Research publications

5 results
21.10.2025

Tubular tissues with rigid and flexible structural zones and mass transport for the biomimetic construction of the trachea

Fabrics Smart Textiles Medicine

Abstract

The successful treatment of tracheal (windpipe) injuries is an immense challenge and has great social and medical relevance. Every treatment and subsequent care of the trachea with a stoma leads to functional disadvantages such as humidification of the air we breathe, poorer sense of smell and taste, or faulty voice formation. Another disadvantage is that up to 20% of patients suffer from stenosis (narrowing) of the trachea [1]. As part of the interdisciplinary IGF research project 01IF22889N of the ITM, an integrally manufactured, textile, pressure-stable biomimetic tracheal implant was therefore developed.

Report

Initial situation and problem definition

The windpipe (trachea) fulfils two main functions: (I) it provides an airtight and mechanically stable passage from the larynx to the bronchial tree of the lungs for air transport, and (II) it facilitates the transport of mucus. Function (I) is performed by a tubular structure consisting of cartilage rings and longitudinal muscles, which provide lateral stability and longitudinal flexibility. This keeps the lumen open for breathing air. In addition, the inhaled air is moistened and warmed. Function (II) is a cleaning mechanism that is performed by a special mucous membrane layer (mucociliary respiratory epithelial layer). Here, mucus-producing cells and cells with tiny hairs (cilia) on their surface transport mucus and particles [2].

After an injury to the trachea, these functions are impaired by the insertion of a tracheal cannula. In Germany, 53,000 tracheal resections (replacement of part of the trachea) are performed annually [3]. A high proportion, around 40,000 patients, receive non-clinical care through a surgically created opening in the windpipe, known as a stoma [3]. This treatment has significant disadvantages: 1. poorer humidification and warming of the inhaled air, 2. poorer sense of smell and taste, 3. impaired voice formation, and 4. narrowing of the windpipe.

The gold standard for tracheal reconstruction is end-to-end anastomosis, in which part of the trachea is removed and the remaining ends are sutured together [4]. However, for this procedure to be performed, at least half of the trachea must remain in adults and one third in children, otherwise the operation cannot be carried out [5]. Nevertheless, complications occur in up to 20% of cases [6]. As the sutured ends of the trachea are subject to considerable force, this can lead to the suture tearing and the trachea shifting into the chest cavity. There is also a risk that the ends will not grow together properly, leading to scarred narrowing of the trachea, tracheitis, hoarseness, loss of voice and paralysis of the vocal cord nerves, as well as swallowing disorders [7]. Approaches investigated to date – including synthetic implants, constructs made from the patient's own tissue, donor tracheas and tissue engineering procedures – have not yet been able to replicate a functional cilia layer for mucus and particle transport. Neither this lack of transport function nor the high complication rate and shortage of suitable donor tissue currently allow for reliable use in cases of larger tracheal defects following clinically necessary resection. As a result, there is currently no implant available that can adequately replace the trachea.

It is therefore necessary to develop novel implants that mimic both the mechanical stability and the internal transport function of the natural trachea. The aim of the IGF project was therefore to develop a textile, functional and biomimetic tubular fabric. This fabric should have a cilia-like structure for active substance transport. At the same time, rigid, 3D-printed support structures, which can be integrated during the weaving process, were to protect the tubular fabric from collapsing. Both aspects serve to safely bridge missing or removed tracheal tissue. The ciliary movement should be achieved by electroactive piezoelectric PVDF fibres integrated into the tissue in the form of polarised naps. The ciliary movement is to be activated by the piezoelectric effect, which is triggered by the electric field generated by current-carrying conductors.

Development of tubular tissue structures

To produce a tubular fabric with cilia on the fabric surface, various variants were developed for a multi-layer fabric with naps pointing into the interior of the tube. The fabrics were manufactured using commercially available shuttle loom technology with a Jacquard unit for versatile adaptation of the fabric structure.

The tubular base structure was woven from polyester threads. Depending on the variant, cilia threads or a combination of cilia threads (piezoelectric PVDF or Nitinol threads) and conductor threads (silver-plated polyamide, Madeira HC40) were incorporated into the base fabric. The use of conductor threads was necessary when using electroactive PVDF multifilament threads or short fibres to stimulate cilia movement. When using one-way or two-way shape memory (SM) filaments as cilia material, no separate conductor filaments had to be incorporated into the fabric, as the SM filaments were directly contacted and conductive in order to initiate the movement of the cilia.

Development of biomimetic support structures

The human trachea has approximately 15 to 20 tracheal cartilages. They are horseshoe-shaped, have a diameter of 20 mm, with the open side facing dorsally (towards the back), and are approximately 4 mm wide and 1 mm thick. Their outer surface is flat and the inner surface is convex. Tracheal cartilages that can be integrated into the web (cartilage clips/support structures) should be manufactured using 3D printing and should be able to withstand a compression force of at least 1.2 N.

Based on this geometry, a total of 10 different models were developed. The differences in geometry resulted from variations in the leg geometry (C- and U-shaped), wall thickness and radius. The support structures were produced using photopolymer printing based on the stereolithography concept with an Objet 30 Prime from Stratasys in order to achieve the necessary geometric details. Exemplary structures are shown in Figure 1.

To examine the cartilage structures, clamps that meet the requirements for commercially available measurement technology were developed, designed and implemented using 3D printing. The clamps developed enable pressure loading in various anatomical positions of the cartilage segments (anterior-posterior & medial-lateral).

Integration of support structures into the tissue structure

Based on the previously presented woven tubular fabric, including the naps anchored in the base fabric on the fabric surface, a weaving structure was developed that could accommodate and fix the developed support structures at defined intervals in the base fabric. The integration of the support structures was achieved by weaving a fabric pocket over the entire circumference of the fabric. The dimensions (width and thickness) of the fabric pocket were adapted to those of the support structures, which were fixed between two layers of fabric and secured against slipping and "twisting out" of the structure. The number of support structures per defined fabric length was adjustable in terms of binding, and different clip widths could also be integrated into the tubular fabric by adjusting the fabric pocket size. The implemented demonstrator is shown in Figure 3. The inward-facing cilia and tissue pockets with the integrated support structures are clearly visible.

Textile physical analysis of the support and tissue structures as well as movement analysis

The average tensile strength of the human trachea is approximately 230 N [8]. The tubular tissue structures with integrated support structures exhibited a maximum tensile strength of approximately 4300 N. A yield strength of approximately 1400 N was determined. This means that the mechanical requirements of the human trachea are fully met. All support structures developed to prevent the trachea from collapsing exhibited a compression force greater than 1.2 N. In some cases, the target value was exceeded tenfold.

In addition, the influence of repeated or cyclic tensile loading on the position of the support structures integrated into the tissue was investigated. To this end, a load cycle test with 150 cycles was performed, in which a tensile load of up to a maximum force of 230 N (target value) was repeatedly applied, followed by relief to the initial position. A sample holder was developed and implemented for this purpose so that the tubular structure was loaded biomimetically across the entire cross-section. The results show that the support structures woven into the tissue pockets remained firmly fixed and did not "twist out" in the circumferential direction. The selected integration and fixation method thus ensures permanent positional stability under cyclic loading.

Motion analysis of the various patterns showed that PVDF fibres did not enable ciliary movement. However, the SM filaments with a two-way effect demonstrated repeatable ciliary movement. This approach can be used in the future to replicate the functioning of human cilia. As a further alternative approach, fabrics with parallel conductor threads were flocked with polyamide short fibres. Using an alternating electric field, intermittent cilia movement could also be simulated here.

Summary

A novel tracheal implant was developed at ITM that excellently replicates the macroscopic structure of the human trachea. The developed structure could be manufactured using commercially available shuttle weaving technology without any design modifications. To maintain a pressure-stable tubular structure, 3D-printed support structures were integrated into tissue pockets. Production can be carried out integrally and can be adapted to individual patients in terms of tissue length, support structure spacing, number of support structures and pressure stability. In addition, various concepts were investigated to replicate the microscopic structure in order to generate mass transport. The basis for this was the creation of polnop tissue and the use of piezoelectric PVDF fibres. It was found that PVDF nubs did not allow for movement on a microscopic scale. Ciliary movement was achieved using other actuator fibres such as nitinol fibres. Ciliary movement can also be achieved using flock fibres.

Acknowledgements

The project ‘Tubular tissues with rigid and flexible structural zones and mass transport for the biomimetic construction of the trachea (01IF22889N)’ is funded by the Federal Ministry for Economic Affairs and Energy as part of the ‘Industrial Collective Research (IGF)’ programme on the basis of a resolution passed by the German Bundestag.

References

[1]  Aleksanya, A.; Stoelben, E.: Laryngotracheal resection as an alternative to permanent tracheostomy. Pneumologie 73 (2019), No. 4, pp. 211–218. URLhttps://www.thieme-connect.com/products/ejournals/html/10.1055/a-0809-0232

[2]  Udelsma, Brooks; Mathisen, Douglas J.; Ott, Harald C.: A reassessment of tracheal substitutes—a systematic review. In: Annals of Cardiothoracic Surgery 7 (2018), No. 2, pp. 175–182. URLhttps://www.annalscts.com/article/view/16458/16661

[3]  BVMe d:  BVMed provides information on tracheotomy and laryngectomy care. URL https://www.bvmed.de/verband/presse/pressemeldungen/bvmed-informiert-ueber-tracheotomie-und-laryngektomie-versorgung. – Update date: 19 May 2016 – Review date: 15 October 2025

[4]  Canzan, F.; Aggazzotti Cavazza, E.; Mattioli, F.; Ghidini, A.; Bottero, S.; Presutti, L.: Step-by-Step Tracheal Resection with End-to-End Anastomosis. In: Ghidini, Angelo; Mattioli, Francesco; Bottero, Sergio; Presutti, Livio (eds.): Atlas of Airway Surgery :  ACham: Springer International Publishing, 2017, pp. 75–82

[5]  Weme, Richard D.; Detamore, Michael; Weatherly, Robert A.: Immunohistochemical characterisation of rabbit tracheal cartilages. In: Journal of Biomedical Science and Engineering 03 (2010), No. 10, pp. 1007–1013

[6]  Damian o, Giuseppe; Palumbo, Vincenzo Davide; Fazzotta, Salvatore; Curione, Francesco; Lo Monte, Giulia; Brucato, Valerio Maria Bartolo; Lo Monte, Attilio Ignazio: Current Strategies for Tracheal Replacement: A Review.  In: Life 11 (2021), No. 7, pp. 618. URLhttps://www.mdpi.com/2075-1729/11/7/618

[7]  Rettinge, Gerhard; Hosemann, Werner; Hüttenbrink, Karl-Bernd; Werner, Jochen Alfred: ENT Surgery : . 5th, completely revised edition. Stuttgart: Thieme, 2018

[8]  A. Berghau s: . In: Cardiac, Thoracic and Vascular Surgery 1987 (1987), Volume 1. URL https://epub.ub.uni-muenchen.de/6218/1/6218.pdf – Review date 2025-10-15

 

Authors: Pötzsch, H. F. Happel, A. Bruns, M. Wöltje, M. Cherif, Ch.

Technische Universität Dresden
Fakultät Maschinenwesen
Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM)
01062 Dresden

https://tu-dresden.de/mw/itm

More entries from TU Dresden, Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik ITM

31.07.2025

Development of Hybrid Yarn Structures from Carbon, Stainless Steel, and Elastomer Fibers for Composite Applications

Fibres Yarns Composites Recycling Sustainability

Abstract

As part of the IGF research project 01IF22916N, a complete, industry-ready process chain for producing three-component hybrid yarns from rCF, MF, and EF was successfully developed at the ITM of TU Dresden. The process chain comprises fiber preparation, carding, and drafting to form slivers, followed by modified flyer spinning to produce hybrid yarns.

Proof of concept was provided through the production of hybrid yarns with defined fiber volume contents and a functional demonstrator. Fig. 3 illustrates the full process chain from fiber preparation to demonstrator production from rCF, MF and EF at ITM. The resulting yarns ranged from 1500 to 3500 tex and were successfully processed into textile preforms. The resulting composites demonstrated excellent mechanical performance: a maximum flexural strength of 806 ± 18 MPa, flexural modulus of 83 ± 4 GPa, and an impact strength of up to 117 ± 17 kJ/m².

The results show that yarn twist significantly influences composite mechanical properties: moderate twist enhances flexural behavior, while higher twist improves impact resistance. By adjusting the yarn twist level, the mechanical performance of hybrid composites can be effectively tailored.

These novel hybrid yarns are particularly suited for producing cost-efficient, high-performance thermoset composites with complex geometries. Their application-specific performance and process-integrated production offer high innovation and market potential, especially in the fields of materials engineering, lightweight design, sustainability, and resource efficiency. For small and medium-sized enterprises (SMEs) in the textile industry, this technology provides opportunities to develop advanced fiber-reinforced products and establish themselves as key suppliers in sectors such as automotive, mechanical engineering, wind energy, aerospace, medical technology, and sports equipment.

Report

Introduction

The size of the CF-CFRP (carbon fiber-reinforced plastics) market was estimated at USD 21.12 billion in 2023. It is projected to grow from USD 22.57 billion in 2024 to USD 38.4 billion by 2032, with a CAGR of approximately 6.86% during the forecast period (2024–2032) [1]. Due to their high specific stiffness and strength, CFRPs are widely used in the automotive, sports, leisure, and aerospace industries [2]. However, CFRP components are brittle under impact loading, which can result in catastrophic failure and severe splintering [3]. This brittleness raises concerns for the use of thermoset CFRP structures in safety-critical components such as wind turbine blades or automotive B-pillars.

Current hybridization concepts aim to combine materials with high stiffness, strength, and ductility [4]. Existing approaches integrate carbon fibers (CF) with stainless steel fibers (MF) or elastomer fibers (EF) using metal or elastomer films in fiber-metal laminates (FMLs), such as CARALL [5–8], or in elastomer-based laminates, such as KRAIBON [9–14]. Metal films offer higher energy absorption due to their plastic deformability and elongation at break of up to 20%, surpassing CFRP and carbon/aramid hybrid composites [15–17]. Elastomer films reduce hazardous splintering under dynamic loading due to their elastic deformation behavior [9]. While such multilayer systems improve impact and splinter resistance, they also carry a high risk of delamination [18]. Moreover, there is a lack of cost-effective and sustainable composites with enhanced impact and splinter properties that fully utilize the benefits of their individual components.

Objective

The goal of this research project was the simulation-based development of novel three-component hybrid yarns with micro-scale hybridization using three distinct material concepts. These yarns were then used to produce functional composite structures for sustainable lightweight applications. By strategically combining ductile metal fibers (MF), highly elastic elastomer fibers (EF), and high-stiffness, high-strength recycled carbon fibers (rCF), scalable composites with tailored mechanical properties were developed.

The developed hybrid yarns form the basis for application-specific composites with high energy absorption capacity and improved damage resistance.

 

Hybrid Yarn Structures and Related Composites: Development and Characterization

Development and Production of Hybrid Yarns Using Flyer Spinning Technology

Starting from the selected and characterized rCF and EF fiber materials with an average fiber length of 80 mm and defined blend ratios, the fibers were prepared using mechanical pre-opening and blending units. The pre-opened and pre-mixed fibers were processed using a lab-scale carding machine to produce card slivers of rCF and EF. Characterization of these slivers revealed a CF damage level of 10–25%, while EF fibers showed no length reduction.

To avoid damaging the stainless steel fibres during carding, card slivers were firstly produced that were either 100% rCF or a blend of rCF and EF. These were combined with 100% MF slivers to develop sandwich-type structures (rCF/MF or rCF/EF/MF slivers), which served as feed material for the drafting process. The slivers were drafted multiple times to enhance fiber blending and homogeneity. These drafted slivers were then used to produce hybrid yarns.

The ITM’s specialized flyer spinning machine was modified to optimize drafting mechanics, sliver feed, and machine settings to avoid fiber misalignment. Based on experimental investigations, optimal settings were determined, and hybrid yarns with a yarn count of 1500 tex and twist levels ranging from 40 to 150 T/m were produced. These yarns were characterized in accordance with DIN EN ISO 13934-1, evaluating unevenness, yarn structure, and tensile behavior, and were subsequently used to produce composite.

Manufacturing of Recycled Carbon Fiber-Reinforced Composite

Using the developed hybrid yarns, unidirectional (UD) composites were produced via the resin transfer molding (RTM) process. The hybrid yarns were wound under constant tension onto a frame and consolidated under optimized parameters. The resin system consisted of Hexion RIMH 135 and hardener Hexion RIMH 137.

Composite characterization followed standardized test methods. Tensile specimens were prepared based on DIN EN ISO 527-5/A/2, with tensile testing conducted according to             DIN EN ISO 527-4. The flexural properties were evaluated in accordance with DIN EN ISO 14125 and impact resistance was assessed using DIN EN ISO 179-2 (Charpy method). The compression-after-impact (CAI) performance was measured following DIN ISO 18352. Additionally, a custom test rig was developed to analyze splintering behavior using a ZwickRoell HTM 5020 high-speed testing machine. Puncture resistance was evaluated according to DIN EN ISO 6603-2.

Selected Results and Discussion

Fig. 1 presents the relationship between flexural strength and modulus for various twist levels in hybrid yarn-based composites at a constant fiber volume content of 50 vol%. Both a CF-filament-based reference composite and three UD composites made from rCF/MF hybrid yarns (90 wt% rCF / 10 wt% MF) were investigated, differing only in yarn twist (40, 80 and 120 T/m). The reference composite achieved 725 ± 35 MPa flexural strength and a modulus of 74 ± 8 GPa. Notably, the T40 hybrid variant surpassed these values, reaching 806 ± 18 MPa and 83 ± 4 GPa, respectively.

However, increasing the yarn twist (80 and 120 T/m) led to a continuous decline in flexural properties. The intensified helical structure reduces fiber alignment in the load direction, which weakens load transfer and overall flexural performance.

Fig. 2 shows the impact strength of composites made from rCF/MF hybrid yarns at varying yarn twist levels. Results indicate a trend of increasing impact strength with higher twist (40 → 120 T/m), from 85 kJ/m² to 117 kJ/m². This improvement is attributed to a more compact yarn structure, enhanced fiber cohesion, and improved energy absorption during impact. Additionally, the tighter fiber arrangement enhances load transfer and structural integrity by reducing the number of loose fiber ends, resulting in greater resistance to sudden loads.

Summary

As part of the IGF research project 01IF22916N, a complete, industry-ready process chain for producing three-component hybrid yarns from rCF, MF, and EF was successfully developed at the ITM of TU Dresden. The process chain comprises fiber preparation, carding, and drafting to form slivers, followed by modified flyer spinning to produce hybrid yarns.

Proof of concept was provided through the production of hybrid yarns with defined fiber volume contents and a functional demonstrator. Fig. 3 illustrates the full process chain from fiber preparation to demonstrator production from rCF, MF and EF at ITM. The resulting yarns ranged from 1500 to 3500 tex and were successfully processed into textile preforms. The resulting composites demonstrated excellent mechanical performance: a maximum flexural strength of 806 ± 18 MPa, flexural modulus of 83 ± 4 GPa, and an impact strength of up to 117 ± 17 kJ/m².

The results show that yarn twist significantly influences composite mechanical properties: moderate twist enhances flexural behavior, while higher twist improves impact resistance. By adjusting the yarn twist level, the mechanical performance of hybrid composites can be effectively tailored.

These novel hybrid yarns are particularly suited for producing cost-efficient, high-performance thermoset composites with complex geometries. Their application-specific performance and process-integrated production offer high innovation and market potential, especially in the fields of materials engineering, lightweight design, sustainability, and resource efficiency. For small and medium-sized enterprises (SMEs) in the textile industry, this technology provides opportunities to develop advanced fiber-reinforced products and establish themselves as key suppliers in sectors such as automotive, mechanical engineering, wind energy, aerospace, medical technology, and sports equipment.

Acknowledgements

The IGF project 01IF22916N of the research association Forschungskuratorium Textil e.V. was funded via the DLR within the framework of the program for the promotion of industrial collaborative research and development (IGF) by the German Federal Ministry for Economic Affairs and Climate Action, based on a resolution of the German Bundestag. We thank the aforementioned institutions for their financial support.

 

References

  1. WiseGuyReports. (n.d.). CF & CFRP Market Report. Accessed on 29.07.2025, https://www.wiseguyreports.com/de/reports/cf-cfrp-market
  2. E. Witten; V. Mathes; M. Sauer; M. Kühnel: Composites-Marktbericht 2023 - Marktentwicklun-gen, Trends, Ausblicke und Herausforderungen. Deutsche Fachverband für Faserverbundkunststoffe/Composites - AVK, 2023
  3. J. Striewe; C. Reuter; K.-H. Sauerland; T. Tröster: Manufacturing and crashworthiness of fabric-reinforced thermoplastic composites. Thin-Walled Structures 123(2018), Pp. 501-508. https://doi.org/10.1016/j.tws.2017.11.011
  4. D. Nestler: Beitrag zum Thema Verbundwerkstoffe - Werkstoffverbunde: Status quo und For-schungsansätze. Chemnitz: Univ.-Verl., 2014. – ISBN 9783944640129
  5. ZHU, W.; XIAO, H.; WANG, J.; LI, X.: Effect of Different Coupling Agents on Interfacial Properties of Fibre-Reinforced Aluminum Laminates. Materials (Basel, Switzerland) 14(2021)4. https://doi.org/10.3390/ma14041019
  6. GUPTA, R. K.; MAHATO, A.; BHATTACHARYA, A.: Notch Shape Influence on Damage Evolution of Al/CFRP Laminates Under Tensile Loading: Experimental and Numerical Analysis. Appl Compos Mater (2022). https://doi.org/10.1007/s10443-022-10051-2
  7. TRZEPIECIŃSKI, T.; NAJM, S. M.; SBAYTI, M.; BELHADJSALAH, H.; SZPUNAR, M.; LEMU, H. G.: New Advances and Future Possibilities in Forming Technology of Hybrid Metal–Polymer Composites Used in Aerospace Applications. J. Compos. Sci. 5(2021)8, Pp. 217 f. https://doi.org/10.3390/jcs5080217
  8. PONNARENGAN, H.; KAMARAJ, L.; BALACHANDRAN, S. R.; KATHAR BASHA, S.: Evaluation of me-chanical properties of novel GLARE laminates filled with nanoclay. Polym. Compos. 42(2021)8, Pp. 4015-4028. https://doi.org/10.1002/pc.26113
  9. KRAIBON®: https://www.kraiburg-rubber-compounds.com/kraibon (31.07.2025)
  10. D. Düring; L. Weiß; D. Stefaniak; N. Jordan; C. Hühne: Low-velocity impact response of composi-te laminates with steel and elastomer protective layer. Composite Structures 134(2015), Pp. 18-26. https://doi.org/10.1016/j.compstruct.2015.08.001
  11. E. Stelldinger; A. Kühhorn; M. Kober: Experimental evaluation of the low-velocity impact dama-ge resistance of CFRP tubes with integrated rubber layer. Composite Structures 139(2016), Pp. 30-35. https://doi.org/10.1016/j.compstruct.2015.11.069
  12. E. Sarlin; M. Apostol; M. Lindroos; V.-T. Kuokkala; J. Vuorinen; T. Lepistö; M. Vippola: Impact properties of novel corrosion resistant hybrid structures. Composite Structures 108(2014), Pp. 886-893. https://doi.org/10.1016/j.compstruct.2013.10.023
  13. LI, Z.; ZHANG, J.; JACKSTADT, A.; KÄRGER, L.: Low-velocity impact behavior of hybrid CFRP-elastomer-metal laminates in comparison with conventional fiber-metal laminates. 02638223 287(2022), Pp. 115340 f. https://doi.org/10.1016/j.compstruct.2022.115340
  14. FLEISCHER, J. (HRSG.): Intrinsische Hybridverbunde für Leichtbautragstrukturen – Grundlagen der Fertigung, Charakterisierung und Auslegung. Berlin, Heidelberg: Springer Vieweg, 2021. – ISBN 978-3-662-62832-4
  15. Y. Swolfs; P. De Cuyper; M.G. Callens; I. Verpoest; L. Gorbatikh: Hybridisation of two ductile materials Steel fibre and self-reinforced polypropylene composites. Composites Part A: Applied Science and Manufacturing 100(2017), Pp. 48-54. https://doi.org/10.1016/j.compositesa.2017.05.001
  16. H.J. Koslowski: Chemiefaser-Lexikon. Deutscher Fachverlag, 2008. – ISBN 3871508764
  17. H. Schürmann: Konstruieren mit Faser-Kunststoff-Verbunden. Springer-Verlag GmbH, 2007. – ISBN 3540721894
  18. N. Montinaro; D. Cerniglia; G. Pitarresi: Evaluation of interlaminar delaminations in titanium-graphite fibre metal laminates by infrared NDT techniques. NDT & E International 98(2018), Pp. 134-146. https://doi.org/10.1016/j.ndteint.2018.05.004

 

 

Authors: Mahmud Hossain Anwar Abdkader Tobias Lang Thomas Gereke Chokri Cherif

Technische Universität Dresden
Fakultät Maschinenwesen
Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM)
01062 Dresden

https://tu-dresden.de/mw/itm

More entries from TU Dresden, Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik ITM

05.02.2025

Integral flachgestrickte Drucksensoren für smart Textiles

Knittings Sensor Technology Smart Textiles Tests

Abstract

Im IGF-Projekt 21990 BR1 wurde das „Textiles Smart-Skin-3D-System (S3D)“ entwickelt – ein innovatives, flachgestricktes Sensorsystem, das Druck- und Näherungsmessungen nahtlos in textile Produkte integriert. Ziel war es, flexible und robuste Sensorik bereits im Herstellungsprozess einzubetten und so die Komplexität sowie potenzielle Schwachstellen herkömmlicher Mehrkomponentensysteme zu vermeiden. Hierzu wurden komplexe 3D-gestrickte Strukturen realisiert, die leitfähige Sensorgarne und gezielt eingearbeitete dielektrische Materialien wie silikonbasierte Inserts nutzen, um kapazitive Messprinzipien anzuwenden.

Die Optimierung von Garnauswahl und Strickparametern ermöglichte eine präzise Erfassung von Druckkräften und Annäherungen. Als Demonstrator wurde ein vollständig integrierter Sensorhandschuh mit 13 Sensorflächen entwickelt, der Greif- und Haltekräfte misst. Zyklische elektromechanische Prüfungen bestätigten ein stabiles Sensorverhalten. Insbesondere zeigte die Variante mit einem 1 mm starken Dielektrikum optimale Übertragungscharakteristika, geringe Hysterese und eine Sensordrift im akzeptablen Rahmen. Zusätzlich erbrachte ein textilbasierter Näherungssensor zuverlässige Messwerte für Abstände bis zu 120 mm.

Die Ergebnisse belegen das Potenzial flachgestrickter Sensoren als integraler Bestandteil smarter, tragbarer Textilien – mit Anwendungsmöglichkeiten in Telerehabilitation, Medizintechnik, Arbeitsschutz und weiteren Digitalisierungsbereichen.

Summary

In the IGF project 21990 BR1, the “Textiles Smart-Skin-3D-System (S3D)” was developed – an innovative, flat-knit sensor system that seamlessly integrates pressure and proximity measurements into textile products. The aim was to embed flexible and robust sensor technology into the manufacturing process, thereby avoiding the complexity and potential weaknesses of conventional multi-component systems. To achieve this, complex 3D-knit structures were created using conductive sensor yarns and strategically incorporated dielectric materials, such as silicone-based inserts, to implement a capacitive sensing approach.

Optimizing yarn selection and knitting parameters enabled the precise detection of pressure forces and proximity. A demonstrator in the form of a fully integrated sensor glove with 13 sensing areas was developed, capable of measuring gripping and holding forces. Cyclic electromechanical tests confirmed stable sensor performance. In particular, the variant with a 1 mm thick dielectric exhibited optimal transfer characteristics, low hysteresis, and acceptable sensor drift. Additionally, the textile-based proximity sensor reliably measured distances of up to 120 mm.

The results demonstrate the potential of flat-knit sensors as an integral component of smart, wearable textiles with applications in telerehabilitation, medical technology, occupational safety, and other digitalization sectors.

Report

Einleitung

Vor dem Hintergrund globaler Megatrends wie der Digitalisierung in der Medizin bestehen für die Textilindustrie große Chancen, vom erwarteten weiteren Wachstum von am Körper tragbaren, flexibel einsetzbaren und computergestützten Systemen zu profitieren. Zu dieser neuen Geräteklasse, den sogenannten Wearables, gehören Textilien, die über die klassischen Funktionen von Bekleidung oder beispielsweise Bandagen hinaus mit elektronischen Zusatzfunktionen ausgestattet sind. Da Textilien häufig die Schnittstelle zwischen dem Menschen und seiner Umwelt darstellen, sind sie prädestiniert, auch bei der Digitalisierung menschlicher Wahrnehmungen und Fähigkeiten (z. B. Bewegungen, Haptik etc.) und umgekehrt der Rückkopplung von der virtuellen in die analoge Welt eine entscheidende Brückenfunktion zu übernehmen und so als künstliche Haut (bzw. Smart Skin) bestehende optische und akustische Schnittstellen zu ergänzen.

Ein Bereich in dem smarte Textilien einen großen Zugewinn nützlicher Informationen bereitstellen, ist die Medizin und Rehabilitationstechnik. Vor dem Hintergrund einer alternden Bevölkerung und damit einhergehend einer hohen Belastung medizinischer Versorger, die unter gleichzeitigem Personalmangel leiden, ist nicht immer ein ausreichendes Angebot in erreichbarer Nähe realisierbar. Vor allem im Bereich der medizinischen Folgebehandlungen für Physiotherapie einhergehend mit langen Transportwegen oder fehlender Transportfähigkeit des Patienten kann dies zu Heilungsverlangsam oder sogar -verhinderung führen. Eine Unterstützung von Patienten durch einen medizinischen Laien (Familienangehörige, Bekannte etc.) mit einem geringfügigen Lernaufwand soll durch den in diesem Projekt entwickelten Handschuh ermöglicht werden. Dieser ermöglicht die Überwachung von Greif- und Haltebewegungen sowie Feedback zur Korrektur. In der Telerehabilitation gibt es keine vergleichbaren Systeme, die autonom ohne Experteneinsatz arbeiten [1, 2]. Das Projekt fokussierte auf die Entwicklung multifunktionaler Druck-/ Näherungssensorik durch flachstricktechnische Verfahren. Diese ermöglichen die kostengünstige Integration in Funktionsbekleidung, aber auch in Roboterkomponenten.

Zielsetzung und Lösungsweg

Das Ziel des IGF-Forschungsprojekts war die Entwicklung, Charakterisierung und Erprobung textilbasierter Drucksensoren, die mittels Flachstricktechnik in einen Handschuh integriert werden sollten um die aufgebrachte Kraft auf den Fingergliedern und dem Handballen zu überwachen. Es wurden flächenbasierte, gestrickte Sensorkonzepte mit einem kapazitiven Messprinzip verfolgt. Die entwickelten Sensoren wurden mittels zyklischer elektromechanischer Druckprüfungen untersucht und eine Vorzugsvariante der Sensoren zur Integration in einem Funktionsdemonstrator ermittelt. Weiterhin wurden kapazitive Näherungssensoren entwickelt und evaluiert.

Ergebnisse

Entwicklung der gestrickten Drucksensoren

Für die Entwicklung der Sensoren wurde die Umsetzung eines kapazitiven Drucksensors mithilfe von Flachstricktechnik verfolgt. Die Vorteile kapazitiver Sensoren gegenüber resistiver Sensoren liegen in ihrer Unempfindlichkeit gegenüber Temperatur [3], was in einer körpernahen Anwendung von Vorteil ist. Der einfachste Aufbau eines Kondensators ist der Plattenkondensator. In diesem Aufbau sind zwei parallele Platten durch ein Dielektrikum getrennt. Durch das Aufbringen einer Druckkraft F auf diese Platten und damit ein Zusammendrücken des Dielektrikums mit der Dielektrizitätskonstante  ε ändert sich der Plattenabstand d und somit die Kapazität C wie in Abbildung 1 gezeigt. Hier wird deutlich, dass die Kapazitätsänderung ∆C indirekt proportional zur Änderung des Plattenabstands ∆d, die wiederum abhängig ist von der induzierten Kraft, dem E-Modul E und den geometrischen Maßen des Plattenkondensators mit b = Breite und l = Länge.

Für den Aufbau der gestrickten kapazitiven Sensoren wurden verschiedene Konzepte erstellt, die in Abbildung 2 dargestellt sind. Anhand einer systematischen Variantenbewertung nach ergonomischen, stricktechnischen, sensortechnischen Anforderungen und praktischer Versuchstests wurde eine Sensorvariante mit einem Insert als Dielektrikum und einer vollflächigen Elektrode aus leitfähigem Garn als Vorzugsvariante gewählt und zu einer Handschuhfinger gleichenden Doppelschlauchstruktur erweitert.

Zur Auswahl des Elektrodengarns wurden Vorversuche durchgeführt um die stricktechnische Eignung der teilweise anspruchsvoll zu verarbeitenden Garne auf Stahl- und Silberbasis zu bewerten. Hierbei wurden Garne von Statex (Shieldex® 235 f 36dtex Z130), Amann (Steel-tech® 100 tex 93, Silver-tech+® 150 tex 22) und Bekaert (Bekinox® VN 14.1.9.100Z) genutzt. In diesen Vorversuchen erwies sich Silver-tech+® 150 als Vorzugsvariante, da es sehr gut mit dem umgebenden Basismaterial aus Umwindegarn (Tencel CV Nm40 mit PA6.6 78/78f23/1) fertigungstechnisch kompatibel war.

Herstellung der Sensoren

Ziel des Projekts war die Herstellung eines Sensorhandschuhs mittels Flachstricktechnik, eine Strickmethode, die die Möglichkeit bietet Fully Fashioned Artikel in einem Arbeitsschritt herzustellen, wodurch komplizierte gestrickte Flächen endkonturnah hergestellt werden können. Um ein höchstmöglich automatisiert herstellbares Produkt zu entwickeln wurde der Drucksensor mit einem Fokus auf Vermeidung nachfolgender Konfektionierungsschritte entwickelt. Daher wurde der Drucksensor als eine Doppelschlauchstruktur konzeptioniert. Diese wird durch zwei Elemente geformt: Zum einen durch die Tasche des Sensors, zum anderen durch einen Fingerling, der eine Tragbarkeit des Sensors ermöglicht. In Abbildung 3 ist der Aufbau schematisch dargestellt. Im Sensorbereich ergibt sich daher ein dreilagiges Doppelschlauch-gestrick. Das umfasst die äußere sowie innere Elektrode und die Rückseite des Fingers. Das Dielektrikum wird durch ein Insert, welches während des Strickprozesses eingelegt wird, gebildet. Diese Variante des Konzeptes ermöglicht eine weitestgehend automatisierte Fertigung des Handschuhs an der Flachstrickmaschine ohne nachgelagerte Konfektionsschritte. Für die Einbringung des Dielektrikums ist eine Unterbrechung des Strickprozesses erforderlich.

Validierung der Sensoren

Die gestrickten kapazitiven Sensoren wurden auf ihre Eignung als Drucksensor in zyklischen elektromechanischen Messungen überprüft. Der Versuchsaufbau mit Mess- und Versuchsgeräten sowie der Prüfablauf sind in Abbildung 4 dokumentiert. Um den Einfluss des Dielektrikums zu untersuchen, wurden Sensoren mit einem 2 mm und einem 1 mm starken silikonbasierten Dielektrikum hergestellt. Aus den ermittelten Daten wurden das Übertragungsverhalten (als Zusammenhang zwischen Kompressionskraft und Sensorsignal), die Sensordrift (als Signalwerte bei Entlastung der Sensoren) und die Hysterese (als maximale Differenz zwischen Be- und Entlastungskurve über den Messbereich) berechnet (siehe Abbildung 5).

Es zeigte sich, dass beide Varianten ein stabiles Sensorverhalten aufweisen, wobei die Sensorvariante mit einem 1 mm starken Dielektrikum bessere Ergebnisse im Übertragungsverhalten und in Hysterese zeigte. Die Sensordrift lag hier etwas höher, lag aber bei beiden Varianten unter 5 % und damit in einem, für praktische Anwendungen dieser Technologie, akzeptablen Bereich. Dieser Versuch zeigte, dass das Dielektrikum einen entscheidenden Einfluss auf das Sensorverhalten hat und dieses durch die relativ kleine Anpassung des Insertmaterials für verschiedene Messbereiche und -sensitivitäten angepasst werden kann. Weitere Ausführungen, Ergebnisse und Diskussionen können aus der Publikation in [4] entnommen werden.

Näherungssensor

Das Konzept für die textile Näherungssensorik wurde mit einer einzelnen textilen gestrickten Elektrode und einem Arduino Uno umgesetzt. Für die Versuchsdurchführung wurde eine menschliche Hand als zu erfassendes Objekt an den Sensor geführt und der Abstand zwischen Hand und Sensor gemessen. In Abbildung 6 sind das Sensorsignal und korrelierte Abstände der Hand dazu gezeigt, sowie das Schaltbild dargestellt. Hierbei konnten Abstände von bis zu 120 mm zur Hand noch erfasst werden mit einer guten Signalstabilität, sodass hier eine Quantifizierung des Abstands denkbar ist.

Demonstrator

Die Vorzugsvariante für den Druck- und Näherungssensor wurde übertragen auf einen vollständig gestrickten und integral gefertigten Handschuh mit 13 Sensoren, wobei 2 Sensorflächen für Daumen, 3 Sensorflächen für Zeige- und Mittelfinger und 5 Sensorflächen auf der Handfläche für die Erfassung von Kräften realisiert wurden. Der finale Funktionsdemonstrator ist in Abbildung 7 gezeigt. Die elektrischen Zuleitungen wurden für diesen FD manuell realisiert. Eine sensorische Funktionalisierung des Ringfingers und des kleinen Fingers war durch die begrenzte Anzahl an Fadenführern innerhalb der Strickmaschine nicht möglich (max. 13 Sensorflächen). Die Signale der einzelnen Sensoren wurden mittels eines RaspberryPi 5 und einer dafür entwickelten Software ausgewertet. In verschiedenen Greiftests wurden die Sensoren validiert. Bei allen funktionsfähigen Sensoren konnte ein verlässlicher Anstieg des Signals bei Kompression erfasst werden.

Zusammenfassung und Ausblick

Die Verwendung textiltechnischer Lösungen zur Überwachung des menschlichen Körpers und der auf ihn wirkenden Lasten ist ein vielversprechendes Forschungsfeld, das Anwendungen in der Physiotherapie, im Arbeitsschutz und in der Digitalisierung von Arbeitsprozessen ermöglicht. Im Rahmen dieses Projekts lag der Fokus auf der Entwicklung und Integration von Druck- und Näherungssensoren in textile Strukturen. Dabei wurden innovative textilbasierte Ansätze verfolgt, insbesondere die Herstellung vollständig textilintegrierter Sensoren im Fully-Fashioned-Verfahren. Im Gegensatz zu herkömmlichen Systemen, die oft aus vielen Einzelkomponenten bestehen und dadurch Schwachstellen aufweisen, bieten textilbasierte Sensorsysteme eine höhere Kompatibilität mit textilen Basissystemen und eine höhere Flexibilität. Die in dieser Arbeit entwickelten Sensoren sind vielseitig einsetzbar und können in zahlreiche textile Strukturen, und vor allem gestrickter Strukturen, diverser Form und Größe übertragen werden.

Unter Beachtung industrienaher Anforderungen, die zusammen mit den am Projekt beteiligten Industriepartnern festgelegt wurden, wurden verschiedene Konzepte für Druck- und Näherungssensoren für einen Sensorhandschuh unter Nutzung von Flachstricktechnik entwickelt. Die bevorzugte Lösung für gestrickte Druck- und Näherungssensoren basiert auf einem Doppelschlauchgestrick, das einen flexiblen Plattenkondensator darstellt. Diese Sensoren bestehen aus Elektroden aus leitfähigem Garn und einem weichen Material, beispielsweise Silikon, das als Dielektrikum dient. Dadurch, dass das Material für das Dielektrikum flexibel gewählt werden kann, sind Messbereich und -verhalten auch für andere Anwendungen mit diesem Konzept einfach zu variieren. Für die Druckmessung wurde das Ansprechverhalten der entwickelten Sensoren eingehend getestet, und ihre Stabilität analysiert und ein funktionsgerechtes Messverhalten der Sensoren im Messbereich 0 bis 10 N festgestellt.

Die Vorzugsvariante der Sensoren wurde in einem Funktionsdemonstrator mit 13 Sensorflächen umgesetzt. Dies sollte in weiteren Arbeiten um 6 weitere Sensorflächen für die einzelnen Fingergelenke von Ring- und kleinem Finger ergänzt werden. Die Anzahl der Sensorflächen war in diesem Projekt durch die Anzahl der verfügbaren Fadenführer begrenzt. Weiterhin sollte das Einlegen des dielektrischen Inserts stärker automatisiert werden um die Zeit, die benötigt wird um die Drucksensorhandschuhe zu stricken, reduziert wird.

Danksagung

Das IGF-Vorhaben 21990 BR der Forschungsvereinigung Forschungskuratorium Textil e.V., Reinhardtstr. 12-14, 10117 Berlin wurde über die AiF im Rahmen des Programms zur Förderung der industriellen Gemeinschaftsforschung und -entwicklung (IGF) vom Bundesministerium für Wirtschaft und Klimaschutz aufgrund eines Beschlusses des Deutschen Bundestages gefördert.

Die Autoren danken den genannten Institutionen für die Bereitstellung der finanziellen Mittel. Der Forschungsbericht und weiterführende Informationen sind am Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik der TU Dresden erhältlich.

 

Literatur

 

[1]   K. Ettle et al., "Telepräsenzroboter für die Pflege und Unterstützung von Schlaganfallpatientinnen und -patienten (TePUS) im Regierungsbezirk Oberpfalz: DeinHaus 4.0," Regensburg, Jun. 2020. Accessed: Nov. 30 2020.

[2]   K. Berkenkamp, "Telerehabilitation in der Schlaganfallversorgung – Einflussfaktoren auf Adoption und Akzeptanz von klinisch tätigen Ärzten und Therapeuten," 2020.

[3]   J. Mersch, C. A. G. Cuaran, A. Vasilev, A. Nocke, C. Cherif, and G. Gerlach, "Stretchable and Compliant Textile Strain Sensors," IEEE Sensors J., vol. 21, no. 22, pp. 25632–25640, 2021, doi: 10.1109/JSEN.2021.3115973.

[4]   S. Fischer, C. Böhmer, S. Nasrin, C. Sachse, C. Cherif. Flat-Knitted Double-Tube Structure Capacitive Pressure Sensors Integrated into Fingertips of Fully Fashioned Glove Intended for Therapeutic Use. Sensors 2024, 24, 7500. https://doi.org/10.3390/s24237500

 

 

Authors: Carola Bömer

Technische Universität Dresden
Fakultät Maschinenwesen
Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM)
01062 Dresden

https://tu-dresden.de/mw/itm

More entries from TU Dresden, Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik ITM

20.06.2023

Development of heavy tows from recycled carbon fibers for low-cost and high performance thermoset composites (rCF heavy tows)

Raw materials Fibres Yarns Composites Textile machinery Recycling Sustainability Circular economy Technical Textiles

Abstract

Within the framework of the IGF research project (21612 BR), the entire process chain for the industrial production of novel twist-free rCF heavy tows was developed at ITM. In particular, a novel technology for the production of rCF heavy tows based on recycled carbon (rCF ≥ 90 vol.%) and hot melt adhesive fibers (< 10 vol.%) was designed, constructed and successfully implemented. This includes fiber preparation, the carding process for card sliver formation, the stretching process for drawn sliver formation, and the final fabrication of the rCF heavy tows from rCF and hot melt adhesive fibers in a newly developed test set-up. The suitability of the developed technology is demonstrated by the implementation of rCF heavy tows with different rCF types, fiber lengths and fiber volume contents and a demonstrator. The developed rCF heavy tows with finenesses between 3000-7000 tex and their further processability into textile semi-finished products were successfully demonstrated. The developed rCF Heavy Tows and composites based on them exhibit a maximum composite tensile strength and a maximum Young’s modulus of 1158±72 MPa and 80±5.7 GPa, respectively. The rCF Heavy Tows are thus applicable for low-cost thermoset composites with high performance and complex geometry. Thus, the developed rCF Heavy Tows offer a very high innovation and market potential in the fields of materials and materials, lightweight construction, environmental and sustainability research, and resource efficiency. This opens up the opportunity for SMEs in the textile industry to develop new products and technologies for the fiber composite market and to establish themselves as suppliers for the automotive, mechanical engineering and aerospace, medical and sports equipment industries.

Report

Introduction, problem definition and aim of the project

Carbon fiber-reinforced plastics (CFRP) are increasingly used in lightweight applications due to their high stiffness and strength as well as low density, especially in aerospace, transportation, wind energy, sports equipment or construction. Global demand of CFRP is predicted to increase to 197,000 t/a by 2024, almost tripling compared to 2011. This shows an urgent need for solutions to recycle the high quality carbon fiber (rCF) in terms of the circular economy. This is necessary not only due to strict legal regulations, but also for ecological and economic reasons. In recent years, numerous research institutes and companies developed solutions for the reuse of rCF in the fields of nonwovens, injection molding or as hybrid yarns. However, the majority of these works involve the use of rCF in combination with thermoplastic fibers for thermoplastic composites. In the field of rCF-based thermoset CFRP, mainly rCF nonwovens made of 100% rCF have been so far developed. Since the fibers in the nonwovens mostly have a limited length and a low orientation and process-related additional high fiber damage occurs, with these materials only maximum 30% of the composite characteristic values of CFRP components made of carbon filament yarns can be so far achieved.

Currently, the matrix systems used in the field of high mechanical loaded CFRPs are predominantly thermoset. Such components exhibit high dimensional stability, high stiffness and strength as well as are suitable for the implementation of complex component geometries due to low-viscosity matrix systems. However, primary carbon filament yarns are particularly used for these components due to the insufficient properties of rCF. In addition to low sustainability, the utilization of these filament yarns result in at least 200 % higher cost. The production of primary carbon filament yarn requires a high-energy demand of about 230 MJ/kg with a CO2 emission equivalent to 20 kg CO2/kg CF. Here, a significant improvement of the CO2 balance is required to make a substantial contribution to the envisaged climate protection goals of the Federal Republic of Germany and the EU. For this reason, the focus of the project work is the development of novel, sustainable rCF heavy tows made of recycled carbon fibers (rCF) and associated manufacturing technologies for the implementation of cost-effective thermoset composites with high mechanical performance.

Acknowledgments

The IGF project 21612 BR of the Research Association Forschungskuratorium Textil e.V. was funded by the Federal Ministry of Economics and Climate Protection (BMWK) via the AiF within the framework of the program for the promotion of joint industrial research and development (IGF) on the basis of a resolution of the German Bundestag. We would like to thank the above-mentioned institutions for providing the financial resources.

Authors: Mahmud Hossain, Anwar Abdkader und Chokri Cherif

Technische Universität Dresden
Fakultät Maschinenwesen
Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM)
01062 Dresden

https://tu-dresden.de/mw/itm

More entries from TU Dresden, Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik ITM

18.10.2022

Development of Textile Structures with Material-Intrinsic Shape Changing Capabilities for Regenerative Medicine (TexMedActor)

Yarns Fabrics Sustainability Technical Textiles Medicine

Abstract

In the IGF project 21022 BR/1 "TexMedActor", fabrics based on shape memory or electroactive yarns were developed which are capable of enclosing defects in hollow organs on the one hand and stimulating cells by micro-movements on the other. For this purpose, influences of spinning process and material composition on the shape memory behavior of TPU-based yarns were characterized and, in particular, the activation temperature was adjusted to values of the body core and body surface temperature. Furthermore, piezoelectric PVDF yarns were developed whose proportion of polar crystal phases was significantly increased by the spinning parameters and post-treatment, which also increased the piezoelectric behavior of the material. This allowed dynamic changes in pore size to be demonstrated in situ, which can have a stimulating effect on cells. With a new process and a new product group (textiles with intrinsic, active shape-changing capability), the results offer high innovation potential not only for medical devices, but also for a wide range of lucrative applications in a variety of niches, such as sports textiles and filter textiles. Furthermore, these can be used as a basis for the development of extracorporeal medical products such as compression textiles, bandages and orthoses.

Report

Introduction and Objective

In Germany, both demographic changes in society and injuries resulting from trauma are leading to a high proportion of people with cardiovascular diseases or injuries to vessels and internal organs requiring treatment. Treatment of injuries to internal organs, vessels, or nerves usually requires complex procedures (anastomoses) that involve elaborate fixation and suturing. These complicated and elaborate procedures are often associated with long procedure times, which in turn directly correlate with increased complication rates [1-3]. Tubular plastic implants are increasingly being developed to bridge such defects. These single material structures do not allow tissue/ cell ingrowth. Therefore, they run counter to the concept of regenerative medicine, which aims to restore body tissues and cells. In addition, when the defects are filled, regeneration is often disturbed due to the structural-mechanical properties that are not adapted to biomechanics. Furthermore, the lack of interconnectivity of the pore spaces of the replacement structures prevents the cell ingrowth, cell growth, nutrient supply and the removal of metabolic products.

In the context of in vitro tissue engineering, in addition to static cell culture systems, dynamic systems are also being developed. These are based, for example, on continuous or pulsating fluid flows or on a cyclic stretching of a clamped cell support system or substrate [4]. However, a replication of natural mechanical growth stimuli is not possible with such bioreactor systems because, especially in larger structures, there is a locally increased flow velocity along the largest pores or only an overflow of the entire cell support system. Additionally, undesirable stress peaks and undefined distortions occur in the region of the clamps and supports in mechanically stimulated systems.

Since the native structure of the four most important tissue types (connective and supporting tissue, nervous, muscular and epithelial tissue) from which organs, such as bones, blood vessels, muscles, tendons and ligaments, are formed, consists of fiber-like constructs, these can be particularly well biomimicked with textile structures. With the help of pre-designed fiber arrangements, three-dimensional, complex geometries with interconnecting pore spaces can be built up. The cells can use these structures to orient themselves in their growth direction [5]. Therefore, fiber-based high-tech structures are particularly predestined to overcome the limitations of currently available implants.

Therefore, within the framework of the IGF research project TexMedActor (21022 BR/1) novel textile structures with material-intrinsic shape changing capabilities were developed for regenerative medicine with a variety of different application fields, especially anastomosis. The concept pursued envisages the textile-technological realization of structures with a shape memory effect. The textiles should be able to assume predetermined geometries in order to adapt interactively to defects and to simplify complex interventions to bridge or support defects in internal organs like vessel and nerves. Furthermore, these textiles are intended to enable electromechanical stimulation for the actively targeted stimulating of cell growth. In this way, regeneration is accelerated or even made possible in the first place, since the necessary stimuli for tissue- and cell-adapted growth stimulation are lacking, especially in the case of body tissues with weak or no blood supply, such as cartilage, tendons, ligaments, or in the case of wound healing disorders or chronic wounds. Furthermore, novel bioreactors based on the intrinsic properties of the textile structures will be developed, which use the mechanism of action for electromechanical stimulation to uniformly stimulate the cells at each site even in highly complex and large-scale cell carrier structures. Here, the mechanical stimuli originate from the material itself. This material-intrinsic stimulation represent a new method for optimal cell cultivation, by stimulating cell on the textile cell carrier structures without externally applied fluid flows or mechanical deformation. This is intended to overcome two recognized medical technology problems: 1) complicated, costly operations on internal organs, vessels or nerves that are difficult or impossible to perform with minimally invasive procedures, and 2) lack of tissue- and cell-adapted stimuli for promotion of growth in previously used replacement structures and materials as well as currently available dynamic cell culture systems.

Acknowledgement

The IGF project 21022 BR/1 of the Research Association Forschungskuratorium Textil e.V. was funded by the Federal Ministry of Economics and Climate Protection via the AiF within the framework of the program for the promotion of joint industrial research (IGF) on the basis of a resolution of the German Bundestag. We would like to thank the above-mentioned institutions for providing the financial resources. Furthermore, we want to thank the member of the “Projektbegleitender Ausschuss” (project accompanying committee) for their support during the project.

Authors: Benecke, Lukas; Aibibu, Dilbar; Cherif, Chokri

Technische Universität Dresden
Fakultät Maschinenwesen
Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM)
01062 Dresden

More entries from TU Dresden, Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik ITM