Textination Newsline

from to
Zurücksetzen
3 Ergebnisse
sportswear Stocksnap, Pixabay
30.08.2023

Eine smarte Laufhose warnt vor …

ETH-Forschende haben ein elektronisches Garn entwickelt, das Körperbewegungen sehr genau misst. Der Textilsensor kann direkt in Sport- oder Arbeitskleidung integriert werden und sagt die Müdigkeit des Trägers während körperlicher Belastung voraus.

Wer erschöpft ist, verletzt sich leichter – sowohl beim Sport als auch bei körperlicher Arbeit. ETH-Forschende um Carlo Menon, Professor für mobile Gesundheitstechnologien, haben nun einen Textilsensor entwickelt, der in Echtzeit misst, wie erschöpft Menschen während körperlicher Belastung sind. Getestet haben sie den neuen Senor an einer Laufhose. Mit einem Blick auf das Smartphone konnten die Probanden feststellen, wann sie an ihre Belastungsgrenze kommen und besser eine Pause einlegen sollten.

ETH-Forschende haben ein elektronisches Garn entwickelt, das Körperbewegungen sehr genau misst. Der Textilsensor kann direkt in Sport- oder Arbeitskleidung integriert werden und sagt die Müdigkeit des Trägers während körperlicher Belastung voraus.

Wer erschöpft ist, verletzt sich leichter – sowohl beim Sport als auch bei körperlicher Arbeit. ETH-Forschende um Carlo Menon, Professor für mobile Gesundheitstechnologien, haben nun einen Textilsensor entwickelt, der in Echtzeit misst, wie erschöpft Menschen während körperlicher Belastung sind. Getestet haben sie den neuen Senor an einer Laufhose. Mit einem Blick auf das Smartphone konnten die Probanden feststellen, wann sie an ihre Belastungsgrenze kommen und besser eine Pause einlegen sollten.

Die von der ETH Zürich zum Patent angemeldete Erfindung könnte den Weg ebnen für eine neue Generation von smarten Kleidern: Denn bei vielen auf dem Markt verfügbaren Produkten werden elektronische Bauteile wie Sensoren, Batterien oder Chips nachträglich an der Kleidung fixiert. Dies macht die Herstellung umständlich, führt zu hohen Preisen und erschwert die Pflege der Produkte.

Im Unterschied dazu wird der Dehnungssensor der ETH-Forschenden direkt in die Stofffasern elastischer und enganliegender Sport- oder Arbeitskleidung integriert, was die industrielle Produktion erleichtert und den Preis senkt. Ein weiterer Vorteil: «Durch den engen Körperkontakt des Sensors können wir Körperbewegungen sehr genau erfassen, ohne dass der Nutzer oder die Nutzerin das bemerkt», sagt Menon.

Ein außergewöhnliches Garn
Wenn Menschen müde werden, bewegen sie sich anders. So auch beim Laufen: Die Schritte werden kürzer und weniger regelmäßig. Diesen Effekt messen die ETH-Forschenden mit ihrem neuen Sensor, der aus einem speziellen Garn besteht. Möglich wird dies durch den Aufbau des Garns: Die innere Faser besteht aus einem leitenden, elastischen Gummi. Spiralförmig um diesen herum wickelten die Forschenden einen steifen Draht, der mit einer dünnen Kunststoffschicht verkleidet ist. «Die beiden Fasern wirken als Elektroden und erzeugen ein elektrisches Feld. Sie bilden gemeinsam einen Kondensator, der eine elektrische Ladung speichern kann, die wir als Kapazität bezeichnen», erklärt Tyler Cuthbert, der als Postdoc in Menons Gruppe forschte und maßgeblich an der Entwicklung beteiligt war.

Die intelligente Laufhose
Stickt man dieses Garn nun auf der Höhe des Oberschenkels auf eine elastische Laufhose wird es beim Laufen in einem gewissen Rhythmus gedehnt und wieder gelockert. Bei jeder Bewegung ändert sich der Abstand zwischen den beiden Fasern und damit auch das elektrische Feld sowie die Kapazität des Kondensators.

Unter normalen Umständen wären diese Kapazitätsschwankungen sehr klein und würden nicht ausreichen, um damit Körperbewegungen messen zu können. Doch die Eigenschaften des Garns sind alles andere als normal: «Im Unterschied zu den meisten anderen Materialien wird es dicker, wenn man daran zieht», erklärt Cuthbert. Dadurch wird das Garn sehr viel sensibler gegenüber kleinsten Bewegungen. Dehnt es sich geringfügig aus, entstehen deutlich messbare Schwankungen in der Kapazität des Sensors. Bereits subtile Veränderungen im Laufverhalten können so gemessen und ausgewertet werden.

Doch wie kann man daraus die Müdigkeit einer Person ableiten? In einem früheren Forschungsprojekt haben Cuthbert und Menon eine Reihe von Probanden beim Laufen beobachtet, während sie eine Laufhose mit einem ähnlichen Sensor trugen. Sie zeichneten auf, wie sich die elektrischen Signale des Sensors bei zunehmender Müdigkeit änderten. Aus diesem Muster haben die Forschenden dann ein Modell erstellt, das die Erschöpfung von Läufern vorhersagt und auch für den neuen Textilsensor eingesetzt werden kann. Damit das Modell auch außerhalb des Labors zuverlässige Vorhersagen macht, braucht es allerdings noch zahlreiche weitere Tests und eine Menge Bewegungsdaten.

Textilantenne für die kabellose Datenübertragung
Um die elektrischen Signale des Textilsensors ohne Kabel an ein Smartphone zu übertragen, haben ihn die Forschenden mit einer Spulenantenne aus leitendem Garn verbunden, die ebenfalls direkt auf die Laufhose gestickt wurde. «Sensor und Antenne bilden zusammen einen elektrischen Schaltkreis, der vollständig in der Kleidung integriert ist», sagt Valeria Galli, Doktorandin in Menons Gruppe.

Das elektrische Signal des Dehnungssensors führt nun dazu, dass die Antenne ein Signal in einer bestimmten Frequenz aussendet, das von einem Smartphone gelesen werden kann. Wird der Sensor während des Laufens bewegt, entsteht ein Signalmuster mit einer ständig schwankend Frequenz, die von einer App in Echtzeit aufgezeichnet und ausgewertet werden kann. Dies ist allerdings Zukunftsmusik und erfordert noch einiges an Entwicklungsarbeit.

Anwendungen im Sport und am Arbeitsplatz
Aktuell arbeiten die Forschenden daran, aus dem Prototyp ein marktreifes Produkt zu machen. Dafür bewerben sie sich um eines der begehrten Pioneer Fellowship der ETH Zürich. «Unser Ziel ist, intelligente Kleidung günstiger herzustellen und damit einer breiteren Öffentlichkeit zugänglich zu machen», sagt ETH-Professor Menon. Anwendungen sieht Menon dabei nicht nur im Sport, sondern auch am Arbeitsplatz, um ermüdungsbedingten Verletzungen vorzubeugen, oder im Bereich der Rehabilitationsmedizin.

Quelle:

ETH Zürich

Hauchdünne Smart Textiles werden für den Einsatz im geburtsmedizinischen Monitoring weiterentwickelt und sollen eine Analyse der Vitaldaten via App für die Schwangeren ermöglichen. Foto: Pixabay, Marjon Besteman
24.07.2023

Intelligentes Pflaster für Remote-Monitoring der Schwangerschaft

Während einer Schwangerschaft geben regelmäßige Medizinchecks Auskunft über die Gesundheit und Entwicklung der Schwangeren und des Kindes. Doch die Untersuchungen bieten nur Momentaufnahmen des Zustands, was vor allem im Risikofällen gefährlich werden kann. Um in dieser sensiblen Phase bequemes und kontinuierliches Monitoring zu ermöglichen, plant ein internationales Forschungskonsortium die Technologie der Smart Textiles weiterzutreiben. Ein mit feiner Elektronik versehenes Pflaster soll Vitaldaten sammeln und auswerten können. Zusätzlich sollen die Sensoren in Baby-Kleidung integriert werden, um unter höchster Datensicherheit die Zukunft des medizinischen Monitorings von Neugeborenen zu verbessern.
 

Während einer Schwangerschaft geben regelmäßige Medizinchecks Auskunft über die Gesundheit und Entwicklung der Schwangeren und des Kindes. Doch die Untersuchungen bieten nur Momentaufnahmen des Zustands, was vor allem im Risikofällen gefährlich werden kann. Um in dieser sensiblen Phase bequemes und kontinuierliches Monitoring zu ermöglichen, plant ein internationales Forschungskonsortium die Technologie der Smart Textiles weiterzutreiben. Ein mit feiner Elektronik versehenes Pflaster soll Vitaldaten sammeln und auswerten können. Zusätzlich sollen die Sensoren in Baby-Kleidung integriert werden, um unter höchster Datensicherheit die Zukunft des medizinischen Monitorings von Neugeborenen zu verbessern.
 
Mit dem Beginn einer Schwangerschaft geht eine Phase intensiver Gesundheitsüberwachung des Kindes und der schwangeren Person einher. Herkömmliche Vorsorge-Untersuchungen mit Ultraschallgeräten zeichnen jedoch nur Momentaufnahmen des jeweiligen Zustands auf und erfordern vor allem bei Risikoschwangerschaften häufige Besuche bei Ärzt*innen. Mit Hilfe von neuartigen Wearables und Smart Textiles planen Forschende im EU-geförderten Projekt Newlife, ein dauerhaftes geburtsmedizinisches Monitoring im Alltag zu ermöglichen.
 
Ein Ziel des Konsortiums aus 25 Partner*innen ist es, ein biokompatibles, dehnbares und flexibles Patch zu entwickeln, um den Verlauf der Schwangerschaft und die Entwicklung des Embryos kontinuierlich zu überwachen. Ähnlich wie ein Pflaster soll das Patch auf der Haut der schwangeren Person angebracht werden, mittels miniaturisierter Sensoren (z.B. Ultraschall) permanent Vitaldaten aufzeichnen und via Bluetooth an ein Endgerät, beispielsweise ein Smartphone übermitteln.

Moderne Medizintechnik setzt schon seit einiger Zeit auf die Technologie der Smart Textiles und intelligente Wearables, um Patient*innen anstelle einer stationären Überwachung ein komfortables Dauer-Monitoring von Zuhause zu bieten. Am Fraunhofer-Institut für Zuverlässigkeit und Mikroelektronik IZM bringt das Team rund um Christine Kallmayer diese Technologie zur anwendungsbezogenen Umsetzung und profitiert dabei von langjähriger Erfahrung mit Integrationstechnologien in flexible Materialien. Beim integrierten Patch setzen die Forschenden auf thermoplastische Polyurethane als Basismaterialien, in die Elektronik und Sensorik eingebettet werden. Dadurch wird sichergestellt, dass das Tragegefühl einem handelsüblichen Pflaster entspricht statt einer starren Folie. Damit das geburtsmedizinische Monitoring unmerkbar und bequem für Schwangere und das Ungeborene verläuft, plant das Projektkonsortium innovative Ultraschallsensoren auf MEMS-Basis direkt in das PU-Material zu integrieren. Über unmittelbaren Hautkontakt sollen die miniaturisierten Sensoren Daten aufnehmen. Dehnbare Leiterbahnen aus TPU-Material sollen die Informationen dann zur Auswerteelektronik und schlussendlich zu einer drahtlosen Schnittstelle weiterleiten, so dass Ärzt*innen und Hebammen alle relevanten Daten in einer App einsehen können. Zusätzlich zum Ultraschall planen die Forschenden weitere Sensoren wie Mikrofone und Temperatursensoren sowie Elektroden einzubauen.
 
Auch nach der Geburt kann die neue Integrationstechnologie von großem Nutzen für die Medizintechnik sein: Mit weiteren Demonstratoren plant das Newlife-Team das Monitoring von Neugeborenen zu ermöglichen. Sensoren für ein kontinuierliches EKG, Überwachung der Atmung und Infrarot-Spektroskopie zur Beobachtung der Gehirn-Aktivität sollen in das weiche Textil eines Baby-Bodys und eines Mützchens integriert werden. „Besonders für Frühchen und Neugeborene mit gesundheitlichen Risiken ist das Remote-Monitoring eine sinnvolle Alternative zum stationären Aufenthalt und kabelgebundener Überwachung. Dafür müssen wir einen bisher unvergleichlichen Komfort der hauchdünnen Smart Textiles gewährleisten: Es darf keine Elektronik spürbar sein. Zusätzlich muss das gesamte Modul extrem zuverlässig sein, da die smarten Textilien Waschgänge problemlos überstehen sollten“, erklärt die Projekt-Verantwortliche am Fraunhofer IZM Christine Kallmayer.
 
Zur externen Überwachung wird im Projekt außerdem an Möglichkeiten geforscht, durch Kameradaten und Sensorik im Baby-Bett Aussagen über Gesundheitszustand und Wohlbefinden des Kindes abzuleiten. Sobald die Hardware-Basis von Patch, textiler Elektronik und Sensor-Bett aufgebaut und getestet ist, werden die Projektpartner*innen noch einen Schritt weitergehen: Mittels Cloud-basierter Lösungen sollen KI und maschinelles Lernen die Anwendung für medizinisches Personal erleichtern und höchste Sicherheit der Daten gewährleisten.

Quelle:

Fraunhofer – Institut für Zuverlässigkeit und Mikrointegration IZM

North Carolina State University
17.01.2023

Mit Stickerei kostengünstig Wearable Electronics produzieren

Durch das Aufsticken von stromerzeugenden Garnen auf Stoff konnten Forscher ein selbstversorgendes, numerisches Touchpad und Bewegungssensoren in Kleidung einbetten. Die Technik bietet eine kostengünstige, skalierbare Methode für die Herstellung von tragbaren Geräten.
„Unsere Technik verwendet Stickerei, was ziemlich einfach ist - man kann unsere Garne direkt auf den Stoff aufbringen“, so der Hauptautor der Studie, Rong Yin, Assistenzprofessor für Textiltechnik, Chemie und Wissenschaft an der North Carolina State University. „Bei der Herstellung des Gewebes muss keine Rücksicht auf die tragbaren Geräte genommen werden. Man kann die stromerzeugenden Garne erst nach der Herstellung des Kleidungsstücks integrieren.“
 

Durch das Aufsticken von stromerzeugenden Garnen auf Stoff konnten Forscher ein selbstversorgendes, numerisches Touchpad und Bewegungssensoren in Kleidung einbetten. Die Technik bietet eine kostengünstige, skalierbare Methode für die Herstellung von tragbaren Geräten.
„Unsere Technik verwendet Stickerei, was ziemlich einfach ist - man kann unsere Garne direkt auf den Stoff aufbringen“, so der Hauptautor der Studie, Rong Yin, Assistenzprofessor für Textiltechnik, Chemie und Wissenschaft an der North Carolina State University. „Bei der Herstellung des Gewebes muss keine Rücksicht auf die tragbaren Geräte genommen werden. Man kann die stromerzeugenden Garne erst nach der Herstellung des Kleidungsstücks integrieren.“
 
In der Studie, die in der Zeitschrift Nano Energy veröffentlicht wurde, testeten die Forscher mehrere Designs für stromerzeugende Garne. Um sie so haltbar zu machen, dass sie der Spannung und Biegung beim Sticken standhalten, verwendeten sie schließlich fünf handelsübliche Kupferdrähte, die mit einer dünnen Polyurethanbeschichtung versehen waren. Dann nähten sie sie mit einem anderen Material - PTFE - auf Baumwollgewebe.

„Dies ist eine kostengünstige Methode zur Herstellung von tragbarer Elektronik mit handelsüblichen Produkten“, so Yin. „Die elektrischen Eigenschaften unserer Prototypen waren mit denen anderer Designs vergleichbar, die auf demselben Mechanismus zur Stromerzeugung basieren“.
Die Forscher stützten sich auf eine Methode zur Stromerzeugung, die als „triboelektrischer Effekt“ bezeichnet wird und bei der Elektronen, die von zwei verschiedenen Materialien ausgetauscht werden, wie statische Elektrizität nutzbar gemacht werden. Sie stellten fest, dass das PTFE-Gewebe in Kontakt mit den polyurethanbeschichteten Kupferdrähten die beste Leistung in Bezug auf Spannung und Stromstärke erbrachte, verglichen mit anderen getesteten Gewebetypen, darunter Baumwolle und Seide. Sie testeten ebenfalls die Beschichtung der Stickerei-Muster mit Plasma, um den Effekt zu verstärken.

„In unserem Muster gibt es zwei Schichten - eine ist der leitende, mit Polyurethan beschichtete Kupferdraht, die andere ist PTFE, und dazwischen befindet sich eine Lücke", so Yin. "Wenn die beiden nichtleitenden Materialien miteinander in Kontakt kommen, verliert das eine Material Elektronen und das andere erhält Elektronen. Verbindet man sie miteinander, so entsteht ein Strom.”

Die Forscher testeten ihre Garne als Bewegungssensoren, indem sie sie mit dem PTFE-Gewebe auf Jeansstoff bestickten. Sie platzierten die Stickereien auf der Handfläche, unter dem Arm, am Ellbogen und am Knie, um die elektrischen Signale zu verfolgen, die bei der Bewegung einer Person entstehen. Außerdem befestigten sie den bestickten Stoff an der Innensohle eines Schuhs, um seine Verwendung als Schrittzähler zu testen. Dabei stellten sie fest, dass die elektrischen Signale variierten, je nachdem, ob die Person ging, lief oder sprang.
Schließlich testeten sie ihre Garne in einem textilbasierten Ziffernblock am Arm, den sie anfertigten, indem sie Zahlen auf ein Stück Baumwollstoff stickten und dieses auf einem Stück PTFE-Gewebe befestigten. Je nach Zahl, die die Person auf dem Tastenfeld drückte, wurden unterschiedliche elektrische Signale erzeugt.

„Man kann unsere Garne auf Kleidung sticken, und wenn man sich bewegt, wird ein elektrisches Signal erzeugt, und diese Signale können als Sensor verwendet werden“, sagte Yin. „Wenn wir die Stickerei in einen Schuh einnähen, erzeugt sie beim Laufen eine höhere Spannung als beim bloßen Gehen. Wenn wir Zahlen auf den Stoff gestickt haben und sie drücken, wird für jede Zahl eine andere Spannung erzeugt. Das könnte als Interface genutzt werden.”

Da Textilprodukte unweigerlich gewaschen werden, testeten sie die Haltbarkeit ihres Stickdesigns in einer Reihe von Wasch- und Reibungstests. Nach dem Waschen mit der Hand, dem Durchwaschen mit Waschmittel und dem Trocknen im Ofen, stellten sie keinen Unterschied oder einen leichten Anstieg der Spannung fest. Bei dem mit Plasma beschichteten Prototyp wurde eine schwächere, aber immer noch bessere Leistung im Vergleich zum Originalmuster festgestellt. Nach einem Abriebtest konnte festgehalten werden, dass sich die elektrische Ausgangsleistung nach 10.000 Scheuerzyklen nicht signifikant verändert hatte.

Für die Zukunft planen sie, ihre Sensoren mit anderen Geräten zu integrieren, um weitere Funktionen hinzuzufügen. „Der nächste Schritt ist die Integration dieser Sensoren in ein tragbares System“, so Yin.

Die Studie mit dem Titel " Flexible, durable and washable triboelectric yarn and embroidery for self-powered sensing and human-machine interaction " wurde online in Nano Energy veröffentlicht. Zu den Koautoren gehören Yu Chen, Erdong Chen, Zihao Wang, Yali Ling, Rosie Fisher, Mengjiao Li, Jacob Hart, Weilei Mu, Wei Gao, Xiaoming Tao und Bao Yang. Die Finanzierung erfolgte durch die North Carolina State University über den NC State Faculty Research & Professional Development Fund und das NC State Summer REU-Programm.

Quelle:

North Carolina State University, Rong Yin, Laura Oleniacz