Textination Newsline

from to
Zurücksetzen
Photo dayamay Pixabay
21.08.2023

Composites Germany: Investitionsklima trübt sich ein

  • Ergebnisse der 21. Markterhebung vorgelegt
  • Kritische Bewertung der aktuellen Geschäftslage
  • Zukunftserwartungen drehen ins Negative
  • Investitionsklima trübt sich ein
  • Erwartungen an Anwendungsindustrien unterschiedlich
  • Wachstumstreiber mit nur leichten Verschiebungen
  • Composites-Index zeigt in verschiedene Richtungen

Zum 21. Mal hat Composites Germany aktuelle Kennzahlen zum Markt für faserverstärkte Kunststoffe erhoben. Befragt wurden alle Mitgliedsunternehmen der Trägerverbände von Composites Germany: AVK und Composites United, sowie des assoziierten Partners VDMA.
Um die problemlose Vergleichbarkeit der unterschiedlichen Erhebungen zu gewährleisten, wurden auch in diesem Halbjahr keine Änderungen bei der Befragung durchgeführt. Erhoben wurden erneut überwiegend qualitative Daten in Bezug auf die aktuelle und zukünftige Marktentwicklung.

  • Ergebnisse der 21. Markterhebung vorgelegt
  • Kritische Bewertung der aktuellen Geschäftslage
  • Zukunftserwartungen drehen ins Negative
  • Investitionsklima trübt sich ein
  • Erwartungen an Anwendungsindustrien unterschiedlich
  • Wachstumstreiber mit nur leichten Verschiebungen
  • Composites-Index zeigt in verschiedene Richtungen

Zum 21. Mal hat Composites Germany aktuelle Kennzahlen zum Markt für faserverstärkte Kunststoffe erhoben. Befragt wurden alle Mitgliedsunternehmen der Trägerverbände von Composites Germany: AVK und Composites United, sowie des assoziierten Partners VDMA.
Um die problemlose Vergleichbarkeit der unterschiedlichen Erhebungen zu gewährleisten, wurden auch in diesem Halbjahr keine Änderungen bei der Befragung durchgeführt. Erhoben wurden erneut überwiegend qualitative Daten in Bezug auf die aktuelle und zukünftige Marktentwicklung.

Kritische Bewertung der aktuellen Geschäftslage
Nachdem bei der Bewertung der aktuellen Geschäftslage in 2021 durchweg positive Tendenzen zu erkennen waren, rutschte diese in 2022 ab. Bereits zum dritten Mal in Folge zeigen sich bei der aktuellen Erhebung pessimistischer Bewertungen.. Die Gründe für die negative Stimmung sind vielfältig. Haupttreiber aber dürften aber vor allem die nach wie vor hohen Energie- und Rohstoffpreise sein. Hinzu kommen weiterhin Probleme in einzelnen Bereichen der Logistikketten sowie ein zurückhaltendes Konsumklima. Trotz steigender Zulassungszahlen ist auch die Automobilindustrie als wichtigster Anwendungsbereich für Composites noch nicht auf ihr altes Volumen zurückgekehrt. Hier verdeutlicht sich auch der Strategiewechsel europäischer OEM, weg von Volumenmodellen, hin zu margenstarken Fahrzeugsegmenten zu gehen. Die Bauindustrie als zweiter zentraler Anwendungsbereich steckt derzeit in einer Krise. Zwar sind vielfach die Auftragsbücher noch gut gefüllt, aber Neuaufträge bleiben derzeit vielfach aus. Hohe Zinsen und Materialkosten bei hohen Lebenshaltungskosten belasten vor allem den privaten Bau stark. Derzeit wird für die Bauindustrie ein realer Umsatzrückgang für 2023 von 7 % erwartet.

 Auch die Bewertung der Geschäftslage des eigenen Unternehmens ist zunehmend pessimistischer. Vor allem für Deutschland zeigt sich ein negatives Bild. Fast 50 % der Befragten (44 %) bewerten die aktuelle Geschäftslage kritisch. Etwas positiver fällt die Sichtweise auf das weltweite Geschäft und Europa aus. Hier bewerten „nur“ 36 % bzw. 33 % der Befragten die Situation eher negativ.

Zukunftserwartungen drehen ins Negative
Der eher pessimistischen Beurteilung der aktuellen Geschäftslage folgend drehen auch die zukünftigen Geschäftserwartungen in Negative. Die entsprechenden Kennwerte für die generelle Geschäftslage zeigen nach einem Anstieg innerhalb der letzten Befragung nun deutlich nach unten. Auch für das eigene Unternehmen zeigen sich die Befragten hinsichtlich ihrer Zukunftserwartungen pessimistischer.

Die Teilnehmenden gehen anscheinend nicht von einer kurzfristigen Besserung der Situation aus. Auffällig ist auch hier, dass die Sichtweise auf die Region Deutschland im Verhältnis zu Europa und der weltweiten Konjunktur kritischer ist. 22 % der Befragten erwarten eine negative Entwicklung in Deutschland. Nur 13 % erwarten eine Verbesserung der aktuellen Situation. Für Europa und auch die Welt zeigen sich bessere Kennwerte.
 
Investitionsklima trübt sich ein
Die aktuell eher zurückhaltende Bewertung der wirtschaftlichen Situation und die pessimistischen Aussichten wirken sich auch auf das Investitionsklima aus.
Nachdem in der letzten Befragung noch 40 % der Teilnehmenden von einem Anstieg bei der Personalkapazität ausgegangen waren, liegt dieser Wert aktuell nur noch bei 18 %. Demgegenüber stehen 12 %, die sogar von einem Rückgang im Bereich Personal ausgehen.
Auch der Anteil der Befragten, die Maschineninvestitionen planen, ist rückläufig. Waren bei der letzten Befragung noch 71 % von entsprechenden Investitionen ausgegangen, so sinkt dieser Wert nun auf 56 % ab .

Erwartungen an Anwendungsindustrien unterschiedlich
Der Composites Markt ist durch eine starke Heterogenität sowohl material- aber auch anwendungsseitig gekennzeichnet. In der Befragung werden die Teilnehmenden gebeten, ihre Einschätzung hinsichtlich der Marktentwicklung unterschiedlicher Kernbereiche zu geben.
Die Erwartungen zeigen sich äußerst verschieden.

Die bereits beschriebenen Schwächen in den wichtigsten Kernmärkten Transport sowie Bau-/Infrastruktur zeigen sich deutlich. Wachstum wird vor allem im Bereich Windenergie und Luftfahrt erwartet.

Wachstumstreiber mit nur leichten Verschiebungen
Bei den Werkstoffen setzt sich der Paradigmenwechsel weiter fort. Wurde von den Befragten in den ersten 13 Erhebungen stets CFK als Material genannt, aus dessen Umfeld die wesentlichen Wachstumsimpulse für den Composites-Bereich zu erwarten sind, so werden die wesentlichen Impulse mittlerweile durchweg von GFK oder materialübergreifend vermutet.
Regional kommt es zu einer leichten Verschiebung. Derzeit ist es vor allem Nordamerika, aus dem die wesentlichen Wachstumsimpulse für die Branche erwartet werden. Europa und Asien verlieren leicht an Boden.

Composites-Index zeigt in verschiedene Richtungen
Die zahlreichen negativen Einflüsse der letzten Zeit zeigen sich nun auch im Gesamt-Composites-Index. Dieser gibt bei allen Indikatoren nach. Sowohl die aktuelle als auch die zukünftige Beurteilung drehen ins Negative.  

Die gesamte verarbeitende Composites-Menge in Europa in 2022 war bereits leicht rückläufig, im Vergleich zu 2021. Nach einem guten 1. Quartal 2022 zeigt sich derzeit eine deutliche Abkühlung der Aktivitäten. Es bleibt abzuwarten, ob es gelingen wird, der negativen Entwicklung gegenzusteuern. Hier wäre ein zielgerichtetes Eingreifen, auch der politischen Entscheidungsträger wünschenswert. Dies kann aber ohne die Industrie/Wirtschaft nicht gelingen. Nur gemeinsam wird es gelingen den Wirtschaftsstandort Deutschland weiter zu stärken und die Position zu behaupten oder vor dem Hintergrund einer schwächelnden Weltkonjunktur auszubauen. Für Composites zeigen sich nach wie vor sehr gute Chancen zum Ausbau der Marktposition in neuen, aber auch bestehenden Märkten. Die Abhängigkeit von gesamtwirtschaftlichen Entwicklungen aber bleibt bestehen. Es gilt nun über Innovationen neue Marktfelder zu erschließen, Chancen konsequent zu nutzen und gemeinsam daran zu arbeiten, Composites weiter in bestehenden Märkten zu implementieren. Dies kann oftmals gemeinsam besser gelingen als allein. Composites Germany bietet mit seinem hervorragenden Netzwerk vielfältige Möglichkeiten.

Weitere Informationen:
Composites Composites Germany Umfrage
Quelle:

Composites Germany
c/o AVK-TV GmbH

Point of View: Let’s end fast fashion, Prof Minna Halme. Foto: Veera Konsti / Aalto University
18.08.2023

Standpunkt: Schluss mit Fast Fashion!

Sich auf kurzfristige Gewinne zu fokussieren, ist nicht nachhaltig. Was können wir also tun, um in die richtige Richtung zu gehen? In allen Branchen die Widerstandsfähigkeit der Effizienz vorziehen.

Sich auf kurzfristige Gewinne zu fokussieren, ist nicht nachhaltig. Was können wir also tun, um in die richtige Richtung zu gehen? In allen Branchen die Widerstandsfähigkeit der Effizienz vorziehen.

Wir kaufen billige Produkte im Wissen, dass wir sie bald ersetzen müssen. Wir werfen gebrauchte Gegenstände weg, anstatt sie zu reparieren oder wiederzuverwenden. Arbeitgeber planen in Bezug auf finanzielle Quartale, obwohl sie hoffen, längerfristig bedeutend und stabil zu bleiben. Sogar Länder geben der kurzfristigen Wirtschaftsleistung den Vorrang und stellen das Bruttoinlandsprodukt (BIP) über jeden anderen Indikator.
 
Unsere globale Besessenheit von kurzfristiger wirtschaftlicher Effizienz - und die Frage, wie man sie überwinden kann - ist ein großes Rätsel, über das Minna Halme, Professorin für Nachhaltigkeitsmanagement, die meiste Zeit ihrer Karriere nachgedacht hat. Schon als Studentin an der Wirtschaftshochschule war sie irritiert, wie sehr sich ihr Unterricht auf kurzfristige Ziele konzentrierte.

„Es ging darum, mehr zu verkaufen, die Gewinne der Aktionäre zu maximieren, ökologisch zu wachsen - aber nicht wirklich zu fragen: Warum? Was ist der Zweck von all dem?“, so Halme.
„Selbst mir als 20-Jähriger kam das irgendwie seltsam vor.“

„Was versuchen wir hier zu tun? Versuchen wir, eine bessere Wirtschaft für alle oder für die meisten Menschen zu schaffen? Wessen Leben versuchen wir zu verbessern, wenn wir mehr unterschiedlich verpackte Joghurtsorten oder Kleidung verkaufen, die schnell unmodern ist?“

Halme hat ihre Karriere der Untersuchung dieser Fragen gewidmet. Heute ist sie eine Vordenkerin im Bereich innovativer Geschäftspraktiken und wurde unter anderem als Mitglied des finnischen Expertengremiums für nachhaltige Entwicklung und des Gremiums für globale Nachhaltigkeit der Vereinten Nationen anerkannt.

Ihr oberstes Ziel? Pionierarbeit zu leisten, zu forschen und für alternative Denkweisen einzutreten, die Werte wie langfristige wirtschaftliche Nachhaltigkeit und Widerstandsfähigkeit in den Vordergrund stellen - Alternativen, von denen sie und andere Experten glauben, dass sie allen einen dauerhaften, weitreichenden Nutzen bringen würden.
 
Wie traditionelle Indikatoren versagt haben
Ein Weg, in der unsere Vorliebe für wirtschaftliche Effizienz die Art und Weise prägt, wie wir den allgemeinen Wohlstand oder Status eines Landes messen, ist das BIP. Das ist nicht die Schuld des Erfinders des modernen Konzepts des BIP, der in den 1930er Jahren ausdrücklich davor warnte, es auf diese Weise zu verwenden.

„Das BIP war nie dazu gedacht, uns etwas über das Wohlergehen der Bürger eines Landes zu sagen", sagt Halme. Vor fünfundsiebzig Jahren war es jedoch leicht, beides miteinander zu verwechseln. Viele Länder waren eher bestrebt, ihren Wohlstand unter ihren Bürgern umzuverteilen, und Bevölkerungsumfragen zeigen, dass das BIP bis in die 1970er Jahre häufig mit dem allgemeinen Wohlstand korrelierte.

Doch mit dem Aufkommen eines zunehmend rücksichtsloseren Kapitalismus der freien Marktwirtschaft wurde dies immer weniger der Fall - und die Unzulänglichkeiten des BIP wurden umso deutlicher. „Wir befinden uns in einer Situation, in der die Verteilung des Reichtums mehr und mehr zu denjenigen wandert, die bereits über Kapital verfügen. Diejenigen, die es nicht haben, befinden sich in einer rückläufigen wirtschaftlichen Position", sagt Halme. Tatsächlich besitzen die reichsten 1 % der Weltbevölkerung heute fast die Hälfte des weltweiten Vermögens.

„Einige Regierungen, wie die finnische, berücksichtigen zwar Indikatoren für den ökologischen und sozialen Fortschritt. Aber keiner wird als so wichtig für die Entscheidungsfindung angesehen wie das BIP", sagt Halme - und das BIP gilt auch als Maßstab für den Erfolg einer Regierung. Diese Einstellung versucht Halme durch ihre Arbeit als Beraterin der finnischen Regierung zu Nachhaltigkeitspraktiken sowie durch ihre eigene Forschung zu ändern.

Wo die Industrie versagt hat
Unsere oft ausschließliche Konzentration auf die Ökonomie - und insbesondere darauf, so schnell und effizient wie möglich Gewinne zu erzielen - vermittelt kein klares Bild davon, wie es allen in einer Gesellschaft geht. Schlimmer noch, es hat die Industrie ermutigt, mit einer kurzfristigen Perspektive zu handeln, die zu längerfristigen Problemen führt.
 
Fast Fashion ist ein Beispiel dafür. Gegenwärtig sind die Lieferketten für Bekleidung - wie die der meisten Waren - linear. Die Rohstoffe kommen von einem Standort und werden Schritt für Schritt verarbeitet, in der Regel in verschiedenen Produktionsstätten auf der ganzen Welt, wobei Materialien, Energie und Transportmittel verwendet werden, die „billig“ sind, weil ihre hohen Umweltkosten nicht berücksichtigt werden.

Schließlich werden sie von einem Verbraucher gekauft, der das Produkt vorübergehend trägt, bevor er es wegwirft. Um die Gewinnspannen zu erhöhen, setzt die Branche auf schnell wechselnde Trends. Eine erschreckende Menge dieser Kleidungsstücke landet auf der Mülldeponie - einige davon, bevor sie überhaupt getragen worden sind.

Wie der COVID Lockdown gezeigt haben, ist diese Art linearer Lieferketten nicht belastbar. Und sie sind auch nicht nachhaltig.

Schätzungen zufolge ist die Modebranche derzeit die zweitgrößte Umweltverschmutzungsbranche der Welt und für bis zu 10 % aller Treibhausgasemissionen verantwortlich. Forscher der Aalto-Universität haben festgestellt, dass die Branche jährlich mehr als 92 Millionen Tonnen Deponieabfälle produziert. Bis 2030 wird ein Anstieg auf 134 Millionen Tonnen erwartet.
„Die Verringerung des CO2-Fußabdrucks der Modebranche ist nicht nur gut für die Umwelt, sondern auch für die langfristigen Aussichten der Branche selbst. Mit dieser Art von falschem Effizienzdenken untergräbt man die Grundlage unserer langfristigen Widerstandsfähigkeit sowohl für die Ökologie als auch für die Gesellschaft", sagt Halme.

Um aus dieser Falle herauszukommen, sagen sie und andere Forscher, ist ein kompletter Paradigmenwechsel erforderlich. „Es ist wirklich schwierig, nur an den Rändern zu feilen", sagt sie.
Auf dem Weg zur Resilienz

Mehrere Jahre lang erforschte und studierte Halme die ökologische Effizienz und suchte nach Möglichkeiten, wie Unternehmen mehr Produkte mit weniger Umweltbelastungen herstellen könnten. Doch allmählich wurde ihr klar, dass dies nicht die Antwort ist. Obwohl die Unternehmen durch Innovationen effizientere Produkte und Technologien entwickeln konnten, stieg ihr absoluter Verbrauch an natürlichen Ressourcen weiter an.

„Ich begann zu denken: Wenn nicht Effizienz, was dann?", sagt Halme. Sie erkannte, dass die Lösung in der Resilienz liegt, d. h. in der Förderung von Möglichkeiten, wie Systeme, einschließlich der Umwelt, in der Zukunft fortbestehen und sich sogar regenerieren können, anstatt sie in der Gegenwart weiter zu schädigen.
Die Lösung ist nicht „mehr von allem“, auch nicht von „nachhaltigen“ Materialien. Es ist weniger.

„Die einzige Möglichkeit, Fast Fashion zu verbessern, ist, sie zu beenden“, schreiben Halme und ihre Mitautoren. Das bedeutet, dass Kleidung so gestaltet werden muss, dass sie lange hält, dass Geschäftsmodelle die Wiederverwendung und Reparatur erleichtern und dass dem Upcycling Vorrang eingeräumt wird. Auch die Recyclingsysteme müssen überarbeitet werden, um festzustellen, wann ein Kleidungsstück wirklich ausgedient hat - insbesondere im Hinblick auf synthetische Mischfasern, die schwer zu trennen und abzubauen sind.

Dies würde die derzeitige Konzentration auf kurzfristige Einnahmen über den Haufen werfen. Und, so Halme, dies ist ein weiteres Beispiel dafür, dass wir bessere Möglichkeiten brauchen, um den Erfolg dieser Branchen zu messen, indem wir Faktoren wie Belastbarkeit und Nachhaltigkeit berücksichtigen - und nicht nur kurzfristige Gewinne.
Und obwohl jeder Einzelne etwas bewirken kann, müssen diese Veränderungen letztlich von der Industrie ausgehen.

„Textilien sind ein gutes Beispiel, denn wenn sie schnell kaputt gehen und man keine Reparaturwerkstatt in der Nähe hat oder wenn die Stoffe von so schlechter Qualität sind, dass es keinen Sinn macht, sie zu reparieren, dann ist das für die meisten Menschen ein zu großer Aufwand“, sagt Halme. Die meisten Lösungen sollten also von der Unternehmensseite kommen. Und das Ziel sollte sein, es den Verbrauchern sowohl modisch als auch einfach zu machen, ökologisch und sozial nachhaltige Entscheidungen zu treffen.
 
Was ist erforderlich?
Die ultimative Herausforderung, sagt Lauri Saarinen, Assistenzprofessor an der Aalto der Aalto-Universität für Wirtschaftsingenieurwesen, ist die Frage, wie man zu einem nachhaltigeren Modell gelangt und gleichzeitig die Wettbewerbsfähigkeit der Unternehmen erhält. Aber er glaubt, dass es Möglichkeiten gibt.

„Eine Möglichkeit besteht darin, die Produktion lokal zu halten. Wenn wir mit der kostengünstigen Offshore-Fertigung konkurrieren, indem wir die Dinge vor Ort und in einem geschlossenen Kreislauf herstellen, dann haben wir den doppelten Vorteil, indem wir lokal Arbeitsplätze schaffen und uns in Richtung einer nachhaltigeren Lieferkette bewegen“, sagt Saarinen. Wenn beispielsweise Kleidung näher am Verbraucher produziert würde, wäre es einfacher, Kleidungsstücke zur Reparatur zurückzuschicken oder gebrauchte Artikel zurückzunehmen und weiterzuverkaufen.

Lokale Produktion ist ein weiteres Beispiel dafür, dass wir die Methode, mit der wir den gesellschaftlichen Erfolg messen, neu überdenken müssen. Schließlich scheinen Outsourcing und Offshoring zugunsten einer billigeren Produktion kurzfristig die Kosten zu senken, aber dies geschieht zu Lasten dessen, was nach Ansicht von Halme und anderen Experten wirklich wichtig ist: eine längerfristige wirtschaftliche Tragfähigkeit, Widerstandsfähigkeit und Nachhaltigkeit. Es ist nicht einfach, zu dieser Art von Denken überzugehen. Dennoch sehen Saarinen und Halme vielversprechende Signale.
 
Für Finnland verweist Halme beispielsweise auf das Start-up-Unternehmen Menddie, das es leicht und bequem macht, Kleidungsstücke zum Reparieren oder Ändern wegzuschicken. Sie hebt auch die Bekleidungs- und Lifestyle-Marke Marimekko hervor, die ihre gebrauchten Kleidungsstücke in einem Online-Secondhand-Shop weiterverkauft, sowie das Label Anna Ruohonen, ein Konzept für Maßanfertigungen und Kunden auf Abruf, bei dem keine überschüssigen Kleidungsstücke entstehen.

Genau diese Art von Projekten findet Halme interessant - und sie hofft, mit ihrer Arbeit sowohl für diese zu werben als auch Pionierarbeit zu leisten.
„Momentan haben diese Veränderungen noch nicht zu einer echten Transformation geführt“, sagt sie. Auf globaler Ebene sind wir noch weit von einem echten Wandel hin zu längerfristiger Resilienz entfernt. Aber das könne sich, wie sie betont, schnell ändern. Schließlich hat sich das in der Vergangenheit auch bereits geändert: „Man muss sich nur ansehen, was uns hierhergebracht hat.“

„Das Streben nach Wirtschaftswachstum wurde in relativ kurzer Zeit - nur über etwa sieben Jahrzehnte - zu einem so dominanten Schwerpunkt“, sagt sie. Der Wandel hin zu einer längerfristigen Resilienz ist durchaus möglich. Wissenschaftler und Entscheidungsträger müssen nur ihr Hauptziel auf langfristige Widerstandsfähigkeit umstellen. Die Kernfrage ist, ob unsere mächtigsten Wirtschaftsakteure klug genug sind, dies zu tun.
 
Im Rahmen ihrer Forschung hat Halme Projekte geleitet, die Pionierarbeit für die Art von Veränderungen leisten, die die Modeindustrie vornehmen könnte. Gemeinsam mit ihrer Aalto-Kollegin Linda Turunen hat sie beispielsweise kürzlich ein Messverfahren entwickelt, mit dem die Modeindustrie die Nachhaltigkeit eines Produkts klassifizieren könnte. Dabei wird gemessen, wie haltbar das Produkt ist, wie leicht es recycelt werden kann und ob bei der Herstellung gefährliche Chemikalien verwendet werden - was den Verbrauchern bei der Kaufentscheidung helfen könnte. Ihre Kollegen haben vor kurzem eine Ausstellung kuratiert, in der gezeigt wurde, was wir in einer nachhaltigen Zukunft tragen könnten, z. B. eine Lederalternative, die aus weggeworfenen Blumenstecklingen hergestellt wird, oder modulare Designs, mit denen ein und dasselbe Kleidungsstück mehrfach verwendet werden kann, indem z. B. ein Rock in ein Hemd verwandelt wird.

Da all dies längerfristiges Denken, Innovation und Investitionen erfordert, ist die Industrie zurückhaltend, diese Veränderungen vorzunehmen, sagt Halme. Eine Möglichkeit, die Industrie zu einem schnelleren Wandel zu bewegen, ist die Regulierung. In der Europäischen Union beispielsweise müssen Unternehmen mit mehr als 500 Mitarbeitern aufgrund einer aktualisierten Reihe von Richtlinien nun über eine Reihe von Faktoren der Unternehmensverantwortung Bericht erstatten, die von den Auswirkungen auf die Umwelt bis zur Behandlung der Mitarbeiter reichen. Diese Vorschriften werden nicht nur dazu beitragen, Verbraucher, Investoren und andere Interessengruppen über die Rolle eines Unternehmens bei globalen Herausforderungen zu informieren. Sie werden auch dazu beitragen, Investitionsrisiken zu bewerten und abzuwägen, ob ein Unternehmen die notwendigen Maßnahmen ergreift, um langfristig finanziell stabil zu sein.

Quelle:

Aalto University, Amanda Ruggeri. Übersetzung Textination

BioKnit Myzel-Gewölbe BioKnit Myzel-Gewölbe © Hub or Biotechnology in the Built Environment
11.08.2023

Gestrickte futuristische Öko-Gebäude aus Pilzbeton

Mycocrete, eine aus Pilzen hergestellte Paste, kann mit einem gestrickten Stoffgerüst kombiniert werden, um umweltfreundliche Bauten zu schaffen.
Wissenschaftler haben Mycocrete, eine Paste aus dem Wurzelgeflecht von Pilzen, Myzel genannt, als Baumaterial entwickelt. Durch das Einspritzen dieser Paste in ein gestricktes Textilkonstrukt entsteht ein Verbundwerkstoff, der stärker und vielseitiger ist als frühere Biomaterialien aus Pilzen und schließlich für den Bau von Leichtbaugebäuden mit geringer Umweltbelastung verwendet werden könnte.
 

Mycocrete, eine aus Pilzen hergestellte Paste, kann mit einem gestrickten Stoffgerüst kombiniert werden, um umweltfreundliche Bauten zu schaffen.
Wissenschaftler haben Mycocrete, eine Paste aus dem Wurzelgeflecht von Pilzen, Myzel genannt, als Baumaterial entwickelt. Durch das Einspritzen dieser Paste in ein gestricktes Textilkonstrukt entsteht ein Verbundwerkstoff, der stärker und vielseitiger ist als frühere Biomaterialien aus Pilzen und schließlich für den Bau von Leichtbaugebäuden mit geringer Umweltbelastung verwendet werden könnte.
 
Wissenschaftler, bemüht, die Umweltauswirkungen der Bauindustrie zu verringern, haben einen Weg entwickelt, Baumaterialien mit Hilfe von gestrickten Formteilen und dem Wurzelgeflecht von Pilzen wachsen zu lassen. Obwohl Forscher schon früher mit ähnlichen Verbundwerkstoffen experimentiert haben, war es aufgrund der Form- und Wachstumsbeschränkungen des organischen Materials schwierig, verschiedene Anwendungen zu entwickeln, die das Potenzial ausschöpfen. Durch die Verwendung der gestrickten Matrizen als flexibles Gerüst oder „Schalung“ schufen die Wissenschaftler einen Verbundstoff namens „Mycocrete“, der stärker und vielseitiger in Bezug auf Form und Gestalt ist und es den Wissenschaftlern ermöglicht, leichte und relativ umweltfreundliche Baumaterialien zu züchten.

„Unser Ziel ist es, das Aussehen, die Haptik und das sich Komfortgefühl von architektonischen Räumen zu verändern, indem wir Myzel in Kombination mit biobasierten Materialien wie Wolle, Sägemehl und Zellulose verwenden“, sagte Dr. Jane Scott von der Universität Newcastle, korrespondierende Autorin der Veröffentlichung in Frontiers in Bioengineering and Biotechnology. Die Forschungsarbeit wurde von einem Team aus Designern, Ingenieuren und Wissenschaftlern der Forschungsgruppe für lebende Textilien durchgeführt, die Teil des Hub for Biotechnology in the Built Environment ist, einem von Research England finanzierten Gemeinschaftsunternehmen der Universitäten Newcastle und Northumbria.

Wurzelgeflechte
Zur Herstellung von Verbundwerkstoffen mit Myzel, einem Teil des Wurzelgeflechts von Pilzen, mischen Wissenschaftler Myzelsporen mit Getreidekörnern, von denen sie sich ernähren können, und Material, auf dem sie wachsen können. Diese Mischung wird in eine Form gepackt und in eine dunkle, feuchte und warme Umgebung gebracht, damit das Myzel wachsen kann und das Substrat fest zusammenhält. Sobald es die richtige Dichte erreicht hat, aber bevor es anfängt, Fruchtkörper – also Pilze - zu produzieren, wird es ausgetrocknet. Dieser Prozess könnte ein billiger, nachhaltiger Ersatz für Schaumstoff, Holz und Plastik sein. Allerdings benötigt das Myzel zum Wachsen Sauerstoff, was die Größe und Form herkömmlicher starrer Formen einschränkt und die derzeitigen Anwendungen begrenzt.

Gestrickte Textilien bieten eine mögliche Lösung: sauerstoffdurchlässige Formen, die sich mit dem Wachstum des Myzels von flexibel zu steif verändern können. Aber Textilien können zu weich sein, und es ist schwierig, die Formen gleichmäßig zu füllen. Scott und ihre Kollegen entwarfen eine Myzelmischung und ein Produktionssystem, mit dem das Potenzial gestrickter Formen genutzt werden kann.

„Stricken ist ein unglaublich vielseitiges 3D-Fertigungssystem“, so Scott. „Es ist leicht, flexibel und formbar. Der größte Vorteil der Stricktechnologie im Vergleich zu anderen textilen Verfahren ist die Möglichkeit, 3D-Strukturen und Formen ohne Nähte und ohne Abfall zu stricken.“

Die Wissenschaftler bereiteten Proben eines herkömmlichen Myzelkomposits als Referenz vor und züchteten sie zusammen mit Proben des Mycocrete, das ebenfalls Papierpulver, Papierfaserklumpen, Wasser, Glycerin und Xanthan enthielt. Diese Paste sollte mit einer Injektionspistole in die gestrickte Schalung eingebracht werden, um die Konsistenz der Füllung zu verbessern: Die Paste musste flüssig genug für das Einbringungssystem sein, aber nicht so flüssig, dass sie ihre Form nicht behielt.

Die Schläuche für die geplante Teststruktur wurden aus Merinogarn gestrickt, sterilisiert und an einer starren Struktur befestigt, während sie mit der Paste gefüllt wurden, so dass Spannungsänderungen des Gewebes die Leistung des Mycocrete nicht beeinträchtigen würden.

Die Zukunft bauen
Nach dem Trocknen wurden die Proben Zug-, Druck- und Biegefestigkeitstests unterzogen. Die Mycocrete-Proben erwiesen sich als fester als die herkömmlichen Mycel-Verbundproben und übertrafen die ohne gestrickte Schalung gewachsenen Mycel-Verbundstoffe. Darüber hinaus sorgte das poröse Gestrick der Schalung für eine bessere Sauerstoffverfügbarkeit, und die darin gewachsenen Proben schrumpften weniger als die meisten Myzelverbundwerkstoffe, wenn sie getrocknet werden, was darauf hindeutet, dass berechenbarere und konsistentere Herstellungsergebnisse erzielt werden könnten.

Dem Team gelang es ebenfalls, einen größeren Prototyp mit der Modellbezeichnung BioKnit zu bauen - eine komplexe, freistehende Kuppel, die dank der flexiblen Strickform aus einem einzigen Stück besteht, ohne Verbindungsstellen, die sich als Schwachstellen erweisen könnten.

„Die mechanische Leistung des Mycocrete in Kombination mit einer dauerhaft gestrickten Schalung ist ein bedeutendes Resultat und ein Schritt in Richtung der Verwendung von Myzel und textilen Biohybriden im Bauwesen“, so Scott. „In dieser Arbeit haben wir bestimmte Garne, Substrate und Myzelien spezifiziert, die notwendig sind, um ein bestimmtes Ziel zu erreichen. Es gibt jedoch zahlreiche Möglichkeiten, diese Formulierung für andere Anwendungen anzupassen. Biogefertigte Architektur könnte neue Maschinentechnologie erfordern, um Textilien in den Bausektor zu bringen.“

Quelle:

Press release adapted with thanks to Frontiers in Bioengineering and Biotechnology

(c) NC State
07.08.2023

Wearable Connector Technology - Vorteile für Militär, Medizin und mehr

Was kommt Ihnen in den Sinn, wenn Sie an „Wearable Technology“ denken? Im Jahr 2023 wahrscheinlich eine ganze Menge, wenn Smartwatch und Ring die Herzfrequenz messen, sportliche Aktivitäten verfolgen und sogar Textnachrichten empfangen. Vielleicht denken Sie auch an das „hässliche“ blinkende Sweatshirt oder das Kostüm, das Sie an Halloween oder in der Weihnachtszeit gesehen haben.

Am Wilson College of Textiles arbeiten Forscher jedoch hart an der Optimierung einer wahrhaft neuartigen Form von Wearable Technology, die sich in einer Vielzahl von Bereichen als nützlich erweisen kann, von Mode und Sport über Augmented Reality bis hin zu Militär und Medizin.

Dieses Projekt, das sich derzeit in der Schlussphase befindet, könnte dazu beitragen, die Nutzer in kritischen Situationen zu schützen - z. B. Soldaten im Kriegseinsatz oder Patienten in Krankenhäusern - und gleichzeitig die Grenzen dessen, was die Textilforschung leisten kann, erweitern.

Was kommt Ihnen in den Sinn, wenn Sie an „Wearable Technology“ denken? Im Jahr 2023 wahrscheinlich eine ganze Menge, wenn Smartwatch und Ring die Herzfrequenz messen, sportliche Aktivitäten verfolgen und sogar Textnachrichten empfangen. Vielleicht denken Sie auch an das „hässliche“ blinkende Sweatshirt oder das Kostüm, das Sie an Halloween oder in der Weihnachtszeit gesehen haben.

Am Wilson College of Textiles arbeiten Forscher jedoch hart an der Optimierung einer wahrhaft neuartigen Form von Wearable Technology, die sich in einer Vielzahl von Bereichen als nützlich erweisen kann, von Mode und Sport über Augmented Reality bis hin zu Militär und Medizin.

Dieses Projekt, das sich derzeit in der Schlussphase befindet, könnte dazu beitragen, die Nutzer in kritischen Situationen zu schützen - z. B. Soldaten im Kriegseinsatz oder Patienten in Krankenhäusern - und gleichzeitig die Grenzen dessen, was die Textilforschung leisten kann, erweitern.

"Die Ziele, die wir uns für diese Forschung gesetzt haben, sind völlig neuartig im Vergleich zu jeder anderen Fachliteratur, die es über tragbare Steckverbindungen gibt", sagt Shourya Dhatri Lingampally, Studentin und Forschungsassistentin am Wilson College of Textiles, die gemeinsam mit der Assistenzprofessorin Minyoung Suh an dem Projekt arbeitet.

Die im Herbst 2021 gestartete Arbeit von Suh und Lingampally konzentriert sich auf in Textilien integrierte tragbare Anschlüsse, eine einzigartige „Hightech-Brücke“ zwischen flexiblen Textilien und externen elektronischen Geräten. Im Kern zielt das Projekt darauf ab, den Technologiereifegrad (Technology Readiness Level) dieser Konnektoren zu verbessern - ein Schlüsselwert, der von der NASA und dem Verteidigungsministerium verwendet wird, um den Reifegrad einer bestimmten Technologie zu bewerten.

Zu diesem Zweck untersuchen Lingampally und ihre Kollegen Probleme, die in der Vergangenheit die Leistung von tragbaren Geräten beeinträchtigt haben.

Sicherlich können diese Fortschritte der Mode zugutekommen und zu ausgefallenen Hemden, Jacken oder Accessoires führen – „die auf der Grundlage biometrischer Daten des Trägers leuchten oder ihre Farbe ändern“, so Lingampally -, aber die Forschung hat ihre Wurzeln in einer deutlich tiefer gehenden Mission.

Potentieller Nutzen für Militär, Medizin und mehr
Das Projekt wird mit einem Zuschuss von mehr als 200.000 Dollar von Advanced Functional Fabrics of America (AFFOA) finanziert, einem US-amerikanischen Manufacturing Innovation Institute (MII) mit Sitz in Cambridge, Massachusetts. Die Aufgabe von AFFOA besteht darin, die inländischen Produktionskapazitäten für neue technische Textilprodukte, wie z. B. textilbasierte tragbare Technologien, zu fördern.

Ein Hauptziel der Forschung ist die Verbesserung der Funktionalität von tragbaren Überwachungsgeräten, mit denen Soldaten zuweilen ausgestattet werden, um die Gesundheit und Sicherheit von Einsatzkräften aus der Ferne zu überwachen.

Ähnliche Geräte ermöglichen es Ärzten und anderem medizinischen Personal, den Gesundheitszustand von Patienten aus der Ferne zu überwachen, auch wenn sie nicht am Krankenbett liegen.

Diese Technologie gibt es zwar schon seit Jahren, aber sie erforderte bisher zu oft die Verlegung von Kabeln und ein insgesamt logistisch ungünstiges Design. Das könnte sich bald ändern.

„Wir haben die elektronischen Komponenten in einem kleinen Druckknopf oder einer Schnalle zusammengefasst, so dass die Schaltkreise für den Träger weniger hinderlich sind“, erläutert Lingampally die Innovationen des Teams, zu denen auch der 3D-Druck der Verbindungsprototypen mithilfe der Stereolithographie-Technologie gehört.

„Wir versuchen, die Designparameter zu optimieren, um die elektrische und mechanische Leistung dieser Steckverbinder zu verbessern“, fügt sie hinzu.

Um ihre Ziele zu erreichen, arbeitete die Gruppe mit James Dieffenderfer, Assistant Research Professor am NC State Department of Electrical and Computer Engineering, zusammen. Das Team führte eine Vielzahl elektrischer Anschlüsse und Verbindungen wie leitende Fäden, Epoxidharz und Lötmittel durch textile Materialien, die mit starren elektronischen Geräten ausgestattet waren.

Außerdem testeten sie die Komponenten auf ihre Kompatibilität mit Standardverbindungen für digitale Geräte wie USB 2.0 und I2C.

Letztendlich hofft Lingampally, dass ihre Arbeit dazu beitragen wird, dass tragbare Technologien nicht nur einfacher und bequemer zu benutzen sind, sondern auch zu einem niedrigeren Preis erhältlich sind.

„Ich würde gerne sehen, wie sie skaliert und in Massenproduktion hergestellt werden, damit sie für jede Branche kostengünstig eingesetzt werden können“, erklärt sie.

Die Arbeit ihres Teams verdeutlicht jedoch auch die weitreichenden Grenzen der Forschung im Bereich intelligenter Textilien, die weit über Mode und Komfort hinausgehen.

Die Grenzen der Textilforschung erweitern
Die Arbeit von Suh und Lingampally ist nur die jüngste wegweisende Forschungsarbeit des Wilson College of Textile, mit der kritische Probleme in der Textilindustrie und darüber hinaus gelöst werden sollen.

"Die ständigen Fortschritte bei Technologie und Materialien bieten der Textilindustrie ein immenses Potenzial, um positive Veränderungen in verschiedenen Bereichen von der Mode bis zum Gesundheitswesen und darüber hinaus voranzutreiben", sagt Lingampally, eine Studentin im Masterstudiengang Textilien (M.S. Textiles), und verweist auf die Ermutigung, die sie in ihrem Studiengang erfährt, um bei der Festlegung und Weiterentwicklung ihrer Forschung innovativ und kreativ zu sein.

Im Promotionsprogramm für Faser- und Polymerwissenschaften, mit dem Suh arbeitet, konzentrieren die Kandidaten ihre Forschung auf eine scheinbar endlose Reihe von MINT-Themen, die, um nur einige zu nennen, von Forensik über medizinische Textilien und Nanotechnologie bis hin zu intelligenter Wearable Technology reichen.

In diesem Fall, so Suh, war die Forschung mit „unerwarteten Herausforderungen“ verbunden, die an jeder Ecke faszinierende Anpassungen“ erforderten. Letztendlich führte es aber zu Durchbrüchen, die in der Branche der Wearable Technologies bisher nicht zu beobachten waren, und das Interesse anderer Forscher außerhalb der Universität und auch privater Unternehmen weckten.

"Dieses Projekt war von seiner Art her recht experimentell, da es bisher keine Forschung gab, die auf die gleichen Ziele ausgerichtet war", so Suh.

Inzwischen hat das Team Tests zur Haltbarkeit und Zuverlässigkeit seiner in Textilien integrierten tragbaren Steckverbindungen abgeschlossen. Letztlich möchte die Gruppe die Stichprobengröße für die Tests erhöhen, um die Ergebnisse zu festigen und zu validieren. Das Team hofft auch, neue, innovative Verbindungstechniken sowie andere 3D-Drucktechniken und Materialien zu analysieren, um die Wearable Technologies weiter zu verbessern.

Quelle:

North Carolina State University, Sean Cudahy

Chemikalienschutzanzüge Foto: Pixabay, Alexander Lesnitsky
31.07.2023

DITF: Neues Konzept für Chemikalienschutzanzüge

Ein neu entwickeltes Konzept für Chemikalienschutzanzüge soll den Einsatz für den Träger komfortabler und sicherer machen. Neue Materialien und ein verbessertes Design erhöhen den Tragekomfort. Integrierte Sensorik überwacht die Vitalfunktionen.
 
Bei Gefährdungen durch chemische, biologische oder radioaktive Stoffe schützen Chemikalienschutzanzüge (CSA) Menschen vor körperlichem Kontakt. CSA bestehen aus Atemgerät, Kopfschutz, Tragegestellen und dem Anzug selbst. So kommt ein Gewicht von rund 25 kg zusammen. Der Aufbau aus einem mehrfach beschichteten Gewebe macht die CSA steif und sorgt für erhebliche Einschränkungen in der Bewegungsfreiheit. Die Einsatzkräfte sind dadurch einer signifikanten physischen Belastung ausgesetzt. Aus diesem Grund ist die gesamte Einsatzdauer bei Verwendung eines CSA auf 30 Minuten beschränkt.

Ein neu entwickeltes Konzept für Chemikalienschutzanzüge soll den Einsatz für den Träger komfortabler und sicherer machen. Neue Materialien und ein verbessertes Design erhöhen den Tragekomfort. Integrierte Sensorik überwacht die Vitalfunktionen.
 
Bei Gefährdungen durch chemische, biologische oder radioaktive Stoffe schützen Chemikalienschutzanzüge (CSA) Menschen vor körperlichem Kontakt. CSA bestehen aus Atemgerät, Kopfschutz, Tragegestellen und dem Anzug selbst. So kommt ein Gewicht von rund 25 kg zusammen. Der Aufbau aus einem mehrfach beschichteten Gewebe macht die CSA steif und sorgt für erhebliche Einschränkungen in der Bewegungsfreiheit. Die Einsatzkräfte sind dadurch einer signifikanten physischen Belastung ausgesetzt. Aus diesem Grund ist die gesamte Einsatzdauer bei Verwendung eines CSA auf 30 Minuten beschränkt.

In einem Verbundvorhaben mit verschiedenen Firmen, Instituten und Berufsfeuerwehren wird derzeit daran gearbeitet, sowohl den textilen Materialverbund als auch die Hartkomponenten und Verbindungselemente zwischen beiden neu zu gestalten. Das Ziel ist ein sogenannter „AgiCSA“, der für die Einsatzkräfte aufgrund der leichteren und flexibleren Konstruktion deutlich mehr Komfort bietet. Das Teilvorhaben der DITF fokussiert sich einerseits auf die Entwicklung eines individuell anpassbareren, körpernahen Anzugs, andererseits auf die Integration von Sensoren, die der Online-Überwachung wichtiger Körperfunktionen der Einsatzkraft dienen.
               
Unterstützung bekamen die DITF zum Projektbeginn von der Feuerwehr Esslingen. Sie stellte einen heute standardmäßig zum Einsatz kommenden Komplett-CSA zur Verfügung. Dieser konnte an den DITF auf seine Trageeigenschaften getestet werden. Dabei untersuchen die Denkendorfer Forscher, an welchen Stellen Optimierungsbedarf für verbesserten ergonomischen Tragkomfort besteht.

Ziel ist die Konstruktion eines chemikalien- und gasdichten Anzugs, der relativ eng am Körper anliegt. Es stellte sich schnell heraus, dass man sich vom bisherigen Konzept der Verwendung von Geweben als textilem Grundmaterial lösen und in Richtung elastischer Maschenwaren denken musste. Bei der Umsetzung kamen den Forschern neuere Entwicklungen im Bereich der Maschentechnologie in Form von Abstandsgewirken zu Hilfe. Durch die Verwendung von Abstandstextilien lassen sich viele Anforderungen, die an das Grundsubstrat gestellt werden, sehr gut erfüllen.

Abstandstextilien weisen eine voluminöse, elastische Struktur auf. Aus einer Vielzahl verwendbarer Fasertypen und dreidimensionaler Konstruktionsmerkmale wurde für den neuen CSA ein 3 mm dickes Abstandstextil aus einem Polyester-Polfaden und einer flammhemmenden Fasermischung aus Aramid und Viskose ausgewählt. Dieses Textil wird beidseitig mit Fluor- bzw. Butylkautschuk beschichtet. Dadurch erhält das Textil eine Barrierefunktion, die das Eindringen giftiger Flüssigkeiten und Gase verhindert. Die Beschichtung erfolgt durch ein neu entwickeltes Sprühverfahren am fertig konfektionierten Anzug. Der Vorteil dieses Verfahrens im Gegensatz zum bisher üblichen Beschichtungsprozess ist, dass die gewünschte Elastizität des Anzugs erhalten bleibt.

Eine weitere Neuheit ist die Integration eines schräg verlaufenden Reißverschlusses. Dieser erleichtert das An- und Ausziehen des Schutzanzugs. Während dies bislang nur mit Hilfe einer weiteren Person möglich war, kann der neue Anzug prinzipiell von der Einsatzkraft alleine angelegt werden. Vorbild für das neue Design sind moderne Trockenanzüge mit schräg verlaufendem, gasdichtem Reißverschluss.   

In den neuen AgiSCA sind zudem Sensoren integriert, die die Übertragung und Überwachung der Vital- und Umgebungsdaten der Einsatzkraft wie auch deren Ortung via GPS-Daten erlaubt. Diese Zusatzfunktionen unterstützen die Einsatzsicherheit erheblich.

Für die Hartkomponenten - den Helm sowie die Rückentrage für die Pressluftversorgung - werden leichte carbonfaserverstärkte Verbundmaterialien der Firma Wings and More GmbH & Co. KG verwendet.

Erste Demonstratoren sind verfügbar und stehen den Projektpartnern zu Prüfzwecken zur Verfügung. Die Kombination von aktueller Textiltechnologie, Leichtbaukonzepten und IT-Integration in Textilien hat in diesem Projekt zu einer umfassenden Verbesserung eines hochtechnologisierten Produkts geführt.

BMBF-Projekt „Entwicklung eines Chemikalienschutzanzuges mit erhöhter Beweglichkeit für effizientere Einsatzkonzepte durch erhöhte Autonomie der Einsatzkräfte (AgiCSA)“
Das Vorhaben greift die Ziele des Rahmenprogramms der Bundesregierung „Forschung für die zivile Sicherheit 2018-2023 und der Fördermaßnahme „KMU-innovativ: Forschung für die zivile Sicherheit“ vom 3. Juli 2018 auf.

Weitere Informationen:
Chemikalienschutzanzug DITF Projekt
Quelle:

DITF Deutsche Institute für Textil- und Faserforschung

Hauchdünne Smart Textiles werden für den Einsatz im geburtsmedizinischen Monitoring weiterentwickelt und sollen eine Analyse der Vitaldaten via App für die Schwangeren ermöglichen. Foto: Pixabay, Marjon Besteman
24.07.2023

Intelligentes Pflaster für Remote-Monitoring der Schwangerschaft

Während einer Schwangerschaft geben regelmäßige Medizinchecks Auskunft über die Gesundheit und Entwicklung der Schwangeren und des Kindes. Doch die Untersuchungen bieten nur Momentaufnahmen des Zustands, was vor allem im Risikofällen gefährlich werden kann. Um in dieser sensiblen Phase bequemes und kontinuierliches Monitoring zu ermöglichen, plant ein internationales Forschungskonsortium die Technologie der Smart Textiles weiterzutreiben. Ein mit feiner Elektronik versehenes Pflaster soll Vitaldaten sammeln und auswerten können. Zusätzlich sollen die Sensoren in Baby-Kleidung integriert werden, um unter höchster Datensicherheit die Zukunft des medizinischen Monitorings von Neugeborenen zu verbessern.
 

Während einer Schwangerschaft geben regelmäßige Medizinchecks Auskunft über die Gesundheit und Entwicklung der Schwangeren und des Kindes. Doch die Untersuchungen bieten nur Momentaufnahmen des Zustands, was vor allem im Risikofällen gefährlich werden kann. Um in dieser sensiblen Phase bequemes und kontinuierliches Monitoring zu ermöglichen, plant ein internationales Forschungskonsortium die Technologie der Smart Textiles weiterzutreiben. Ein mit feiner Elektronik versehenes Pflaster soll Vitaldaten sammeln und auswerten können. Zusätzlich sollen die Sensoren in Baby-Kleidung integriert werden, um unter höchster Datensicherheit die Zukunft des medizinischen Monitorings von Neugeborenen zu verbessern.
 
Mit dem Beginn einer Schwangerschaft geht eine Phase intensiver Gesundheitsüberwachung des Kindes und der schwangeren Person einher. Herkömmliche Vorsorge-Untersuchungen mit Ultraschallgeräten zeichnen jedoch nur Momentaufnahmen des jeweiligen Zustands auf und erfordern vor allem bei Risikoschwangerschaften häufige Besuche bei Ärzt*innen. Mit Hilfe von neuartigen Wearables und Smart Textiles planen Forschende im EU-geförderten Projekt Newlife, ein dauerhaftes geburtsmedizinisches Monitoring im Alltag zu ermöglichen.
 
Ein Ziel des Konsortiums aus 25 Partner*innen ist es, ein biokompatibles, dehnbares und flexibles Patch zu entwickeln, um den Verlauf der Schwangerschaft und die Entwicklung des Embryos kontinuierlich zu überwachen. Ähnlich wie ein Pflaster soll das Patch auf der Haut der schwangeren Person angebracht werden, mittels miniaturisierter Sensoren (z.B. Ultraschall) permanent Vitaldaten aufzeichnen und via Bluetooth an ein Endgerät, beispielsweise ein Smartphone übermitteln.

Moderne Medizintechnik setzt schon seit einiger Zeit auf die Technologie der Smart Textiles und intelligente Wearables, um Patient*innen anstelle einer stationären Überwachung ein komfortables Dauer-Monitoring von Zuhause zu bieten. Am Fraunhofer-Institut für Zuverlässigkeit und Mikroelektronik IZM bringt das Team rund um Christine Kallmayer diese Technologie zur anwendungsbezogenen Umsetzung und profitiert dabei von langjähriger Erfahrung mit Integrationstechnologien in flexible Materialien. Beim integrierten Patch setzen die Forschenden auf thermoplastische Polyurethane als Basismaterialien, in die Elektronik und Sensorik eingebettet werden. Dadurch wird sichergestellt, dass das Tragegefühl einem handelsüblichen Pflaster entspricht statt einer starren Folie. Damit das geburtsmedizinische Monitoring unmerkbar und bequem für Schwangere und das Ungeborene verläuft, plant das Projektkonsortium innovative Ultraschallsensoren auf MEMS-Basis direkt in das PU-Material zu integrieren. Über unmittelbaren Hautkontakt sollen die miniaturisierten Sensoren Daten aufnehmen. Dehnbare Leiterbahnen aus TPU-Material sollen die Informationen dann zur Auswerteelektronik und schlussendlich zu einer drahtlosen Schnittstelle weiterleiten, so dass Ärzt*innen und Hebammen alle relevanten Daten in einer App einsehen können. Zusätzlich zum Ultraschall planen die Forschenden weitere Sensoren wie Mikrofone und Temperatursensoren sowie Elektroden einzubauen.
 
Auch nach der Geburt kann die neue Integrationstechnologie von großem Nutzen für die Medizintechnik sein: Mit weiteren Demonstratoren plant das Newlife-Team das Monitoring von Neugeborenen zu ermöglichen. Sensoren für ein kontinuierliches EKG, Überwachung der Atmung und Infrarot-Spektroskopie zur Beobachtung der Gehirn-Aktivität sollen in das weiche Textil eines Baby-Bodys und eines Mützchens integriert werden. „Besonders für Frühchen und Neugeborene mit gesundheitlichen Risiken ist das Remote-Monitoring eine sinnvolle Alternative zum stationären Aufenthalt und kabelgebundener Überwachung. Dafür müssen wir einen bisher unvergleichlichen Komfort der hauchdünnen Smart Textiles gewährleisten: Es darf keine Elektronik spürbar sein. Zusätzlich muss das gesamte Modul extrem zuverlässig sein, da die smarten Textilien Waschgänge problemlos überstehen sollten“, erklärt die Projekt-Verantwortliche am Fraunhofer IZM Christine Kallmayer.
 
Zur externen Überwachung wird im Projekt außerdem an Möglichkeiten geforscht, durch Kameradaten und Sensorik im Baby-Bett Aussagen über Gesundheitszustand und Wohlbefinden des Kindes abzuleiten. Sobald die Hardware-Basis von Patch, textiler Elektronik und Sensor-Bett aufgebaut und getestet ist, werden die Projektpartner*innen noch einen Schritt weitergehen: Mittels Cloud-basierter Lösungen sollen KI und maschinelles Lernen die Anwendung für medizinisches Personal erleichtern und höchste Sicherheit der Daten gewährleisten.

Quelle:

Fraunhofer – Institut für Zuverlässigkeit und Mikrointegration IZM

(c) Nadine Glad
18.07.2023

Digitaler Produktpass für transparente Lieferketten und zirkuläre Produkte

Wer beim Kauf eines Produktes Informationen benötigt, ist aktuell oft noch auf Anleitungen in Papierform oder aufwendige Recherchen angewiesen. In einem aktuellen Projekt arbeitet ein Konsortium aus Forschung und Wirtschaftsverbänden jetzt im Auftrag der EU-Kommission an einem einheitlichen digitalen Produktpass. Dieser soll im Rahmen einer EU-Verordnung z.B. über einen QR-Code alle Produktinformationen entlang der Wertschöpfungskette verfügbar und dezentral abrufbar machen.

Wer beim Kauf eines Produktes Informationen benötigt, ist aktuell oft noch auf Anleitungen in Papierform oder aufwendige Recherchen angewiesen. In einem aktuellen Projekt arbeitet ein Konsortium aus Forschung und Wirtschaftsverbänden jetzt im Auftrag der EU-Kommission an einem einheitlichen digitalen Produktpass. Dieser soll im Rahmen einer EU-Verordnung z.B. über einen QR-Code alle Produktinformationen entlang der Wertschöpfungskette verfügbar und dezentral abrufbar machen.

Absolutes Must-have im Reisegepäck ist für die meisten in der Regel ein Personalausweis oder ein Reisepass. Diese sind international anerkannte Dokumente zur Angabe von Daten über die eigene Person. Dieser für uns selbstverständliche Vorgang soll bald auch für Elektronik- und Textilprodukte sowie Batterien Realität werden. Da Handys, Tablets und Co. selbstverständlich keinen haptischen Reisepass bei sich tragen, sollen ihre „persönlichen Daten“ in Zukunft mittels eines digitalen Produktpasses über einen QR-Code oder RFID-Chip an jeder Stelle der Wertschöpfungskette abrufbar sein.

Verbraucher*innen sollen so beim Kauf von Textilien, Elektronikprodukten, aber auch Möbeln und Spielzeug mehr Möglichkeiten erhalten, sich über wichtige Produktinformationen wie die Energieeffizienzklasse, die Herstellungsbedingungen oder die Reparierbarkeit zu informieren, um darauf aufbauend eine versierte und nachhaltige Kaufentscheidung treffen zu können.

Aber auch für andere Beteiligte z.B. bei der Reparatur oder dem Recycling ergeben sich enorme Potenziale: Bisher kann es bei hoch miniaturisierten Elektronikprodukten schwer herauszufinden sein, welche Rohstoffe oder toxischen Bestandteile im Produkt enthalten sind und wie diese voneinander getrennt werden können. Damit diese Informationen immer auch der richtigen Zielgruppe zur Verfügung stehen, sollen nutzungsspezifische Zertifikate den Zugang reglementieren.

Die Gesamtheit der im Produktpass enthaltenen Informationen ist zum jetzigen Zeitpunkt noch nicht endgültig geklärt. Im Projekt CIRPASS erarbeitet die Gruppe um Eduard Wagner am Fraunhofer IZM aktuell, welche gesetzliche Informationspflicht bereits existiert und welche weiteren Informationen für den Produktpass interessant sein könnten. Am Ende soll eine Informationsarchitektur aufgebaut werden, in der geklärt wird, welche Informationen für die Beteiligten der Wertschöpfungskette einen Mehrwert haben und mit welchem Aufwand sie bereitgestellt werden können. Ein Reparaturindikator, der angibt, wie gut sich ein Produkt reparieren lässt, ist beispielsweise in Frankreich seit 2021 verpflichtend und kommt für den digitalen, gesamteuropäischen Produktpass ebenfalls in Frage. „Auch die Angabe der Energieeffizienzklasse ist mittlerweile vorgeschrieben. Doch diese Informationen müssen jetzt noch einzeln ermittelt werden, und bei anderen Werten gibt es noch keine europaweite Anzeigepflicht. Hier ein Höchstmaß an Einheitlichkeit zu schaffen, ist ein wichtiges Ziel des Produktpasses.“ sagt Nachhaltigkeitsexperte Eduard Wagner.

Damit 2026 die ersten Produktpässe verfügbar sind, gilt es also, viele Akteur*innen abzuholen und einen Konsens zu den wichtigsten Informationen zu finden. „Im Projekt haben wir 23 Stakeholder-Gruppen identifiziert, für die wir die jeweiligen Bedürfnisse abfragen. Und das für alle drei Sektoren“, erklärt Wagner. „Bei uns sind Materialproduzent*innen, Elektronikhersteller*innen- sowie Reparateur*innen und Recyclingverbände an Bord.“ Die Ergebnisse dieser Konsultationen werden dann an die EU-Kommission weitergegeben und dienen den aktuellen politischen Aktivitäten als Orientierung, welche in Zukunft die gesetzlichen Anforderungen hinsichtlich des Produktpasses festlegen. Besonders berücksichtigt und gefördert werden sollen hier auch kleinere und mittlere Unternehmen, für die die Bereitstellung zusätzlicher Informationen einen hohen Mehraufwand darstellen kann.

Quelle:

Fraunhofer – Institut für Zuverlässigkeit und Mikrointegration IZM

Foto: Claude Huniade
11.07.2023

Ionisch leitfähige Fasern als neuer Weg für intelligente und Funktionstextilien

Elektronisch leitfähige Fasern werden bereits in intelligenten Textilien verwendet, doch in einem kürzlich veröffentlichten Forschungsartikel wurde nachgewiesen, dass ionisch leitfähige Fasern von zunehmendem Interesse sind. Die sogenannten Ionenfasern sind flexibler und haltbarer und entsprechen der Art von Leitfähigkeit, die unser Körper nutzt. In Zukunft könnten sie unter anderem für Textilbatterien, Textildisplays und Textilmuskeln verwendet werden.

Das Forschungsprojekt wird von dem Doktoranden Claude Huniade an der Universität Borås durchgeführt und ist Teil eines größeren Projekts, Weafing. Sein Ziel es ist, neuartige, noch nie dagewesene Kleidungsstücke für haptische Stimulation zu entwickeln, die flexible und tragbare textile Aktoren und Sensoren, einschließlich Steuerelektronik, als eine neue Art von textilbasierter Großflächenelektronik umfassen.

Elektronisch leitfähige Fasern werden bereits in intelligenten Textilien verwendet, doch in einem kürzlich veröffentlichten Forschungsartikel wurde nachgewiesen, dass ionisch leitfähige Fasern von zunehmendem Interesse sind. Die sogenannten Ionenfasern sind flexibler und haltbarer und entsprechen der Art von Leitfähigkeit, die unser Körper nutzt. In Zukunft könnten sie unter anderem für Textilbatterien, Textildisplays und Textilmuskeln verwendet werden.

Das Forschungsprojekt wird von dem Doktoranden Claude Huniade an der Universität Borås durchgeführt und ist Teil eines größeren Projekts, Weafing. Sein Ziel es ist, neuartige, noch nie dagewesene Kleidungsstücke für haptische Stimulation zu entwickeln, die flexible und tragbare textile Aktoren und Sensoren, einschließlich Steuerelektronik, als eine neue Art von textilbasierter Großflächenelektronik umfassen.

WEAFING steht für Wearable Electroactive Fabrics Integrated in Garments. Das Projekt startete am 1. Januar 2019 und endete am 30. Juni 2023.

Diese Wearables basieren auf einer neuen Art von Textilmuskeln, deren Garne mit elektromechanisch aktiven Polymeren beschichtet sind und sich zusammenziehen, wenn eine niedrige Spannung angelegt wird. Textilmuskeln bieten eine völlig neue und sehr unterschiedliche Qualität haptischer Empfindungen und sprechen auch Rezeptoren unseres taktilen Sinnessystems an, die nicht auf Vibration, sondern auf sanften Druck oder Schlag reagieren.

Da es sich um textile Materialien handelt, bieten sie zudem eine neue Möglichkeit, tragbare Haptik zu entwerfen und herzustellen. Sie können nahtlos in Stoffe und Kleidungsstücke integriert werden. Für diese neuartige Form der textilen Muskeln ist eine große Bandbreite an haptischen Anwendungsmöglichkeiten abzusehen: für Ergonomie, Bewegungscoaching im Sport oder Wellness, zur Unterstützung von Virtual- oder Augmented-Reality-Anwendungen in Spielen oder zu Trainingszwecken, zur Inklusion von sehbehinderten Menschen durch Informationen über ihre Umgebung, zur Stressreduktion oder sozialen Kommunikation, für anpassungsfähige Möbel, die Automobilindustrie und vieles mehr.

Im Projekt von Claude Huniade geht es darum, leitfähige Garne ohne leitfähige Metalle herzustellen.

„In meiner Forschung geht es um die Herstellung elektrisch leitfähiger Textilfasern - letzendlich von Garnen - durch die nachhaltige Beschichtung handelsüblicher Garne mit Nicht-Metallen. Die größte Herausforderung besteht darin, ein Gleichgewicht zwischen der Beibehaltung der textilen Eigenschaften und dem Hinzufügen der leitenden Eigenschaft zu finden“, so Claude Huniade.

Ionofasern könnten als Sensoren verwendet werden, da ionische Flüssigkeiten empfindlich auf ihre Umgebung reagieren. So können die Ionenfasern beispielsweise Änderungen der Luftfeuchtigkeit, aber auch jede Dehnung oder jeden Druck, dem sie ausgesetzt sind, wahrnehmen.

„Ionofasern könnten wirklich herausragen, wenn sie mit anderen Materialien oder Geräten kombiniert werden, die Elektrolyte benötigen. Ionofasern ermöglichen es, dass bestimmte Phänomene, die derzeit nur in Flüssigkeiten möglich sind, auch in der Luft auf leichtgewichtige Weise realisiert werden können. Die Anwendungsmöglichkeiten sind vielfältig und einzigartig, zum Beispiel für Textilbatterien, textile Displays oder textile Muskeln“, so Claude Huniade.

Weitere Forschung ist erforderlich
Es sind noch weitere Forschungsarbeiten erforderlich, um die Ionenfasern mit anderen funktionellen Fasern zu kombinieren und spezielle textile Produkte herzustellen.

Wie unterscheiden sie sich von herkömmlichen elektronisch leitfähigen Fasern?

„Im Vergleich zu elektronisch leitfähigen Fasern unterscheiden sich Ionofasern dadurch, wie sie Elektrizität leiten. Sie sind weniger leitfähig, bringen aber andere Eigenschaften mit, die elektronisch leitfähigen Fasern oft fehlen. Ionofasern sind flexibler und haltbarer und entsprechen der Art der Leitung, die unser Körper verwendet. Sie entsprechen sogar besser als elektronisch leitende Fasern der Art, wie Elektrizität in der Natur vorkommt“, schloss er.

Derzeit liegt die Einzigartigkeit seiner Forschung in den Beschichtungsstrategien. Diese Methoden umfassen sowohl die Verfahren als auch die verwendeten Materialien.

Verwendung von ionischen Flüssigkeiten
Eine der Spuren, die er verfolgt, betrifft eine neue Art von Material als Textilbeschichtung, nämlich ionische Flüssigkeiten in Kombination mit handelsüblichen Textilfasern. Genau wie Salzwasser leiten sie Strom, aber ohne Wasser. Ionische Flüssigkeiten sind stabilere Elektrolyte als Salzwasser, da nichts verdunstet.

„Der Faktor der Verarbeitbarkeit ist eine wichtige Voraussetzung, da die Textilproduktion Fasern stark beansprucht, vor allem, wenn sie in größerem Maßstab eingesetzt werden. Die Fasern können auch zu Geweben oder Gewirken verarbeitet werden, ohne dass sie mechanisch beschädigt werden, wobei ihre Leitfähigkeit erhalten bleibt. Überraschenderweise ließen sie sich sogar glatter zu Stoffen verarbeiten als die handelsüblichen Garne, aus denen sie hergestellt werden“, erklärte Claude Huniade.

Quelle:

University of Borås

Funktionelle Textilien - eine Alternative zu Antibiotika University of Borås
04.07.2023

Funktionelle Textilien - eine Alternative zu Antibiotika

Tuser Biswas forscht mit dem Ziel, moderne medizinische Textilien zu entwickeln, die sowohl der Umwelt als auch der menschlichen Gesundheit zugutekommen. Textilien mit antimikrobiellen Eigenschaften könnten den Einsatz von Antibiotika verringern.

Tuser Biswas forscht mit dem Ziel, moderne medizinische Textilien zu entwickeln, die sowohl der Umwelt als auch der menschlichen Gesundheit zugutekommen. Textilien mit antimikrobiellen Eigenschaften könnten den Einsatz von Antibiotika verringern.

Seine Arbeit umfasst Forschungs- und Lehrtätigkeiten auf dem Gebiet der textilen Materialtechnologie. Das aktuelle Forschungsvorhaben befasst sich mit dem ressourceneffizienten Tintenstrahldruck von Funktionsmaterialien auf verschiedenen textilen Oberflächen für fortschrittliche Anwendungen.
 
Die konventionelle Textilindustrie verschlingt natürliche Ressourcen in Form von Wasser, Energie und Chemikalien. Eine ressourceneffizientere Art, Textilien herzustellen, ist der Tintenstrahldruck. Tuser Biswas, der vor kurzem seine Doktorarbeit im Fachbereich Textile Materialtechnologie verteidigt hat, versucht, Methoden für funktionelle Textilien zu entwickeln. Er hat gezeigt, dass es möglich ist, Enzyme auf Textilien zu drucken. Enzyme sind Proteine, die im Körper als Katalysatoren fungieren, da sie chemische Prozesse in Gang setzen, ohne sich selbst zu verändern. Sie könnten zum Beispiel in Medizintextilien mit antimikrobiellen Eigenschaften oder zur Messung biologischer oder chemischer Reaktionen eingesetzt werden.

„Seit der industriellen Revolution verwendet unsere Gesellschaft eine Fülle von synthetischen und aggressiven Chemikalien. Unsere Forschung zielt darauf ab, diese Chemikalien durch umweltfreundliche und biobasierte Materialien zu ersetzen“, so Tuser Biswas.
 
Vielversprechende Ergebnisse mit Enzymen auf Textilien
Es war nicht ganz einfach, eine gute Enzymtinte zu entwickeln, und es bedurfte mehrerer Versuche, bis er schließlich zu seiner großen Freude erfolgreiche Ergebnisse erzielte. Tuser Biswas erklärte, das wichtigste Ergebnis sei der Nachweis, dass ein gedrucktes Enzym ein anderes Enzym an die Oberfläche eines Stoffes binden könne. Obwohl die Aktivität der Enzyme nach dem Druck um 20-30 Prozent abnahm, sind die Ergebnisse dennoch vielversprechend für zukünftige Anwendungen. Gleichzeitig hat die Arbeit neue Erkenntnisse zu vielen grundlegenden Fragen des Druckens von Biomaterialien auf Gewebe geliefert.

„Bevor wir mit dem Projekt begannen, fanden wir mehrere ähnliche Studien, die sich auf die Herstellung eines fertigen Produkts konzentrierten. Aber wir wollten die grundlegenden Herausforderungen dieses Themas untersuchen, und jetzt wissen wir, wie es funktionieren kann“, so Tuser Biswas.
Er bemüht sich nun um eine Finanzierung, um seine Forschungen fortzusetzen, und hat bisher einen Zuschuss von der Sjuhärad-Sparkassen-Stiftung erhalten. Während der Tage des Wissens im April 2023 präsentierte er seine Forschungsergebnisse vor Vertretern der Stadt Borås und der Wirtschaft, der Sjuhärad-Sparkassen-Stiftung und der Universität Borås.
     
Medizintextilien statt Antibiotika
Tuser Biswas hofft, dass die weitere Forschung im Bereich der Textiltechnologie Alternativen zum Einsatz von Antibiotika bieten kann. Angesichts der zunehmenden Antibiotikaresistenz ist dies nicht nur lokal, sondern weltweit ein wichtiges Thema.

„Anstatt den Patienten mit Antibiotika zu behandeln, kann man präventiv und effektiver handeln, indem man die Bakterien an der Oberfläche schädigt, wo sie zu wachsen beginnen. Zum Beispiel in einem Wundverband. Antimikrobielle Mittel auf Nanopartikelbasis können das Wachstum wirksam reduzieren. Dies ist möglich, da Nanopartikel besser mit der Bakterienmembran interagieren können und das Ziel leichter erreichen als herkömmliche Antimikrobiotika."

Quelle:

Lina Färm. University of Borås. Übersetzung ins Deutsche Textination.

Fadenähnliche Pumpen können in Kleidung eingewebt werden (c) LMTS EPFL
27.06.2023

Fadenähnliche Pumpen können in Kleidung eingewebt werden

Forscher der Ecole Polytechnique Fédérale de Lausanne (EPFL) haben faserähnliche Pumpen entwickelt, die es ermöglichen, Hochdruck-Fluidkreisläufe in Textilien einzuweben, ohne dass eine externe Pumpe benötigt wird. Weiche, stützende Exoskelette, thermoregulierende Kleidung und immersive Haptik können so von Pumpen angetrieben werden, die in den Geweben der Vorrichtungen selbst eingenäht sind.

Viele flüssigkeitsbasierte, tragbare Hilfstechnologien benötigen heute eine große und laute Pumpe, die unpraktisch - wenn nicht gar unmöglich - in die Kleidung integriert werden kann. Dies führt zu einem Widerspruch: Tragbare Geräte sind routinemäßig an untragbare Pumpen gebunden. Forscher des Soft Transducers Laboratory (LMTS) an der School of Engineering haben nun eine elegante und einfache Lösung für dieses Dilemma entwickelt.

Forscher der Ecole Polytechnique Fédérale de Lausanne (EPFL) haben faserähnliche Pumpen entwickelt, die es ermöglichen, Hochdruck-Fluidkreisläufe in Textilien einzuweben, ohne dass eine externe Pumpe benötigt wird. Weiche, stützende Exoskelette, thermoregulierende Kleidung und immersive Haptik können so von Pumpen angetrieben werden, die in den Geweben der Vorrichtungen selbst eingenäht sind.

Viele flüssigkeitsbasierte, tragbare Hilfstechnologien benötigen heute eine große und laute Pumpe, die unpraktisch - wenn nicht gar unmöglich - in die Kleidung integriert werden kann. Dies führt zu einem Widerspruch: Tragbare Geräte sind routinemäßig an untragbare Pumpen gebunden. Forscher des Soft Transducers Laboratory (LMTS) an der School of Engineering haben nun eine elegante und einfache Lösung für dieses Dilemma entwickelt.

„Wir präsentieren die weltweit erste Pumpe in Form einer Faser, also eines Schlauches, der seinen eigenen Druck und Durchfluss erzeugt“, so LMTS-Chef Herbert Shea. "Jetzt können wir unsere Faserpumpen direkt in Textilien und Kleidung einnähen und herkömmliche Pumpen hinter uns lassen." Die Forschungsergebnisse wurden in der Zeitschrift Science veröffentlicht.

Leicht, leistungsstark ... und waschbar
Sheas Labor hat eine lange Tradition in der zukunftsweisenden Fluidik. Im Jahr 2019 stellten sie die erste dehnbare Pumpe der Welt her.

„Diese Arbeit baut auf unserer vorherigen Generation von Soft-Pumpen auf“, erläutert Michael Smith, ein LMTS-Post-Doktorand und Hauptautor der Studie. „Das Faserformat ermöglicht es uns, leichtere und leistungsstärkere Pumpen herzustellen, die besser mit tragbarer Technologie kompat-bel sind.“

Die LMTS-Faserpumpen nutzen ein Prinzip namens Ladungsinjektion-Elektrohydrodynamik (EHD), um einen Flüssigkeitsstrom ohne bewegliche Teile zu erzeugen. Zwei schraubenförmige Elektroden, die in die Pumpenwand eingebettet sind, ionisieren und beschleunigen die Moleküle einer speziellen, nicht leitenden Flüssigkeit. Die Ionenbewegung und die Form der Elektroden erzeugen einen Netto-Fluidstrom, der geräuschlos und ohne Vibrationen arbeitet und nur ein handtellergroßes Netzteil und eine Batterie benötigt.

Um die einzigartige Struktur der Pumpe zu erreichen, entwickelten die Forscher ein neuartiges Herstellungsverfahren, bei dem Kupferdrähte und Polyurethanfäden um einen Stahlstab gewickelt und dann durch Hitze verschmolzen werden. Nachdem der Stab entfernt wurde, können die 2 mm dicken Fasern mit herkömmlichen Web- und Nähtechniken in Textilien integriert werden.

Die einfache Konstruktion der Pumpe hat eine Reihe von Vorteilen. Die benötigten Materialien sind preiswert und leicht verfügbar, der Herstellungsprozess lässt sich leicht skalieren. Da die Höhe des von der Pumpe erzeugten Drucks direkt mit ihrer Länge zusammenhängt, können die Schläuche auf die jeweilige Anwendung zugeschnitten werden, um die Leistung zu optimieren und gleichzeitig das Gewicht zu minimieren. Die robuste Konstruktion kann auch mit herkömmlichen Waschmitteln gereinigt werden.

Vom Exoskelett zur virtuellen Realität
Die Autoren haben bereits gezeigt, wie diese Faserpumpen in neuen und spannenden tragbaren Technologien eingesetzt werden können. So können sie beispielsweise heiße und kalte Flüssigkeiten durch Kleidungsstücke zirkulieren lassen, die in Umgebungen mit extremen Temperaturen oder in therapeutischen Umgebungen zur Behandlung von Entzündungen und sogar zur Optimierung sportlicher Leistungen eingesetzt werden.

„Diese Anwendungen erfordern ohnehin lange Schläuche, und in unserem Fall sind die Schläuche die Pumpe. Das bedeutet, dass wir sehr einfache und leichte Flüssigkeitskreisläufe herstellen können, die bequem und angenehm zu tragen sind“, erklärt Smith.

In der Studie werden auch künstliche Muskeln aus Stoff und eingebetteten Faserpumpen beschrieben, die als Antrieb für weiche Exoskelette verwendet werden könnten, um Patienten beim Bewegen und Gehen zu helfen.

Die Pumpe könnte sogar eine neue Dimension in die Welt der virtuellen Realität bringen, indem sie das Temperaturempfinden simuliert. In diesem Fall tragen die Nutzer einen Handschuh mit Pumpen, die mit heißer oder kalter Flüssigkeit gefüllt sind, so dass sie die Temperaturveränderungen als Reaktion auf den Kontakt mit einem virtuellen Objekt spüren können.

Aufgepumpt für die Zukunft
Die Forscher sind bereits dabei, die Leistung ihres Geräts zu verbessern. "Die Pumpen funktionieren bereits gut, und wir sind zuversichtlich, dass wir mit weiteren Arbeiten weitere Verbesserungen in Bereichen wie Effizienz und Lebensdauer erzielen können", sagt Smith. Es wurde bereits damit begonnen, die Produktion der Faserpumpen zu erhöhen, und das LMTS plant auch, sie in komplexere tragbare Geräte einzubauen.

„Wir sind überzeugt, dass diese Innovation die Wearable Technology entscheidend verändern wird“, sagt Shea.

Weitere Informationen:
EPFL Fasern Exoskelette wearables
Quelle:

Celia Luterbacher, School of Engineering | STI
Übersetzung: Textination

Swijin Inage Swijin
20.06.2023

Innovative Sportbekleidung: Schwimmen und Rennen ohne Umziehen

Rechtzeitig für den Sommer: Das Schweizer Start-up Swijin bringt mit dem «SwimRunner» eine neue Sportbekleidungskategorie auf den Markt – ein Sport-BH mitsamt passenden Unterteilen, die sowohl als Schwimm- wie als Laufbekleidung funktionieren und im Handumdrehen trocknen. Entwickelt wurde das innovative Produkt zusammen mit Empa-Forschenden in einem Innosuisse-Projekt. Testen kann man den „SwimRunner“ dieses Wochenende am „Zurich City Triathlon“.
 
Nach dem Joggen noch schnell ins kühle Nass springen, ohne sich umziehen zu müssen? Swijin (sprich: Swie-Djin), ein neues Schweizer TechTex-Start-up, lanciert ihr erstes Produkt, den «SwimRunner»: einen Sport-BH mit Unterteilen, die sowohl als Schwimm- wie auch als Laufbekleidung fungieren und blitzschnell trocknen.

Rechtzeitig für den Sommer: Das Schweizer Start-up Swijin bringt mit dem «SwimRunner» eine neue Sportbekleidungskategorie auf den Markt – ein Sport-BH mitsamt passenden Unterteilen, die sowohl als Schwimm- wie als Laufbekleidung funktionieren und im Handumdrehen trocknen. Entwickelt wurde das innovative Produkt zusammen mit Empa-Forschenden in einem Innosuisse-Projekt. Testen kann man den „SwimRunner“ dieses Wochenende am „Zurich City Triathlon“.
 
Nach dem Joggen noch schnell ins kühle Nass springen, ohne sich umziehen zu müssen? Swijin (sprich: Swie-Djin), ein neues Schweizer TechTex-Start-up, lanciert ihr erstes Produkt, den «SwimRunner»: einen Sport-BH mit Unterteilen, die sowohl als Schwimm- wie auch als Laufbekleidung fungieren und blitzschnell trocknen.

Diese Innovation ermöglicht Frauen erstmals einen fließenden Übergang zwischen Land- und Wassersportarten, ohne die Kleidung wechseln zu müssen. So können Frauen etwa beim Wandern oder Laufen unkompliziert ins Wasser gehen. Auch Stand-Up-Paddlerinnen genießen mit dem „SwimRunner" uneingeschränkte Bewegungsfreiheit und gleichzeitig genügend Sitz, sowohl auf dem Board als auch im Wasser.
          
Wissenschaft im Dienste des Sports
Was auf den ersten Blick wie eine relativ einfache Anforderung erscheint, hat sich in der Entwicklung als äußerst komplexes Produkt herausgestellt. Im Rahmen eines Innosuisse-Projekts kam es zur Zusammenarbeit von Swijin mit der Empa-Abteilung für Biomimetische Membranen und Textilien. Unter der Leitung des Empa-Ingenieurs Martin Camenzind definierten die Forschenden zunächst die Anforderungen an das Material und den Schnitt des Sport-BHs. „Bei der Entwicklung hatten wir eine dreifache Herausforderung: Einerseits musste es die Anforderungen an einen hochbelastbaren Sport-BH an Land erfüllen. Gleichzeitig sollte aber die Kompression eines Badeanzugs im Wasser aufrechterhalten werden – und dies bei einer sehr kurzen Trocknungszeit“, sagt Camenzind.

Da es noch keine vergleichbare Bekleidung auf dem Markt gibt, entwickelte das Team auch gleich neue Tests für die Beurteilung des Hochleistungstextils. „Wir haben auch ein Mannequin entworfen: Ein Modell des weiblichen Oberkörpers, mit dem man die mechanischen Eigenschaften von BHs messen kann», erklärt der Forscher. Neben den wissenschaftlichen Erkenntnissen floss in die Produktentwicklung auch viel Kompetenz von Sportphysiologen, Textilingenieurinnen, Branchenspezialisten, Designerinnen und natürlich Athletinnen ein.

Höchste Ansprüche
Viele dieser Sportlerinnen entstammen der „Swimrun“-Szene. Swimrun ist eine schnell wachsende Abenteuersportart, die in den Schärengärten Schwedens entstanden ist. Im Gegensatz zu Triathleten, die zuerst schwimmen, dann Rad fahren und schließlich laufen, wechseln Swimrunner während des Rennens immer wieder zwischen Trailrunning und Schwimmen im offenen Wasser hin und her. Die Intensität dieser Sportart bot Swijin die optimalen Bedingungen für die Produktentwicklung – und gab auch den Namen der ersten Kollektion, „SwimRunner“. „Das Feedback der Athletinnen war mitentscheidend für den Erfolg des Produkts. Sie schwimmen und laufen oft sechs bis sieben Stunden am Stück. Als sie mit unseren Prototypen zufrieden waren, wussten wir: Der SwimRunner ist ‚ready for market‘“, sagt Swijin-Gründerin Claudia Glass.

Die Produktidee kam Claudia Glass während eines Urlaubs auf Mallorca. Bei ihren morgendlichen Läufen sehnte sie sich danach, kurz ins Meer tauchen zu können. „Sport-BHs sind aber nicht zum Schwimmen konzipiert“, erklärt die Gründerin. „Im Wasser saugen sie sich voll und trocknen aufgrund ihres dicken Kompressionsmaterials scheinbar nie. Letzten Sommer trug ich den ‚SwimRunner‘-Prototyp den ganzen Tag. Morgens lief ich mit meinem Hund zum Zürichsee und sprang hinein. Als ich wieder zu Hause ankam, hätte ich mich einfach an meinen Schreibtisch setzen können und anfangen zu arbeiten – ich war komplett trocken und fühlte mich sehr komfortabel.“
 
Design und Nachhaltigkeit
Das Jungunternehmen legt Wert darauf, Ingenieurwesen und Design zu vereinen. Swijins Kreativdirektorin Valeria Cereda sitzt im Zentrum der Weltmodestadt Mailand und lässt ihre Erfahrung mit Luxusmarken in die Ästhetik von Swijin einfließen. Als ehemalige Leistungsschwimmerin ist sie aber zugleich auf Funktionalität bedacht.

Die Hochleistungsprodukte von Swijin lassen sich nur mit synthetischen Materialien verwirklichen. Das junge Unternehmen ist entschlossen, die Umweltbelastung der Produkte auf ein Minimum zu reduzieren. Die enge Lieferkette hält den CO2-Fussabdruck gering. Die Materialien des „SwimRunner“ sind zu 100 % in der EU hergestellt und auf Qualität ausgelegt.

Herkömmliche Bekleidungsetiketten geben nur Auskunft über den Herstellungsort des Kleidungsstücks. Swijin arbeitet mit dem Anbieter Avery Dennison zusammen, um alle Produkte mit einem „Digital Identity Label“ auszustatten. Dieses bietet den Verbrauchern detaillierte Informationen über die gesamte Wertschöpfungskette, bis hin zu den Investitionen des Textilherstellers zur Verringerung des CO2-Fussabdrucks und zum Einsatz des wasserbasierten, lösemittelfreien Logos. Swijin verpackt alle Materialien in „Cradle to Cradle Gold“ zertifizierten Verpackungen, die von Voegeli AG im Emmental hergestellt werden.

Außerdem geht Swijin proaktiv die Herausforderungen am Ende des Produktlebenszyklus an. Um einer echten Kreislauffähigkeit funktionaler Textilien näher zu kommen, nimmt Swijin als Leuchtturmpartner im „Yarn-to-Yarn®“-Pilotprojekt der Rheiazymes AG teil. Dabei handelt es sich um eine Biotech-Lösung, die Mikroorganismen und Enzyme einsetzt, um aus Alttextilien direkt und klimaneutral neue Ausgangsstoffe zu generieren. Wenn Kundinnen „End-of-Life“ Swijin-Produkte zurückgeben – wofür Swijin auch Anreize bietet – können die hochwertigen Monomere in Ursprungsqualität wieder in die Lieferkette zurückgeführt werden: echte „circularity“.

„Als aufstrebende Marke haben wir die Pflicht und den Luxus, Partner auszuwählen, deren Vision und Werte mit unseren eigenen übereinstimmen“, sagt Claudia Glass. „Ich hatte ein klares Verständnis davon, welche Art von Marke ich kaufen würde, aber ich konnte sie nirgends finden. Mit Swijin fühlen wir uns verpflichtet, unsere Werte auch tatsächlich zu verwirklichen.“

Weitere Informationen:
Sportwear schwimmen BH Synthetikfasern Empa
Quelle:

Claudia Glass, Anna Ettlin, EMPA

Foto: Unsplash
13.06.2023

Umweltauswirkungen von Textilproduktion und -abfällen

  • Mit „Fast Fashion“ hat die Menge der produzierten und weggeworfenen Kleidungsstücke stark zugenommen.

„Fast Fashion“ ist das ständige Angebot an neuer Mode zu sehr niedrigen Preisen. Um die Auswirkungen auf die Umwelt anzugehen, will die EU Textilabfälle reduzieren und den Lebenszyklus und das Recycling von Textilien verbessern. Dies ist Teil des Plans, bis 2050 eine Kreislaufwirtschaft verwirklichen.

  • Mit „Fast Fashion“ hat die Menge der produzierten und weggeworfenen Kleidungsstücke stark zugenommen.

„Fast Fashion“ ist das ständige Angebot an neuer Mode zu sehr niedrigen Preisen. Um die Auswirkungen auf die Umwelt anzugehen, will die EU Textilabfälle reduzieren und den Lebenszyklus und das Recycling von Textilien verbessern. Dies ist Teil des Plans, bis 2050 eine Kreislaufwirtschaft verwirklichen.

Übermäßiger Verbrauch von natürlichen Ressourcen
Für die Herstellung von Textilien werden große Mengen Wasser sowie Flächen zum Anbau von Baumwolle und anderen Fasern benötigt. Schätzungen zufolge wurden in der weltweiten Textil- und Bekleidungsindustrie im Jahr 2015 79 Milliarden Kubikmeter Wasser verbraucht, während sich der Wasserverbrauch in der gesamten Wirtschaft der EU im Jahr 2017 auf 266 Milliarden Kubikmeter belief. Für die Herstellung eines einzigen Baumwoll-T-Shirts werden schätzungsweise 2.700 Liter Süßwasser benötigt, was der Menge entspricht, die eine Person in 2,5 Jahren trinkt.

Der Textilsektor war im Jahr 2020 die drittgrößte Quelle für Wasserverschmutzung und Flächenverbrauch. In diesem Jahr wurden im Durchschnitt neun Kubikmeter Wasser, 400 Quadratmeter Land und 391 Kilogramm Rohstoffe benötigt, um Kleidung und Schuhe für jeden EU-Bürger herzustellen.

Wasserverschmutzung
Durch die Färbung und Veredelung von Textilien im Rahmen ihrer Herstellung werden schätzungsweise rund 20 Prozent der weltweiten Wasserverschmutzung verursacht.

Etwa 35 Prozent des primären Mikroplastiks, das in die Umwelt gelangt, hat seinen Ursprung im Waschen von synthetischen Textilien. Bei einer einzigen Wäsche von Polyesterkleidung können 700.000 Mikroplastikfasern freigesetzt werden, die in die Nahrungskette gelangen können.

Der größte Teil des Mikroplastiks aus Textilien wird bei den ersten Waschgängen freigesetzt. „Fast Fashion“ basiert auf Massenproduktion, niedrigen Preisen und hohen Verkaufszahlen, was viele erste Waschgänge begünstigt.

Das Waschen synthetischer Produkte hat dazu geführt, dass sich mehr als 14 Millionen Tonnen Mikroplastik auf dem Grund der Ozeane angesammelt haben. Zusätzlich zu diesem globalen Problem hat die durch die Bekleidungsproduktion verursachte Umweltverschmutzung verheerende Auswirkungen auf die Gesundheit der Menschen, Tiere und Ökosysteme vor Ort, wo die Fabriken angesiedelt sind.

Treibhausgasemissionen
Schätzungen zufolge verursacht die Modebranche 10 Prozent der weltweiten CO₂-Emissionen – mehr als internationale Luftfahrt und Seeschifffahrt zusammen.

Nach Angaben der Europäischen Umweltagentur wurden durch den Kauf von Textilien in der EU im Jahr 2020 pro Person rund 270 Kilogramm CO₂-Emissionen verursacht. Das bedeutet, dass die in der EU verbrauchten Textilerzeugnisse Treibhausgasemissionen in Höhe von 121 Millionen Tonnen verursachten.

Textilabfälle auf Deponien
Auch die Art und Weise, wie sich die Menschen nicht mehr erwünschter Kleidung entledigen, hat sich geändert: Die Kleidungsstücke werden heute eher weggeworfen als gespendet. Weniger als die Hälfte der Altkleider wird zur Wiederverwendung oder zum Recycling gesammelt, und nur ein Prozent wird zu neuer Kleidung recycelt, da Technologien, die das Recycling von Kleidung zu neuen Fasern ermöglichen würden, erst jetzt aufkommen.

Zwischen 2000 und 2015 hat sich die Bekleidungsproduktion verdoppelt, während die durchschnittliche Nutzungsdauer eines Kleidungsstücks gesunken ist.

Die Europäer kaufen jedes Jahr fast 26 Kilogramm Textilien und werfen etwa elf Kilogramm davon weg. Altkleider können in Länder außerhalb der EU exportiert werden, werden aber größtenteils (87 Prozent) verbrannt oder landet auf Deponien.

Ausschlaggebend für den Anstieg des Verbrauchs ist das Aufkommen von „Fast Fashion“, das zum Teil durch die sozialen Medien und die Industrie vorangetrieben wird, die Modetrends schneller als in der Vergangenheit an mehr Verbraucher weitergibt.

Zu den neuen Strategien zur Bewältigung dieses Problems gehören die Entwicklung neuer Geschäftsmodelle für den Verleih von Kleidung, die Gestaltung von Produkten, die die Wiederverwendung und das Recycling erleichtern (Kreislaufmode), die Überzeugung der Verbraucher, weniger Kleidung von besserer Qualität zu kaufen („Slow Fashion“) und die allgemeine Lenkung des Verbraucherverhaltens in Richtung nachhaltigerer Optionen.

Die EU-Strategie für nachhaltige und kreislauffähige Textilien
Im Rahmen des Aktionsplans für die Kreislaufwirtschaft stellte die Europäische Kommission im März 2022 eine neue Strategie vor, um Textilien haltbarer, reparierbarer, wiederverwendbar und recycelbar zu machen, gegen „Fast Fashion“ vorzugehen und Innovationen innerhalb des Sektors zu fördern.

Die neue Strategie umfasst neue Ökodesign-Anforderungen für Textilien, klarere Informationen, einen digitalen Produktpass und eine Aufforderung an die Unternehmen, Verantwortung zu übernehmen und Maßnahmen zu ergreifen, um ihren ökologischen Fußabdruck zu minimieren.

Am 1. Juni 2023 legten die Abgeordneten des Europäischen Parlaments Vorschläge für strengere EU-Maßnahmen zur Eindämmung der übermäßigen Produktion und des Verbrauchs von Textilien vor. In dem Bericht des Parlaments wird gefordert, dass bei der Herstellung von Textilien die Menschen-, Sozial- und Arbeitsrechte sowie der Umwelt- und Tierschutz beachtet werden müssen.

Bestehende EU-Maßnahmen für Textilabfälle
Gemäß der Abfallrichtlinie, die vom Europäischen Parlament im Jahr 2018 angenommen wurde, müssen die EU-Mitgliedstaaten Textilabfälle ab 2025 getrennt sammeln. Die neue Strategie der Kommission umfasst auch Maßnahmen gegen gefährliche Chemikalien und zur Unterstützung der Verbraucher bei der Wahl nachhaltiger Textilien. Zudem werden Hersteller dazu aufgefordert, die Verantwortung für ihre Produkte entlang der Wertschöpfungskette zu übernehmen, auch wenn diese zu Abfall werden.

Mit dem EU-Umweltzeichen, das Hersteller, die ökologische Kriterien beachten, verwenden können, werden ein begrenzter Schadstoffeinsatz und geringere Wasser- und Luftverschmutzung sichergestellt.

Die EU hat auch Maßnahmen eingeführt, um die Umweltauswirkungen von Textilabfällen zu mindern. Mit dem Programm Horizont 2020 wird das Projekt RESYNTEX zur Anwendung von chemischem Recycling gefördert, das ein kreislauforientiertes Geschäftsmodell für die Textilindustrie sein könnte.

Ein nachhaltigeres Modell der Textilproduktion hat auch das Potenzial, die Wirtschaft anzukurbeln. „Europa befindet sich in einer beispiellosen Gesundheits- und Wirtschaftskrise, die zeigt, wie instabil die globalen Lieferketten sind“, sagte der federführende Europaabgeordnete Huitema. „Die Förderung neuer innovativer Geschäftsmodelle wiederum wird neues Wirtschaftswachstum und neue Beschäftigungsmöglichkeiten schaffen, die Europa für den Aufbau benötigt.“

Quelle:

Europäisches Parlament

DOMOTEX (c) Deutsche Messe AG
30.05.2023

„Die DOMOTEX ist und bleibt das Zuhause der gesamten Branche“

Interview zur Messelandschaft für Bodenbeläge in Deutschland

Die Auswirkungen der Corona-Pandemie waren in nahezu allen Bereichen des gesellschaftlichen und wirtschaftlichen Lebens spürbar. Insbesondere die Messebranche war stark betroffen, viele Veranstaltungen wurden abgesagt oder verschoben. Mit der Rückkehr zur Normalität stellt sich die Frage, welche Bedeutung Leitmessen in der Post-Corona-Ära haben werden und wie sich der Wettbewerb zwischen verschiedenen Veranstaltern entwickelt. Textination hat für seine Interviewreihe KLARTEXT bei Frau Sonia Wedell-Castellano, Global Director der DOMOTEX Events nachgefragt.

 

Interview zur Messelandschaft für Bodenbeläge in Deutschland

Die Auswirkungen der Corona-Pandemie waren in nahezu allen Bereichen des gesellschaftlichen und wirtschaftlichen Lebens spürbar. Insbesondere die Messebranche war stark betroffen, viele Veranstaltungen wurden abgesagt oder verschoben. Mit der Rückkehr zur Normalität stellt sich die Frage, welche Bedeutung Leitmessen in der Post-Corona-Ära haben werden und wie sich der Wettbewerb zwischen verschiedenen Veranstaltern entwickelt. Textination hat für seine Interviewreihe KLARTEXT bei Frau Sonia Wedell-Castellano, Global Director der DOMOTEX Events nachgefragt.

 

Nachdem die DOMOTEX pandemiebedingt 2021 und 2022 nicht stattfinden konnte, meldete sich die Messe 2023 mit einer erfolgreichen Veranstaltung wieder zurück. Dennoch hat sich die Zahl der Aussteller im Vergleich zu 2020 nahezu halbiert. Wie schätzen Sie die künftige Bedeutung von Leitmessen ein, nachdem sich die Branche über einen langen Zeitraum mit Onlinemeetings und Reisebeschränkungen arrangieren musste?

Ich denke, man darf nicht vergessen, dass es die erste DOMOTEX seit Ausbruch der Pandemie war, noch dazu während einer Zeit, in der die globale wirtschaftliche Lage eher schwierig ist. Natürlich hat diese Situation bei einigen Unternehmen für Zurückhaltung gesorgt, was eine Teilnahme an der DOMOTEX 2023 betraf, sodass wir noch nicht alle Unternehmen als Aussteller zurück auf der Messe begrüßen konnten. Zusätzlich herrschten zu Jahresbeginn, z.B. in China, noch erhebliche Reisebeschränkungen, die es unseren Ausstellern einfach erschwert haben, an einer Messe im Ausland teilzunehmen. Was unsere Erwartungen für die nächste Veranstaltung betrifft, kann ich sagen, dass viele Unternehmen – auch solche, die dieses Jahr nicht ausgestellt haben – ihr Interesse mitgeteilt haben, auf der DOMOTEX 2024 wieder dabei sein zu wollen.

Wir sind uns sicher, dass Leitmessen und Messen im Allgemeinen auch künftig von großer Bedeutung bleiben werden! Auf digitalen Events kann man vielleicht Bestandskunden pflegen, aber keine Neukunden generieren. Im Mittelpunkt der DOMOTEX stehen Produkte zum Anfassen, steht das haptische Erleben vor Ort. Das kann man nicht in die digitale Welt übertragen. Auch die zufälligen Begegnungen am Stand oder in den Hallen passiert digital nicht. Eine Messe lebt aber von der persönlichen Begegnung, dem persönlichen Austausch. Geschäfte werden zwischen Menschen, nicht zwischen Bildschirmen gemacht. Sowohl Aussteller als auch Besucher*innen haben uns ganz klar gesagt, dass sie die DOMOTEX als Präsenzmesse wollen und brauchen.

 

Der Internationalisierungsgrad der DOMOTEX-Besucher lag in den letzten drei Veranstaltungsjahren vor der Pandemie zwischen 62 und 67 Prozent; 2023 erreichte er sogar 69 Prozent. Würden Sie zustimmen, dass internationale Leitmessen in Deutschland primär nur noch eine Bedeutung für exportorientierte Unternehmen haben? Und was bedeutet das für die Wirtschaftlichkeit von Messen?

Sicherlich sind internationale Leitmessen in Deutschland gerade für exportorientierte Unternehmen besonders interessant, aber eben nicht ausschließlich. An der Wirtschaftlichkeit von Messen ändert das erstmal gar nichts. Wir erwirtschaften unseren Umsatz mit all unseren Ausstellern, unabhängig davon ob diese exportorientiert oder nur am DACH-Raum interessiert sind. Daher liegen uns zufriedene Aussteller sehr am Herzen. Und zufrieden ist ein Austeller dann, wenn er gute Geschäfte bzw. gute Kontakte auf unseren Messen knüpfen kann. Dabei kommt es immer mehr auf die richtige Qualität der Besucher*innen an, weniger auf die Quantität. Alle unsere Aussteller begrüßen internationale Besucher*innen dabei jedenfalls sehr!

 

Für die Messeausgabe 2024 hat die Deutsche Messe mitgeteilt, ihr DOMOTEX-Konzept geändert zu haben und auf jährlich unterschiedliche Schwerpunkte zu setzen: Carpet & Rugs in den ungeraden und Flooring in den geraden Jahren. Flooring umfasst Holz- und Laminatböden, Parkett, Designböden, elastische Bodenbeläge, Teppichböden, Outdoor-Böden sowie Anwendungs- und Verlegetechnik. Carpet & Rugs steht für handgefertigte Teppiche und Läufer sowie für maschinengewebte Teppiche.

Dennoch sagen Sie, dass insbesondere der Bereich Carpet & Rugs eine jährliche Präsentationsplattform benötigt, während sich der Bereich der Bodenbeläge aufgrund längerer Innovationszyklen alle zwei Jahre eine DOMOTEX als zentrale Plattform der Branche wünsche. Bedeutet das nicht eigentlich, dass die Bodenbeläge nur jedes zweite Jahr in Hannover sind, die Teppiche jedoch weiterhin jährlich in Hannover ausstellen? Könnten Sie das klarstellen?

2024 und in allen geraden Jahren findet die DOMOTEX – Home of Flooring statt: Das ist eine DOMOTEX mit allen Ausstellern, so wie wir sie aus der Vergangenheit kennen. Also von Fischgrätparkett über Outdoorbeläge bis hin zu orientalischen Teppichen und zeitgenössischen Designs – alles, unter einem Dach. In den ungeraden Jahren, also ab 2025, gibt es dann die DOMOTEX – Home of Carpets and Rugs, mit Fokus auf Anbieter abgepasster Teppiche.

Der Hintergrund ist der, dass sich die Industrie mit den Hartbelägen eine DOMOTEX alle zwei Jahre gewünscht hatte. Nach der diesjährigen DOMOTEX haben sich die Anbieter abgepasster Teppiche wiederum klar für eine jährliche Plattform ausgesprochen. Mit unserem neuen Fokusmodell erfüllen wir die Bedürfnisse, die vom Markt an uns herangetragen werden.

 

Die Messe Frankfurt hat für die Heimtextil im kommenden Jahr ein neues Produktsegment ausgerufen – interessanterweise unter dem Namen Carpets & Rugs. Während im geraden Jahr 2024 bei der DOMOTEX die Parole Flooring lautet, bietet die Heimtextil einen alternativen Messeplatz für die Teppiche. Wie beurteilen Sie diese Situation - müssen sich Aussteller nun zwischen Hannover und Frankfurt entscheiden und was bedeutet das für das geteilte Konzept?

Nein, Aussteller aus dem Bereich der Teppiche müssen sich künftig nicht zwischen Hannover und Frankfurt entscheiden – denn die DOMOTEX ist und bleibt das Zuhause der gesamten Branche, auch in den geraden Jahren! Home of Flooring bedeutet bei der DOMOTEX wie vorhin erläutert, dass wir das gesamte Spektrum aus Bodenbelägen und Teppichen darbieten.

Was aber noch wichtiger ist: Wir haben von Ausstellern, aber auch vielen Besucher*innen gespiegelt bekommen, dass sich der Markt keine weitere Aufspaltung wünscht. Durch die vielen (kleinen) Events macht sich die Bodenbelagsbranche nur selbst Konkurrenz. Plakativ ausgedrückt: Wenn auf zehn Veranstaltungen immer nur ein Teil der Aussteller teilnimmt, kann das nicht wirklich funktionieren. Es fehlt die kritische Masse. Eine Messe ist immer nur so gut wie die Teilnehmer*innen und diesen fehlt oftmals die Zeit mehrere Veranstaltungen zu besuchen.     

 

Eine weitere Neuerung für die DOMOTEX ist der Länderfokus. Was versprechen Sie sich davon und warum fiel Ihre Wahl für 2024 auf „Insight Italy“?

Mit unserer neuen Sonderschau möchten wir die Neugier unserer Besucher*innen – vor allem bei Handel, Architekten und Objekteuren – wecken und den internationalen Charakter der DOMOTEX hervorheben. Denn was ist spannender als ein Land intensiv kennenzulernen?  

Das INSIGHT-Konzept stellt daher künftig zu jeder DOMOTEX – Home of Flooring ein anderes Land vor. Auf speziellen Ausstellungsbereichen werden Innovationen und Produkte ausgestellt, Partnerschaften mit Designern und Hochschulen präsentiert und Trends inszeniert. Zusätzlich werden in der Konferenz Einblicke in den jeweiligen Markt und Referenzen aufgezeigt.  
In 2024 starten wir mit Italien, einem sehr designaffinen und kreativen Land, aus dem viele Trends kommen.

 

Die Deutsche Messe will den Standort Hannover für die Leitmesse DOMOTEX stärken und zusätzliche Messen nur noch in Shanghai und in Gaziantep durchführen. Die Carpet Expo wird es in Istanbul nicht geben. Welchen Einfluss hat die sich verändernde Unternehmenslandschaft hinsichtlich Produktionsländern und Märkten für Ihr internationales Konzept?

Zunächst einmal muss man festhalten, dass sich in der Türkei die Unternehmenslandschaft für Teppiche nicht geändert hat. Hier haben sich lediglich die Verbände dazu entschieden, künftig in Istanbul eine Teppichmesse zu veranstalten. Hintergrund ist die anhaltende Visaproblematik für türkische Aussteller in Deutschland sowie die immens hohe Inflation in der Türkei, die eine Auslandsbeteiligung extrem kostspielig für türkische Unternehmen macht. Wir hätten gern gemeinsam mit den türkischen Verbänden eine Teppichmesse in Istanbul organisiert, aber eben nicht um jeden Preis und nicht zu allein ihren Bedingungen. Hannover ist und bleibt die internationale Plattform der DOMOTEX und diesen Standort werden wir weiter stärken.

Wir beobachten darüber hinaus aber natürlich den weltweiten Markt und halten Augen und Ohren stets offen, für alle unsere Marken im Übrigen. Nur so konnte seinerzeit auch eine heute sehr erfolgreiche DOMOTEX asia/Chinafloor in Shanghai entstehen. Das Potenzial war da, wir waren zur rechten Zeit am rechten Ort. Hätten wir die Chance seinerzeit nicht ergriffen, gäbe es nun in Shanghai dennoch eine starke Bodenbelagsmesse – nur eben von einem unserer Wettbewerber und sie hieße heute nicht DOMOTEX.

Vielen Dank an Frau Sonia Wedell-Castellano für den KLARTEXT.

Abtrennen von Mikroplastik Foto: H & M Foundation
22.05.2023

Schallwellen filtern Mikroplastik aus Abwässern

Die vom Hong Kong Research Institute of Textiles and Apparel (HKRITA) mit Unterstützung der H&M Foundation entwickelte Technologie kann mithilfe von Schallwellen Mikroplastik aus dem Abwasser herausfiltern. Acousweep ist eine Plug-and-Play- Anwendung. Sie lässt sich leicht transportieren und an jede Abwasseranlage anschließen. Wenn die Technologie im industriellen Maßstab eingesetzt wird, wird sie einen erheblichen Einfluss auf den nachhaltigen Fußabdruck der Modeindustrie haben.
 

Die vom Hong Kong Research Institute of Textiles and Apparel (HKRITA) mit Unterstützung der H&M Foundation entwickelte Technologie kann mithilfe von Schallwellen Mikroplastik aus dem Abwasser herausfiltern. Acousweep ist eine Plug-and-Play- Anwendung. Sie lässt sich leicht transportieren und an jede Abwasseranlage anschließen. Wenn die Technologie im industriellen Maßstab eingesetzt wird, wird sie einen erheblichen Einfluss auf den nachhaltigen Fußabdruck der Modeindustrie haben.
 
Die Verschmutzung durch Mikroplastik ist ein weltweites Problem und stellt eine Gefahr für Ökosysteme, Tiere und Menschen dar. Mikroplastik stammt aus einer Vielzahl von Quellen, u. a. aus größerem Plastikmüll, der sich in immer kleinere Teile auflöst, oder aus Mikroperlen in Gesundheits- und Kosmetikprodukten oder Reinigungsmitteln wie Zahnpasta. Nach Angaben der Europäischen Umweltagentur stammt die Hauptquelle der Verschmutzung der Ozeane durch Mikroplastik, etwa 16 % bis 35 % weltweit, aus synthetischen Textilien.

Professorin Christine Loh, leitende Entwicklungsstrategin am Institute for the Environment, The Hong Kong University of Science and Technology, teilt die Ansicht, dass diese Technologie großes Potenzial hat.
Mikroplastik sind nach der Definition des Umweltprogramms der Vereinten Nationen (UNEP) und der Europäischen Union (EU) in der Regel winzige Kunststoffteile oder -partikel mit einem Durchmesser von weniger als 5 mm. Die neue Technologie kann Mikroplastikfasern mit einer Länge von mehr als 20 μm trennen, was 250-mal kleiner ist als die typische Größe. Im Gegensatz zu bestehenden Filtrationsverfahren ermöglicht das System eine kontinuierliche Wasseraufbereitung und eine einfache Sammlung von Mikroplastikfasern dank seiner akustischen Technik der Manipulation.

Acousweep nutzt schwingende akustische Wellen in einer speziell geformten Kammer, um Mikroplastikfasern physikalisch aufzufangen und effektiv vom Abwasser zu trennen. Der gesamte Prozess beruht auf einer rein physikalischen Sammlung und Trennung. Es werden keine chemischen, lösungsmittelhaltigen oder biologischen Zusatzstoffe benötigt. Das separierte Mikroplastik tropft in einen Sammeltank zur weiteren Behandlung, z. B. zum Recycling.

Das bestehende Aufbereitungssystem im Labormaßstab hat eine Kapazität von ca. 100 Litern Wasser pro Stunde und kann auf industrielle Anlagengrößen hochskaliert werden. Das System kann in einem Container mit einer Verarbeitungskapazität von 5.000 bis zu 10.000 Litern Wasser pro Stunde installiert werden. Es ist leicht transportabel und ermöglicht den Anschluss an bestehende Abwasserauslässe von Kläranlagen.
 
Verfahren zur Abtrennung von Mikroplastikfasern:

  1. An einem Ende der Kammer befindet sich ein Wandler, der eine schwingende Schallwelle mit Ultraschall-Frequenzen erzeugt. Am anderen Ende befindet sich ein Reflektor, von dem die Schallwellen reflektiert werden und stehende Wellen bilden.
  2. Wenn stehende Wellen auf die Teilchen in einer Flüssigkeit einwirken, werden die Teilchen durch akustische Strahlungswirkung festgehalten.
  3. Die stehenden Wellen übertragen dann die eingeschlossenen Partikel auf die Reflektorseite; danach konzentrieren sich die Partikel an der Spitze des Reflektors.
  4. An der Spitze befindet sich ein Nadelventil, das von einem sensorischen System gesteuert wird, das dort die Konzentration der Mikroplastikfasern überwacht. Wenn die Konzentration ausreichend hoch ist, öffnet das Sensorsystem das Nadelventil und lässt die Mikroplastikfasern in einen Auffangbehälter tropfen.
  5. Der Sammelbehälter kann mit einer hohen Temperatur betrieben werden, um das Wasser zu entfernen, so dass die Fasern agglomerieren und eine große Masse bilden, die bei einer anschließenden Aufbereitung leicht behandelt werden kann.

Die grüne Technologie hat in Hongkong gerade einen großen Sprung nach vorn gemacht. Acousweep wird der Bekleidungsindustrie und anderen Branchen helfen, eine äußerst schädliche Form der Verschmutzung zu stoppen. HKRITA hat eine neue Technik zur Beseitigung von Mikroplastik mit Hilfe eines schallwellenbasierten Systems entwickelt, das verhindert, dass es ins Meer gelangt und von Meeresbewohnern aufgenommen wird, die in der Nahrungskette sogar vom Menschen verschluckt werden können. Acousweep hat das Zeug dazu, die Industrie zu revolutionieren.
Professorin Christine Loh, leitende Entwicklungsstrategin am Umwelt-Institut der Universität für Wissenschaft und Technologie in Hongkong

 

Quelle:

The Hong Kong Research Institute of Textiles and Apparel (HKRITA); H & M Foundation

Die Plasma-Atmosphäre wird im Reaktor durch das charakteristische Leuchten und das Entladen von Blitzen deutlich sichtbar. © Fraunhofer IGB Die Plasma-Atmosphäre wird im Reaktor durch das charakteristische Leuchten und das Entladen von Blitzen deutlich sichtbar.
16.05.2023

Abwasserreinigung: Plasma gegen toxische PFAS-Chemikalien

Die gesundheitsschädlichen Chemikalien PFAS sind mittlerweile in vielen Böden und Gewässern nachweisbar. Die Beseitigung mit herkömmlichen Filtertechniken ist sehr aufwendig und kaum realisierbar. Forschende des Fraunhofer-Instituts für Grenzflächen- und Bioverfahrenstechnik IGB setzen im Verbundprojekt AtWaPlas erfolgreich auf eine plasmabasierte Technologie. Kontaminiertes Wasser wird in einen kombinierten Glas- und Edelstahlzylinder eingeleitet und dort mit ionisiertem Gas – dem Plasma – behandelt. Das reduziert die Molekülketten von PFAS und ermöglicht so eine kostengünstige Beseitigung der toxischen Substanz.

Die gesundheitsschädlichen Chemikalien PFAS sind mittlerweile in vielen Böden und Gewässern nachweisbar. Die Beseitigung mit herkömmlichen Filtertechniken ist sehr aufwendig und kaum realisierbar. Forschende des Fraunhofer-Instituts für Grenzflächen- und Bioverfahrenstechnik IGB setzen im Verbundprojekt AtWaPlas erfolgreich auf eine plasmabasierte Technologie. Kontaminiertes Wasser wird in einen kombinierten Glas- und Edelstahlzylinder eingeleitet und dort mit ionisiertem Gas – dem Plasma – behandelt. Das reduziert die Molekülketten von PFAS und ermöglicht so eine kostengünstige Beseitigung der toxischen Substanz.

Per- und polyfluorierte Alkylverbindungen, kurz: PFAS (engl.: per- and polyfluoroalkyl substances), haben viele Talente. Sie sind thermisch und chemisch stabil, dabei wasser-, fett- und schmutzabweisend. Dementsprechend findet man sie in vielen alltäglichen Produkten: Pizzakartons und Backpapier sind damit beschichtet, auch Shampoos und Cremes enthalten PFAS. In der Industrie finden sie Verwendung als Lösch- und Netzmittel. In der Landwirtschaft werden sie in Pflanzenschutzmitteln verwendet. Mittlerweile lassen sich Spuren von PFAS auch da nachweisen, wo sie nicht hingehören: im Boden, in Flüssen und im Grundwasser, in Lebensmitteln und im Trinkwasser. So gelangen die schädlichen Stoffe am Ende auch in den menschlichen Körper. Wegen ihrer chemischen Stabilität ist die Beseitigung dieser auch als »Ewigkeitschemikalien« bezeichneten Substanzen bisher mit vertretbarem Aufwand kaum möglich.

Das Verbundprojekt AtWaPlas soll das ändern. Das Akronym steht für Atmosphären-Wasserplasma-Behandlung. Das innovative Projekt wird derzeit am Fraunhofer IGB in Stuttgart gemeinsam mit dem Industriepartner HYDR.O. Geologen und Ingenieure GbR aus Aachen vorangetrieben. Ziel ist die Aufbereitung und Rückgewinnung PFAS-belasteter Wässer mittels Plasma-Behandlung.
Das Forschenden-Team um Dr. Georg Umlauf, Experte für funktionale Oberflächen und Materialien, macht sich dabei die Fähigkeit von Plasma zu Nutze, die Molekülketten von Substanzen anzugreifen. Erzeugt wird das elektrisch leitfähige Gas aus Elektronen und Ionen durch Anlegen von Hochspannung. »In unseren Versuchen mit Plasma ist es gelungen, die Molekülketten von PFAS im Wasser zu verkürzen. Das ist ein wichtiger Schritt hin zu einer effizienten Beseitigung dieser hartnäckigen Schadstoffe«, freut sich Umlauf.

Wasserkreislauf im Edelstahlzylinder
Für das Verfahren nutzen die Fraunhofer-Forschenden einen zylinderförmigen Aufbau. Im Inneren befindet sich ein Edelstahlrohr und dieses dient als Masse-Elektrode des Stromkreises. Ein äußeres Kupfernetz fungiert als Hochspannungselektrode und wird zur Innenseite hin durch ein Dielektrikum aus Glas abgeschirmt. Dazwischen bleibt ein winziger Spalt, der mit einem Luft-Gemisch gefüllt ist. Durch Anlegen von mehreren Kilovolt Spannung verwandelt sich dieses Luft-Gemisch in Plasma. Für das menschliche Auge wird es durch das charakteristische Leuchten und das Entladen in Form von Blitzen sichtbar.

Im Reinigungsprozess wird das mit PFAS kontaminierte Wasser am Boden des Stahltanks eingeleitet und nach oben gepumpt. Im Spalt zwischen den Elektroden fließt es nach unten und durchquert dabei die elektrisch aktive Plasma-Atmosphäre. Beim Entladen bricht das Plasma die PFAS-Molekülketten auf und verkürzt sie. Das Wasser wird in einem geschlossenen Kreislauf immer wieder durch den stählernen Reaktor und die Plasma-Entladezone im Spalt gepumpt, jedes Mal werden die PFAS-Molekülketten weiter reduziert bis zu einer vollständigen Mineralisierung. »Im Idealfall werden die schädlichen PFAS-Stoffe so gründlich beseitigt, dass sie in massenspektrometischen Messungen nicht mehr nachweisbar sind. Damit werden auch die strengen Regularien der Trinkwasserverordnung in Bezug auf die PFAS-Konzentration erfüllt«, sagt Umlauf.

Gegenüber herkömmlichen Methoden wie beispielsweise der Filterung mit Aktivkohle weist die am Fraunhofer IGB entwickelte Technologie einen entscheidenden Vorteil auf: »Aktivkohlefilter können die schädlichen Stoffe zwar binden, sie aber nicht beseitigen. Somit müssen die Filter regelmäßig ausgetauscht und entsorgt werden. Die AtWaPlas-Technologie dagegen kann die schädlichen Substanzen rückstandsfrei eliminieren und arbeitet dabei sehr effizient und wartungsarm«, erläutert Fraunhofer-Experte Umlauf.

Echte Wasserproben statt synthetischer Laborprobe
Um echte Praxisnähe zu gewährleisten, testen die Fraunhofer-Forschenden die Plasma-Reinigung gewissermaßen unter erschwerten Bedingungen. Konventionelle Testverfahren arbeiten mit perfekt sauberem Wasser und im Labor synthetisch angerührten PFAS-Lösungen. Das Forschenden-Team in Stuttgart dagegen verwendet echte Wasserproben, die aus PFAS-kontaminierten Gebieten stammen. Die Proben werden vom Projektpartner HYDR.O. Geologen und Ingenieure GbR aus Aachen zugeliefert. Das Unternehmen hat sich auf Altlastensanierung spezialisiert und führt daneben hydrodynamische Simulationen durch.

Die realen Wasserproben, mit denen Umlauf und sein Team arbeiten, enthalten daher neben PFAS auch weitere Partikel, Schwebstoffe und organische Trübungen. »Auf diese Weise stellen wir sicher, dass AtWaPlas seinen Reinigungseffekt nicht nur mit synthetischen Laborproben, sondern auch unter realen Bedingungen mit wechselnden Wasserqualitäten unter Beweis stellt. Zugleich können wir die Prozessparameter laufend anpassen und weiterentwickeln«, erklärt Umlauf.

Die Plasma-Methode lässt sich auch für den Abbau anderer schädlicher Substanzen einsetzen. Darunter fallen etwa Rückstände von Medikamenten im Abwasser, Pestizide und Herbizide, aber auch Industriechemikalien wie Cyanide. Daneben kommt AtWaPlas auch für die umweltschonende und kostengünstige Aufbereitung von Trinkwasser in mobilen Anwendungen infrage.

Das Verbundprojekt AtWaPlas startete im JuIi 2021. Nach den erfolgreichen Versuchsreihen im Technikums-Maßstab mit einem 5-Liter-Reaktor arbeitet das Fraunhofer-Team gemeinsam mit dem Verbundpartner daran, das Verfahren weiter zu optimieren. Georg Umlauf sagt: »Unser Ziel ist es jetzt, toxische PFAS durch verlängerte Prozesszeiten und mehr Umläufe im Tank vollständig zu eliminieren und die AtWaPlas-Technologie auch für die praktische Anwendung im größeren Maßstab verfügbar zu machen.« Zukünftig könnten entsprechende Anlagen auch als eigenständige Reinigungsstufe in Klärwerken aufgestellt werden oder in transportablen Containern auf kontaminierten Freilandflächen zum Einsatz kommen.

Quelle:

Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

(c) Fraunhofer IBMT
10.05.2023

Mit Textilelektroden Muskel-Tremor stoppen

Wissenschaftler des Fraunhofer-Instituts für Biomedizinische Technik IBMT haben gemeinsam mit internationalen Verbundpartnern eine Technologie-Plattform entwickelt, die Menschen mit Muskelzittern künftig helfen soll, den Tremor zu stoppen. Winzige biokompatible Elektroden in der Muskulatur bilden gemeinsam mit externen Elektroden und Controllern ein intelligentes Netzwerk aus Sensoren und Aktoren, das Muskelsignale detektiert und bei Bedarf elektrische Stimuli setzt. In Kombination mit Exoskeletten könnte die Technologie auch Menschen mit Verletzungen des Rückenmarks unterstützen.

Wissenschaftler des Fraunhofer-Instituts für Biomedizinische Technik IBMT haben gemeinsam mit internationalen Verbundpartnern eine Technologie-Plattform entwickelt, die Menschen mit Muskelzittern künftig helfen soll, den Tremor zu stoppen. Winzige biokompatible Elektroden in der Muskulatur bilden gemeinsam mit externen Elektroden und Controllern ein intelligentes Netzwerk aus Sensoren und Aktoren, das Muskelsignale detektiert und bei Bedarf elektrische Stimuli setzt. In Kombination mit Exoskeletten könnte die Technologie auch Menschen mit Verletzungen des Rückenmarks unterstützen.

Ein kompakter Controller am Gürtel oder unter der Jacke, ein paar unauffällige Textilelektroden an Armen und Beinen und drei Zentimeter lange und knapp einen Millimeter dünne Elektroden, die im Muskel platziert werden – mehr ist nicht nötig, um Menschen mit Tremorerkrankungen in Zukunft zu helfen. Immer wenn das Muskelzittern einsetzt, sendet das System elektrische Stimuli in die Muskulatur, diese werden vom Nervensystem registriert. Das Nervensystem schickt dann keine Störsignale mehr in die Muskeln, und diese beruhigen sich wieder. Das ist die Grundidee hinter der Technologie, für die Wissenschaftler des Fraunhofer IBMT gemeinsam mit Verbundpartnern ein Set aus intramuskulären und externen Elektroden sowie dazugehörigem Controller entworfen, gefertigt, integriert und in Experimenten getestet haben.

Die Wissenschaftlerinnen und Wissenschaftler können bereits konkrete Erfolge vorweisen. »In Versuchen mit Patientinnen und Patienten ist es uns gelungen, das Muskelzittern deutlich zu reduzieren«, erläutert Andreas Schneider-Ickert, Projektleiter Aktive Implantate und Innovationsmanager.

Das System ist Teil des von der EU geförderten Verbundprojekts »EXTEND«. Insgesamt neun Projektpartner aus fünf Ländern entwickeln gemeinsam eine vielseitig einsetzbare Plattform verteilter neuronaler Schnittstellen. Die Technologie kann künftig Menschen mit neuromuskulären Erkrankungen wie etwa Tremor oder auch Lähmungssymptomen helfen. Sogar Menschen mit Verletzungen des Rückenmarks könnten davon profitieren. Die Technik verknüpft die implantierten Elektroden mithilfe externer Controller zu einem intelligenten Netzwerk. Die Komponenten kommunizieren drahtlos miteinander, tauschen Daten aus, detektieren Muskelsignale und senden gezielt Stimuli in die Muskulatur. Die Stimulation über implantierte Systeme gibt es in der Medizin schon. Doch bisherige Methoden gehen mit komplexen chirurgischen Eingriffen einher, die für die Patientinnen und Patienten eine erhebliche Belastung bedeuten.

Implantate für die Mensch-Maschine-Schnittstelle
Ein zentrales Element von EXTEND sind die Implantate. Diese sind aus biokompatiblem Platin-Iridium und Silikon gefertigt. Über einen Katheter werden sie in den Muskel injiziert. Das mit drei Zentimeter Länge und knapp einem Millimeter Durchmesser winzige Implantat verfügt an beiden Enden über eine Elektrode, die jeweils als Sensor oder Aktor fungiert. Das Modul wird über externe, in Textilband eingenähte Elektroden mit Energie versorgt. Diese speisen über das Muskelgewebe gepulsten Wechselstrom an das Implantat. »Innovativ ist nicht nur das intelligente Zusammenspiel zwischen Steuerelektronik, Sensoren und Aktoren, sondern auch das Prinzip, den Wechselstrom zu modulieren, um Daten zu übermitteln«, erläutert Schneider-Ickert.

Einmal implantiert und in Betrieb genommen registrieren die Sensoren die ersten Anzeichen von Muskelzittern und geben diese Informationen an die externen Komponenten weiter. Der Controller wertet die Daten aus und schickt über die Textilelektroden Signale zur Stimulation des Muskels. Der so geschlossene Regelkreis aus intelligent vernetzten sensorischen und aktorischen Komponenten wirkt dem Tremor entgegen.

Das stimulierende Signal ist aber nicht stark genug, um beim Muskel direkt eine Kontraktion auszulösen. Vielmehr spielt das Nervensystem hier die entscheidende Rolle. Es registriert die Stimulation im Muskelgewebe und reagiert darauf, indem es die Befehle einstellt, die das Muskelzittern auslösen. So lautet zumindest die Theorie, denn bis ins Detail erforscht ist der Zusammenhang zwischen Tremor und den Signalen des Nervensystems bisher noch nicht. »Allerdings funktioniert unsere Methode in klinischen Versuchen erstaunlich gut. Die ersten Versuche haben gezeigt, dass es ausreicht, die Patientin oder den Patienten für ein oder zwei Stunden mit Stimuli zu versorgen, um die Tremor-Symptome für einen längeren Zeitraum zu reduzieren«, sagt Schneider-Ickert.

Da Tremor oftmals an beiden Armen und beiden Beinen auftritt, können in allen betroffenen Muskelgruppen Implantate injiziert und externe Textilelektroden platziert werden. So entsteht ein verteiltes Sensorik-Netzwerk. Die Controller haben alle implantierten und alle externen Elektroden gleichzeitig im Blick und können diese abgestimmt aufeinander steuern. Dies alles geschieht in Echtzeit, der Mensch nimmt keine Verzögerung wahr.

Die Technologie des Verbundprojekts EXTEND ist ebenso funktional wie klassische Implantatsysteme, aber nur minimal-invasiv und daher leichter zu akzeptieren und alltagstauglich. Das Grundkonzept stammt von einem spanischen Projektpartner. Auf dieser Basis haben die Forschenden am Fraunhofer IBMT die Elektroden und implantierbare Komponenten entworfen, im eigenen Reinraum gefertigt und integriert. Die Wissenschaftlerinnen und Wissenschaftler blicken auf eine über 25-jährige Expertise im Bereich der Neuroprothetik und aktiven Implantate zurück.

Exoskelette gegen Querschnittslähmung
Für Tremor-Patientinnen und -Patienten bedeutet EXTEND die Hoffnung auf eine deutliche Linderung der Symptome. Die Technologie-Plattform könnte aber auch Menschen mit Rückenmarksverletzungen durch motorisierte Exoskelette helfen. Möglich ist das deshalb, weil die Nervenstränge bei Lähmungen oftmals nicht vollständig gekappt sind. Sie leiten immer noch, wenn auch sehr schwach, Stimuli vom Gehirn weiter. Die Sensoren registrieren die Aktivität und leiten sie an den Controller weiter. Der analysiert alle Signale, schließt daraus, welche Bewegung der Mensch ausführen will, und aktiviert dann genau jene Prothesen, die die Muskulatur beim Ausführen der Bewegung unterstützen.

Nach den ersten erfolgreichen Tests wurden die in EXTEND eingesetzten Konzepte und Technologien stetig weiterentwickelt, miniaturisiert, optimiert und weitere Implementierungsstudien durchgeführt. Damit konnte das Projekt mit einem erfolgreichen Proof of Concept des miniaturisierten integrierten Gesamtsystems im Menschen abgeschlossen werden. Das Fraunhofer IBMT wird das in EXTEND entstandene Know-how nutzen, um seine Expertise auf dem Gebiet der neuromuskulären und neuronalen Schnittstellen weiter auszubauen.

Quelle:

Fraunhofer-Institut für Biomedizinische Technik IBMT

(c) Fraunhofer-Institut für Silicatforschung ISC
02.05.2023

Bioresorbierbare Membran: Fasern als Wirkstoffdepot

Fraunhofer-Forschenden ist es gelungen, aus bioresorbierbarem Kieselgel Renacer® eine elektroversponnene Membran herzustellen, die weder zell- noch gentoxisch ist. Diese Matrix ahmt Faserstrukturen nach, die im Bindegewebe vorkommen. Sie eignet sich daher insbesondere für regenerative Anwendungen, etwa für eine bessere Wundheilung.
 
Die Behandlung großflächiger sowie innerer Wunden ist eine Herausforderung und kann äußerst langwierig sein. Forscherinnen und Forscher des Fraunhofer-Instituts für Silicatforschung ISC und des Fraunhofer-Instituts für Toxikologie und Experimentelle Medizin ITEM haben für diesen Anwendungsbereich eine bioresorbierbare Membran entwickelt, die die Wundheilung unterstützt und sich vollständig im Körper zu einer natürlichen Substanz biologisch abbaut.

Fraunhofer-Forschenden ist es gelungen, aus bioresorbierbarem Kieselgel Renacer® eine elektroversponnene Membran herzustellen, die weder zell- noch gentoxisch ist. Diese Matrix ahmt Faserstrukturen nach, die im Bindegewebe vorkommen. Sie eignet sich daher insbesondere für regenerative Anwendungen, etwa für eine bessere Wundheilung.
 
Die Behandlung großflächiger sowie innerer Wunden ist eine Herausforderung und kann äußerst langwierig sein. Forscherinnen und Forscher des Fraunhofer-Instituts für Silicatforschung ISC und des Fraunhofer-Instituts für Toxikologie und Experimentelle Medizin ITEM haben für diesen Anwendungsbereich eine bioresorbierbare Membran entwickelt, die die Wundheilung unterstützt und sich vollständig im Körper zu einer natürlichen Substanz biologisch abbaut.

Basis für die neuartige Membran ist ein am Fraunhofer ISC entwickeltes Faservlies, das für die Regeneration von chronischen Wunden, wie dem diabetischen Fuß, bereits medizinisch zugelassen ist. Das Material löst sich im Verlauf der Wundheilung nach sechs bis acht Wochen vollständig auf. Den Faserdurchmesser von 50 Mikrometer konnten die Forschenden um mehr als das 50fache verringern, sodass die Fasern nun Durchmesser von weniger als einem Mikrometer aufweisen. Dabei wendete das Team die Methode des Elektrospinnens an. Auf diese Weise konnten die Forschenden ein Kieselgelsol zu einer engmaschigen Kieselgelmembran aus Fasern mit einem Durchmesser von ca. einem Mikrometer verspinnen. Teilweise erzielten sie sogar Durchmesser von lediglich 100 Nanometern. »Diese Fasersysteme ahmen die extrazelluläre Matrix, also Faserstrukturen, die im Bindegewebe vorkommen, im Körper nach und werden von humanen Zellen sehr gut zur Regeneration angenommen. Sie verursachen keine Fremdkörperreaktionen und keine inneren Vernarbungen. Die neuartige Kieselgelmembran setzt nur ein Degradationsprodukt frei, die Monokieselsäure, die im Körper regenerierend wirkt und das Schließen von Wunden fördert«, erläutert Dr. Bastian Christ, Wissenschaftler am Fraunhofer ISC in Würzburg. Mit seinen Kolleginnen und Kollegen kümmerte er sich um die Synthese und die Verarbeitung des Materials.
 
»Während das ursprüngliche Faservlies aus 50 Mikrometer dicken Fasern von außen in eine chronische Wunde eingebracht wird, eignet sich das dünnere Faservlies auch für innere Anwendungen. Füllmaterial, das für Knochendefekte im Kiefer genutzt wird, könnte theoretisch damit abgedeckt werden, um so die Wundheilung zu beschleunigen«, beschreibt Dr. Christina Ziemann, Wissenschaftlerin am Fraunhofer ITEM und für die biologische Evaluierung des Materials zuständig, eine von vielen Einsatzmöglichkeiten. »Prinzipiell lässt sich die Membran im Körper mit bioabbaubaren Klebstoffen verkleben.«

Material ist weder zell- noch gentoxisch
Mittels eines Konfokalmikroskops, eines speziellen Lichtmikroskops, konnte gezeigt werden, dass die engmaschige Membran, die als Demonstrator vorliegt, über eine Barrierefunktion verfügt, die den Durchtritt von Bindegewebszellen über die Dauer von mindestens sieben Tagen verhindert, ohne die Zellen generell vom Wachstum abzuhalten. Darüber hinaus ist die Membran resorbierbar und weist keine Zyto- oder Gentoxizität auf, sie verursacht also weder direkte Schäden am Gewebe noch an der DNA.

Faserdurchmesser und Maschenweite beeinflussen das Verhalten der Zellen
Für die Anwendung als Adhäsionsbarriere, um postoperative Verwachsungen und Narbenbildung zu vermeiden, wurde ein dünner Faserdurchmesser mit dünnen Maschen gewählt, sodass nur Nährstoffe das Faservlies passieren konnten – jedoch keine Bindegewebszellen. Bei einem Faserdurchmesser von einem Mikrometer und entsprechend weiteren Maschen hingegen wachsen die Zellen in das Fasergeflecht ein, vermehren sich dort und wirken regenerierend auf das umliegende Gewebe. »Durch Einstellen der Materialeigenschaften wie Faserdurchmesser und Maschenweite können wir das Verhalten der Zellen wunschgemäß beeinflussen«, sagt Christ. Für das Verspinnen der Fasern werden die erforderlichen Anlagen am Fraunhofer ISC anwendungsgerecht und kundenspezifisch konstruiert. Auch die Form und Größe der Faservliese lassen sich kundenspezifisch anpassen.

Im Gegensatz zur Membran, die direkt nach dem Aufbringen aufgrund ihrer offenmaschigen Natur einen Nährstofftransport, nicht aber einen Zelldurchtritt erlaubt, ermöglichen viele am Markt erhältliche Produkte einen derartigen Stofftransport oft erst nach der Biodegradation, bzw. nach beginnender Degradation. Eine schnelle und effektive Wundheilung ist aber nur möglich, wenn das verwundete Gewebe ausreichend mit Nährstoffen versorgt wird. Gleichzeitig müssen Stoffwechselprodukte abtransportiert werden, was durch die offene Maschenstruktur der Kieselgelmembran gefördert wird.

Membran mit anorganischem Charakter
Ein weiterer Vorteil: Die Renacer®-Membran löst sich vollständig auf und zersetzt sich fast pH-neutral zu untoxischer Monokieselsäure, die einzige wasserlösliche Form von Kieselsäuren. Sie ist nativ im Körper vorhanden und stimuliert nachweislich den Bindegewebsaufbau in der Haut und den Knochenaufbau. Über solche Eigenschaften verfügen bislang erhältliche Produkte nicht. Viele biodegradierbare Materialien lösen sich zu organischen Säuren, wie Milchsäure oder Glykolsäure, auf. Dadurch können lokale Übersäuerungen im Gewebe entstehen und diese dann entzündliche Reaktionen des Immunsystems auslösen. »Unsere Tests haben gezeigt, dass auch das Auflösungsprodukt, die Monokieselsäure, nicht toxisch und komplett zellverträglich ist«, so Ziemann. »Die Membran zersetzt sich zu einem einzigen Molekül – der Monokieselsäure.«

Fasern als Wirkstoffdepot
Darüber hinaus können Wirkstoffe in das Faservlies integriert werden, die mit der Auflösung des Materials freigesetzt werden. »Während der Resorption könnte beispielsweise ein Antibiotikum auf eine Wunde im Körper abgegeben werden, damit sich keine Bakterienherde bilden können«, erläutert Christ. Am Fraunhofer ISC wird im BMBF-geförderten Projekt »GlioGel« geprüft, ob sich die Renacer®-Materialplattform als Wirkstoffdepot zur Behandlung von Hirntumoren eignet.
Quelle: Fraunhofer-Institut für Silicatforschung ISC

Quelle:

Fraunhofer-Institut für Silicatforschung ISC

intelligente Textilien (c) Sanghyo Lee
24.04.2023

Kostengünstigere Verfahren zur Herstellung gewebter Displays und intelligenter Textilien

Forscher haben intelligente Textilien der nächsten Generation entwickelt, die mit LEDs, Sensoren, Energiegewinnung und -speicherung ausgestattet sind. Diese Textilien können kostengünstig in jeder Form und Größe auf herkömmlichen industriellen Webstühlen hergestellt werden, wie sie auch für die Herstellung von Alltagskleidung verwendet werden.
 
Ein internationales Team unter der Leitung der Universität Cambridge hatte in der Vergangenheit bereits gezeigt, dass gewebte Displays in großen Größen produziert werden können, aber diese früheren Beispiele wurden mit speziellen manuellen Laborgeräten hergestellt. Andere intelligente Textilien können in spezialisierten mikroelektronischen Produktionsanlagen hergestellt werden, die jedoch sehr teuer sind und große Mengen an Abfall produzieren.

Forscher haben intelligente Textilien der nächsten Generation entwickelt, die mit LEDs, Sensoren, Energiegewinnung und -speicherung ausgestattet sind. Diese Textilien können kostengünstig in jeder Form und Größe auf herkömmlichen industriellen Webstühlen hergestellt werden, wie sie auch für die Herstellung von Alltagskleidung verwendet werden.
 
Ein internationales Team unter der Leitung der Universität Cambridge hatte in der Vergangenheit bereits gezeigt, dass gewebte Displays in großen Größen produziert werden können, aber diese früheren Beispiele wurden mit speziellen manuellen Laborgeräten hergestellt. Andere intelligente Textilien können in spezialisierten mikroelektronischen Produktionsanlagen hergestellt werden, die jedoch sehr teuer sind und große Mengen an Abfall produzieren.

Das Team fand heraus, wie flexible Displays und intelligente Textilien viel billiger und nachhaltiger hergestellt werden können, indem elektronische, optoelektronische, sensorische und energetische Faserkomponenten auf denselben industriellen Webstühlen gewebt werden, die auch für die Herstellung herkömmlicher Textilien verwendet werden. Die in der Fachzeitschrift Science Advances veröffentlichten Ergebnisse zeigen, wie intelligente Textilien eine Alternative zu größeren elektronischen Bauteilen in Bereichen wie Automobilbau, Elektronik, Mode und Bauwesen sein könnten.

Trotz der jüngsten Fortschritte bei der Entwicklung intelligenter Textilien sind deren Funktionalität, Abmessungen und Form durch die gegenwärtigen Herstellungsverfahren begrenzt.
„Wir könnten diese Textilien in speziellen Mikroelektronik-Anlagen herstellen, aber das erforderte Investitionen in Milliardenhöhe“, so Dr. Sanghyo Lee vom Cambridge Department of Engineering, Erstautor der Studie. „Zudem ist die Herstellung intelligenter Textilien auf diese Weise sehr begrenzt, da alles auf denselben starren Wafern hergestellt werden muss, die auch für die Herstellung integrierter Schaltkreise verwendet werden, so dass die maximale Größe, die wir erreichen können, etwa 30 Zentimeter im Durchmesser beträgt.

„Intelligente Textilien waren bisher auch durch ihre mangelnde Praxistauglichkeit eingeschränkt“, ergänzte Dr. Luigi Occhipinti, ebenfalls vom Fachbereich Ingenieurwissenschaften, der die Forschungsarbeiten mit leitete. „Man denke nur an das Biegen, Dehnen und Falten, dem normale Textilien standhalten müssen, und es war eine Herausforderung, die gleiche Haltbarkeit in intelligente Textilien zu integrieren.“

Letztes Jahr hatten einige derselben Forscher gezeigt, dass die in intelligenten Textilien verwendeten Fasern mit Materialien beschichtet werden können, die Dehnungen standhalten, so dass sie mit herkömmlichen Webverfahren kompatibel sind. Mit dieser Technik stellten sie ein gewebtes 46-Zoll-Demonstrationsdisplay her.

Jetzt haben die Forscher gezeigt, dass intelligente Textilien in automatisierten Prozessen hergestellt werden können, wobei ihrer Größe und Form keine Grenzen gesetzt sind. Mehrere Arten von Faserbauelementen, darunter Energiespeicher, Leuchtdioden und Transistoren, wurden hergestellt, eingekapselt und mit herkömmlichen synthetischen oder natürlichen Fasern gemischt, um durch automatisches Weben intelligente Textilien herzustellen. Die Faserbauteile wurden durch ein automatisiertes Laserschweißverfahren mit elektrisch leitendem Klebstoff miteinander verbunden.
 
Alle Prozesse wurden so optimiert, dass die elektronischen Komponenten möglichst wenig beschädigt wurden, was wiederum die intelligenten Textilien so haltbar machte, dass sie der Dehnung einer industriellen Webmaschine standhalten. Die Verkapselungsmethode wurde unter Berücksichtigung der Funktionalität der Faserkomponenten entwickelt, und die mechanische Kraft und thermische Energie wurden systematisch geprüft, um ein automatisches Weben bzw. eine laserbasierte Verbindung zu erreichen.

Gemeinsam mit Textilherstellern konnte das Forschungsteam Testflächen aus intelligenten Textilien mit einer Größe von etwa 50 x 50 Zentimetern herstellen, die jedoch auf größere Abmessungen skaliert und in großen Mengen produziert werden können.
 
„Diese Unternehmen verfügen über gut etablierte Produktionsanlagen mit Faserextrudern mit hohem Durchsatz und großen Webmaschinen, die automatisch ein Quadratmeter Textil weben können“, so Lee. „Wenn wir also die intelligenten Fasern in den Prozess einbringen, ist das Ergebnis im Grunde ein elektronisches System, das genauso hergestellt wird wie andere Textilien.“
Den Forschern zufolge könnten große, flexible Bildschirme und Monitore auf industriellen Webstühlen und nicht in spezialisierten Elektronikfertigungsanlagen hergestellt werden, was ihre Produktion wesentlich billiger machen würde. Der Prozess muss jedoch noch weiter optimiert werden.

„Die Flexibilität dieser Textilien ist absolut erstaunlich,“ sagt Occhipinti. „Nicht nur in Bezug auf ihre mechanische Flexibilität, sondern auch in Bezug auf die Flexibilität des Ansatzes, nachhaltige und umweltfreundliche Plattformen zur Herstellung von Elektronik einzusetzen, die zur Verringerung der Kohlenstoffemissionen beitragen und echte Anwendungen von intelligenten Textilien in Gebäuden, im Innenraum von Autos und in der Kleidung ermöglichen. Unser Ansatz ist in dieser Hinsicht ziemlich einzigartig.“

Die Forschung wurde teilweise von der Europäischen Union und UK Research and Innovation unterstützt.

Quelle:

University of Cambridge

(c) Fraunhofer WKI
19.04.2023

Nachhaltige Naturfaserbewehrung für Textilbetonbauteile

Textilbetonteile mit einer nachhaltigen Naturfaserbewehrung haben ein ausreichendes Verbund- und Zugtragverhalten für den Einsatz im Bau. Das konnten Forschende des Fraunhofer WKI gemeinsam mit der Hochschule Biberach und dem Industriepartner FABRINO nachweisen. Damit könnten künftig Textilbetonbauteile mit Naturfaserbewehrung herkömmlich bewehrte Betonbauteile ersetzen und die Umweltbilanz im Bauwesen verbessern.

Textilbetonteile mit einer nachhaltigen Naturfaserbewehrung haben ein ausreichendes Verbund- und Zugtragverhalten für den Einsatz im Bau. Das konnten Forschende des Fraunhofer WKI gemeinsam mit der Hochschule Biberach und dem Industriepartner FABRINO nachweisen. Damit könnten künftig Textilbetonbauteile mit Naturfaserbewehrung herkömmlich bewehrte Betonbauteile ersetzen und die Umweltbilanz im Bauwesen verbessern.

Nichtmetallische Bewehrungen von Betonkörpern werden derzeit häufig aus unterschiedlichen, synthetisch erzeugten Fasern hergestellt – zum Beispiel aus Glas- oder Carbonfasern. Eine ökologische Alternative zu den synthetischen Fasern stellen Flachs- oder andere Naturfasern dar. Diese sind vielerorts verfügbar und nachhaltiger, unter anderem aufgrund ihrer nachwachsenden Rohstoffbasis, den Vorteilen im Recycling und dem geringeren Energiebedarf in der Herstellung. Hier setzten die Forschenden des Fraunhofer WKI und der Hochschule Biberach gemeinsam mit einem Industriepartner an. Ihr Ziel war, nachzuweisen, dass sich Bewehrungen aus Textilfasern für den Einsatz im Bau ebenso eignen wie synthetische Fasern.

»Wir haben am Fraunhofer WKI mit einer Webmaschine Drehergewebe aus Flachsfasergarn hergestellt. Um die Nachhaltigkeit zu erhöhen, haben wir eine Behandlung der Flachsgarne zur Verbesserung der Zugfestigkeit, Dauerhaftigkeit und Verbundhaftung erprobt, die im Vergleich zu petrobasierten Behandlungen ökologisch vorteilhafter ist«, erläutert Jana Winkelmann, Projektleiterin am Fraunhofer WKI. Im Beschichtungsverfahren konnte ein gängiges petrobasiertes Epoxidharz erfolgreich durch eine zum Teil biobasierte Tränkung ersetzt werden. Ein großer Anteil (56 Prozent) der molekularen Struktur des verwendeten Epoxidharzes besteht aus Kohlenwasserstoffen pflanzlichen Ursprungs und kann somit die CO2-Bilanz verbessern.

Textile Bewehrungen haben grundsätzlich eine Reihe von Vorteilen. So weisen sie eine deutlich reduzierte Korrodierbarkeit bei gleicher oder höherer Zugfestigkeit als Stahl auf, so dass das notwendige Nennmaß der Betonüberdeckung reduziert werden kann. Dies führt bei gleicher Tragfähigkeit häufig zu geringeren erforderlichen Querschnitten. Bisher wurde das Tragverhalten von textilen Bewehrungen aus Naturfasern in Betonbauteilen allerdings noch nicht systematisch untersucht.

An der Hochschule Biberach testeten die Forschenden das Verbund- und Zugtragverhalten sowie das einachsige Biegetragverhalten von Betonbauteilen mit textiler Bewehrung aus Flachsfasern. Die Wissenschaftlerinnen und Wissenschaftler kamen zu dem Ergebnis, dass sich die naturfaserbasierten Textilbetonbauteile mit einer biobasierten Tränkung grundsätzlich eignen. Die Eignung zeigte sich sowohl durch eine signifikante Erhöhung der Bruchlast im Vergleich zu unbewehrten und unterbewehrten Betonbauteilen als auch durch fein verteilte Rissbilder. Die Kurven der Spannungs¬Dehnungs¬Diagramme konnten in drei für bewehrte Dehnkörper typische Bereiche unterteilt werden (Zustand I – ungerissen, Zustand IIa – Erstrissbildung und Zustand IIb – abgeschlossenes Rissbild). Die Abgrenzung der Bereiche ist mit zunehmendem Bewehrungsgrad deutlicher.

Insgesamt tragen regional oder europaweit verfügbare, nachwachsende Naturfasern und eine zum Teil biobasierte Beschichtung zu einer Verbesserung des CO2-Fußabdrucks der Bauindustrie bei. Damit eröffnet sich für die energie- und rohstoffintensive Bauindustrie eine weitere Möglichkeit, zunehmend strengere Umwelt- und Nachhaltigkeitsanforderungen zu erfüllen. »Textilbetone ermöglichen leichtere und schlankere Konstruktionen und bieten daher architektonische Spielräume. An den zahlreichen Einsatzmöglichkeiten von naturfaserbewehrten Textilbetonen möchten wir gern weiterforschen«, sagt Christina Haxter, Mitarbeiterin am Fraunhofer WKI.

Das Projekt, mit einer Laufzeit vom 9. Dezember 2020 bis zum 31. Dezember 2022, wurde von der Deutschen Bundesstiftung Umwelt DBU gefördert.

Quelle:

Fraunhofer WKI

Ein blau gefärbtes Baumwollgestrick, das zehnmal gewaschen wurde, um getragene Kleidungsstücke zu simulieren, wird enzymatisch zu einem Schlamm aus feinen Fasern und „blauem Glukosesirup“ abgebaut, der durch Filtration getrennt wird - beide separierten Anteile haben einen potenziellen Wiederverwendungswert. Ein blau gefärbtes Baumwollgestrick, das zehnmal gewaschen wurde, um getragene Kleidungsstücke zu simulieren, wird enzymatisch zu einem Schlamm aus feinen Fasern und „blauem Glukosesirup“ abgebaut, der durch Filtration getrennt wird - beide separierten Anteile haben einen potenziellen Wiederverwendungswert. Foto: Sonja Salmon.
11.04.2023

Enzymatische Trennung von Baumwolle und Polyester in Mischgeweben

In einer neuen Studie haben Forscher der North Carolina State University nachgewiesen, dass sie Mischgewebe aus Baumwolle und Polyester mithilfe von Enzymen - natürlichen Werkzeugen zur Beschleunigung chemischer Reaktionen – voneinander trennen können. Die Forschenden hoffen, dass ihre Ergebnisse letztlich zu einer effizienteren Wiederverwertung der Stoffbestandteile und damit zur Verringerung des Textilabfalls führen werden. Sie stellten jedoch auch fest, dass der Prozess mehr Arbeitsschritte erfordert, wenn das Mischgewebe gefärbt oder mit Chemikalien behandelt wurde, die die Knitterfestigkeit erhöhen.

In einer neuen Studie haben Forscher der North Carolina State University nachgewiesen, dass sie Mischgewebe aus Baumwolle und Polyester mithilfe von Enzymen - natürlichen Werkzeugen zur Beschleunigung chemischer Reaktionen – voneinander trennen können. Die Forschenden hoffen, dass ihre Ergebnisse letztlich zu einer effizienteren Wiederverwertung der Stoffbestandteile und damit zur Verringerung des Textilabfalls führen werden. Sie stellten jedoch auch fest, dass der Prozess mehr Arbeitsschritte erfordert, wenn das Mischgewebe gefärbt oder mit Chemikalien behandelt wurde, die die Knitterfestigkeit erhöhen.

„Wir können die gesamte Baumwolle aus einer Baumwoll-Polyester-Mischung herauslösen, was bedeutet, dass wir anschließend sauberes Polyester haben, das recycelt werden kann“, so die korrespondierende Autorin der Studie, Sonja Salmon, außerordentliche Professorin für Textilingenieurwesen, Chemie und Wissenschaft an der NC State. „Auf einer Mülldeponie wird sich das Polyester nicht abbauen, und die Baumwolle kann mehrere Monate oder länger brauchen, um sich zu zersetzen. Mit unserer Methode können wir die Baumwolle in weniger als 48 Stunden vom Polyester trennen.“

Nach Angaben der US-Umweltschutzbehörde werfen Verbraucher jedes Jahr etwa 11 Millionen Tonnen Textilabfälle auf US-Mülldeponien. Die Forscher wollten eine Methode entwickeln, um die Baumwolle vom Polyester zu trennen, so dass die einzelnen Bestandteile recycelt werden können.

In der Studie verwendeten die Forscher einen „Cocktail“ von Enzymen in einer leicht sauren Lösung, um die Zellulose in der Baumwolle zu zersetzen. Zellulose ist das Material, das den Zellwänden der Pflanzen Struktur verleiht. Die Idee ist, die Zellulose so zu zerkleinern, dass sie aus der gemischten Gewebestruktur „herausfällt“ und einige winzige Baumwollfaserfragmente zusammen mit Glukose zurückbleiben. Glukose ist das biologisch abbaubare Nebenprodukt der abgebauten Zellulose. Anschließend wird die Glukose weggewaschen und die Baumwollfaserfragmente herausgefiltert, so dass reines Polyester übrig bleibt.
 
Assoc. Professor Sonja Salmon    „Dies ist ein mildes Verfahren - die Behandlung ist leicht sauer, wie bei Essig“, sagte Salmon. „Wir haben es auch bei 50 Grad Celsius laufen lassen, was der Temperatur einer heißen Waschmaschine entspricht. Es ist wirklich vielversprechend, dass wir das Polyester bis zu einem sauberen Niveau trennen können", fügte Salmon hinzu.
"Wir müssen noch einiges tun, um die Eigenschaften des Polyesters zu bestimmen, aber wir glauben, dass sie sehr gut sein werden, weil die Bedingungen so mild sind. Wir fügen lediglich Enzyme hinzu, die das Polyester ignorieren."

Sie verglichen den Abbau von Stoffen aus 100 % Baumwolle mit dem von Baumwoll- und Polyestermischungen und testeten außerdem Stoffe, die mit roten und blauen Reaktivfarbstoffen gefärbt und mit haltbaren Presschemikalien behandelt worden waren. Um die gefärbten Stoffe abzubauen, mussten die Forscher den Zeitaufwand und den Einsatz von Enzymen erhöhen. Bei Stoffen, die mit Chemikalien knitterfrei ausgerüstet wurden, mussten sie vor der Zugabe der Enzyme eine chemische Vorbehandlung durchführen.

„Der gewählte Farbstoff hat einen großen Einfluss auf die potenzielle Schädigung des Gewebes", sagte die Leiterin der Studie, Jeannie Egan, Doktorandin an der NC State. "Außerdem haben wir festgestellt, dass das größte Hindernis bisher die knitterfreie Ausrüstung ist. Die Chemie dahinter blockiert den Zugang des Enzyms zur Zellulose erheblich. Ohne Vorbehandlung erreichten wir einen Abbau von weniger als 10 %, aber nach zwei Enzymdosen konnten wir die Zellulose vollständig abbauen, was ein wirklich beeindruckendes Ergebnis ist.“

Den Forschenden zufolge wäre das Polyester recycelbar, während die Aufschlämmung der Baumwollfragmente als Zusatzstoff für Papier oder als nützliche Ergänzung für Verbundwerkstoffe wertvoll sein könnte. Sie untersuchen ebenfalls, ob eine Verwendung der Glukose für die Herstellung von Biokraftstoffen möglich wäre.

„Die Aufschlämmung besteht aus Baumwollresten, die einem sehr starken enzymatischen Abbau widerstehen“, so Salmon. „Sie kann als Verstärkungsstoff verwendet werden. Was den Glukosesirup betrifft, so arbeiten wir an einem Projekt, um herauszufinden, ob wir ihn in einen anaeroben Fermenter einspeisen können, um Biokraftstoff herzustellen. Wir würden Abfälle in Bioenergie umwandeln, was viel besser wäre, als sie auf eine Mülldeponie zu werfen.“

Die Studie mit dem Titel „Enzymatische Textilfasertrennung für nachhaltige Abfallverarbeitung“ wurde in der Zeitschrift Resources, Environment and Sustainability veröffentlicht. Zu den Koautoren gehören Siyan Wang, Jialong Shen, Oliver Baars und Geoffrey Moxley. Finanziert wurde die Studie von der Environmental Research and Education Foundation, der Kaneka Corporation und dem Department of Textile Engineering, Chemistry and Science an der NC State.

Quelle:

North Carolina State University, Laura Oleniacz