From the Sector

Reset
12 results
Polartec: New High-Performance fabric with recycled materials (c) Polartec
20.03.2024

Polartec: New High-Performance fabric with recycled materials

Polartec® introduces Polartec® Power Shield™ RPM, made from recycled polyester materials and the Polartec® 200, and Micro Series recycled fleeces featuring Polartec® Shed Less™ technology.

Polartec® Power Shield™ RPM is a recycled polyester fabric that offers waterproofness, wind-proofness and breathability, and also ensures high-stretch comfort and resilience. With its high range of motion and highly durable 100% recycled polyester membrane designed for high intensity activities, Power Shield™ RPM elevates end use comfort and is made for runners, cyclists and golfers who refuse to trade performance for sustainability.

Polartec® Shed Less™ technology is an innovative process that decreases fiber fragment shedding during home laundering up to 85%* without compromising the performance or durability of the fabrics it’s applied to. Less shedding means fewer microfiber fragments end up in the oceans and waterways.

Polartec® introduces Polartec® Power Shield™ RPM, made from recycled polyester materials and the Polartec® 200, and Micro Series recycled fleeces featuring Polartec® Shed Less™ technology.

Polartec® Power Shield™ RPM is a recycled polyester fabric that offers waterproofness, wind-proofness and breathability, and also ensures high-stretch comfort and resilience. With its high range of motion and highly durable 100% recycled polyester membrane designed for high intensity activities, Power Shield™ RPM elevates end use comfort and is made for runners, cyclists and golfers who refuse to trade performance for sustainability.

Polartec® Shed Less™ technology is an innovative process that decreases fiber fragment shedding during home laundering up to 85%* without compromising the performance or durability of the fabrics it’s applied to. Less shedding means fewer microfiber fragments end up in the oceans and waterways.

Polartec® Micro™ Series is engineered to provide long-lasting comfort in a vast range of conditions and activity levels. This recycled fleece with Polartec® Shed Less™ technology is made from a lofted structure with thermal air pockets to retain warmth without inhibiting breathability. Polartec® Micro™ Series is both hydrophobic and fast drying.

Polartec® 200 Series is the modern version of the original PolarFleece®, which in 1993 became the first performance fleece knit from yarn made from recycled plastic bottles. It has a great resiliency, lightweight warmth and a fast drying time.

More information:
Polartec Shed Less Fleece polyester
Source:

Polartec

12.03.2024

Polartec: New Initiative “Beyond Begins Today”

Since inventing the first fleece crafted from recycled plastic water bottles more than three decades ago, Polartec®, a Milliken & Company brand, and the creator of innovative and more sustainable textile solutions, has upheld its pledge to protect the environment.

With its new Beyond Begins Today initiative, Polartec aims to raise awareness around the important global themes of sustainability, diversity and positive change.

Polartec is engaged to make the goal of zero waste a reality – from using 100% recycled and plant-based materials, to delivering certified waste reductions and innovative technologies that reduce the impact of its activities.

Since inventing the first fleece crafted from recycled plastic water bottles more than three decades ago, Polartec®, a Milliken & Company brand, and the creator of innovative and more sustainable textile solutions, has upheld its pledge to protect the environment.

With its new Beyond Begins Today initiative, Polartec aims to raise awareness around the important global themes of sustainability, diversity and positive change.

Polartec is engaged to make the goal of zero waste a reality – from using 100% recycled and plant-based materials, to delivering certified waste reductions and innovative technologies that reduce the impact of its activities.

Beyond Begins Today is a multifaceted campaign featuring static and multimedia content, including short films released throughout the year via multiple touchpoints and channels – the first of which will be released on Earth Day 2024 to underscore the underlying premise that the future is what we make it. Polartec’s commitment to sustainable solutions go beyond the integration of increasingly advanced manufacturing methods or the ongoing exploration of novel fibers, and continued investments in sustainable materials development.

Polartec’s promises that every product launches in 2024 will either reduce the impact on the planet, endure the test of time, or contribute to circularity processes. Beyond Begins Today looks at how Polartec fabrics are made to last, and made to be used and enjoyed from one generation to the next and beyond. It explores the innovative monomaterials, repurposed plastic and plant-based nylon membranes and fabrics that Polartec uses to set new standards for high performance materials and the ambitious climate-related objectives across the entire value chain that exceed existing mandates. This holistic strategy shall allow Polartec to stay at the forefront of its industry by producing top-notch textiles that champion environmental stewardship and pave the way for a more sustainable tomorrow.

Source:

Akimbo Communications for Polartec

The research group Water Engineering Innovation Photo: Aarhus University
The research group Water Engineering Innovation, led by Associate Professor Zongsu Wei, works to develop water purification technologies, especially in connection with PFAS. The group collaborates in this project with the research group Robotics from the Department of Mechanical and Production Engineering.
24.01.2024

Artificial intelligence to help remove PFAS

A new research project links some of Denmark's leading researchers in PFAS remediation with artificial intelligence. The goal is to develop and optimise a new form of wastewater and drinking water treatment technology using artificial intelligence for zero-pollution goals.

In a new research and development project, researchers from Aarhus University aim to develop a new technology that can collect and break down perpetual chemicals (PFAS) in one step in a purification process that can be connected directly to drinking water wells and treatment plants.

The project has received funding from the Villum Foundation of DKK 3 million, and it will combine newly developed treatment technology from some of Denmark's leading PFAS remediation researchers with artificial intelligence that can ensure optimal remediation.

A new research project links some of Denmark's leading researchers in PFAS remediation with artificial intelligence. The goal is to develop and optimise a new form of wastewater and drinking water treatment technology using artificial intelligence for zero-pollution goals.

In a new research and development project, researchers from Aarhus University aim to develop a new technology that can collect and break down perpetual chemicals (PFAS) in one step in a purification process that can be connected directly to drinking water wells and treatment plants.

The project has received funding from the Villum Foundation of DKK 3 million, and it will combine newly developed treatment technology from some of Denmark's leading PFAS remediation researchers with artificial intelligence that can ensure optimal remediation.

"In the project, we will design, construct and test a new, automated degradation technology for continuous PFAS degradation. We’re also going to set up an open database to identify significant and limiting factors for degradation reactions with PFAS molecules in the reactor," says Associate Professor Xuping Zhang from the Department of Mechanical and Production Engineering at Aarhus University, who is co-heading the project in collaboration with Associate Professor Zongsu Wei from the Department of Biological and Chemical Engineering.

Ever since the 1940s, PFAS (per- and polyfluoroalkyl substances) have been used in a myriad of products, ranging from raincoats and building materials to furniture, fire extinguishers, solar panels, saucepans, packaging and paints.

However, PFAS have proven to have a number of harmful effects on humans and the environment, and unfortunately the substances are very difficult to break down in nature. As a result, the substances continuously accumulate in humans, animals, and elsewhere in nature.

In Denmark, PFAS have been found in drinking water wells, in surface foam on the sea, in the soil at sites for fire-fighting drills, and in many places elsewhere, for example in organic eggs. It is not possible to remove PFAS from everything, but work is underway to remove PFAS from the groundwater in drinking water wells that have been contaminated with the substances.

Currently, the most common method to filter drinking water for PFAS is via an active carbon filter, an ion-exchange filter, or by using a specially designed membrane. All of these possibilities filter PFAS from the water, but they do not destroy the PFAS. The filters are therefore all temporary, as they have to be sent for incineration to destroy the accumulated PFAS, or they end in landfills.

The project is called 'Machine Learning to Enhance PFAS Degradation in Flow Reactor', and it aims to design and develop an optimal and permanent solution for drinking water wells and treatment plants in Denmark that constantly captures and breaks down PFAS, while also monitoring itself.

"We need to be creative and think outside the box. I see many advantages in linking artificial intelligence with several different water treatment technologies, but integrating intelligence-based optimisation is no easy task. It requires strong synergy between machine learning and chemical engineering, but the perspectives are huge," says Associate Professor Zongsu Wei from the Department of Biological and Chemical Engineering at Aarhus University.

More information:
PFAS Aarhuis University
Source:

Aarhus University
Department of Biological and Chemical Engineering
Department of Mechanical and Production Engineering

Polartec PS Photo Polartec
09.10.2023

Polartec: Plant-based nylon resulting in a 50% lower carbon footprint vs. virgin nylon

Polartec, will upgrade two of its product platforms now using Biolon™ *, plant-based nylon fiber and membrane setting a new standard in sustainability for performance fabrics. Polartec®  Power Shield™ and Power Stretch™ Pro fabrics containing Biolon™ fibers and membranes will premiere this autumn.

Biolon™ is a renewable, non-GMO plant-based nylon with a 50% lower carbon footprint than virgin Nylon 6,6.  Biolon™ nylon properties  are closer to Nylon 6,6 than many recycled nylon alternatives currently on the market.  Biolon™ has re-worked a staple, making the best, better in terms of performance and sustainability. Its plant-based inputs account for approximately half (45-48%) of the nylon content in the fibers and membranes in new Polartec® Power Shield™ and Power Stretch™ Pro fabrics debuting this fall.

Polartec, will upgrade two of its product platforms now using Biolon™ *, plant-based nylon fiber and membrane setting a new standard in sustainability for performance fabrics. Polartec®  Power Shield™ and Power Stretch™ Pro fabrics containing Biolon™ fibers and membranes will premiere this autumn.

Biolon™ is a renewable, non-GMO plant-based nylon with a 50% lower carbon footprint than virgin Nylon 6,6.  Biolon™ nylon properties  are closer to Nylon 6,6 than many recycled nylon alternatives currently on the market.  Biolon™ has re-worked a staple, making the best, better in terms of performance and sustainability. Its plant-based inputs account for approximately half (45-48%) of the nylon content in the fibers and membranes in new Polartec® Power Shield™ and Power Stretch™ Pro fabrics debuting this fall.

Ramesh Kesh, Senior Vice President – Government & Defense and Polartec at Milliken & Company said, “For a long time, many thought that sustainable options meant a loss in performance, like durability, Polartec has proved that this is not the case. Challenging a technology already considered to be at the pinnacle of performance was a big ask yet the team at Polartec rose to that challenge and we believe we have created a new standard in sustainability for performance fabrics.” 

More information:
Polartec Biolon nylon
Source:

Abi Youcha (Akimbo Communication)

(c) Toray
01.02.2023

Toray: Adipinsäure für nachhaltiges Nylon 66

Toray hat die erste Adipinsäure entwickelt, die zu hundert Prozent aus biobasierten Rohstoffen besteht. Adipinsäure ist der Grundstoff zur Herstellung von Nylon 66 (Polyamid 66). Das neue Verfahren nutzt Zucker aus Biomasse, die nicht für die Herstellung von Lebensmitteln geeignet ist. Die firmeneigene Synthesetechnik kombiniert eine mikrobielle Fermentationstechnologie mit einer chemischen Reinigungstechnologie mit Trennmembranen. Das Unternehmen wird in den kommenden Jahren eine Produktionstechnologie entwickeln und die Polymerisation von Nylon 66 testen. Anwendungen für die biobasierte Adipinsäure sollen bis etwa 2030 kommerziell einsetzbar sein.

Nylon 66 ist haltbar und fest, und wird seit vielen Jahren für Fasern, Harze und andere Anwendungen verwendet. Der Wunsch, für Nylon 66 eine nachhaltige Alternative zu entwickeln, hat in den letzten Jahren zugenommen.  

Toray hat die erste Adipinsäure entwickelt, die zu hundert Prozent aus biobasierten Rohstoffen besteht. Adipinsäure ist der Grundstoff zur Herstellung von Nylon 66 (Polyamid 66). Das neue Verfahren nutzt Zucker aus Biomasse, die nicht für die Herstellung von Lebensmitteln geeignet ist. Die firmeneigene Synthesetechnik kombiniert eine mikrobielle Fermentationstechnologie mit einer chemischen Reinigungstechnologie mit Trennmembranen. Das Unternehmen wird in den kommenden Jahren eine Produktionstechnologie entwickeln und die Polymerisation von Nylon 66 testen. Anwendungen für die biobasierte Adipinsäure sollen bis etwa 2030 kommerziell einsetzbar sein.

Nylon 66 ist haltbar und fest, und wird seit vielen Jahren für Fasern, Harze und andere Anwendungen verwendet. Der Wunsch, für Nylon 66 eine nachhaltige Alternative zu entwickeln, hat in den letzten Jahren zugenommen.  

Für das neue Verfahren nutzt Toray Mikroorganismen, die aus Zuckern ein Adipinsäure-Zwischenprodukt herstellen. Die Biochemiker haben die Gene dieser Mikroorganismen neu kombiniert und so die Effizienz des Stoffwechsels gesteigert. Dabei kamen Methoden der Bioinformatik zum Einsatz, um optimale mikrobielle Fermentationswege für die Synthese zu finden. Die Mikroorganismen steigern die Ausbeute des Zwischenprodukts bei der Synthese um mehr als das Tausendfache. Umkehrosmose-Trennmembranen reinigen das Zwischenprodukt und erhöhen die Konzentration. Dieser Ansatz ist besonders energieeffizient. Auch entsteht bei dem  Verfahren zur Herstellung von Bio-Adipinsäure im Gegensatz zu den Herstellungsverfahren aus Erdöl kein Distickstoffmonoxid.

Toray entwickelt derzeit ein Verfahren zur Herstellung von Zuckern aus Ernterückständen und anderen nicht-essbaren pflanzlichen Ressourcen. Dabei forscht das Unternehmen in zwei Projekten gemeinsam mit dem National Institute of Advanced Industrial Science and Technology und dem RIKEN, Japans größter Forschungseinrichtung. Die Projekte erhalten Mittel der New Energy and Industrial Technology Development Organization. Das erste Projekt befasst sich mit der „Entwicklung von Produktionstechniken für hochfunktionale Biomaterialien unter Verwendung von intelligenten Zellen aus Pflanzen und anderen Organismen“, das zweite laufende Projekt behandelt die „Entwicklung einer biobasierten Produktionstechnologie zur Beschleunigung des Kohlenstoffrecyclings“. 

More information:
Toray nylon Adipinsäure Membrane
Source:

Toray

(c) Freudenberg Performance Materials Holding SE & Co. KG
21.06.2022

Freudenberg endorses further products with ECO-CHECK label

Freudenberg Performance Materials (Freudenberg) is endorsing further sustainable products with its ECO-CHECK label introduced last year. These products comply with various environmental criteria. With immediate effect, five more solutions bear the label making the company’s commitment to sustainability visible.

Leather goods
The newly-endorsed ECO-CHECK products include one Evolon® microfilament textile application. This is a reinforcement material for leather goods that is manufactured with no solvent and no binder. It contains up to 80 percent recycled PET and is suitable for a broad range of applications. The material is produced at Freudenberg’s facility in Colmar, France, where the manufacturing process is highly sustainable: it is certified to STeP by OEKO-TEX® and fully complies with the DETOX TO ZERO by OEKO-TEX® criteria.

Freudenberg Performance Materials (Freudenberg) is endorsing further sustainable products with its ECO-CHECK label introduced last year. These products comply with various environmental criteria. With immediate effect, five more solutions bear the label making the company’s commitment to sustainability visible.

Leather goods
The newly-endorsed ECO-CHECK products include one Evolon® microfilament textile application. This is a reinforcement material for leather goods that is manufactured with no solvent and no binder. It contains up to 80 percent recycled PET and is suitable for a broad range of applications. The material is produced at Freudenberg’s facility in Colmar, France, where the manufacturing process is highly sustainable: it is certified to STeP by OEKO-TEX® and fully complies with the DETOX TO ZERO by OEKO-TEX® criteria.

Healthcare applications
In the field of healthcare, the bio-based M 1714 wound pad with superior absorption for more challenging wounds has now been endorsed with the ECO-CHECK label. The dressing consists of a mix of bio-based fibers derived from natural sources and exhibits a smooth wound contact layer. The product has been evaluated for industrial compostability and conforms to ISO 13432.

Architectural applications
The sustainable TF 400 Eco F mesh fabric for textile architecture from Mehler Texnologies® now also bears the ECO-CHECK label. Its yarn is made of 100% recycled PET bottles and its characteristics are very similar to those of conventional mesh fabrics. In 2021, it was awarded first place by the Architectural Membrane Association (AMA) in the “product” category in recognition of its properties.

Shoes
In the shoe industry, the binder-free strobel insoles have been endorsed as particularly sustainable. They contain a high percentage of recycled green bottle flakes. Moreover, the insoles themselves are fully recyclable.

Filtration applications
The two layered, needle-punched nonwoven filter medium that has just been endorsed with the ECO-CHECK label has impressive sustainability characteristics. Made entirely of polyester, more than half the fibers consist of recycled material.

Source:

Freudenberg Performance Materials Holding SE & Co. KG

07.06.2022

EPTA World Pultrusion Conference 2022 explores composites sustainability

The European Pultrusion Technology Association (EPTA) has published a report from its latest conference, which focuses on advances in sustainability and recycling.

More than 130 professionals from the global pultrusion community gathered at the 16th World Pultrusion Conference in Paris on 5-6 May 2022. Organised by EPTA in collaboration with the American Composites Manufacturers Association (ACMA), the event featured 25 international speakers sharing insight on market trends, developments in materials, processing and simulation technologies, and innovative pultruded applications in key markets such as building and infrastructure, transportation and wind energy.

The European Pultrusion Technology Association (EPTA) has published a report from its latest conference, which focuses on advances in sustainability and recycling.

More than 130 professionals from the global pultrusion community gathered at the 16th World Pultrusion Conference in Paris on 5-6 May 2022. Organised by EPTA in collaboration with the American Composites Manufacturers Association (ACMA), the event featured 25 international speakers sharing insight on market trends, developments in materials, processing and simulation technologies, and innovative pultruded applications in key markets such as building and infrastructure, transportation and wind energy.

‘Bio-pultrusion’:  
Composites based on natural fibres offer a number of benefits, including low density and high specific strength, vibration damping, and heat insulation. The German Institutes for Textile and Fiber Research Denkendorf (DITF) are developing pultrusion processes using bio-based resins and natural fibres. Projects include the BioMat Pavilion at the University of Stuttgart, a lightweight structure which combines ‘bamboo-like’ natural fibre-based pultruded profiles with a tensile membrane.

Applications for recycled carbon fibre (rCF):
The use of rCF in composite components has the potential to reduce their cost and carbon footprint. However, it is currently used to a limited extent since manufacturers are uncertain about the technical performance of available rCF products, how to process them, and the actual benefits achievable. Fraunhofer IGCV is partnering with the Institute for Textile Technology (ITA) in the MAI ÖkoCaP project to investigate the technical, ecological and economic benefits of using rCF in different industrial applications. The results will be made available in a web-based app.

Circularity and recycling:
The European Composites Industry Association (EuCIA) is drafting a circularity roadmap for the composites industry. It has collaborated with the European Cement Association (CEMBUREAU) on a position paper for the EU Commission’s Joint Research Centre (JRC) which outlines the benefits of co-processing end-of-life composites in cement manufacturing, a recycling solution that is compliant with the EU’s Waste Framework Directive and in commercial operation in Germany. Initial studies have indicated that co-processing with composites has the potential to reduce the global warming impact of cement manufacture by up to 16%. Technologies to allow recovery of fibre and/or resin from composites are in development but a better understanding of the life cycle assessment (LCA) impact of these processes is essential. EuCIA’s ‘circularity waterfall,’ a proposed priority system for composites circularity, highlights the continued need for co-processing.

Sustainability along the value chain:
Sustainability is essential for the long-term viability of businesses. Resin manufacturer AOC’s actions to improve sustainability include programmes to reduce energy, waste and greenhouse gas emissions from operations, the development of ‘greener’ and low VOC emission resins, ensuring compliance with chemicals legislation such as REACH, and involvement in EuCIA’s waste management initiatives. Its sustainable resins portfolio includes styrene-free and low-styrene formulations and products manufactured using bio-based raw materials and recycled PET.

Source:

European Pultrusion Technology Association EPTA

Links das Granulat für den 3D-Druck, rechts das gefriergetrocknete Mikrogel, das die Basis für die umweltverträgliche Membran legen soll. Foto: (c) Simon Brönner/HSNR. Links das Granulat für den 3D-Druck, rechts das gefriergetrocknete Mikrogel, das die Basis für die umweltverträgliche Membran legen soll.
Links das Granulat für den 3D-Druck, rechts das gefriergetrocknete Mikrogel, das die Basis für die umweltverträgliche Membran legen soll.
27.05.2021

Hochschule Niederrhein und Aachener Leibniz-Institut: Forschung an umweltverträglicher Funktionskleidung

Sie ist in fast jedem Schrank: Funktionskleidung – ob als Shirt zum Joggen oder als Jacke zum Wandern. Spezielle Beschichtungen der Textilien sorgen für trockene Haut, indem sie Regen nicht durchdringen lassen und Schweiß nach außen leiten. Forschungsteams der Hochschule Niederrhein und des DWI – Leibniz-Instituts für Interaktive Materialien aus Aachen arbeiten gemeinsam an einer neuen Art umweltfreundlicher Funktionskleidung.
 
Die üblicherweise verwendeten Materialien, sogenannte halbdurchlässige Membranen, sind weder umweltverträglich noch recyclingfähig. Durch diese dünnen Trennschichten wird Kleidung mit verschiedenen Funktionen ausgestattet, beispielsweise Nässeschutz, Atmungsaktivität und eine natürliche Temperaturregulierung. Die Membranen finden Anwendung im Sport-, Outdoor- und Workwear-Segment, aber auch in Heimtextilien (etwa Matratzenschutz), Schuhen und technischen Textilien aus dem Medizinbereich.
 

Sie ist in fast jedem Schrank: Funktionskleidung – ob als Shirt zum Joggen oder als Jacke zum Wandern. Spezielle Beschichtungen der Textilien sorgen für trockene Haut, indem sie Regen nicht durchdringen lassen und Schweiß nach außen leiten. Forschungsteams der Hochschule Niederrhein und des DWI – Leibniz-Instituts für Interaktive Materialien aus Aachen arbeiten gemeinsam an einer neuen Art umweltfreundlicher Funktionskleidung.
 
Die üblicherweise verwendeten Materialien, sogenannte halbdurchlässige Membranen, sind weder umweltverträglich noch recyclingfähig. Durch diese dünnen Trennschichten wird Kleidung mit verschiedenen Funktionen ausgestattet, beispielsweise Nässeschutz, Atmungsaktivität und eine natürliche Temperaturregulierung. Die Membranen finden Anwendung im Sport-, Outdoor- und Workwear-Segment, aber auch in Heimtextilien (etwa Matratzenschutz), Schuhen und technischen Textilien aus dem Medizinbereich.
 
Ziel des Projekts ist es, eine Membran zu entwickeln, die sich bei körperlicher Betätigung speziell auf ihren Träger einstellt. Die Lösung, an der die Partner arbeiten, ist eine neue Barrieremembran aus sogenannten thermoplastischen Elastomeren. In die Membran sind Mikrogele eingebaut - kleine Partikel, die Wasser aufnehmen, wieder abgeben können und biokompatibel sind. Durch Kombination eines Trägermaterials mit Mikrogelen soll eine umweltfreundliche, pflegeleichte semipermeable Barriere mit hoher Funktionalität entwickelt werden. Zusätzlich werden spezielle Verfahren zur Beschichtung von Textilien mit diesen Membranen angewandt, die ein verbessertes Recycling der Kleidung ermöglichen und ebenfalls auf den Einsatz umweltbelastender Substanzen verzichten.
 
Um dieses Ziel zu erreichen, bündeln die Forscherteams ihre Kompetenzen aus den Bereichen Polymerchemie und Textiltechnik. Die Wissenschaftlerinnen und Wissenschaftler forschen daran, die Mikrogel-basierten Membranen mittels 3D-Druck als digitale Beschichtungsmethode nur an bestimmten Stellen eines Kleidungsstücks.
 
Von der Forschung profitieren sollen insbesondere Betriebe aus der verarbeitenden Industrie, darunter viele kleine und mittelständische Unternehmen aus dem Bereich der Sport-, Funktions- und Arbeitsbekleidung sowie der Medizin-Textilien. Das Forschungsvorhaben wird von einem Projektausschuss begleitet, in dem verschiedene Unternehmen und Partner entlang der Produktionskette des Rohstoffs bis zur Materialverwertung vertreten sind.  Das Projekt läuft über zwei Jahre und hat ein Gesamtvolumen von rund 500.000 Euro.

DSM/Sympatex Technologies: Launch of Bio-based Arnitel® specialty materials (c) Sympatex® Technologies
05.02.2021

DSM/Sympatex Technologies: Launch of Bio-based Arnitel® specialty materials

Royal DSM announces that its DSM Engineering Materials business will launch mass-balanced bio-based Arnitel®, a thermoplastic elastomer, together with Sympatex Technologies. In this way, DSM Engineering Materials is taking the next step on its sustainability journey and enabling its customers to transition to a more circular and bio-based economy.

To address growing consumer and legislative demand for lower carbon footprint and more sustainable feedstock, the sports and apparel value chain is increasingly integrating bio-based materials into its designs. By offering a new range of mass-balanced bio-based Arnitel®, DSM Engineering Materials is enabling membrane manufacturer, Sympatex Technologies to meet these demands and make more sustainable choices.

DSM’s bio-based Arnitel® is manufactured with bio-based feedstock using a mass-balance approach1. The end product contains more than 25% bio-based content by weight.

Royal DSM announces that its DSM Engineering Materials business will launch mass-balanced bio-based Arnitel®, a thermoplastic elastomer, together with Sympatex Technologies. In this way, DSM Engineering Materials is taking the next step on its sustainability journey and enabling its customers to transition to a more circular and bio-based economy.

To address growing consumer and legislative demand for lower carbon footprint and more sustainable feedstock, the sports and apparel value chain is increasingly integrating bio-based materials into its designs. By offering a new range of mass-balanced bio-based Arnitel®, DSM Engineering Materials is enabling membrane manufacturer, Sympatex Technologies to meet these demands and make more sustainable choices.

DSM’s bio-based Arnitel® is manufactured with bio-based feedstock using a mass-balance approach1. The end product contains more than 25% bio-based content by weight.

Sympatex uses Arnitel® to manufacture its waterproof, windproof, and breathable membranes for sports applications. The transition to bio-based feedstock will maintain the unique functional properties of Arnitel® and will enable Sympatex to easily shift to a more sustainable solution with a lower carbon footprint without having to requalify materials.

 

1 Mass balance accounting is a well-known approach that has been designed to trace the flow of materials through a complex value chain. The mass balance approach provides a set of rules for how to allocate the bio-based and/or recycled content to different products to be able to claim and market the content as ‘bio’-based or ‘recycled’-based. Source: Ellen MacArthur Foundation (Mass Balance White Paper).

Antiviral and antibacterial zwissCLEAN masks® of zwissTEX (c) zwissTex
zwissCLEAN MASK BASIC
21.10.2020

Antiviral and antibacterial zwissCLEAN masks® of zwissTEX

With zwissCLEAN® masks, zwissTEX is a pioneer among manufacturers of antiviral and antibacterial oronasal masks. Unlike conventional models they actively and highly effectively eliminate viruses and bacteria thanks to the latest textile technologies. This is made possible by an environmentally friendly finishing that foregoes the use of silver and zinc. "The formula physically interrupts the cell membrane of the viruses and bacteria - so no development of resistance is possible. In this way 99.9 percent of viruses and bacteria are eliminated within a very short time," says Maximilian Schönfließ - Business Development Manager of zwissTEX.

The zwissCLEAN MASK BASIC is particularly suitable when a mask is to be worn over a longer period of time - whether for school, concerts, trade fair visits or air travel. "The special feature of our zwissCLEAN MASK BASIC is that it can be worn for up to 12 hours without any problems due to the breathable material", says Schönfließ. "With it even sleeping is possible. And unlike disposable masks it can be washed up to 10 times at 30 degrees. Disposal by type is also possible".

With zwissCLEAN® masks, zwissTEX is a pioneer among manufacturers of antiviral and antibacterial oronasal masks. Unlike conventional models they actively and highly effectively eliminate viruses and bacteria thanks to the latest textile technologies. This is made possible by an environmentally friendly finishing that foregoes the use of silver and zinc. "The formula physically interrupts the cell membrane of the viruses and bacteria - so no development of resistance is possible. In this way 99.9 percent of viruses and bacteria are eliminated within a very short time," says Maximilian Schönfließ - Business Development Manager of zwissTEX.

The zwissCLEAN MASK BASIC is particularly suitable when a mask is to be worn over a longer period of time - whether for school, concerts, trade fair visits or air travel. "The special feature of our zwissCLEAN MASK BASIC is that it can be worn for up to 12 hours without any problems due to the breathable material", says Schönfließ. "With it even sleeping is possible. And unlike disposable masks it can be washed up to 10 times at 30 degrees. Disposal by type is also possible".

The zwissCLEAN MASK COMFORT is recommended for daily protection at shopping, on public transport, at business appointments or similar events. It consists of a three-layer structure and combines efficient antiviral protection with long-term wearing comfort. The outer material and the integrated fleece promote protection against viruses and bacteria. The lower material made of organic cotton guarantees a lasting pleasant feeling on the skin. The mask can be washed up to 30 times, thus replacing up to 210 disposable masks and saving resources sustainably.

Source:

zwissTex

(c) Schoeller Textil AG
17.05.2019

Industrial partnership wear2wear: recycled, recyclable and PFC-free functional fabrics

wear2wear is an innovative industrial partnership dedicated to high-quality and sustainable clothing. Five expert partners in Europe have come together to cover the entire recycling loop. On cutting-edge production systems, textile fibres from used clothing will be turned into functional fabrics. Schoeller Textil AG is supplying a wholistic textile portfolio for the workwear area. At Schoeller Textil, the recyclable, functional fabrics from the wear2wear concept belong to the Inspire fabric group. These are high-quality protective workwear fabrics made of 100 percent polyester, which offer the greatest clothing comfort and often feel just like cotton. They are also compliant with the stringent requirements of the bluesign® system.

wear2wear is an innovative industrial partnership dedicated to high-quality and sustainable clothing. Five expert partners in Europe have come together to cover the entire recycling loop. On cutting-edge production systems, textile fibres from used clothing will be turned into functional fabrics. Schoeller Textil AG is supplying a wholistic textile portfolio for the workwear area. At Schoeller Textil, the recyclable, functional fabrics from the wear2wear concept belong to the Inspire fabric group. These are high-quality protective workwear fabrics made of 100 percent polyester, which offer the greatest clothing comfort and often feel just like cotton. They are also compliant with the stringent requirements of the bluesign® system.

The sustainable wear2wear concept is synonymous with high-quality, responsible clothing. In European operations, textile fibres from used garments are used to produce new functional fabrics. Depending upon the area of intended use, they also meet strict waterproofing, breathability, protection and comfort requirements. To ensure that the raw material cycle comes full circle, these textiles can be recycled again when they reach the end of their service life. As a result, there is no waste, and they go on to produce new garments. As the wear-2-wear partner companies guarantee that – from the quality of the raw materials to the guaranteed recycling end process – these are 100 percent recyclable, functional fabrics made of recycled textile fibres. Water- and dirt-repelling technologies based on renewable raw materials, along with the most advanced membrane technology, will ensure that the textiles are manufactured and impregnated entirely without the use of PFC in the future too.

Five partner companies  
The five European partner companies in the wear2wear cooperation cover the entire recycling loop. Heinrich Glaeser Nachfolger GmbH is a German fibre and yarn producer and the “recycler” in the loop. Märkischen Faser GmbH (D) is the “upcycler” and fibre manufacturer. Carl Weiske GmbH & Co. KG (D) develops the polymers, fibres, yarns, chemical additives and textile systems, and TWD Fibres GmbH (D), a fully-integrated filament yarn producer, covers the entire range of polyester and polyamide 6.6 continuous filament yarns. Schoeller Textil AG, the innovative Swiss company, is responsible for textile production and manufactures sustainable high-tech fabrics with maximum clothing comfort. The matching climate-neutral and similarly 100 percent recyclable PTFE and PFC-free membrane, as well as recycled outer materials and linings, are supplied by Sympatex Technologies (D), the ecological alternative among the textile function specialists. DutchSpirit is a Dutch company which has been dedicated to environment-friendly clothing since 2010. Its mission is to significantly increase the awareness for sustainable clothing and offer recyclable clothing in the workwear segment. DutchSpirit is the initiator for the development of the Inspire products from Schoeller Textil and provided the inspiration for the wear2wear concept. Further garment-making partners who now also belong to the cooperative group include: Anchor Workwear BV (NL), Hüsler Berufskleider AG (CH), Groenendijk Bedrijfskleding BV (NL), Bedrijfskledingdiscounter BV (NL) and Rifka'S (NL).

08.11.2018

PERFORMANCE DAYS: Awards for outstanding new developments in the area of function and sustainability

To receive an award at PERFORMANCE DAYS is the ultimate industry recognition. In selecting the winners of the (ECO) PERFORMANCE AWARDS, the jury handles with total integrity with no outside influence and is absolutely free in making its decisions. This season there are so many outstanding innovations at the exhibition that two awards are announced!

WATER – OUR RESPONSIBILITY, the current FOCUS TOPIC for the next trade fair on November 28-29th, seems to have spurred the PERFORMANCE DAYS exhibitors to peak performances. The trade fair has highlighted innovations every season for the past ten years, but seldom have there been so many outstanding new developments. So many in fact, that two awards are to be presented: the ECO PERFORMANCE AWARD for best sustainable development, and the PERFORMANCE AWARD for a new functional highlight.  

To receive an award at PERFORMANCE DAYS is the ultimate industry recognition. In selecting the winners of the (ECO) PERFORMANCE AWARDS, the jury handles with total integrity with no outside influence and is absolutely free in making its decisions. This season there are so many outstanding innovations at the exhibition that two awards are announced!

WATER – OUR RESPONSIBILITY, the current FOCUS TOPIC for the next trade fair on November 28-29th, seems to have spurred the PERFORMANCE DAYS exhibitors to peak performances. The trade fair has highlighted innovations every season for the past ten years, but seldom have there been so many outstanding new developments. So many in fact, that two awards are to be presented: the ECO PERFORMANCE AWARD for best sustainable development, and the PERFORMANCE AWARD for a new functional highlight.  

And the winner of the ECO PERFORMANCE AWARD is:
The jury is highly enthusiastic about the nomination of the ECO PERFORMANCE AWARD winner and described the award-winning fabric as the best ecological solution currently available on the market. This extraordinary laminate from Jou Jou Fish combines various sustainable technologies. Article "JYRNP0002 307" consists of 100% recycled nylon and is designed with a micro-porous membrane (functional performance 15K/10K) that is produced without solvents. This saves a lot of water, plus the fabric is made from pre-dyed fibres (solution-dyeing) and the DWR coating is applied using a dry-finish treatment. The only thing that could improve it: as the polyamide is currently produced from postindustrial waste products, it would be nice to have option of using post-consumer polyamides in the future.

And the winner of the PERFORMANCE AWARD is:
The PERFORMANCE AWARD recognizes another pioneering development. Never before has there been such a fine, yet still tear resistant, highly functional fabric. The winner is article "DPQ 1092 DWR" from Green Threads and with only 17g/m² an absolute lightweight. Particularly fine nylon yarns are used (7d and 4d); a 4d yarn has never before been used in functional fabrics. This plus the extremely good tear resistance clinched it for the jury. Another plus for the winner: this lightweight fabric can achieve with just 17 g comparable performance values to a 50g fabric; thereby, not only is the weight significantly reduced, but also the amount of raw materials and energy consumed in production. This is also a factor that protects the environment when the garment is disposed at the end of its useful life.

More information:
Performance Days
Source:

PERFORMANCE DAYS ® functional fabrics fair