Forschungspublikationen

2 Ergebnisse
03.04.2025

SYSTEMATISCHE ÜBERSICHT UND ANALYSE DES AKUELLEN FORSCHUNGSSTANDS VON INTELLIGENTEN TEXTILIEN ZUR UNTERSTÜTZUNG DES MENSCHEN IM ALLTAG

Sensorik Smart Textiles Medizin

Zusammenfassung

Intelligente Textilien stehen an der Schwelle zu einem breiten Einsatz in verschiedenen Lebensbereichen. Die in dieser Arbeit untersuchten Studien verdeutlichen ihr Potenzial, insbesondere im Gesundheitswesen und der Rehabilitation. Diese Technologien haben das Potenzial, die Art und Weise zu verändern, wie wir Vitalparameter überwachen und auf gesundheitliche Herausforderungen reagieren. Zukünftige Forschungen sollten sich darauf konzentrieren, technologische Hürden wie Energieversorgung und Haltbarkeit zu überwinden.

Ein vielversprechender Ansatz ist die Entwicklung multifunktionaler Textilien, die nicht nur isolierte Anwendungen abdecken, sondern umfassende Lösungen für verschiedene Bedürfnisse bieten. Verbesserungen in der Materialwissenschaft könnten dazu beitragen, die Waschbarkeit und Langlebigkeit dieser Textilien weiter zu erhöhen. Zudem eröffnet die Standardisierung von Systemen neue Möglichkeiten für eine verbesserte Interoperabilität und breitere Akzeptanz.

Die Integration intelligenter Textilien in den Alltag könnte erhebliche Vorteile bringen – von der Entlastung des Gesundheitssystems bis hin zur Verbesserung sportlicher Leistungen. Um dieses Potenzial voll auszuschöpfen, sind gezielte Forschungs- und Entwicklungsanstrengungen erforderlich. Der Weg dorthin wird durch kontinuierliche Innovationen geebnet, die dazu beitragen können, intelligente Textilien als festen Bestandteil unseres täglichen Lebens zu etablieren.

Bericht

Abstract

Intelligente Textilien bieten ein vielversprechendes Potential, mit Anwendungen in Gesundheitswesen, Sportüberwachung und der Rehabilitation [GEE17; Edu17]. Diese Arbeit analysiert systematisch den aktuellen Forschungsstand, identifiziert Fortschritte und beleuchtet bestehende Herausforderungen. Basierend auf einer strukturierten Literaturrecherche der letzten 15 Jahre werden Entwicklungen in Sensorintegration, Energieversorgung und Benutzerakzeptanz untersucht. Die Ergebnisse zeigen Potential in der Gesundheitsüberwachung und Rehabilitation, während Einschränkungen in Messgenauigkeit, Haltbarkeit und Energieeffizienz bestehen. Zukünftige Forschung sollte sich vor Allem darauf fokussieren die Funktionalität der Produkte zu verbessern, bestehende technologischen Lücken zu schließen, sowie die Benutzerfreundlichkeit, Haltbarkeit und Ästhetik zu verbessern.

 

Einleitung

In intelligenten Textilien werden textile Materialien mit elektronischen Komponenten und Sensorik kombiniert, um physiologische Parameter kontinuierlich zu erfassen und auszuwerten [MH17;Che17]. In der folgenden Abbildung 1 ist eine allgemeine Systemarchitektur für intelligente Textilien dargestellt.

s. Abbildung 1: Allgemeine Systemarchitektur für intelligente Textilien

Diese interdisziplinären Technologien bieten Potenziale zur Verbesserung der Lebensqualität und der Gesundheitsversorgung, indem sie beispielsweise körperliche Aktivitäten oder Vitalparameter erfassen und auswerten [GEE17; Edu17; TCB+19]. Trotz des Fortschritts gibt es Herausforderungen in Bezug auf Messgenauigkeit, Benutzerfreundlichkeit, Waschbarkeit und langfristige Haltbarkeit [NSW16; Rao19].

Es gibt ein wachsendes Interesse an der Forschung zur Unterstützung der täglichen Aktivitäten des Menschen durch smarte tragbare Geräte. Ziel dieser Forschung ist es, die Belastung durch Behinderungen zu minimieren, das Auftreten chronischer Krankheiten zu reduzieren oder zu verhindern und die täglichen Aktivitäten sowie die sportliche Leistung des Menschen zu verbessern oder zu korrigieren [NSW16; Rao19].

Obwohl es Berichte über eine steigende Nachfrage nach smarten Wearables gibt, ist die Annahme und Verbreitung dieser Technologien relativ gering [ANH+18; Sul15]. Fast die Hälfte der Nutzer hört innerhalb der ersten sechs Monate auf, ihre Geräte zu verwenden, da sie möglicherweise nicht die von tragbaren Geräten versprochenen Vorteile erhalten [CA17; MJ17]. Deshalb ist ein tieferes Verständnis der Probleme und Herausforderungen von intelligenten tragbaren Geräten von entscheidender Bedeutung.

Indem der aktuelle Stand der Technik intelligenter Textilien systematisch zu analysiert wird, um und Potenziale sowie Einschränkungen aufzuzeigen, wird die Basis für tiefergehende Forschungsansätze geschaffen. Hierzu wurden 182 Primärstudien untersucht, die sich mit verschiedenen Aspekten intelligenter Textilien befassen, darunter Materialentwicklung, Energieversorgung und Sensorintegration.

 

Material und Methoden

Der methodische Ansatz basiert auf einer systematischen Literaturrecherche (SLR), um eine umfassende Analyse des aktuellen Forschungsstands zu gewährleisten. Dazu werden wissenschaftliche Publikationen aus den Datenbanken Web of Science, Scopus und IEEE ausgewertet. Die SLR-Methode wird in Anlehnung an Hanafizadeh et al. [HKK14] angewendet, um eine transparente und nachvollziehbare Vorgehensweise sicherzustellen. Ein zentraler Bestandteil dieses Ansatzes ist die Erstellung eines Review-Protokolls, das die Formulierung der Forschungsfrage, die Definition relevanter Suchbegriffe sowie die Auswahl- und Ausschlusskriterien der Studien regelt. In der folgenden Abbildung 2 ist ein solches Review-Protokoll dargestellt.

s. Abbildung 2: Review-Protokoll zur Durchführung der systematischen Literaturrecherche

 

Um eine umfassende Abdeckung des Forschungsstandes zu gewährleisten, wurde ein zweistufiger Suchprozess angewendet. Hierfür wurde die Suchstrategie von Busalim und Hussin verwendet [BH16]. Hierzu erfolgt zunächst eine automatische Suche mit gezielten Schlüsselwörtern wie "smart textiles", "wearable technology" und "sensor integration". Anschließend wird eine manuelle Vorwärts- und Rückwärtssuche nach Webster und Watson [Web02] durchgeführt, um relevante Literatur zu identifizieren, die nicht direkt durch die Schlüsselwortsuche erfasst werden.

Die Auswahl der Studien erfolgt nach klar definierten Kriterien. Berücksichtigt werden Arbeiten aus den letzten 15 Jahren, die empirische oder experimentelle Untersuchungen zu intelligenten Textilien enthalten. Ausschlusskriterien sind unter anderem theoretische Abhandlungen ohne praktische Anwendung oder Studien mit weniger als vier Seiten.

Die Analyse erfolgt anhand zentraler Bewertungskategorien, darunter Messgenauigkeit, Umweltfreundlichkeit, Benutzerfreundlichkeit, Haltbarkeit und Sicherheit. Die Daten werden systematisch extrahiert und in einer Excel-Datenbank kategorisiert, um eine vergleichende Analyse der untersuchten Technologien zu ermöglichen.

 

Ergebnisse

Die Analyse der 182 ausgewählten Studien zeigt signifikante Fortschritte intelligenter Textilien in verschiedenen Anwendungsbereichen. Besonders hervorzuheben sind Entwicklungen zur Überwachung des ganzen Körpers mittels eines universellen Ganzkörper-Motion-Capture-Systems [AGC21], einem intelligenten Kleidungsstück zur Unterstützung bei physiotherapeutischen Übungen [EKO+20], sowie ein multifunktionales E-Textil für Bewegungsüberwachung und Temperaturkontrolle [TFL+22].

In der Gesundheitsüberwachung ermöglichen textile Sensoren eine kontinuierliche Erfassung von Vitalparametern wie Atmung während verschiedener Aktivitäten wie Radfahren und Laufen [MDB+20; MCO+10]. Intelligente Textilien mit integrierten Elektroden zeigen vielversprechende Ergebnisse bei der präzisen Messung von EKG-Signalen. Beispielsweise wurde ein intelligentes Kleidungsstück entwickelt, das textile EKG-Trockenelektroden integriert, um genaue Herzsignale zu erfassen [LHS+22].

Eine vollständig textile Ärmelhülle mit integrierten textilen Elektroden wurde entwickelt, um EMG-Signale aufzuzeichnen und die Steuerung von myoelektrischen Prothesen zu verbessern. Diese Technologie zielt darauf ab, die Funktionalität von Hilfsmitteln für Personen mit Mobilitätseinschränkungen zu erhöhen [ASJ+22].

Im Bereich der Rehabilitation unterstützen intelligente Textilien Patienten bei der Wiederherstellung motorischer Fähigkeiten durch biomechanische Rückmeldungen und sensorbasierte Bewegungsanalysen [TTB+22].

Im Sportbereich zeigen intelligente Textilien durch die Integration von Bewegungssensoren und Muskelaktivitätsmessungen Potenzial zur Leistungsüberwachung. Beispielsweise wurde ein kapazitiver Textilsensor in Schuhsohlen integriert, um Kniegelenkswinkel während verschiedener Gehgeschwindigkeiten zu schätzen [CKM21]. Außerdem ermöglichen gestrickte Dehnungssensoren an Strumpfhosen die Erkennung von Kniebewegungsmustern, was zur Analyse sportlicher Aktivitäten beitragen kann [LMR19].

Trotz dieser Fortschritte bestehen weiterhin Herausforderungen in Bezug auf Energieversorgung, Haltbarkeit und Waschbarkeit. Eine stärkere Standardisierung und Kompatibilität der Systeme ist erforderlich, um eine breitere Akzeptanz zu erreichen [WBT+17; JGC+20].

Diskussion

Die Untersuchung der 182 Studien verdeutlicht das Potenzial intelligenter Textilien in verschiedenen Anwendungsbereichen. Besonders im Gesundheitswesen und in der Rehabilitation zeigen diese Technologien vielversprechende Ansätze zur Überwachung von Vitalparametern wie Herzfrequenz, Atmung und Körpertemperatur. Diese kontinuierliche Erfassung bietet nicht nur die Möglichkeit zur Frühdiagnose von Krankheiten, sondern auch zum effektiven Monitoring chronischer Erkrankungen. Die Integration von Sensoren in Textilien ermöglicht eine präzise Messung biophysikalischer Signale, was für die medizinische Überwachung entscheidend ist.

Im Bereich der Rehabilitation bieten intelligente Textilien Unterstützung bei der Wiederherstellung motorischer Fähigkeiten durch biomechanische Rückmeldungen und sensorbasierte Bewegungsanalysen. Tragbare Exoskelette mit textilen Sensoren könnten zukünftig physiotherapeutische Maßnahmen erheblich verbessern.

Trotz dieser Fortschritte bestehen jedoch weiterhin Herausforderungen. Die Energieversorgung bleibt ein kritischer Punkt, da viele Systeme noch nicht autark genug sind und regelmäßig aufgeladen werden müssen. Dies schränkt ihre Einsatzmöglichkeiten im Alltag ein. Ebenso ist die Haltbarkeit ein wesentlicher Faktor, insbesondere hinsichtlich der Waschbarkeit der Textilien. Eine verbesserte Materialauswahl könnte hier Abhilfe schaffen.

Ein weiterer Aspekt ist die Standardisierung innerhalb der Branche. Die Vielzahl an verfügbaren Systemen führt zu Kompatibilitätsproblemen, die eine breitere Akzeptanz behindern könnten. Um dies zu adressieren, sollten zukünftige Forschungsanstrengungen darauf abzielen, gemeinsame Standards zu entwickeln, die Interoperabilität gewährleisten.

Insgesamt zeigt sich, dass trotz bestehender Herausforderungen intelligente Textilien bereits jetzt wertvolle Unterstützung im Sport- und Gesundheitsbereich bieten können. Zukünftige Entwicklungen sollten sich darauf konzentrieren, diese Technologien weiter zu optimieren und ihre Alltagstauglichkeit zu erhöhen.

Danksagung

Der Autor bedankt sich bei der RWTH Aachen University sowie den betreuenden Dozenten für die Unterstützung und Anleitung während dieser Arbeit. Ein besonderer Dank gilt den Forschungseinrichtungen und Autoren, deren Studien zur Erstellung dieser Arbeit beigetragen haben.

Litteratrices

 

 

[AGC+21]

Ancans, A.; Greitans, M.; Cacurs, R.; Banga, B.; Rozentals, A.:

Wearable Sensor Clothing for Body Movement Measurement during Physical Activities in Healthcare

Sensors (Basel, Switzerland) Band:21 (2021) H. 6

[ANH+18]

Adapa, A.; Nah, F. F.-H.; Hall, R. H.; Siau, K.; Smith, S. N.:

 Factors Influencing the Adoption of Smart Wearable Devices

International Journal of Human–Computer Interaction Band:34 (2018) H. 5, S. 399–409

[ASJ+22]

Alizadeh-Meghrazi, M.; Sidhu, G.; Jain, S.; Stone, M.; Eskandarian, L.; Toossi, A.; Popovic, M. R.:

A Mass-Producible Washable Smart Garment with Embedded Textile EMG Electrodes for Control of Myoelectric Prostheses: A Pilot Study Sensors (Basel, Switzerland) Band:22 (2022) H. 2

[BH16]

Busalim, A. H.; Hussin, A. R.: Understanding social commerce:

A systematic literature review and direc-tions for further research

International Journal of Information Management Band:36 (2016) H. 6, S. 1075–1088

[CA17]

Canhoto, A. I.; Arp, S.:

Exploring the factors that support adoption and sustained use of health and fitness wearables

Journal of Marketing Management Band:33 (2017) 1-2, S. 32–60

[Che17]

Chen Zou, Yajie Qin, Chenglu Sun, Wei Li, Wei Chen:

Motion artifact removal based on periodical property for ECG monitoring with wearable systems (2017)

[CKM21]

Chhoeum, V.; Kim, Y.; Min, S.-D.:

Estimation of Knee Joint Angle Using Textile Capacitive Sensor and Artifi-cial Neural Network Implementing with Three Shoe Types at Two Gait Speeds: A Preliminary Investigation

Sensors (Basel, Switzerland) Band:21 (2021) H. 16

[EKO+20]

Eizentals, P.; Katashev, A.; Oks, A.; Semjonova, G.:

Smart shirt system for compensatory movement retraining assistance: feasibility study

Health and Technology Band:10 (2020) H. 4, S. 861–874

[HKK14]

Hanafizadeh, P.; Keating, B. W.; Khedmatgozar, H. R.:

A systematic review of Internet banking adoption

Telematics and Informatics Band:31 (2014) H. 3, S. 492–510

[Rad16]

RadioSurfVet:

RadioSurfVet - www, 2016, URL: https://vetsuisse.com/vetiml/

lernmodule/htmls/slide.html?radiosurfvet|radgeneral|sonography|son

obasics|2, Zugriff am 21.02.2023

[TMW+18]

Tang, X., Mones, Z., Wang, X., Gu, F.; Ball, A.:

A Review on Energy Harvesting Supplying Wireless Sensor Nodes for

Machine Condition Monitoring.

In Ma, Xiandong. Improving productivity through automation and computing.

Aufl. Piscataway, NJ: IEEE, 2018, S. 1–6

[Edu17]

Eduardo Lupiani, Jose M. Juarez, Jose Palma, Roque Marin:

Monitoring Elderly People at Home with Temporal Case-Based Reasoning (2017)

[Gee17]

Gayathri, K. S.; Easwarakumar, K. S.; Elias, S.:

Probabilistic ontology based activity recognition in smart homes using Markov Logic Network Knowledge-Based Systems

Band:121 (2017), S. 173–184

[JGC+20]

Jin, Y.; Glover, C. M.; Cho, H.; Araromi, O. A.; Graule, M. A.; Li, N.; Wood, R. J.; Walsh, C. J.: Soft Sensing Shirt for Shoulder Kinematics Estimation:

2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 2020/5/31 - 2020/8/31: IEEE, 2020

[LHS+22]

Lee, S.-Y.; Hung, Y.-W.; Su, P.-H.; Lee, I.-P.; Chen, J.-Y.:

Biosignal Monitoring Clothing System for the Acquisition of ECG and Respiratory Signals

IEEE Access Band:10 (2022), S. 66083–66097

[LMR19]

Li, Y.; Miao, X.; Raji, R. K.:

Flexible knitted sensing device for identifying knee joint motion patterns

Smart Materials and Structures Band:28 (2019) H. 11, S. 115042

[MCO+10]

Mitchell, E.; Coyle, S.; O'Connor, N. E.; Diamond, D.; Ward, T.:

Breathing Feedback System with Wearable Textile Sensors:

2010 International Conference on Body Sensor Networks, Singapore, Singapore, 2010/6/7 - 2010/6/9: IEEE, 2010

[MDB+20]

Massaroni, C.; Di Tocco, J.; Bravi, M.; Carnevale, A.; Lo Presti, D.; Sab badini, R.; Miccinilli, S.; Sterzi, S.; Formica, D.; Schena, E.:

Respiratory Monitoring During Physical Activities With a Multi-Sensor Smart Garment and Related Algorithms

IEEE Sensors Journal Band:20 (2020) H. 4, S. 2173–2180

[MH17]

Michael, B.; Howard, M.:

Activity recognition with wearable sensors on loose clothing

PloS one Band:12 (2017) H. 10, e0184642

[MJ17]

Marakhimov, A.; Joo, J.:

Consumer adaptation and infusion of wearable devices for healthcare

Computers in Human Behavior Band:76 (2017), S. 135–148

[NSW16]

Noor, M. H.; Salcic, Z.; Wang, K. I.-K.:

 Enhancing ontological reasoning with uncertainty handling for activity recognition

Knowledge-Based Systems Band:114 (2016), S. 47–60

[Rao19]

Rao, A. K.:

Wearable Sensor Technology to Measure Physical Activity (PA) in the Elderly Current Geriatrics Reports Band:8 (2019) H. 1, S. 55–66

[Sul15]

Sultan, N.:

Reflective thoughts on the potential and challenges of wearable 75 technology for healthcare provision and medical education

International Journal of Information Management Band:35 (2015) H. 5, S. 521–526

[TCB+19]

Talukder, M. S.; Chiong, R.; Bao, Y.; Hayat Malik, B.:

Acceptance and use predictors of fitness wearable technology and inten-tion to recommend Industrial Management & Data Systems

 Band:119 (2019) H. 1, S. 170–188

[TFL+22]

Tian, B.; Fang, Y.; Liang, J.; Zheng, K.; Guo, P.; Zhang, X.; Wu, Y.; Liu, Q.; Huang, Z.; Cao, C.; Wu, W.:

Fully Printed Stretchable and Multifunctional E-Textiles for Aesthetic Wearable Electronic Systems

Small (Weinheim an der Bergstrasse, Germany) Band:18 (2022) H. 13, e2107298

[TTB+22]

Tedesco, S.; Torre, O. M.; Belcastro, M.; Torchia, P.; Alfieri, D.; Khokhlova, L.; Komaris, S. D.; O'flynn, B.:

Design of a Multi-Sensors Wearable Platform for Remote Monitoring of Knee Rehabilitation

IEEE Access Band:10 (2022), S. 98309–98328

[WBT+17]

Wang, Q.; Baets, L. de; Timmermans, A.; Chen, W.; Giacolini, L.; Matheve, T.; Markopoulos, P.:

Motor Control Training for the Shoulder with Smart Garments

Sensors (Basel, Switzerland) Band:17 (2017) H. 7

[Web02]

Webster, W.:

Analyzing the Past to Prepare for the Future: Writing a Literature Review (2002)

 

 

AutorInnen: Tobias Lauwigi, ITA Robin Oberlé, ITA Kai Suchorski Boyang Liu

RWTH Aachen – Institut für Textiltechnik der RWTH Aachen University (Germany), Otto-Blumenthal-Str. 1, 52074 Aachen

Intelligente Bekleidung

More entries from ITA Institut für Textiltechnik der RWTH Aachen University

05.02.2025

Integral flachgestrickte Drucksensoren für smart Textiles

Gestricke & Gewirke Sensorik Smart Textiles Tests

Zusammenfassung

Im IGF-Projekt 21990 BR1 wurde das „Textiles Smart-Skin-3D-System (S3D)“ entwickelt – ein innovatives, flachgestricktes Sensorsystem, das Druck- und Näherungsmessungen nahtlos in textile Produkte integriert. Ziel war es, flexible und robuste Sensorik bereits im Herstellungsprozess einzubetten und so die Komplexität sowie potenzielle Schwachstellen herkömmlicher Mehrkomponentensysteme zu vermeiden. Hierzu wurden komplexe 3D-gestrickte Strukturen realisiert, die leitfähige Sensorgarne und gezielt eingearbeitete dielektrische Materialien wie silikonbasierte Inserts nutzen, um kapazitive Messprinzipien anzuwenden.

Die Optimierung von Garnauswahl und Strickparametern ermöglichte eine präzise Erfassung von Druckkräften und Annäherungen. Als Demonstrator wurde ein vollständig integrierter Sensorhandschuh mit 13 Sensorflächen entwickelt, der Greif- und Haltekräfte misst. Zyklische elektromechanische Prüfungen bestätigten ein stabiles Sensorverhalten. Insbesondere zeigte die Variante mit einem 1 mm starken Dielektrikum optimale Übertragungscharakteristika, geringe Hysterese und eine Sensordrift im akzeptablen Rahmen. Zusätzlich erbrachte ein textilbasierter Näherungssensor zuverlässige Messwerte für Abstände bis zu 120 mm.

Die Ergebnisse belegen das Potenzial flachgestrickter Sensoren als integraler Bestandteil smarter, tragbarer Textilien – mit Anwendungsmöglichkeiten in Telerehabilitation, Medizintechnik, Arbeitsschutz und weiteren Digitalisierungsbereichen.

Summary

In the IGF project 21990 BR1, the “Textiles Smart-Skin-3D-System (S3D)” was developed – an innovative, flat-knit sensor system that seamlessly integrates pressure and proximity measurements into textile products. The aim was to embed flexible and robust sensor technology into the manufacturing process, thereby avoiding the complexity and potential weaknesses of conventional multi-component systems. To achieve this, complex 3D-knit structures were created using conductive sensor yarns and strategically incorporated dielectric materials, such as silicone-based inserts, to implement a capacitive sensing approach.

Optimizing yarn selection and knitting parameters enabled the precise detection of pressure forces and proximity. A demonstrator in the form of a fully integrated sensor glove with 13 sensing areas was developed, capable of measuring gripping and holding forces. Cyclic electromechanical tests confirmed stable sensor performance. In particular, the variant with a 1 mm thick dielectric exhibited optimal transfer characteristics, low hysteresis, and acceptable sensor drift. Additionally, the textile-based proximity sensor reliably measured distances of up to 120 mm.

The results demonstrate the potential of flat-knit sensors as an integral component of smart, wearable textiles with applications in telerehabilitation, medical technology, occupational safety, and other digitalization sectors.

Bericht

Einleitung

Vor dem Hintergrund globaler Megatrends wie der Digitalisierung in der Medizin bestehen für die Textilindustrie große Chancen, vom erwarteten weiteren Wachstum von am Körper tragbaren, flexibel einsetzbaren und computergestützten Systemen zu profitieren. Zu dieser neuen Geräteklasse, den sogenannten Wearables, gehören Textilien, die über die klassischen Funktionen von Bekleidung oder beispielsweise Bandagen hinaus mit elektronischen Zusatzfunktionen ausgestattet sind. Da Textilien häufig die Schnittstelle zwischen dem Menschen und seiner Umwelt darstellen, sind sie prädestiniert, auch bei der Digitalisierung menschlicher Wahrnehmungen und Fähigkeiten (z. B. Bewegungen, Haptik etc.) und umgekehrt der Rückkopplung von der virtuellen in die analoge Welt eine entscheidende Brückenfunktion zu übernehmen und so als künstliche Haut (bzw. Smart Skin) bestehende optische und akustische Schnittstellen zu ergänzen.

Ein Bereich in dem smarte Textilien einen großen Zugewinn nützlicher Informationen bereitstellen, ist die Medizin und Rehabilitationstechnik. Vor dem Hintergrund einer alternden Bevölkerung und damit einhergehend einer hohen Belastung medizinischer Versorger, die unter gleichzeitigem Personalmangel leiden, ist nicht immer ein ausreichendes Angebot in erreichbarer Nähe realisierbar. Vor allem im Bereich der medizinischen Folgebehandlungen für Physiotherapie einhergehend mit langen Transportwegen oder fehlender Transportfähigkeit des Patienten kann dies zu Heilungsverlangsam oder sogar -verhinderung führen. Eine Unterstützung von Patienten durch einen medizinischen Laien (Familienangehörige, Bekannte etc.) mit einem geringfügigen Lernaufwand soll durch den in diesem Projekt entwickelten Handschuh ermöglicht werden. Dieser ermöglicht die Überwachung von Greif- und Haltebewegungen sowie Feedback zur Korrektur. In der Telerehabilitation gibt es keine vergleichbaren Systeme, die autonom ohne Experteneinsatz arbeiten [1, 2]. Das Projekt fokussierte auf die Entwicklung multifunktionaler Druck-/ Näherungssensorik durch flachstricktechnische Verfahren. Diese ermöglichen die kostengünstige Integration in Funktionsbekleidung, aber auch in Roboterkomponenten.

Zielsetzung und Lösungsweg

Das Ziel des IGF-Forschungsprojekts war die Entwicklung, Charakterisierung und Erprobung textilbasierter Drucksensoren, die mittels Flachstricktechnik in einen Handschuh integriert werden sollten um die aufgebrachte Kraft auf den Fingergliedern und dem Handballen zu überwachen. Es wurden flächenbasierte, gestrickte Sensorkonzepte mit einem kapazitiven Messprinzip verfolgt. Die entwickelten Sensoren wurden mittels zyklischer elektromechanischer Druckprüfungen untersucht und eine Vorzugsvariante der Sensoren zur Integration in einem Funktionsdemonstrator ermittelt. Weiterhin wurden kapazitive Näherungssensoren entwickelt und evaluiert.

Ergebnisse

Entwicklung der gestrickten Drucksensoren

Für die Entwicklung der Sensoren wurde die Umsetzung eines kapazitiven Drucksensors mithilfe von Flachstricktechnik verfolgt. Die Vorteile kapazitiver Sensoren gegenüber resistiver Sensoren liegen in ihrer Unempfindlichkeit gegenüber Temperatur [3], was in einer körpernahen Anwendung von Vorteil ist. Der einfachste Aufbau eines Kondensators ist der Plattenkondensator. In diesem Aufbau sind zwei parallele Platten durch ein Dielektrikum getrennt. Durch das Aufbringen einer Druckkraft F auf diese Platten und damit ein Zusammendrücken des Dielektrikums mit der Dielektrizitätskonstante  ε ändert sich der Plattenabstand d und somit die Kapazität C wie in Abbildung 1 gezeigt. Hier wird deutlich, dass die Kapazitätsänderung ∆C indirekt proportional zur Änderung des Plattenabstands ∆d, die wiederum abhängig ist von der induzierten Kraft, dem E-Modul E und den geometrischen Maßen des Plattenkondensators mit b = Breite und l = Länge.

Für den Aufbau der gestrickten kapazitiven Sensoren wurden verschiedene Konzepte erstellt, die in Abbildung 2 dargestellt sind. Anhand einer systematischen Variantenbewertung nach ergonomischen, stricktechnischen, sensortechnischen Anforderungen und praktischer Versuchstests wurde eine Sensorvariante mit einem Insert als Dielektrikum und einer vollflächigen Elektrode aus leitfähigem Garn als Vorzugsvariante gewählt und zu einer Handschuhfinger gleichenden Doppelschlauchstruktur erweitert.

Zur Auswahl des Elektrodengarns wurden Vorversuche durchgeführt um die stricktechnische Eignung der teilweise anspruchsvoll zu verarbeitenden Garne auf Stahl- und Silberbasis zu bewerten. Hierbei wurden Garne von Statex (Shieldex® 235 f 36dtex Z130), Amann (Steel-tech® 100 tex 93, Silver-tech+® 150 tex 22) und Bekaert (Bekinox® VN 14.1.9.100Z) genutzt. In diesen Vorversuchen erwies sich Silver-tech+® 150 als Vorzugsvariante, da es sehr gut mit dem umgebenden Basismaterial aus Umwindegarn (Tencel CV Nm40 mit PA6.6 78/78f23/1) fertigungstechnisch kompatibel war.

Herstellung der Sensoren

Ziel des Projekts war die Herstellung eines Sensorhandschuhs mittels Flachstricktechnik, eine Strickmethode, die die Möglichkeit bietet Fully Fashioned Artikel in einem Arbeitsschritt herzustellen, wodurch komplizierte gestrickte Flächen endkonturnah hergestellt werden können. Um ein höchstmöglich automatisiert herstellbares Produkt zu entwickeln wurde der Drucksensor mit einem Fokus auf Vermeidung nachfolgender Konfektionierungsschritte entwickelt. Daher wurde der Drucksensor als eine Doppelschlauchstruktur konzeptioniert. Diese wird durch zwei Elemente geformt: Zum einen durch die Tasche des Sensors, zum anderen durch einen Fingerling, der eine Tragbarkeit des Sensors ermöglicht. In Abbildung 3 ist der Aufbau schematisch dargestellt. Im Sensorbereich ergibt sich daher ein dreilagiges Doppelschlauch-gestrick. Das umfasst die äußere sowie innere Elektrode und die Rückseite des Fingers. Das Dielektrikum wird durch ein Insert, welches während des Strickprozesses eingelegt wird, gebildet. Diese Variante des Konzeptes ermöglicht eine weitestgehend automatisierte Fertigung des Handschuhs an der Flachstrickmaschine ohne nachgelagerte Konfektionsschritte. Für die Einbringung des Dielektrikums ist eine Unterbrechung des Strickprozesses erforderlich.

Validierung der Sensoren

Die gestrickten kapazitiven Sensoren wurden auf ihre Eignung als Drucksensor in zyklischen elektromechanischen Messungen überprüft. Der Versuchsaufbau mit Mess- und Versuchsgeräten sowie der Prüfablauf sind in Abbildung 4 dokumentiert. Um den Einfluss des Dielektrikums zu untersuchen, wurden Sensoren mit einem 2 mm und einem 1 mm starken silikonbasierten Dielektrikum hergestellt. Aus den ermittelten Daten wurden das Übertragungsverhalten (als Zusammenhang zwischen Kompressionskraft und Sensorsignal), die Sensordrift (als Signalwerte bei Entlastung der Sensoren) und die Hysterese (als maximale Differenz zwischen Be- und Entlastungskurve über den Messbereich) berechnet (siehe Abbildung 5).

Es zeigte sich, dass beide Varianten ein stabiles Sensorverhalten aufweisen, wobei die Sensorvariante mit einem 1 mm starken Dielektrikum bessere Ergebnisse im Übertragungsverhalten und in Hysterese zeigte. Die Sensordrift lag hier etwas höher, lag aber bei beiden Varianten unter 5 % und damit in einem, für praktische Anwendungen dieser Technologie, akzeptablen Bereich. Dieser Versuch zeigte, dass das Dielektrikum einen entscheidenden Einfluss auf das Sensorverhalten hat und dieses durch die relativ kleine Anpassung des Insertmaterials für verschiedene Messbereiche und -sensitivitäten angepasst werden kann. Weitere Ausführungen, Ergebnisse und Diskussionen können aus der Publikation in [4] entnommen werden.

Näherungssensor

Das Konzept für die textile Näherungssensorik wurde mit einer einzelnen textilen gestrickten Elektrode und einem Arduino Uno umgesetzt. Für die Versuchsdurchführung wurde eine menschliche Hand als zu erfassendes Objekt an den Sensor geführt und der Abstand zwischen Hand und Sensor gemessen. In Abbildung 6 sind das Sensorsignal und korrelierte Abstände der Hand dazu gezeigt, sowie das Schaltbild dargestellt. Hierbei konnten Abstände von bis zu 120 mm zur Hand noch erfasst werden mit einer guten Signalstabilität, sodass hier eine Quantifizierung des Abstands denkbar ist.

Demonstrator

Die Vorzugsvariante für den Druck- und Näherungssensor wurde übertragen auf einen vollständig gestrickten und integral gefertigten Handschuh mit 13 Sensoren, wobei 2 Sensorflächen für Daumen, 3 Sensorflächen für Zeige- und Mittelfinger und 5 Sensorflächen auf der Handfläche für die Erfassung von Kräften realisiert wurden. Der finale Funktionsdemonstrator ist in Abbildung 7 gezeigt. Die elektrischen Zuleitungen wurden für diesen FD manuell realisiert. Eine sensorische Funktionalisierung des Ringfingers und des kleinen Fingers war durch die begrenzte Anzahl an Fadenführern innerhalb der Strickmaschine nicht möglich (max. 13 Sensorflächen). Die Signale der einzelnen Sensoren wurden mittels eines RaspberryPi 5 und einer dafür entwickelten Software ausgewertet. In verschiedenen Greiftests wurden die Sensoren validiert. Bei allen funktionsfähigen Sensoren konnte ein verlässlicher Anstieg des Signals bei Kompression erfasst werden.

Zusammenfassung und Ausblick

Die Verwendung textiltechnischer Lösungen zur Überwachung des menschlichen Körpers und der auf ihn wirkenden Lasten ist ein vielversprechendes Forschungsfeld, das Anwendungen in der Physiotherapie, im Arbeitsschutz und in der Digitalisierung von Arbeitsprozessen ermöglicht. Im Rahmen dieses Projekts lag der Fokus auf der Entwicklung und Integration von Druck- und Näherungssensoren in textile Strukturen. Dabei wurden innovative textilbasierte Ansätze verfolgt, insbesondere die Herstellung vollständig textilintegrierter Sensoren im Fully-Fashioned-Verfahren. Im Gegensatz zu herkömmlichen Systemen, die oft aus vielen Einzelkomponenten bestehen und dadurch Schwachstellen aufweisen, bieten textilbasierte Sensorsysteme eine höhere Kompatibilität mit textilen Basissystemen und eine höhere Flexibilität. Die in dieser Arbeit entwickelten Sensoren sind vielseitig einsetzbar und können in zahlreiche textile Strukturen, und vor allem gestrickter Strukturen, diverser Form und Größe übertragen werden.

Unter Beachtung industrienaher Anforderungen, die zusammen mit den am Projekt beteiligten Industriepartnern festgelegt wurden, wurden verschiedene Konzepte für Druck- und Näherungssensoren für einen Sensorhandschuh unter Nutzung von Flachstricktechnik entwickelt. Die bevorzugte Lösung für gestrickte Druck- und Näherungssensoren basiert auf einem Doppelschlauchgestrick, das einen flexiblen Plattenkondensator darstellt. Diese Sensoren bestehen aus Elektroden aus leitfähigem Garn und einem weichen Material, beispielsweise Silikon, das als Dielektrikum dient. Dadurch, dass das Material für das Dielektrikum flexibel gewählt werden kann, sind Messbereich und -verhalten auch für andere Anwendungen mit diesem Konzept einfach zu variieren. Für die Druckmessung wurde das Ansprechverhalten der entwickelten Sensoren eingehend getestet, und ihre Stabilität analysiert und ein funktionsgerechtes Messverhalten der Sensoren im Messbereich 0 bis 10 N festgestellt.

Die Vorzugsvariante der Sensoren wurde in einem Funktionsdemonstrator mit 13 Sensorflächen umgesetzt. Dies sollte in weiteren Arbeiten um 6 weitere Sensorflächen für die einzelnen Fingergelenke von Ring- und kleinem Finger ergänzt werden. Die Anzahl der Sensorflächen war in diesem Projekt durch die Anzahl der verfügbaren Fadenführer begrenzt. Weiterhin sollte das Einlegen des dielektrischen Inserts stärker automatisiert werden um die Zeit, die benötigt wird um die Drucksensorhandschuhe zu stricken, reduziert wird.

Danksagung

Das IGF-Vorhaben 21990 BR der Forschungsvereinigung Forschungskuratorium Textil e.V., Reinhardtstr. 12-14, 10117 Berlin wurde über die AiF im Rahmen des Programms zur Förderung der industriellen Gemeinschaftsforschung und -entwicklung (IGF) vom Bundesministerium für Wirtschaft und Klimaschutz aufgrund eines Beschlusses des Deutschen Bundestages gefördert.

Die Autoren danken den genannten Institutionen für die Bereitstellung der finanziellen Mittel. Der Forschungsbericht und weiterführende Informationen sind am Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik der TU Dresden erhältlich.

 

Literatur

 

[1]   K. Ettle et al., "Telepräsenzroboter für die Pflege und Unterstützung von Schlaganfallpatientinnen und -patienten (TePUS) im Regierungsbezirk Oberpfalz: DeinHaus 4.0," Regensburg, Jun. 2020. Accessed: Nov. 30 2020.

[2]   K. Berkenkamp, "Telerehabilitation in der Schlaganfallversorgung – Einflussfaktoren auf Adoption und Akzeptanz von klinisch tätigen Ärzten und Therapeuten," 2020.

[3]   J. Mersch, C. A. G. Cuaran, A. Vasilev, A. Nocke, C. Cherif, and G. Gerlach, "Stretchable and Compliant Textile Strain Sensors," IEEE Sensors J., vol. 21, no. 22, pp. 25632–25640, 2021, doi: 10.1109/JSEN.2021.3115973.

[4]   S. Fischer, C. Böhmer, S. Nasrin, C. Sachse, C. Cherif. Flat-Knitted Double-Tube Structure Capacitive Pressure Sensors Integrated into Fingertips of Fully Fashioned Glove Intended for Therapeutic Use. Sensors 2024, 24, 7500. https://doi.org/10.3390/s24237500

 

 

AutorInnen: Carola Bömer

Technische Universität Dresden
Fakultät Maschinenwesen
Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM)
01062 Dresden

https://tu-dresden.de/mw/itm

More entries from TU Dresden, Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik ITM