Textination Newsline

from to
Zurücksetzen
4 Ergebnisse
Empa-Forscher Simon Annaheim arbeitet an einer Matratze für Neugeborene. Bild: Empa
11.03.2024

Medizin-Textilien und Sensoren: Smarter Schutz für zarte Haut

Hautverletzungen durch anhaltenden Druck entstehen häufig bei Menschen, die ihre Position nicht selbstständig verändern können – etwa erkrankte Neugeborene im Spital oder ältere Menschen. Empa-Forschende bringen jetzt dank erfolgreicher Partnerschaften mit Industrie und Forschung zwei smarte Lösungen für das Wundliegen auf den Weg.

Lastet längere Zeit zu viel Druck auf unserer Haut, nimmt sie Schaden. Zu den Bevölkerungsgruppen, die einem hohen Risiko für derartige Druckverletzungen ausgesetzt sind, gehören beispielsweise Menschen im Rollstuhl, Neugeborene auf der Intensivstation oder Betagte. Die Folgen sind Wunden, Infektionen und Schmerzen.

Hautverletzungen durch anhaltenden Druck entstehen häufig bei Menschen, die ihre Position nicht selbstständig verändern können – etwa erkrankte Neugeborene im Spital oder ältere Menschen. Empa-Forschende bringen jetzt dank erfolgreicher Partnerschaften mit Industrie und Forschung zwei smarte Lösungen für das Wundliegen auf den Weg.

Lastet längere Zeit zu viel Druck auf unserer Haut, nimmt sie Schaden. Zu den Bevölkerungsgruppen, die einem hohen Risiko für derartige Druckverletzungen ausgesetzt sind, gehören beispielsweise Menschen im Rollstuhl, Neugeborene auf der Intensivstation oder Betagte. Die Folgen sind Wunden, Infektionen und Schmerzen.

Die Behandlung ist aufwändig und teuer: Jährlich entstehen Gesundheitskosten von rund 300 Millionen Schweizer Franken. "Darüber hinaus können bestehende Erkrankungen durch derartige Druckverletzungen verschlimmert werden", sagt Empa-Forscher Simon Annaheim vom "Biomimetic Membranes and Textiles"-Labor in St. Gallen. Nachhaltiger wäre es, so Annaheim, den Gewebeschäden vorzubeugen, um sie gar nicht erst entstehen zu lassen. Zwei aktuelle Forschungsprojekte unter Beteiligung der Empa bringen nun entsprechende Lösungen voran: Entwickelt wird hierbei eine Druck-ausgleichende Matratze für Neugeborene auf der Intensivstation und ein textiles Sensorsystem für querschnittsgelähmte Personen und bettlägerige Menschen.

Optimal gebettet am Start des Lebens
Dabei sind die Ansprüche der Haut je nach Alter völlig unterschiedlich: Bei Erwachsenen stehen die Reibung der Haut auf der Liegefläche, physikalische Scherkräfte im Gewebe und eine fehlende Atmungsaktivität von Textilien als Risikofaktoren im Vordergrund. Die Haut von Neugeborenen, die intensivmedizinisch behandelt werden, ist dagegen per se äusserst empfindlich, jeder Flüssigkeits- und Wärmeverlust über die Haut kann zum Problem werden. "Während diese besonders verletzlichen Babys gesundgepflegt werden, sollte die Liegesituation keine zusätzlichen Komplikationen hervorrufen", so Empa-Forscher Annaheim. Dass herkömmliche Matratzen die Lösung für Neugeborene mit ganz unterschiedlichem Gewicht und verschiedenen Erkrankungen sein können, glaubt er nicht. Das Team um Annaheim sucht daher mit Forschenden der ETH Zürich, der Zürcher Hochschule für Angewandte Wissenschaften (ZHAW) und des Universitäts-Kinderspital Zürich nach einer optimalen Liegefläche für die zarte Kinderhaut. Diese Matratze müsste sich individuell an den Körper anpassen können, um Kindern bei einem schwierigen Start ins Leben helfen zu können.

Hierzu ermittelten die Forschenden zunächst die Druckverhältnisse an den verschiedenen Körperregionen von Neugeborenen. "Unsere Drucksensoren haben gezeigt, dass Kopf, Schultern und untere Wirbelsäule die Zonen mit dem grössten Risiko für Druckstellen sind", sagt Annaheim. Diese Ergebnisse flossen in die Entwicklung einer luftgefüllten Matratze der besonderen Art ein: Ihre drei Kammern können mit Hilfe von Drucksensoren und einem Mikroprozessor über eine elektronische Pumpe präzise so befüllt werden, dass der Druck an den jeweiligen Stellen minimiert wird. Eine an der Empa entwickeltes Infrarot-Laser-Verfahren erlaubte es dabei die Matratze aus einer flexiblen, mehrschichtigen und hautschonenden Polymermembran ohne störende Kanten zu erzeugen.

Nach einem mehrstufigen Entwicklungsprozess im Labor durften erste kleine Patientinnen und Patienten auf dem Prototyp der Matratze liegen. Der Effekt machte sich sofort bemerkbar, als die Forschenden die Matratze je nach den individuellen Bedürfnissen der Babys unterschiedlich stark mit Luft füllten: Gegenüber einer herkömmlichen Schaumstoffmatratze reduzierte der Prototyp den Druck auf die gefährdeten Körperstellen um bis zu 40 Prozent.

Nach dieser erfolgreichen Pilotstudie wird der Prototyp in den Empa-Labors nun weiter optimiert. Demnächst starten Simon Annaheim und Doktorand Tino Jucker eine grösser angelegte Studie mit der neuen Matratze mit der Abteilung für Intensivmedizin & Neonatologie am Kinderspital Zürich.

Intelligente Sensoren beugen vor
In einem weiteren Projekt arbeiten Empa-Forschende daran, den sogenannten Dekubitus-Gewebeschäden bei Erwachsenen vorzubeugen. Hierbei werden die Risikofaktoren Druckbelastung und Durchblutungsstörung in hilfreiche Warnsignale umgewandelt.

Liegt man längere Zeit in der gleichen Position, führen Druck und Durchblutungsstörungen zu einer Unterversorgung des Gewebes mit Sauerstoff. Während der Sauerstoffmangel bei gesunden Menschen einen Reflex ausgelöst, sich zu bewegen, kann dieser neurologische Feedback-Loop etwa bei Menschen mit Querschnittslähmung oder bei Koma-Patienten gestört sein. Hier können smarte Sensoren helfen, frühzeitig vor dem Risiko eines Gewebeschadens zu warnen.

Im Projekt "ProTex" hat ein Team aus Forschenden der Empa, der Universität Bern, der Fachhochschule OST und der Bischoff Textil AG in St. Gallen ein Sensorsystem aus smarten Textilien mit zugehöriger Datenanalyse in Echtzeit entwickelt. "Die hautverträglichen textilen Sensoren enthalten zwei verschiedene funktionelle Polymerfasern», sagt Empa-Forscher Luciano Boesel vom "Biomimetic Membranes and Textiles"-Labor in St. Gallen. Neben Druck-sensitiven Fasern integrierten die Forschenden lichtleitende Polymerfasern (POFs), die der Sauerstoffmessung dienen. "Sobald der Sauerstoffgehalt in der Haut abfällt, signalisiert das hochempfindliche Sensorsystem ein steigendes Risiko für Gewebeschäden", erklärt Boesel. Die Daten werden dann direkt an den Patienten oder das Pflegepersonal übermittelt. So könne etwa eine liegende Person rechtzeitig umgelagert werden, bevor das Gewebe Schaden nimmt.

Patentierte Technologie
Die Technologie dahinter beinhaltet auch ein an der Empa entwickeltes neuartiges Mikrofluidik-Nassspinnverfahren für die Herstellung von POFs. Es erlaubt eine präzise Steuerung der Polymerkomponenten im Mikrometerbereich und eine sanftere, umweltfreundlichere Verarbeitung der Fasern. Das Mikrofluidik-Verfahren ist eines von drei Patenten, die bisher aus dem "ProTex"-Projekt hervorgegangen sind.

Ein weiteres Produkt ist ein atmungsaktiver Textilsensor, der direkt auf der Haut getragen wird. Das 2023 aus dem Projekt entstandene Spin-off "Sensawear" in Bern treibt derzeit die Markteinführung voran. Darüber hinaus ist Empa-Forscher Boesel überzeugt: "Die Erkenntnisse und Technologien aus "ProTex" werden künftig weitere Anwendungen im Bereich der tragbaren Sensorik und der smarten Kleidung ermöglichen."

Quelle:

Dr. Andrea Six, Empa

sportswear Stocksnap, Pixabay
30.08.2023

Eine smarte Laufhose warnt vor …

ETH-Forschende haben ein elektronisches Garn entwickelt, das Körperbewegungen sehr genau misst. Der Textilsensor kann direkt in Sport- oder Arbeitskleidung integriert werden und sagt die Müdigkeit des Trägers während körperlicher Belastung voraus.

Wer erschöpft ist, verletzt sich leichter – sowohl beim Sport als auch bei körperlicher Arbeit. ETH-Forschende um Carlo Menon, Professor für mobile Gesundheitstechnologien, haben nun einen Textilsensor entwickelt, der in Echtzeit misst, wie erschöpft Menschen während körperlicher Belastung sind. Getestet haben sie den neuen Senor an einer Laufhose. Mit einem Blick auf das Smartphone konnten die Probanden feststellen, wann sie an ihre Belastungsgrenze kommen und besser eine Pause einlegen sollten.

ETH-Forschende haben ein elektronisches Garn entwickelt, das Körperbewegungen sehr genau misst. Der Textilsensor kann direkt in Sport- oder Arbeitskleidung integriert werden und sagt die Müdigkeit des Trägers während körperlicher Belastung voraus.

Wer erschöpft ist, verletzt sich leichter – sowohl beim Sport als auch bei körperlicher Arbeit. ETH-Forschende um Carlo Menon, Professor für mobile Gesundheitstechnologien, haben nun einen Textilsensor entwickelt, der in Echtzeit misst, wie erschöpft Menschen während körperlicher Belastung sind. Getestet haben sie den neuen Senor an einer Laufhose. Mit einem Blick auf das Smartphone konnten die Probanden feststellen, wann sie an ihre Belastungsgrenze kommen und besser eine Pause einlegen sollten.

Die von der ETH Zürich zum Patent angemeldete Erfindung könnte den Weg ebnen für eine neue Generation von smarten Kleidern: Denn bei vielen auf dem Markt verfügbaren Produkten werden elektronische Bauteile wie Sensoren, Batterien oder Chips nachträglich an der Kleidung fixiert. Dies macht die Herstellung umständlich, führt zu hohen Preisen und erschwert die Pflege der Produkte.

Im Unterschied dazu wird der Dehnungssensor der ETH-Forschenden direkt in die Stofffasern elastischer und enganliegender Sport- oder Arbeitskleidung integriert, was die industrielle Produktion erleichtert und den Preis senkt. Ein weiterer Vorteil: «Durch den engen Körperkontakt des Sensors können wir Körperbewegungen sehr genau erfassen, ohne dass der Nutzer oder die Nutzerin das bemerkt», sagt Menon.

Ein außergewöhnliches Garn
Wenn Menschen müde werden, bewegen sie sich anders. So auch beim Laufen: Die Schritte werden kürzer und weniger regelmäßig. Diesen Effekt messen die ETH-Forschenden mit ihrem neuen Sensor, der aus einem speziellen Garn besteht. Möglich wird dies durch den Aufbau des Garns: Die innere Faser besteht aus einem leitenden, elastischen Gummi. Spiralförmig um diesen herum wickelten die Forschenden einen steifen Draht, der mit einer dünnen Kunststoffschicht verkleidet ist. «Die beiden Fasern wirken als Elektroden und erzeugen ein elektrisches Feld. Sie bilden gemeinsam einen Kondensator, der eine elektrische Ladung speichern kann, die wir als Kapazität bezeichnen», erklärt Tyler Cuthbert, der als Postdoc in Menons Gruppe forschte und maßgeblich an der Entwicklung beteiligt war.

Die intelligente Laufhose
Stickt man dieses Garn nun auf der Höhe des Oberschenkels auf eine elastische Laufhose wird es beim Laufen in einem gewissen Rhythmus gedehnt und wieder gelockert. Bei jeder Bewegung ändert sich der Abstand zwischen den beiden Fasern und damit auch das elektrische Feld sowie die Kapazität des Kondensators.

Unter normalen Umständen wären diese Kapazitätsschwankungen sehr klein und würden nicht ausreichen, um damit Körperbewegungen messen zu können. Doch die Eigenschaften des Garns sind alles andere als normal: «Im Unterschied zu den meisten anderen Materialien wird es dicker, wenn man daran zieht», erklärt Cuthbert. Dadurch wird das Garn sehr viel sensibler gegenüber kleinsten Bewegungen. Dehnt es sich geringfügig aus, entstehen deutlich messbare Schwankungen in der Kapazität des Sensors. Bereits subtile Veränderungen im Laufverhalten können so gemessen und ausgewertet werden.

Doch wie kann man daraus die Müdigkeit einer Person ableiten? In einem früheren Forschungsprojekt haben Cuthbert und Menon eine Reihe von Probanden beim Laufen beobachtet, während sie eine Laufhose mit einem ähnlichen Sensor trugen. Sie zeichneten auf, wie sich die elektrischen Signale des Sensors bei zunehmender Müdigkeit änderten. Aus diesem Muster haben die Forschenden dann ein Modell erstellt, das die Erschöpfung von Läufern vorhersagt und auch für den neuen Textilsensor eingesetzt werden kann. Damit das Modell auch außerhalb des Labors zuverlässige Vorhersagen macht, braucht es allerdings noch zahlreiche weitere Tests und eine Menge Bewegungsdaten.

Textilantenne für die kabellose Datenübertragung
Um die elektrischen Signale des Textilsensors ohne Kabel an ein Smartphone zu übertragen, haben ihn die Forschenden mit einer Spulenantenne aus leitendem Garn verbunden, die ebenfalls direkt auf die Laufhose gestickt wurde. «Sensor und Antenne bilden zusammen einen elektrischen Schaltkreis, der vollständig in der Kleidung integriert ist», sagt Valeria Galli, Doktorandin in Menons Gruppe.

Das elektrische Signal des Dehnungssensors führt nun dazu, dass die Antenne ein Signal in einer bestimmten Frequenz aussendet, das von einem Smartphone gelesen werden kann. Wird der Sensor während des Laufens bewegt, entsteht ein Signalmuster mit einer ständig schwankend Frequenz, die von einer App in Echtzeit aufgezeichnet und ausgewertet werden kann. Dies ist allerdings Zukunftsmusik und erfordert noch einiges an Entwicklungsarbeit.

Anwendungen im Sport und am Arbeitsplatz
Aktuell arbeiten die Forschenden daran, aus dem Prototyp ein marktreifes Produkt zu machen. Dafür bewerben sie sich um eines der begehrten Pioneer Fellowship der ETH Zürich. «Unser Ziel ist, intelligente Kleidung günstiger herzustellen und damit einer breiteren Öffentlichkeit zugänglich zu machen», sagt ETH-Professor Menon. Anwendungen sieht Menon dabei nicht nur im Sport, sondern auch am Arbeitsplatz, um ermüdungsbedingten Verletzungen vorzubeugen, oder im Bereich der Rehabilitationsmedizin.

Quelle:

ETH Zürich

Hauchdünne Smart Textiles werden für den Einsatz im geburtsmedizinischen Monitoring weiterentwickelt und sollen eine Analyse der Vitaldaten via App für die Schwangeren ermöglichen. Foto: Pixabay, Marjon Besteman
24.07.2023

Intelligentes Pflaster für Remote-Monitoring der Schwangerschaft

Während einer Schwangerschaft geben regelmäßige Medizinchecks Auskunft über die Gesundheit und Entwicklung der Schwangeren und des Kindes. Doch die Untersuchungen bieten nur Momentaufnahmen des Zustands, was vor allem im Risikofällen gefährlich werden kann. Um in dieser sensiblen Phase bequemes und kontinuierliches Monitoring zu ermöglichen, plant ein internationales Forschungskonsortium die Technologie der Smart Textiles weiterzutreiben. Ein mit feiner Elektronik versehenes Pflaster soll Vitaldaten sammeln und auswerten können. Zusätzlich sollen die Sensoren in Baby-Kleidung integriert werden, um unter höchster Datensicherheit die Zukunft des medizinischen Monitorings von Neugeborenen zu verbessern.
 

Während einer Schwangerschaft geben regelmäßige Medizinchecks Auskunft über die Gesundheit und Entwicklung der Schwangeren und des Kindes. Doch die Untersuchungen bieten nur Momentaufnahmen des Zustands, was vor allem im Risikofällen gefährlich werden kann. Um in dieser sensiblen Phase bequemes und kontinuierliches Monitoring zu ermöglichen, plant ein internationales Forschungskonsortium die Technologie der Smart Textiles weiterzutreiben. Ein mit feiner Elektronik versehenes Pflaster soll Vitaldaten sammeln und auswerten können. Zusätzlich sollen die Sensoren in Baby-Kleidung integriert werden, um unter höchster Datensicherheit die Zukunft des medizinischen Monitorings von Neugeborenen zu verbessern.
 
Mit dem Beginn einer Schwangerschaft geht eine Phase intensiver Gesundheitsüberwachung des Kindes und der schwangeren Person einher. Herkömmliche Vorsorge-Untersuchungen mit Ultraschallgeräten zeichnen jedoch nur Momentaufnahmen des jeweiligen Zustands auf und erfordern vor allem bei Risikoschwangerschaften häufige Besuche bei Ärzt*innen. Mit Hilfe von neuartigen Wearables und Smart Textiles planen Forschende im EU-geförderten Projekt Newlife, ein dauerhaftes geburtsmedizinisches Monitoring im Alltag zu ermöglichen.
 
Ein Ziel des Konsortiums aus 25 Partner*innen ist es, ein biokompatibles, dehnbares und flexibles Patch zu entwickeln, um den Verlauf der Schwangerschaft und die Entwicklung des Embryos kontinuierlich zu überwachen. Ähnlich wie ein Pflaster soll das Patch auf der Haut der schwangeren Person angebracht werden, mittels miniaturisierter Sensoren (z.B. Ultraschall) permanent Vitaldaten aufzeichnen und via Bluetooth an ein Endgerät, beispielsweise ein Smartphone übermitteln.

Moderne Medizintechnik setzt schon seit einiger Zeit auf die Technologie der Smart Textiles und intelligente Wearables, um Patient*innen anstelle einer stationären Überwachung ein komfortables Dauer-Monitoring von Zuhause zu bieten. Am Fraunhofer-Institut für Zuverlässigkeit und Mikroelektronik IZM bringt das Team rund um Christine Kallmayer diese Technologie zur anwendungsbezogenen Umsetzung und profitiert dabei von langjähriger Erfahrung mit Integrationstechnologien in flexible Materialien. Beim integrierten Patch setzen die Forschenden auf thermoplastische Polyurethane als Basismaterialien, in die Elektronik und Sensorik eingebettet werden. Dadurch wird sichergestellt, dass das Tragegefühl einem handelsüblichen Pflaster entspricht statt einer starren Folie. Damit das geburtsmedizinische Monitoring unmerkbar und bequem für Schwangere und das Ungeborene verläuft, plant das Projektkonsortium innovative Ultraschallsensoren auf MEMS-Basis direkt in das PU-Material zu integrieren. Über unmittelbaren Hautkontakt sollen die miniaturisierten Sensoren Daten aufnehmen. Dehnbare Leiterbahnen aus TPU-Material sollen die Informationen dann zur Auswerteelektronik und schlussendlich zu einer drahtlosen Schnittstelle weiterleiten, so dass Ärzt*innen und Hebammen alle relevanten Daten in einer App einsehen können. Zusätzlich zum Ultraschall planen die Forschenden weitere Sensoren wie Mikrofone und Temperatursensoren sowie Elektroden einzubauen.
 
Auch nach der Geburt kann die neue Integrationstechnologie von großem Nutzen für die Medizintechnik sein: Mit weiteren Demonstratoren plant das Newlife-Team das Monitoring von Neugeborenen zu ermöglichen. Sensoren für ein kontinuierliches EKG, Überwachung der Atmung und Infrarot-Spektroskopie zur Beobachtung der Gehirn-Aktivität sollen in das weiche Textil eines Baby-Bodys und eines Mützchens integriert werden. „Besonders für Frühchen und Neugeborene mit gesundheitlichen Risiken ist das Remote-Monitoring eine sinnvolle Alternative zum stationären Aufenthalt und kabelgebundener Überwachung. Dafür müssen wir einen bisher unvergleichlichen Komfort der hauchdünnen Smart Textiles gewährleisten: Es darf keine Elektronik spürbar sein. Zusätzlich muss das gesamte Modul extrem zuverlässig sein, da die smarten Textilien Waschgänge problemlos überstehen sollten“, erklärt die Projekt-Verantwortliche am Fraunhofer IZM Christine Kallmayer.
 
Zur externen Überwachung wird im Projekt außerdem an Möglichkeiten geforscht, durch Kameradaten und Sensorik im Baby-Bett Aussagen über Gesundheitszustand und Wohlbefinden des Kindes abzuleiten. Sobald die Hardware-Basis von Patch, textiler Elektronik und Sensor-Bett aufgebaut und getestet ist, werden die Projektpartner*innen noch einen Schritt weitergehen: Mittels Cloud-basierter Lösungen sollen KI und maschinelles Lernen die Anwendung für medizinisches Personal erleichtern und höchste Sicherheit der Daten gewährleisten.

Quelle:

Fraunhofer – Institut für Zuverlässigkeit und Mikrointegration IZM

Shirt, das die Atmung überwacht Bild EMPA
28.12.2022

Wearables für die Gesundheit: Sensoren zum Anziehen

Stilvolle Sensoren zum Anziehen
Mit Sensoren, die am Körper getragen werden und Gesundheitsparameter messen, lassen wir Technik ganz nah an uns heran. Dass die medizinische Überwachung beispielsweise der Atemtätigkeit auch stilvoll als Shirt tragbar ist, zeigt eine Kooperation der Empa und der Designerin Laura Deschl, die von der Ostschweizer «Textile and Design Alliance» (TaDA) gefördert wird.
 

Stilvolle Sensoren zum Anziehen
Mit Sensoren, die am Körper getragen werden und Gesundheitsparameter messen, lassen wir Technik ganz nah an uns heran. Dass die medizinische Überwachung beispielsweise der Atemtätigkeit auch stilvoll als Shirt tragbar ist, zeigt eine Kooperation der Empa und der Designerin Laura Deschl, die von der Ostschweizer «Textile and Design Alliance» (TaDA) gefördert wird.
 
Der Wunsch nach einem gesunden Lebensstil hat in unserer Gesellschaft einen Trend zum «Self-Tracking» ausgelöst. Vitalwerte sollen jederzeit abrufbar sein, etwa um Trainingseffekte konsequent zu messen. Gleichzeitig ist bei der kontinuierlich wachsenden Bevölkerungsgruppe der über 65-Jährigen der Wunsch, bis ins hohe Alter leistungsfähig zu bleiben, stärker denn je. Präventive, gesundheitserhaltende Maßnahmen müssen hierbei kontrolliert werden, sollen sie das gewünschte Ergebnis erzielen. Die Suche nach Messsystemen, die entsprechende Gesundheitsparameter zuverlässig ermitteln, läuft auf Hochtouren. Neben dem Freizeitbereich benötigt die Medizin geeignete und verlässliche Messsysteme, die eine effiziente und wirksame Betreuung von immer mehr Menschen im Spital oder zuhause ermöglichen. Denn die Zunahme von Zivilisationskrankheiten wie Diabetes, Herz-Kreislaufproblemen oder Atemwegserkrankungen belastet das Gesundheitssystem.

Empa-Forschende um Simon Annaheim vom «Biomimetic Membranes and Textiles» Labor in St. Gallen entwickeln daher Sensoren für die Überwachung des Gesundheitszustandes, etwa für einen Diagnostik-Gurt, der auf flexiblen Sensoren mit elektrisch leitfähigen bzw. lichtleitenden Fasern basiert. Für die Akzeptanz einer kontinuierlichen medizinischen Überwachung bei den Patientinnen und Patienten können aber ganz andere, weniger technisch geprägte Eigenschaften entscheidend sein: So müssen die Sensoren angenehm zu tragen und einfach zu handhaben sein – und im Idealfall auch noch gut aussehen.
    
Diesen Aspekt greift ein Kooperationsprojekt zwischen der «Textile and Design Alliance», kurz TaDA, in der Ostschweiz und der Empa auf. Hierbei wurden Möglichkeiten aufgezeigt, wie textile Sensoren in Kleidungsstücke integriert werden können. Dabei stand neben der technischen Zuverlässigkeit und einem hohen Tragekomfort auch das Design der Kleidungsstücke im Zentrum. Die interdisziplinäre TaDA-Designerin Laura Deschl arbeitete elektrisch leitfähige Fasern in ein Shirt ein, die ihren Widerstand je nach Dehnung verändern. Damit kann das Shirt überwachen, wie stark sich Brustkorb und Bauch der Probanden beim Atmen heben und senken, was Rückschlüsse auf die Atemaktivität erlaubt. Eine kontinuierliche Überwachung der Atemtätigkeit ist speziell bei Patientinnen und Patienten während der Aufwachphase nach einer Operation sowie bei Patientinnen, die mit Schmerzmitteln behandelt werden, von Interesse. Auch für Patientinnen mit Atemproblemen wie Schlafapnoe oder Asthma könnte ein solches Shirt hilfreich sein. Zusätzlich stickte Deschl elektrisch leitfähige Fasern der Empa ins Shirt ein, die für die Verbindung zum Messgerät benötigt werden und die optisch in das Muster des Shirts integriert wurden.
 
Die «Textile and Design Alliance» ist ein Pilotprogramm der Kulturförderung der Kantone Appenzell Ausserrhoden, St. Gallen und Thurgau, um die Zusammenarbeit zwischen Kulturschaffenden aus aller Welt und der Textilindustrie zu fördern. Über internationale Ausschreibungen werden Kulturschaffende aller Sparten zu einem dreimonatigen Arbeitsaufenthalt in der Ostschweizer Textilwirtschaft eingeladen.
Das TaDA-Netzwerk umfasst 13 Kooperationspartner – Textilunternehmen, Kultur-, Forschungs- und Bildungsinstitutionen – und bietet den Kulturschaffenden dadurch direkten Zugang zu hochspezialisiertem Know-how und technischen Produktionsmitteln, um vor Ort an ihren textilen Projekten arbeiten, forschen und experimentieren. Diese künstlerische Kreativität wird den Partnern wiederum im Austausch als innovatives Potenzial zugänglich gemacht.

Während der Projektphase wurde Laura Deschl von Schoeller Textil AG (Rohware), Lobra (Transferdruck) und dem Saurer Museum (leitfähige Stickerei) bei der Realisierung des Prototyps unterstützt. Zudem erhielt sie fachliche Begleitung bezüglich der Druckqualität durch Martin Leuthold. Ideen für eine Weiterführung des Projekts sind bereits vorhanden; sie zielen auf eine smarte Patientenbekleidung ab, die die wichtigsten physiologischen Parameter ohne zusätzliche Sensorik erfassen und messen kann.