Entwicklung von kettengewirkten Tapes für das kurvenbahngerechte Tapele-gen als Basis für die materialeffiziente Fertigung lastpfadgerechter, bionischer FKV-Bauteile
Gestricke & Gewirke Composites Technische Textilien
Zusammenfassung
Im IGF-Vorhaben 22653 BR wurde ein neuartiges textilbasiertes Halbzeug zur ressourcenschonenden Fertigung lastpfadgerechter, bionischer Faserverbundbauteile entwickelt: das Curvy Tape. Ziel war die Herstellung kettengewirkter Tapes als Endlosfaserband, die sich auch auf komplex gekrümmten Geometrien faltenfrei und lagegenau ablegen lassen. Zentrale Innovation ist das Prinzip der Fadenreserve: Die Curvy Tapes verfügen über segmentierte, gegeneinander verschiebbare Faserbändchen, deren Scherbarkeit gezielt durch Wirkparameter wie Stichlänge, Bindung und Wirkfadenspannung einstellbar ist.
Ein simulationsgestütztes Auslegungstool erlaubt die präzise Vorhersage geeigneter Tapeparameter in Abhängigkeit von Bauteilgeometrie, Faserart und Ablagepfad. Die entwickelten Fertigungs- und Ablagekonzepte wurden prototypisch umgesetzt, u. a. durch nachrüstbare Zusatzmodule für Multiaxial-Kettenwirkmaschinen. Anhand eines Kotflügel-Demonstrators konnte die technische Machbarkeit und wirtschaftliche Vorteilhaftigkeit validiert werden. Der Materialverschnitt wurde im Vergleich zu herkömmlichen sequenziellen Preformverfahren bei gleicher Leistungsfähigkeit halbiert, die strukturelle Überdimensionierung um bis zu 30 % reduziert. Die Technologie ist insbesondere für KMU attraktiv, da sie eine hohe Produktqualität mit niedrigen Investitionskosten kombiniert. Curvy Tapes eröffnen neue Perspektiven für den FKV-Leichtbau in Mobilität, Energie und Maschinenbau.
Bericht
Ausgangssituation und Problemstellung
Der Trend zum ressourcenschonenden Leichtbau hat sich in nahezu allen Technikbereichen etabliert und wird durch die Notwendigkeit zur CO₂-Reduktion sowie zur Steigerung der Materialeffizienz weiter verstärkt [1–3]. Insbesondere Faserkunstoffverbunde (FKV) gelten dank ihres geringen spezifischen Gewichts und ihrer richtungsabhängigen mechanischen Eigenschaften als Schlüsselelemente für eine nachhaltige Auslegung von Leichtbaustrukturen [4–7]. Der Markt für glas- und carbonfaserverstärkte FKV wächst stetig, mit Anwendungen in der Luftfahrt, Automobilindustrie, Energiebranche und Medizintechnik [8–10]. Dabei gewinnen sogenannte unidirektionale Tapes (UD-Tapes) zunehmend an Bedeutung, da sie eine präzise Faserorientierung ermöglichen und in hochautomatisierten Fertigungsprozessen eingesetzt werden können [11–14].
Trotz dieser Vorteile stoßen die am Markt verfügbaren UD-Tapes an ihre Grenzen, wenn es um die wirtschaftliche und materialsparende Herstellung komplexer, mehrfach gekrümmter Bauteile geht [11, 15]. Eine kurvenbahngerechte Tapeablage ist mit bestehenden Technologien nur stark eingeschränkt möglich. Insbesondere bei kleinen Kurvenradien treten Strukturdefekte wie Falten, Verzerrungen oder Gassen auf. Diese verfahrensbedingten Fehler resultieren aus dem Umstand, dass die Faserlängen an der Innen- und Außenbahn eines Kurvenverlaufs unterschiedlich sind, mit herkömmlichen Tapes jedoch nicht innerhalb eines durchgehenden Faserbandes ausgeglichen werden können. Bisherige Lösungen erfordern daher aufwändige, diskontinuierliche, segmentierte Ablageprozesse mit Überlappungsbereichen und folglich hohem Materialverschnitt und strukturellen Überdimensionierungen (siehe Abbildung 1) [16]. Das ist ein signifikanter Nachteil im Hinblick auf Ressourceneffizienz und Bauteilperformance.
Gerade kleine und mittelständische Unternehmen (KMU), die einen Großteil der textilen Wertschöpfungskette in Deutschland abbilden, sehen sich mit der Herausforderung konfrontiert, zunehmend komplexere, bionisch ausgelegte FKV-Bauteile wirtschaftlich und prozesssicher fertigen zu müssen. Der steigende Bedarf an maßgeschneiderten, lastpfadgerechten Strukturen erfordert neue textile Halbzeuge und Fertigungsmethoden, die eine bauteilunabhängige, verzugsfreie Ablage auch auf komplexen 3D-Konturen ermöglichen. Das mit etablierten UD-Tapes nicht umsetzbare Intra-Ply-Gleiten, also das gezielte Scheren von Tapesegmenten innerhalb eines Faserbandes, stellt dabei eine zentrale Technologiekomponente dar, die bislang nicht verfügbar ist. Hinzu kommt, dass bestehende Tapelegeanlagen in ihrer Funktionalität begrenzt sind und die für eine kurvenbahngerechte Ablage notwendigen Klemm-, Abzugs- und Fixiermechanismen nicht bereitstellen können. Die Problemstellung lässt sich daher in zwei Hauptbereiche gliedern: Zum einen fehlt ein textiltechnisch realisierbares Halbzeug, das eine mechanisch belastbare, faltenfreie sowie kurvenbahngerechte Tapeablage erlaubt: das sogenannte Curvy Tape. Zum anderen existieren bislang keine wirtschaftlich skalierbaren Ablageverfahren, die die Vorteile der UD-Tape-Technologie mit der Flexibilität einer individuell lenkbaren Faserbandführung vereinen. Die Entwicklung solcher Tapes und der zugehörigen Ablagetechnologien stellt somit einen dringenden, industriegetragenen Forschungsbedarf dar. Ziel muss es sein, durch neue Material- und Prozessansätze lastpfadgerechte Verstärkungsstrukturen effizient, materialsparend und automatisiert fertigen zu können, insbesondere für die hohe Variantenvielfalt und Kleinserienfertigung im KMU-Umfeld.
Ergebnisse
Im Rahmen des IGF-Projekts „Curvy Tapes“ wurden umfassende Forschungs- und Entwicklungsarbeiten zur Realisierung kurvenbahngerecht ablegbarer Tapes für die Fertigung bionisch ausgelegter FKV-Bauteile durchgeführt. Ausgangspunkt war die Erarbeitung eines technischen Anforderungskatalogs zur Spezifikation geometrischer, mechanischer und verfahrenstechnischer Zielgrößen. In enger Abstimmung mit dem projektbegleitenden Ausschuss wurden Materialien, Tapestrukturen und relevante Maschinenkomponenten definiert. Unter anderem wurde die Verarbeitung von Carbonfasern mit 1600 tex auf vorhandenen Kettenwirkmaschinen der Baureihe Malimo festgelegt. Die zentralen Anforderungen umfassten u. a. eine Tapebreite von bis zu 300 mm sowie eine Gassenfreiheit < 1 mm.
Ein wesentlicher Arbeitsschwerpunkt lag auf der simulationsgestützten Entwicklung eines Auslegungsmodells zur Beschreibung der mechanischen Eigenschaften der Tapestrukturen und ihrer Verformung bei der Ablage. Dabei wurde unter Verwendung von LS-Dyna (LSTC, USA) ein FEM-basiertes Mesoskalenmodell erstellt, das die Interaktion zwischen den strukturbildenden Parametern (z. B. Stichlänge, Wirkfadenspannung, Bindung) und der resultierenden Scherbarkeit der Tapesegmente abbildet. Die Validierung erfolgte durch experimentelle Versuche an textilphysikalisch charakterisierten Funktionsmustern (siehe Abbildung 2). Zur Ermittlung der Fadenlängen entlang kurvenförmiger Ablagepfade wurde ergänzend ein algorithmisches Tool auf Basis von CAD-Modellen entwickelt, das eine automatisierte Berechnung der notwendigen Fadenreserven erlaubt.
Zur Herstellung der Curvy Tapes wurde ein neuartiges Fertigungsverfahren auf Basis der Multiaxial-Kettenwirktechnik konzipiert. Hierzu wurde ein modular nachrüstbarer Teilschussleger entwickelt, der das Einbringen von wirkfadenbasierten Scherstellen innerhalb der Tapeebene ermöglicht. Verschiedene Wirkbindungen, insbesondere Varianten der Franse-Teilschuss- und Trikot-Bindung, sowie gleitoptimierte Monofilfäden (PET 22 dtex, KSO Textil GmbH, Deutschland) wurden auf ihre Eignung hin untersucht. Die Tapes wurden dabei so gestaltet, dass sie entweder während der Ablage (Post-Fadenreserve) oder bereits bei der Herstellung (Pre-Fadenreserve) über segmentweise integrierte Fadenlängenreserven verfügen. Zusätzlich wurde ein kombinierter Ansatz verfolgt, um die geometrischen Freiheitsgrade bei der Tapeablage weiter zu erhöhen.
Die hergestellten Tapestrukturen wurden systematisch charakterisiert. Es kamen modifizierte Fadenauszugs- und Scherrahmenversuche (siehe Abbildung 3) zum Einsatz, um das Intra-Ply-Gleiten und die Scherfähigkeit der neuartigen Tapesegmente zu quantifizieren.
Dabei zeigte sich, dass die Auslegung der Bindung, insbesondere die Stichlänge und die Wirkfadenspannung, maßgeblich die mechanische Kopplung der Segmente beeinflussen. Curvy Tapes mit einer Franse-Teilschuss-Bindung und einer Stichlänge von 3,6 mm erwiesen sich als besonders vorteilhaft. Gegenüber herkömmlichen Biaxialgelegen wurde die erforderliche Scherkraft um bis zu 56 % reduziert, die Drapierbarkeit deutlich verbessert und kritische Faltenbildung signifikant verzögert (Einsetzen kritischer Scherung der Curvy Tapes bei 50 mm gegenüber 25 mm bei Biaxial-Gelegen, siehe Abbildung 4). Zudem wurde die Parallelität der Verstärkungsfasern auch bei hohen Scherwinkeln zuverlässig aufrechterhalten.
Parallel zur Materialentwicklung wurden Ablagekonzepte für die Preformherstellung erarbeitet. Ziel war die prozesssichere Ablegung der Tapes auf 2D- und 3D-Oberflächen mit definierter Fadenorientierung. Hierzu wurde ein roboterkompatibles Bereitstellungsmodul für das Handling, den Abzug und das Nachführen der neuartigen Curvy Tapes entwickelt. Die Fixierung während des Ablegevorgangs erfolgte bevorzugt durch den Auftrag eines aerosolförmigen duromerbasierten Sprühklebers, der eine sichere Positionierung der Tapesegmente ermöglichte, ohne die nachträgliche Ausformung der Fadenreserven zu beeinträchtigen.
Im weiteren Projektverlauf wurde eine vollständige Prozesskette von der Tapeherstellung über die Preformfertigung bis hin zur Konsolidierung in einem Harzsystem aufgebaut. Die auf dieser Grundlage gefertigten Demonstratoren, insbesondere ein PKW-Kotflügel mit komplexer Kontur, dienten der praxisnahen Funktionsvalidierung. Dabei konnte gezeigt werden, dass mit den neuartigen Curvy Tapes eine signifikant höhere Faserorientierungstreue im Vergleich zu herkömmlichen Flächengebilden (bspw. Gewebe oder Biaxial-Gelege) erreicht wird. Die Faserabweichung innerhalb der Preform lag bei unter einem Grad, Gassen traten nur in Einzelfällen auf und blieben unterhalb kritischer Schwellen. Die erzielten mechanischen Eigenschaften wurden durch standardisierte Biegeversuche quantifiziert und die verbesserte Leistungsfähigkeit validiert. Curvy Tapes wiesen im Vergleich zu Biaxialgelegen gleicher Fadendichte eine wesentlich geringere Streuung der Durchbiegung auf und erzielten damit eine homogenere Bauteilperformance.
Die Ergebnisse belegen die hohe Eignung der Curvy Tapes für den industriellen Einsatz. Eine wirtschaftliche Bewertung anhand eines realitätsnahen Szenarios (PKW-Kotflügel, siehe Abbildung 5) zeigte eine Reduktion der Materialkosten um 30 % und eine Gesamtkosteneinsparung von knapp 24 % gegenüber konventionellen UD-Tapes. Unter Berücksichtigung moderater Investitionskosten für die Nachrüstung bestehender Kettenwirkmaschinen (< 30.000 €) amortisiert sich die Technologie bei einer Tape-Fertigungsmenge von 10.000 m²/a bereits innerhalb eines Jahres. Die entwickelten Verfahren und Materialien können damit unmittelbar von KMU adaptiert werden und tragen zur signifikanten Steigerung der Ressourcen- und Energieeffizienz entlang der gesamten Wertschöpfungskette bei.
Zusammenfassung
Mit dem Projekt „Curvy Tapes“ wurde eine technologische Grundlage geschaffen, um Hochleistungsfasern wie Carbon oder Glas deutlich materialeffizienter und gezielter in Faserverbundbauteilen einzusetzen. Die im Vorhaben entwickelten neuartigen Tapestrukturen ermöglichen erstmals eine durchgängig falten- und gassenfreie sowie lastpfadgerechte Ablage entlang beliebiger Kurvenverläufe. Dadurch lassen sich nicht nur mechanisch leistungsfähigere sowie bionisch ausgelegte Bauteile fertigen, sondern auch Materialverluste und Überdimensionierungen signifikant verringern. Das Projekt leistet somit einen direkten Beitrag zur Ressourcenschonung, zur Reduktion industrieller CO₂-Emissionen und zur Nachhaltigkeit in der Produktion.
Insbesondere kleine und mittelständische Unternehmen (KMU) profitieren von den Ergebnissen: Die modular konzipierten Fertigungs- und Ablagekonzepte sind gezielt auf bestehende Produktionsumgebungen und Maschinenparks in KMU zugeschnitten. Investitionen bleiben gering, der Umsetzungshorizont kurz. Gleichzeitig eröffnen die Curvy Tapes vielfältige neue Geschäftsfelder, etwa in der Herstellung von hochbeanspruchten Leichtbauteilen für Automobil, Luftfahrt oder erneuerbare Energien. Für den Textilmaschinenbau und die FKV-verarbeitende Industrie entsteht ein substantieller Innovationsimpuls mit hohem Marktpotenzial.
Darüber hinaus fördert die Technologie die Verbreitung bionischer, funktional optimierter Konstruktionsprinzipien in der industriellen Praxis. Der gesellschaftliche Nutzen liegt damit nicht nur in einer effizienteren Ressourcennutzung, sondern auch in der Stärkung der Wettbewerbsfähigkeit des Innovationsstandorts Deutschland und der langfristigen Sicherung qualifizierter industrieller Arbeitsplätze.
Danksagung
Das IGF-Vorhaben 22653 BR der Forschungsvereinigung Forschungskuratorium Textil e. V. wurde über das DLR im Rahmen des Programms zur Förderung der Industriellen Gemeinschaftsforschung (IGF) vom Bundesministerium für Wirtschaft und Energie aufgrund eines Beschlusses des Deutschen Bundestages gefördert. Der Schlussbericht und weiterführende Informationen sind am Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik der TU Dresden erhältlich.
Literaturverzeichnis
Literaturverzeichnis
[1] Bundesministerium für Wirtschaft und Energie: Fachprogramm Neue Fahrzeug- und Systemtechnologien. URL www.bmwi.de/Redaktion/DE/Artikel/Technologie/fahrzeug-und-systemtechnologien.html – Überprüfungsdatum 2025-05-09
[2] Ehlerding, S.: Leichtbaustrategie für mehr Klimaschutz. In: Tagesspiegel (2021-01-20)
[3] Bundesministeriums für Wirtschaft und Energie: „Leichtbau-Perspektiven für Deutschland“ - Ergebnisse aus dem Strategieprozess der Initiative Leichtbau des Bundesministeriums für Wirtschaft und Energie (BMWi) : Erscheinungsdatum: 19.01.2021. URL www.bmwi.de/Redaktion/DE/Downloads/E/eckpunkte-f%C3%BCr-eine-leichtbau-strategie.pdf?__blob=publicationFile&v=8 – Überprüfungsdatum 2025-05-09
[4] Kroll, L. (Hrsg.): Technologiefusion für multifunktionale Leichtbaustrukturen : Ressourceneffizienz durch die Schlüsseltechnologie "Leichtbau". Berlin, Germany : Springer Vieweg, 2019
[5] Cherif, C. (Hrsg.): Leichtbau mit Textilverstärkung für Serienanwendungen : Bindematerialien - Textile Preforms - Verbundbauteile ; Buch zum DFG-AiF-Clustervorhaben - Leichtbau und Textilien. Dresden : Verl. Wissenschaftliche Skripten, 2013
[6] Cherif, C.: Textile Werkstoffe für den Leichtbau : Techniken - Verfahren - Materialien - Eigenschaften. Berlin, Heidelberg : Springer-Verlag Berlin Heidelberg, 2011
[7] Flemming, M. ; Ziegmann, G. ; Roth, S.: Faserverbundbauweisen : Halbzeuge und Bauweisen. Berlin, Heidelberg : Springer Berlin Heidelberg, 1996
[8] Pfeiffer, J.: Leichtbau-Batteriepack verringert Gewicht und erhöht Reichweite von E-Autos. URL www.konstruktionspraxis.vogel.de/leichtbau-batteriepack-verringert-gewicht-und-erhoeht-reichweite-von-e-autos-a-974846/ – Überprüfungsdatum 2022-01-26
[9] Howell, E. ; Geyer, C.: Interview with Christoph Geyer. In: Reinforced Plastics 63 (2019), Nr. 2, S. 76–78
[10] Günnel, T.: Leichtbau: Wie der Staat die Technologien fördert. In: Automobil Industrie (2020-09-11)
[11] Brasington, Alex ; Sacco, Christopher ; Halbritter, Joshua ; Wehbe, Roudy ; Harik, Ramy: Automated fiber placement: A review of history, current technologies, and future paths forward. In: Composites Part C: Open Access 6 (2021), S. 100182
[12] Hofbauer, Daniel: Herstellung endlosfaserverstärkter, thermoplastischer Halbzeuge für Karosseriestrukturbauteile in Großserie. In: Technologies for Lightweight Structures (TLS) 1 (2017), Nr. 1
[13] Kuroda, Yoshito: Kunststoffe mit unidirektionaler Verstärkung für die Serie. In: Lightweight Design 11 (2018), Nr. 5, S. 82–85
[14] Altstädt, Volker ; Spörrer, Andreas ; Mühlbacher, Mathias ; Michel, Peter ; Seidel, Sonja: Großserientauglicher Hochleistungsleichtbau mit UD-Tapes. In: Lightweight Design 5 (2012), Nr. 2, S. 18–25
[15] Ufer, J. ; Göttinger, M. ; Hersbeck, L.: Preform Technology for High Volume Manufacturing of Long Fiber Reinforced Structures (LCC Symposium). München, 2014
[16] YouTube: We are COMPOSITES: Fiber Placement Center. URL https://www.youtube.com/watch?v=zZhTDG2GoEU. – Aktualisierungsdatum: 2021-11-30 – Überprüfungsdatum 2025-05-09
Kontakt: konrad.zierold@tu-dresden.de
Technische Universität Dresden
Fakultät Maschinenwesen
Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM)
01062 Dresden