Textination Newsline

from to
Zurücksetzen
6 Ergebnisse
Foto: rottonara, Pixabay
29.01.2024

Naturalistische Seide aus künstlicher Spinndrüse gesponnen

Unter der Leitung von Keiji Numata ist es Wissenschaftlern des RIKEN Center for Sustainable Resource Science in Japan zusammen mit Kollegen des RIKEN Pioneering Research Cluster gelungen, ein Gerät zu entwickeln, das künstliche Spinnenseide spinnt, die der natürlichen Spinnenseide sehr ähnlich ist. Die künstliche Seidendrüse war in der Lage, die komplexe molekulare Struktur der Seide nachzubilden, indem sie die verschiedenen chemischen und physikalischen Veränderungen nachahmte, die in der Seidendrüse einer Spinne natürlich auftreten. Diese umweltfreundliche Innovation ist ein großer Schritt in Richtung Nachhaltigkeit und könnte für verschiedene Branchen relevant sein. Diese Studie wurde am 15. Januar in der Fachzeitschrift Nature Communications veröffentlicht.

Unter der Leitung von Keiji Numata ist es Wissenschaftlern des RIKEN Center for Sustainable Resource Science in Japan zusammen mit Kollegen des RIKEN Pioneering Research Cluster gelungen, ein Gerät zu entwickeln, das künstliche Spinnenseide spinnt, die der natürlichen Spinnenseide sehr ähnlich ist. Die künstliche Seidendrüse war in der Lage, die komplexe molekulare Struktur der Seide nachzubilden, indem sie die verschiedenen chemischen und physikalischen Veränderungen nachahmte, die in der Seidendrüse einer Spinne natürlich auftreten. Diese umweltfreundliche Innovation ist ein großer Schritt in Richtung Nachhaltigkeit und könnte für verschiedene Branchen relevant sein. Diese Studie wurde am 15. Januar in der Fachzeitschrift Nature Communications veröffentlicht.

Spinnenseide ist bekannt für ihre außergewöhnliche Stärke, Flexibilität und Leichtigkeit, vergleichbar mit Stahl desselben Durchmessers, aber mit einem unvergleichlichen Verhältnis von Stärke zu Gewicht. Darüber hinaus ist sie biokompatibel, d. h. sie kann in der Medizin eingesetzt werden, und biologisch abbaubar. Warum wird dann nicht alles aus Spinnenseide hergestellt? Die Gewinnung von Spinnenseide in großem Maßstab hat sich aus verschiedenen Gründen als unpraktisch erwiesen, so dass Wissenschaftler ein Verfahren entwickeln mussten, um sie im Labor herzustellen.

Spinnenseide ist eine Biopolymerfaser, die aus großen Proteinen mit sich stark wiederholenden Sequenzen, den sogenannten Spidroinen, besteht. In den Seidenfasern befinden sich molekulare Unterstrukturen, die so genannten β-Faltblätter, die richtig ausgerichtet sein müssen, damit die Seidenfasern ihre einzigartigen mechanischen Eigenschaften erhalten. Die Wiederherstellung dieser komplexen molekularen Struktur hat die Wissenschaftler jahrelang vor ein Rätsel gestellt. Anstatt zu versuchen, den Prozess von Grund auf neu zu entwickeln, wählten die RIKEN-Wissenschaftler den Ansatz der Biomimikry. Numata erklärt: „In dieser Studie haben wir versucht, die natürliche Spinnenseidenproduktion mit Hilfe der Mikrofluidik zu imitieren, bei der kleine Mengen von Flüssigkeiten durch enge Kanäle fließen und manipuliert werden. Man könnte sogar sagen, dass die Seidendrüse der Spinne als eine Art natürliches mikrofluidisches Gerät funktioniert.“

Das von den Wissenschaftlern entwickelte Gerät sieht aus wie ein kleiner rechteckiger Kasten, in den winzige Kanäle eingearbeitet sind. Die Spidroin-Vorläuferlösung wird an einem Ende platziert und dann mit Hilfe von Unterdruck zum anderen Ende gezogen. Während die Spidroine durch die mikrofluidischen Kanäle fließen, sind sie präzisen Veränderungen der chemischen und physikalischen Umgebung ausgesetzt, die durch das Design des mikrofluidischen Systems ermöglicht werden. Unter den richtigen Bedingungen bauten sich die Proteine selbst zu Seidenfasern mit ihrer charakteristischen komplexen Struktur auf.

Um die richtigen Bedingungen zu finden, experimentierten die Wissenschaftler und konnten schließlich die Wechselwirkungen zwischen den verschiedenen Bereichen des mikrofluidischen Systems optimieren. Unter anderem entdeckten sie, dass es nicht funktionierte, die Proteine mit Kraft durchzudrücken. Nur wenn sie Unterdruck einsetzten, um das Spidroin so zu ziehen, dass es sich auflöst, konnten kontinuierliche Seidenfasern mit der korrekten Ausrichtung der β-Faltblätter entstehen.

„Es war überraschend, wie robust das mikrofluidische System war, sobald die verschiedenen Bedingungen festgelegt und optimiert waren“, sagt der leitende Wissenschaftler Ali Malay, einer der Koautoren der Studie. „Der Aufbau der Fasern erfolgte spontan, extrem schnell und in hohem Maße reproduzierbar. Wichtig ist, dass die Fasern die ausgeprägte hierarchische Struktur aufwiesen, die in natürlichen Seidenfasern zu finden ist.“

Die künstliche Herstellung von Seidenfasern mit dieser Methode könnte zahlreiche Vorteile mit sich bringen. Sie könnte nicht nur dazu beitragen, die negativen Auswirkungen der derzeitigen Textilherstellung auf die Umwelt zu verringern, sondern die biologisch abbaubare und biokompatible Beschaffenheit der Spinnenseide macht sie ideal für biomedizinische Anwendungen wie Nahtmaterial und künstliche Bänder.

„Im Idealfall wollen wir eine Wirkung in der realen Welt erzielen“, sagt Numata. „Um dies zu erreichen, müssen wir unsere Faserproduktionsmethode skalieren und zu einem kontinuierlichen Prozess machen. Außerdem werden wir die Qualität unserer künstlichen Spinnenseide anhand verschiedener Metriken bewerten und auf dieser Grundlage weitere Verbesserungen vornehmen.“

Quelle:

RIKEN Center for Sustainable Resource Science, Japan

Die Forscher stellten formverändernde Fasern her, indem sie einen ballonartigen Schlauch in eine geflochtene Textilhülle einkapselten. (c) : Muh Amdadul Hoque. Die Forscher stellten formverändernde Fasern her, indem sie einen ballonartigen Schlauch in eine geflochtene Textilhülle einkapselten.
27.09.2023

Künstliche Muskelfasern als Zellgerüst

In zwei neuen Studien haben Forschende der North Carolina State University eine Serie von Textilfasern entwickelt und getestet, die ihre Form verändern und wie ein Muskel Kraft erzeugen können. In der ersten Studie untersuchten die Forscher den Einfluss der Materialien auf die Stärke und die Kontraktionslänge der künstlichen Muskeln. Die Forschungsergebnisse könnten helfen, die Fasern für verschiedene Anwendungen anzupassen.

In der zweiten Studie, der Proof-of-Concept-Studie, testeten die Forscher ihre Fasern als Gerüst für lebende Zellen. Die Ergebnisse deuten darauf hin, dass die als „Faserrobots“ bezeichneten Fasern möglicherweise zur Entwicklung von 3D-Modellen lebender, sich bewegender Systeme im menschlichen Körper verwendet werden könnten.

In zwei neuen Studien haben Forschende der North Carolina State University eine Serie von Textilfasern entwickelt und getestet, die ihre Form verändern und wie ein Muskel Kraft erzeugen können. In der ersten Studie untersuchten die Forscher den Einfluss der Materialien auf die Stärke und die Kontraktionslänge der künstlichen Muskeln. Die Forschungsergebnisse könnten helfen, die Fasern für verschiedene Anwendungen anzupassen.

In der zweiten Studie, der Proof-of-Concept-Studie, testeten die Forscher ihre Fasern als Gerüst für lebende Zellen. Die Ergebnisse deuten darauf hin, dass die als „Faserrobots“ bezeichneten Fasern möglicherweise zur Entwicklung von 3D-Modellen lebender, sich bewegender Systeme im menschlichen Körper verwendet werden könnten.

„Wir haben festgestellt, dass unser Faserrobot ein sehr geeignetes Gerüst für Zellen ist. Um eine geeignetere Umgebung für die Zellen zu schaffen, können wir die Frequenz und das Kontraktionsverhältnis verändern,“ sagte Muh Amdadul Hoque, Doktorand in Textiltechnik, Chemie und Wissenschaft an der NC State. „Dies waren Proof-of-Concept-Studien; letztendlich ist es unser Ziel, herauszufinden, ob wir diese Fasern als Gerüst für Stammzellen nutzen oder sie in zukünftigen Studien zur Entwicklung künstlicher Organe verwenden können.“
 
Die Forscher stellten die formverändernden Fasern her, indem sie einen ballonartigen Schlauch aus einem gummiähnlichen Material in eine geflochtene Textilhülle einkapselten. Wird der im Innern befindliche Ballon mit einer Luftpumpe aufgeblasen, dehnt sich der geflochtene Mantel aus, wodurch er sich verkürzt.

Die Forschenden maßen die Kraft und die Kontraktionsraten von Fasern aus verschiedenen Materialien, um den Zusammenhang zwischen Material und Performance zu verstehen. Sie stellten fest, dass stärkere Garne mit größerem Querschnitt eine stärkere Kontraktionskraft erzeugen. Darüber hinaus fanden sie heraus, dass das für die Herstellung des Ballons verwendete Material einen Einfluss auf die Stärke der Kontraktion und die erzeugte Kraft ausübte.
 
„Wir haben nachgewiesen, dass wir die Materialeigenschaften an die erforderliche Leistung des Geräts anpassen können“, so Xiaomeng Fang, Assistenzprofessorin für Textiltechnik, Chemie und Wissenschaft an der NC State. "Wir haben auch gezeigt, dass wir dieses Gerät klein genug machen können, so dass wir es potenziell bei der Herstellung von Textilien und anderen Textilanwendungen einsetzen können, unter anderem in Wearables und Hilfsmitteln."
 
In einer Folgestudie untersuchten die Forschenden, ob sie die formverändernden Fasern als Gerüst für Fibroblasten verwenden könnten, eine Zellart, die in Bindegeweben vorkommt und andere Gewebe oder Organe stützt.

„Die Dehnung soll die dynamischen Bewegungen des Körpers imitieren“, sagt Jessica Gluck, Assistenzprofessorin für Textiltechnik, Chemie und Wissenschaft an der NC State University und Mitautorin der Studie.

Die Wissenschaftler untersuchten die Reaktion der Zellen auf die Bewegung der formverändernden Fasern sowie auf die verschiedenen Materialien, die bei der Faserstruktur verwendet wurden. Sie fanden heraus, dass die Zellen in der Lage waren, die Flechthülle des Faserrobots zu bedecken und sogar zu durchdringen, stellten jedoch eine Abnahme der Stoffwechselaktivität der Zellen fest, wenn die Kontraktion des Faserrobots über ein bestimmtes Maß hinaus anhielt, im Vergleich zu einer Einheit aus demselben Material, die sie stationär hielten.

The researchers are interested in building on the findings to see if they could use the fibers as a 3D biological model, and to investigate whether movement would impact cell differentiation. They said their model would be an advance over other existing experimental models that have been developed to show cellular response to stretching and other motion, since they can only move in two dimensions.
Die Ergebnisse sollen weiter ausgebaut werden, um zu sehen, ob die Fasern als biologisches 3D-Modell verwenden werden können, und weiter, um zu untersuchen, ob die Bewegung die Zellteilung beeinflussen würde. Ihr Modell wäre ein Fortschritt gegenüber anderen experimentellen Modellen, die entwickelt wurden, um die Reaktion von Zellen auf zweidimensionale Dehnung und andere Bewegungen zu zeigen.
 
„Wenn man Zellen dehnen oder belasten will, legt man sie normalerweise auf eine Kunststoffschale und dehnt sie in eine oder zwei Richtungen“, sagte Gluck. „In dieser Studie konnten wir zeigen, dass die Zellen in dieser dynamischen 3D-Kultur bis zu 72 Stunden überleben können.“

„Dies ist besonders nützlich für Stammzellen“, fügte Gluck hinzu. „In Zukunft könnten wir untersuchen, was auf zellulärer Ebene bei mechanischer Belastung passiert. Man könnte Muskelzellen betrachten und sehen, wie sie sich entwickeln, oder analysieren, wie die mechanische Einwirkung zur Zellteilung beitragen würde.“

Die Studie „Effect of Material Properties on Fiber-Shaped Pneumatic Actuators Performance” wurde am 18. März in Actuators veröffentlicht. Emily Petersen war Mitautorin. Die Studie wurde durch eine Anschubfinanzierung gefördert, die Fang vom Department of Textile Engineering, Chemistry and Science der NC State University erhielt.

Die Studie mit dem Titel „Development of a Pneumatic-Driven Fiber-Shaped Robot Scaffold for Use as a Complex 3D Dynamic Culture System“ (Entwicklung eines pneumatisch angetriebenen faserförmigen Robotgerüsts zur Verwendung als komplexes dynamisches 3D-Kultursystem) wurde am 21. April online in Biomimetics veröffentlicht. Neben Gluck, Hoque und Fang gehörten Nasif Mahmood, Kiran M. Ali, Eelya Sefat, Yihan Huang, Emily Petersen und Shane Harrington zu den Co-Autoren. Die Studie wurde vom NC State Wilson College of Textiles, der Abteilung für Textiltechnik, -chemie und -wissenschaft sowie dem Wilson College of Textiles Research Opportunity Seed Fund Program finanziert.

Quelle:

North Carolina State University, Laura Oleniacz. Übersetzung Textination

Foto: Marlies Thurnheer
25.10.2022

Textile Elektroden für Medtech-Anwendungen

  • Erfolgreiche Finanzierungsrunde für Empa-Spin-off «Nahtlos»

Nahtlos, ein Spin-off der Empa, hat in einer ersten Finanzierungsrunde 1 Million Franken von einem Netzwerk von «Business Angels» aus der Schweiz und Liechtenstein sowie von der Startfeld-Stiftung erhalten. Damit möchte Nahtlos den Markteintritt der neu entwickelten Textil-basierten Elektrode für medizinische Anwendungen vorantreiben.

  • Erfolgreiche Finanzierungsrunde für Empa-Spin-off «Nahtlos»

Nahtlos, ein Spin-off der Empa, hat in einer ersten Finanzierungsrunde 1 Million Franken von einem Netzwerk von «Business Angels» aus der Schweiz und Liechtenstein sowie von der Startfeld-Stiftung erhalten. Damit möchte Nahtlos den Markteintritt der neu entwickelten Textil-basierten Elektrode für medizinische Anwendungen vorantreiben.

Nahtlos, ein Spin-off der Empa, hat in den vergangenen zwei Jahren neuartige, Textil-basierte Elektroden zur Aufzeichnung der Herzaktivität (Elektrokardiogramm, EKG) – etwa, um Vorhofflimmern zu erkennen – sowie für Elektrostimulationstherapien entwickelt, z.B. um die Muskelmasse bei gelähmten Patienten zu erhalten. Textil-basierte Elektroden ermöglichen eine sanfte und hautschonende Anwendung, auch wenn die Elektroden über mehrere Tage oder gar Wochen getragen werden müssen. Die textile Elektrode ist somit die erste Alternative zur Gel-Elektrode, welche vor 60 Jahren entwickelt worden ist und noch heute als Standard für medizinische Anwendungen gilt.

Der Nahtlos-Gründer und ehemalige Empa-Forscher Michel Schmid und der Mit-Gründer und Betriebswirtschaftler José Näf haben die Textil-basierte Technologie, welche in verschiedenen, unter anderem von der Innosuisse geförderten Projekten an der Empa entwickelt und patentiert worden ist, weiterentwickelt und ausgereift. Das Ziel war dabei, ein Produkt für medizinische Langzeit-Anwendungen herzustellen, welches während einer Anwendung von bis zu mehreren Wochen zuverlässig EKG Signale aufzeichnet, dabei eine hohe Patientenakzeptanz erreicht und durch seine Wirtschaftlichkeit für den Leistungserbringer überzeugt. Heute ist das Patent zur textilbasierten Elektrodentechnologie nach Erreichen eines Meilensteins im Eigentum von nahtlos.

Finanzierung durch «Business Angels» und Startfeld-Stiftung
Für die Zertifizierung ihres Produkts, den Produktionsaufbau und die Marktbearbeitung haben Schmid und Näf nach Investoren gesucht – und konnten die Seed-Finanzierungsrunde vor kurzem erfolgreich beenden: die beiden Jungunternehmer akquirierten CHF 1 Million von Business Angelnetzwerken aus der Schweiz und Liechtenstein und von der Startfeld Stiftung. Die Nahtlos AG wurde beim Aufbau des Unternehmens von Startfeld, der Start-up Förderung des Switzerland Innovation Park Ost (SIP Ost), in Form von Coaching, Beratung und Frühphasen-Finanzierung unterstützt. Nahtlos ist zudem im Innovationspark Ost an der Lerchen-feldstraße 3 beheimatet, wo durch die Zusammenarbeit von Start-ups, Unternehmen und Hochschulen Innovationen initiiert und beschleunigt werden.

Zusammen mit der Empa und Nahtlos war der SIP Ost dieses Jahr auch auf der OLMA präsent. Am Stand konnten sich Besucherinnen und Besucher live und vor Ort über die Forschungsaktivitäten der Empa im Bereich «Digital Health» sowie über die Nahtlos-Technologie und deren Textil-Elektroden zur Gesundheitsüberwachung informieren.

Quelle:

EMPA

Foto: pixabay
17.08.2021

Innovative Wundversorgung: Maßgeschneiderte Wundauflagen aus Tropoelastin

Maßgeschneiderte, biomedizinisch einsetzbare Materialien auf der Basis von Tropoelastin entwickeln die Skinomics GmbH aus Halle, die Martin-Luther-Universität Halle-Wittenberg und das Fraunhofer-Institut für Mikrostruktur von Werkstoffen und Systemen IMWS in einem gemeinsamen Projekt. Das Material vereint biologische Verträglichkeit, Haltbarkeit, biologische Abbaubarkeit und günstige mechanische Eigenschaften, die denen der Haut ähneln. Präklinische Tests haben bestätigt, dass es sich zur Verwendung als Wundauflagematerial eignet, das bei der Versorgung chronischer und komplexer Wunden zum Einsatz kommt.

Maßgeschneiderte, biomedizinisch einsetzbare Materialien auf der Basis von Tropoelastin entwickeln die Skinomics GmbH aus Halle, die Martin-Luther-Universität Halle-Wittenberg und das Fraunhofer-Institut für Mikrostruktur von Werkstoffen und Systemen IMWS in einem gemeinsamen Projekt. Das Material vereint biologische Verträglichkeit, Haltbarkeit, biologische Abbaubarkeit und günstige mechanische Eigenschaften, die denen der Haut ähneln. Präklinische Tests haben bestätigt, dass es sich zur Verwendung als Wundauflagematerial eignet, das bei der Versorgung chronischer und komplexer Wunden zum Einsatz kommt.

Insbesondere vor dem Hintergrund einer alternden Gesellschaft gewinnen spezielle Wundauflagen an Bedeutung. Die Behandlung komplexer Wunderkrankungen, wie »Ulcus Cruris«, im Volksmund »offenes Bein« genannt, oder diabetischer Wunden stellt für medizinisches Personal eine schwierige, für die Betroffenen eine langfristige und schmerzhafte sowie für das Gesundheitswesen eine kostspielige Aufgabe dar. Für die Versorgung solcher Wunden kommen inzwischen auch innovative proteinbasierte Materialien zum Einsatz, die jedoch aufgrund ihrer Herstellung aus tierischen Geweben erhöhte Infektionsrisiken bergen oder unerwünschte Immunreaktionen zur Folge haben können. Hinzu kommen zunehmende Vorbehalte in der Bevölkerung gegenüber Medizinprodukten tierischer Herkunft.

Im gemeinsamen Forschungsprojekt entwickeln die Projektpartner derzeit maßgeschneiderte, biomedizinisch einsetzbare Materialien auf der Basis von humanem Tropoelastin. Dieses Vorläufermaterial wird im Körper zu Elastin umgewandelt, einem lebensnotwendigen und langlebigen Strukturprotein, das über außergewöhnliche mechanische Eigenschaften verfügt und damit der Haut und weiteren Organen die für deren Funktion erforderliche Elastizität und Spannkraft verleiht.

»Elastin ist chemisch und enzymatisch äußerst stabil, biokompatibel und erzeugt bei der Anwendung als Biomaterial bei Menschen keine immunologischen Abstoßungen. Daher wollen wir auf Basis des humanen Tropoelastins neue und innovative Lösungen für die Behandlung komplexer Wunden schaffen«, sagt Dr. Christian Schmelzer, Leiter des Geschäftsfeldes Biologische und makromolekulare Materialien am Fraunhofer IMWS.

Individuelle Wundbehandlung
Zunächst ist es im Rahmen des Forschungsprojekts unter der Leitung von Prof. Dr. Markus Pietzsch von der Martin-Luther-Universität Halle-Wittenberg gelungen, ein biotechnologisches Verfahren zur Modifizierung von Tropoelastin zu entwickeln. Die Verarbeitung des modifizierten Tropoelastins erfolgt am Fraunhofer IMWS. Hier werden mittels eines Elektrospinnverfahrens hauchdünne Nanofasern hergestellt, deren Durchmesser nur wenige Hundert Nanometer betragen. Diese Fasern werden zu Nanofaservliesen gesponnen. Über chemische Quervernetzungsschritte werden die Vliese für ihre spätere Anwendung stabilisiert. Die entwickelten Verfahren wurden dahingehend optimiert, dass biomedizinische Parameter wie Porengröße, Stabilität und mechanische Eigenschaften variabel sind und damit individuell und maßgeschneidert den Erfordernissen der jeweiligen Wundbehandlung angepasst werden können. Die mit den neuen Verfahren hergestellten Materialien werden durch die Skinomics GmbH in ersten präklinischen Tests hinsichtlich ihrer Hautverträglichkeit untersucht und erzielten bereits vielversprechende Ergebnisse.

Zum Abschluss des Projektes am Ende dieses Jahres sollen Schutzrechtsanmeldungen als Grundlage für eine anschließende Produktentwicklungsphase für zertifizierte Medizinprodukte erfolgen.

(c) Fraunhofer ITWM
27.07.2021

Simulationssoftware TexMath - Technische Textilien realitätsnah simulieren

Von Hochleistungstextilien bis hin zu Kompressions- und Sportbekleidung: Das modulare Softwareprogramm »TexMath« des Fraunhofer-Instituts für Techno- und Wirtschaftsmathematik ITWM ermöglicht sowohl die Simulation mechanischer Materialeigenschaften als auch die Optimierung textiler Produkte.

Von Hochleistungstextilien bis hin zu Kompressions- und Sportbekleidung: Das modulare Softwareprogramm »TexMath« des Fraunhofer-Instituts für Techno- und Wirtschaftsmathematik ITWM ermöglicht sowohl die Simulation mechanischer Materialeigenschaften als auch die Optimierung textiler Produkte.

Eine beschleunigte Entwicklung und ein optimiertes Design technischer Textilien bei gleichzeitiger Reduzierung von Experimenten? Die Nachfrage für Techniken, die dies realisieren können, ist besonders in Bereichen wie der Sport-, Medizin- und Bekleidungsindustrie groß. Das Team »Technische Textilien« der Abteilung »Strömungs- und Materialsimulation« des Fraunhofer ITWM hat sich dieser Herausforderung angenommen und erforscht Simulationsmethoden, die eine effiziente Vorhersage des textilen Verhaltens bei Streckung, Schub, Biegung, Torsion oder Kompression ermöglicht. Auch die Faltenbildung unter Ausdehnung sowie Schrumpfung von Garnen oder kritische Scherwinkel können während des gesamten Herstellungsprozesses simuliert werden.

Die von ihnen entwickelte Simulationssoftware »TexMath« sorgt dafür, dass Prozessketten in der Produktion vorab an neue Materialien anpassbar werden. Komplizierte Muster und Schichten können mithilfe der Software abgebildet werden und ein direkter Anschluss an die Textilmaschine erfolgen. Gewünschte Web-, Strick- und Wirkprodukte werden mit der Software genau berechnet und deren Materialeigenschaften simuliert. Zusätzlich zu der Bewertung eines bestimmten Textil-Designs mithilfe von Simulation bieten die Tools auch die Optimierung der Leistungsmerkmale für verschiedene Designvarianten. Das Ziel der Software ist es, so Teamleiterin Dr. Julia Orlik, »das Design nach Produkteigenschaften und Zielkriterien« zu realisieren.

TexMath besteht aus mehreren Komponenten: »MeshUp«, »FibreFEM« und »FIFST«. Jede der in TexMath enthaltenen Komponenten hat ihren spezifischen Einsatzbereich. Darüber hinaus verfügen die Tools sowohl untereinander über Schnittstellen als auch über Verbindungen zu der Software »GeoDict®« der Fraunhofer-Ausgründung Math2Market auf, womit beispielsweise strömungsmechanische Simulationen an den Textilien durchgeführt werden können.

Ein Anwendungsbereich der TexMath Software ist die Optimierung von Kompressionstextilien für den medizinischen Bereich oder für den Sport. Für optimale Wirksamkeit kommt es hier ganz besonders auf Passgenauigkeit des Materials an. So kann der Strickvorgang beispielsweise zur Anfertigung einer Bandage mit vordefinierten Kompressionseigenschaften mit TexMath simuliert und dadurch das optimale Gestrick ausgelegt werden.

Diese virtuelle Bandage wird daraufhin in einer weiteren Simulation belastet und einem virtuellen Arm oder Bein angezogen. Dank TexMath wird mithilfe des berechneten Druckprofils eine vorab Bewertung der Kompressionseigenschaften der Bandage sowie auch die direkte Ansteuerung der Strickmaschine gemäß des optimalen Designs möglich.

»Mit TexMath lassen sich auch Abstandstextilien, wie sie beispielsweise für das Obermaterial von Sportschuhen und für die Herstellung von Hochleistungstextilien genutzt werden, designen und vorab struktur- und strömungsmechanisch optimieren«, nennen Dr. Julia Orlik und Abteilungsleiter Dr. Konrad Steiner weitere Einsatzbereiche der Software.

Das neu entwickelte Eingabeinterface ist besonders benutzerfreundlich. Die Textil-Klasse (Gestrick, Gewirke, Gewebe und Abstandgewirke) lässt sich unkompliziert einstellen. Die neue grafische Oberfläche erlaubt eine einfache und schnelle Konfiguration.

MeshUp zur Strukturgenerierung von Webmustern und Maschen
Gestricke und Gewebe werden mit Hilfe von Strick- bzw. Webmaschinen produziert. Jedem Textil liegt eine Bindungspatrone zugrunde, die in die Maschine eingelesen wird bzw. in der Maschine fest vordefiniert ist. MeshUp ist das Softwaremodul von TexMath, in dem Bindungspatronen für diverse Gewebe, Gewirke und Gestricke mit verschiedenen Bindungstypen, dem Fadenverlauf und allen Kontaktstellen zwischen verschiedenen Garnen erzeugt, grafisch abbildet und für weitere Simulationen in TexMath mit FISFT und FiberFEM in entsprechende Eingabeformate übersetzt werden. Darüber hinaus stellt MeshUp die Geometrie auch als Volumendaten (Voxelformat) für Berechnungstools wie GeoDict und FeelMath zur Verfügung.

FiberFEM zur Berechnung effektiver mechanischer Eigenschaften einer periodischen Textilstruktur
Mit FiberFEM können gewebte und geflochtene Textilien, Abstandsgewebe, Gelege sowie Fachwerke hinsichtlich ihrer effektiven mechanischen Materialeigenschaften berechnet und optimiert werden. Ein spezielles Merkmal von FiberFEM ist, dass neben Zug- und Schubeigenschaften auch effektive Biege- und Torsionseigenschaften von Textilien anhand ihrer textilen Struktur und der Garneigenschaften bestimmt werden können.

Als Eingangsgrößen benötigt FiberFEM neben der Mikrostrukturbeschreibung aus MeshUp die Faserquerschnittsgeometrie, sowie mechanische Fasereigenschaften wie Zugsteifigkeit und Reibung. Als Output werden die effektiven mechanischen Textilgrößen berechnet. Neben der Berechnung der effektiven mechanischen Materialeigenschaften für bereits existierende gewebte oder gestrickte Textilien für technische und medizinische Anwendungen, bietet der Ansatz auch das Potential zur gezielten Auslegung und Optimierung neuer Textilien mit vorgegebenem mechanischem Eigenschaftsprofil.

So kann das Relaxationsverhalten eines Textils aus dem Web- bzw. Strickmuster und den Garnrelaxationszeiten für viskoelastische Garne ermittelt werden. Auch Reibungskoeffizienten zwischen den Garnen werden berücksichtigt und werden direkt in die Simulation der effektiven Eigenschaften einbezogen bzw. aus der experimentellen Validierung mit dem Gewebe identifiziert.

FIFST zur Berechnung der Deformation und Belastung von Textilien
Das Model FIFST ist spezialisiert für dynamische Simulationen von Gestricken, sehr dehnbaren Geweben und Gewirken. So kann beispielsweise der Strickprozess simuliert, das Abziehen von der Strickmaschine, die Schrumpfung auf ein entspanntes Textil und auch die Wiederbelastung beim Anziehen berechnet werden. Somit kann auch das Design des Gestricks an vorgegebene Spannungsprofile angepasst werden und eine individualisierte Maschinensteuerung zur Produktion personalisierter Textilien oder produktspezifischer Designs ist möglich.

Die numerische Umsetzung nutzt die Finite-Element-Methode mit nichtlinearen Balken-Elementen, die für die Kontaktprobleme um eine zusätzliche interne Variable – das Gleiten von Fäden an Kontaktknoten – erweitert wurde. Das Reibungsgesetz ist mit dem Euler-Eutelwein-Modell umgesetzt, das um einen zusätzlichen Adhäsionsterm modelltechnisch ausgebaut wurde. Die Adhäsion erlaubt somit auch unterschiedliche Vorspannung in den jeweiligen Maschen. Die elastische Energie wird dabei direkt aus den Garn-Kraft-Dehnungskurven berechnet.  

Ein wichtigstes Alleinstellungsmerkmal von FIFST ist die spezielle Technologie der Zugehörigkeit mehrerer Elemente zu bestimmten Threads und deren Anordnung im Thread sowie das gleichzeitig Kontaktgleiten an Million von Knotenpunkten. Somit ermöglicht FIFST multiskalige Simulation von großen gestrickten oder gewebten Schalenbauteilen unter Berücksichtigung der lokalen Textilstruktur.

Eine weitere Funktionalität der Software ist, virtuell Textilien über eine im STL-Format gegebene Oberflächentriangulierung zu ziehen. Im Video wird gewebte Maske (gestrickt ist ebenfalls möglich) in der Ebene an 6 Punkten ausgedehnt und gegen die Gesichtsoberfläche gezogen. Ihre Knoten werden auf das Gesicht projiziert und gleiten auf der Oberfläche weiter, bis die Maske komplett anliegt. Wenn man Reibeigenschaften von Garnen am Gesicht kennt, kann man weitere Faltungsbildung untersuchen und auch sie gezielt beeinflussen. Als weiteres Optimierungspotential erlaubt FIFST Porengrößen von angezogenem Textil auf besonders gewölbten Oberflächenstellen zu minimieren, die durch Erhöhung der Vorspannung in Garnen oder eine Modifizierung des Lappingdiagramms bzw. der Bindepatrone erreicht werden kann.


Für eine Testversion wenden Sie sich bitte an das

Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM
Fraunhofer-Platz 1
67663 Kaiserslautern

Telefon: +49 631 31600-4342

texmath@itwm.fraunhofer.de    

Quelle:

Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM

INDEX17: Wandel im Gesundheitswesen managen © INDEX™17 Press Office
04.04.2017

INDEX17: WANDEL IM GESUNDHEITSWESEN MANAGEN

Eine alternde Bevölkerung ist ein entscheidendes Thema für Medizin und Gesundheitsindustrie. Die European Wound Management Association (EWMA) geht davon aus, dass Personen von 65 Jahren oder älter bis 2060 rund 30% der Bevölkerung der EU27 ausmachen werden - im Vergleich zu 17% im Jahr 2008. Der höchste Einwohneranteil von über 80-Jährigen wird 2060 für Italien (14,9%), Spanien (14,5%) und Deutschland (13,2%), gefolgt von Griechenland (13,5%) erwartet.

Eine alternde Bevölkerung ist ein entscheidendes Thema für Medizin und Gesundheitsindustrie. Die European Wound Management Association (EWMA) geht davon aus, dass Personen von 65 Jahren oder älter bis 2060 rund 30% der Bevölkerung der EU27 ausmachen werden - im Vergleich zu 17% im Jahr 2008. Der höchste Einwohneranteil von über 80-Jährigen wird 2060 für Italien (14,9%), Spanien (14,5%) und Deutschland (13,2%), gefolgt von Griechenland (13,5%) erwartet.

Die Kosten im Gesundheitswesen steigen exponentiell, insbesondere getrieben von erhöhten Preisen für Medikamente und Geräte bei gleichzeitig wachsender Verbreitung chronischer Krankheiten. Diese Trends haben zu signifikanten Veränderungen in den Dienstleistungen europäischer Krankenhäuser geführt, indem die Anzahl der Krankenhauseinrichtungen und der Betten gesunken ist. Darüber hinaus hat der wachsende Druck zu immer früheren Entlassungen zu einer Verlagerung der Dienstleistungen vom Krankenhaus in die häusliche Umgebung geführt – besonders im Bereich des Wundmanagements.

Besucher und Aussteller der INDEX™17, der weltweit führenden Vliesstoffmesse in Genf vom 4.-7. April 2017, haben die Möglichkeit, sich durch Prof. Dr. Sebastian Probst, Professor für Gewebevitalität und Wundversorgung an der Schule für Gesundheitswissenschaften der Westschweizer Hochschule für angewandte Wissenschaften und Kunst, einen Gesamtüberblick vermitteln zu lassen. „Chronische und stark nässende Wunden können oft zur Anwendung unzuverlässiger und kostspieliger Behandlungen führen“, erklärt Prof. Dr. Probst. „Diese Patienten weisen häufig ein erhöhtes Risiko für Infektionen und verzögerte Heilung auf, was sich enorm negativ auf ihre Lebensqualität sowohl in physischer wie auch psychologischer Hinsicht auswirkt. Hochabsorbierende Vliesstoffverbände werden zunehmend für eine effektivere Wundversorgung verwendet, um Bakterien und Wundsekrete zu entfernen und das Wundbett feucht zu halten. Die Verringerung der Kosten im Gesundheitswesen bei gleichzeitiger Sicherstellung einer hohen Qualität der Pflege bleibt von größter Bedeutung.“ Ein weiterer weniger sichtbarer, aber wichtiger Vorteil ist, dass diese Produkte dazu beitragen können, behandlungsbedingte Infektionen zu reduzieren, die immer noch einen von 18 Patienten jeden Tag in Europa betreffen.

Das umfangreiche dreitägige INDEX™17-Programm präsentiert am 5. April zusammen mit den Marktforschungspartnern WTiN ein Medical & Healthcare-Seminar. Hauptredner ist Prof. Dr. Sebastian Probst, der die wichtigsten Herausforderungen vorstellen wird, denen sich die Medizin stellen muss. Renommierte Experten diskutieren anschließend, inwiefern Vliesstoffe zum Bestehen dieser Herausforderungen beitragen können.

Die Medical & Healthcare Seminar Referenten sind:

  • Dr. Parikshit Goswami, Dozent, Direktor für Forschung und Innovation, Leiter des Master-Studiengangs Textiles, Leiter Technology Research, hält ein Grußwort.
  • Prof. Dr. Sebastian Probst, DClinPrac, RN, Professor für Gewebevitalität und Wundversorgung an der Schule für Gesundheitswissenschaften der Westschweizer Hochschule für angewandte Wissenschaften und Kunst, referiert zu den globalen Vliesstoff-Trends für Medizintextilien.
  • Dionysia Patrinou, Intelligence Manager/Market Strategist, Advanced Medical Materials, World Textile Information Network (WTiN), diskutiert Chancen auf dem medizinischen Markt.
  • Paul Greenhalgh, Director of Industrial Design, Team Consulting, wird über einen patientenorientierten Ansatz für die Entwicklung von Medizintechnik sprechen.
  • Dr. Bernd Schlesselmann, Head of R&D, Freudenberg Performance Materials, wird die Zukunft von Vliesstoffen in der fortgeschrittenen Wundversorgung aufzeigen.

Die Besucher aus der ganzen Welt haben die Möglichkeit, sich aus erster Hand über die aktuellsten Vliesstoff-Entwicklungen für medizinische Anwendungen zu informieren. Sie können sich online für die INDEX™17 anmelden: www.index17.org