien fungieren.
Eine Schlüsselrolle spielt hierbei der Einsatz von Formgedächtnispolymeren (SMPs), die nach einer Deformation durch äußere Reize, meist Wärme, in ihre ursprüngliche Form zurückkehren. Aufgrund ihres geringen Gewichts, ihrer Flexibilität und einfachen Verarbeitbarkeit eignen sich SMP-basierte Synthesefasern ideal für den Einsatz in aktiven textilen Strukturen. Damit bilden sie die Grundlage für innovative Anwendungen im Bereich der Softrobotik und interaktiven Textiltechnologien.
Material und Methoden
Für die Herstellung der textilen Aktuatoren wurde das Prinzip des 3D-Drucks auf vorgespannte Textilien angewendet. Dabei dient ein elastisches Polyamid-Elasthan-Gewirk als Substrat, das vor dem Druckprozess gezielt gedehnt wird, um eine definierte Vorspannung zu erzeugen. Diese Vorspannung speichert potenzielle Energie, die nach der Druckfreigabe zur Formänderung beiträgt.
Der Druckprozess erfolgte mit einem FDM-3D-Drucker unter Verwendung flexibler Thermoplaste wie TPU. Durch die Kombination der gedruckten Strukturen mit dem elastischen Textil entstehen funktionale Verbundsysteme, die nach der Entlastung in eine räumliche Form übergehen. Die so entstehenden 4D-Textilien verbinden additive Fertigung mit der intrinsischen Elastizität textiler Materialien.
Zur weiteren Funktionalisierung wurden Garne aus Formgedächtnispolymeren (SMP) eingesetzt, die als selbstgesponnene Filamente hergestellt wurden. Diese Garne ermöglichen die gezielte Aktivierung der Struktur durch Temperaturerhöhung bei etwa 40°C.
Die SMP-Garne werden auf das 4D-Textil aufgestickt und verformen dieses durch ihre Formänderung bei Aktivierung. Wenn eine Struktur zwei stabile Zustände besitzt, kann sie durch die Aktivierung des SMP-Garns von einem Zustand in den anderen überführt werden. Daher spielt die Bistabilität eine entscheidende Rolle für die Funktion dieser Aktuatoren.
Die Einflussfaktoren der Bistabilität hängen von der Strukturgeometrie und der Vorspannung des Textils ab. Um diese Zusammenhänge zu untersuchen, wurden verschiedene Geometrien getestet, um Strukturen mit ausgeprägter bistabiler Charakteristik zu identifizieren. Zur Veranschaulichung sind in der folgenden Abbildung die getesteten Strukturen dargestellt.
Abbildung 1: Übersicht der getesteten Geometrien zur Identifikation bistabiler Strukturen.
Zur Optimierung der Aktivierung wurden verschiedene Stickarten getestet, darunter Linienstich, Kreuzstich, Sternstich, Beinwicklung sowie Rund-/Kreisstich.
Die ersten drei Varianten, Linienstich, Kreuzstich und Sternstich, führen das Garn direkt an der Textiloberfläche durch die Struktur. Dabei unterscheiden sich sowohl die Anzahl als auch die Ausrichtung der Filamente.
Bei der Beinwicklung und dem Rund-/Kreisstich wird das Garn hingegen um die Beine der Struktur geführt. In der Beinwicklung sind gegenüberliegende Garne miteinander verbunden, während beim Rund-/Kreisstich benachbarte Beine verbunden werden. In der folgendenAbbildung zeigt die verschiedene Stickarten bei der Sonne, Blume und Stern Struktur.
Abbildung 2: Verschiedene Stickarten bei der Sonne-, Blume- und Stern-Struktur.
Ergebnis
Die bistabilen Zustände sind in der folgenden Abbildung dargestellt. Eine Leerstelle bedeutet, dass kein zweiter stabiler Zustand vorhanden ist. Insgesamt wurden neun Strukturen untersucht und in drei Gruppen eingeteilt.
Abbildung 3: Neun untersuchte Strukturen und ihre bistabilen Zustände.
Die erste Gruppe umfasst Strukturen mit einem zentralen Körper und umliegenden Beinen, wie Sonne, Blume oder Achteck. Die quadratische Sonnenstruktur erreicht keinen zweiten stabilen Zustand, da sie durch ungleichmäßige Spannung und fehlende Abstützung instabil wird.
Die zweite Gruppe besteht aus linienförmigen Strukturen wie Kreuz und Stern. Beim Kreuz fehlt die diagonale Unterstützung, weshalb es keinen zweiten stabilen Zustand ausbildet.
Die dritte Gruppe zeigt wiederholte Muster, etwa Ring- und Punkt-Cluster. Trotz fehlender zentraler Verbindung bleiben diese Formen dank der textilen Vorspannung stabil.
Ob eine Struktur bistabil ist, hängt vom Zusammenspiel zwischen der Vorspannung des Textils und der Steifigkeit der Form ab. Wird die Struktur zu hoch oder zu lang, reicht die Spannung des Textils nicht mehr aus, um sie in Position zu halten, und die Stabilität geht verloren.
Die Ergebnisse der Stickversuche zeigen, dass die Beinwicklung auf der Sonnenstruktur besonders effektiv ist und eine zuverlässige Umwandlung ermöglicht. Die folgende Abbildung veranschaulicht diesen Prozess.
Abbildung 4: Umwandlungsprozess der Sonnenstruktur mit Beinwicklung.
Danksagung
Wir danken dem Bundesministerium für Forschung, Technologie und Raumfahrt (BMFTR) für die Förderung des Forschungsprojekts ZEIT (FKZ: 16SV8711). Zudem möchten wir allen Beteiligten in diesem Projekt für ihre Beiträge und ihr Engagement danken.
Contact: danchen.zhang@ita.rwth-aachen.de
ITA - Institut für Textiltechnik der RWTH Aachen University, Otto-Blumenthal-Straße 1, 52074 Aachen
More entries from ITA Institut für Textiltechnik der RWTH Aachen University
