Aus der Branche

Zurücksetzen
30 Ergebnisse
13.04.2021

Origin Materials und PrimaLoft entwickeln CO2-negative Isolationsfasern

  • PrimaLoft und Origin Materials haben ein gemeinsames Programm ins Leben gerufen, mit dem sie CO2-negative Hochleistungsisolationsfasern für die Bekleidungsbranche, darunter namhafte Outdoor-, Mode und Lifestyle-Marken, sowie für Heimtextilien wie Allergikerbettzeug herstellen wollen.
  • PrimaLoft, der Experte für spezialisierte Materialforschung und die Entwicklung von Hochleistungsfasern für Isolation und Funktionstextilien, wird die Fasern zusammen mit Origin Materials entwickeln um den Bedarf für nachhaltige Hochleistungsmaterialien bei seinen mehr als 900 Markenpartnern aus aller Welt zu decken. Bekannte Markenpartner von PrimaLoft sind Patagonia, Stone Island, L.L. Bean, Lululemon, Adidas und Nike.
  • Im Herzen des Programms stehen CO2-negatives PET und Next-Generation-Polymere, die mit der patentierten Technologie aus dem Hause Origin Materials gefertigt werden. Dabei werden nachhaltige Holzabfälle zu kostengünstigen CO2-negativen Materialen verarbeitet, was den Einsatz fossiler Rohstoffe drastisch reduziert.

Origin Materials, Inc.

  • PrimaLoft und Origin Materials haben ein gemeinsames Programm ins Leben gerufen, mit dem sie CO2-negative Hochleistungsisolationsfasern für die Bekleidungsbranche, darunter namhafte Outdoor-, Mode und Lifestyle-Marken, sowie für Heimtextilien wie Allergikerbettzeug herstellen wollen.
  • PrimaLoft, der Experte für spezialisierte Materialforschung und die Entwicklung von Hochleistungsfasern für Isolation und Funktionstextilien, wird die Fasern zusammen mit Origin Materials entwickeln um den Bedarf für nachhaltige Hochleistungsmaterialien bei seinen mehr als 900 Markenpartnern aus aller Welt zu decken. Bekannte Markenpartner von PrimaLoft sind Patagonia, Stone Island, L.L. Bean, Lululemon, Adidas und Nike.
  • Im Herzen des Programms stehen CO2-negatives PET und Next-Generation-Polymere, die mit der patentierten Technologie aus dem Hause Origin Materials gefertigt werden. Dabei werden nachhaltige Holzabfälle zu kostengünstigen CO2-negativen Materialen verarbeitet, was den Einsatz fossiler Rohstoffe drastisch reduziert.

Origin Materials, Inc. („Origin Materials“), ein weltweiter Marktführer in CO2-negativen Materialien, und PrimaLoft, ein führender Innovator in Sachen Hochleistungsisolationen und Funktionstextilien, gaben den Start eines gemeinsamen Programms zur Entwicklung CO2-negativer Hochleistungsfasern bekannt. Die Fasern sollen in den unterschiedlichsten Produkten verarbeitet werden, von Isolationen für namhafte Outdoor-, Mode- und Lifestyle-Marken bis hin zu Heimtextilien wie Allergikerbettzeug.

Dabei setzen die beiden Unternehmen auf die bestehende Origin-Materials-Plattform, um innerhalb kürzester Zeit neue Produkte zu entwickeln und auf den Markt zu bringen. Das Programm setzt auf PrimaLofts Marktposition als spezialisierter Hersteller von Isolationsfasern und -filamenten mit über 900 Markenpartnern aus aller Welt. Ebenso zentral ist PrimaLofts umfangreiches globales Netzwerk aus Fertigungsstätten, die eine große Bandbreite von Herstellungsverfahren (Extrusion, Kardieren, Spinnen, Veredeln, Weben, Wirken, Färben, Airlaid, Meltblown usw.) einsetzen, um die Produkte herzustellen.

In der Kooperation manifestiert sich deutlich PrimaLofts Credo „Relentlessly Responsible™“ – die Mission, durch Innovationen Leistung und Nachhaltigkeit gleichermaßen voranzubringen. Integriert in die gemeinsame Plattform ist PrimaLoft® Bio™, das Ende 2018 zur Bekämpfung des Mikroplastiks in den Weltmeeren auf den Markt gebracht wurde; ebenso PrimaLoft® P.U.R.E.™, ein Herstellungsverfahren, bei dem mehr als 50 % CO2 eingespart werden; und schließlich PrimaLofts Recycling-Initiative. Das nächste große Thema sind erdölfreie Rohstoffe, biologisch abbaubare Produkte und andere Kreislaufwirtschaftslösungen.

Quelle:

crystal communications

Zuse-Gemeinschaft: Mit gutem Auge für gefährliche Teilchen (c) Gerhardt/GNF
Mikroplastik an einem Filterkorn aus porösem Keramikmaterial (angeschliffen), sichtbar gemacht durch Farbstoff und UV-Anregung im Fluoreszenzmikroskop.
10.02.2021

Zuse-Gemeinschaft: Mit gutem Auge für gefährliche Teilchen

  •  Wie Berliner Forscher mit digitaler Technik Mikroplastik aufspüren und analysieren

Beim Kampf gegen Mikroplastik in der Umwelt drängt die Zeit. Forschende aus der Zuse-Gemeinschaft beschreiten mit innovativen Monitoring- und Analysetools neue Wege bei der Erfassung und Bestimmung von Kunststoffabfällen. „Mikroplastik finden und vermeiden“ fokussiert auf den Nachweis von Mikroplastik in Gewässern.

Jahr für Jahr gelangen laut einer Schätzung des Weltwirtschaftsforums (WEF) mindestens acht Millionen Tonnen Kunststoffabfälle in die Weltmeere. Einmal dort angelangt, zersetzen sich diese, sofern Gegenmaßnahmen fehlen, schrittweise zu gefährlichem Mikroplastikpartikeln (MPP). Während die Verschmutzung rapide wächst, ist der MPP-Nachweis verhältnismäßig zeitaufwändig. So muss für die heutigen Analysemethoden wie spezielle Infrarot-Spektrometer das Mikroplastik in mehreren Schritten aus der Probe isoliert werden.

Zu einer deutlichen Verkürzung der Analysezeit für Mikroplastik will Tobias Gerhardt, Chemiker an der Berliner Gesellschaft zur Förderung der naturwissenschaftlich-technischen Forschung (GNF) kommen.

  •  Wie Berliner Forscher mit digitaler Technik Mikroplastik aufspüren und analysieren

Beim Kampf gegen Mikroplastik in der Umwelt drängt die Zeit. Forschende aus der Zuse-Gemeinschaft beschreiten mit innovativen Monitoring- und Analysetools neue Wege bei der Erfassung und Bestimmung von Kunststoffabfällen. „Mikroplastik finden und vermeiden“ fokussiert auf den Nachweis von Mikroplastik in Gewässern.

Jahr für Jahr gelangen laut einer Schätzung des Weltwirtschaftsforums (WEF) mindestens acht Millionen Tonnen Kunststoffabfälle in die Weltmeere. Einmal dort angelangt, zersetzen sich diese, sofern Gegenmaßnahmen fehlen, schrittweise zu gefährlichem Mikroplastikpartikeln (MPP). Während die Verschmutzung rapide wächst, ist der MPP-Nachweis verhältnismäßig zeitaufwändig. So muss für die heutigen Analysemethoden wie spezielle Infrarot-Spektrometer das Mikroplastik in mehreren Schritten aus der Probe isoliert werden.

Zu einer deutlichen Verkürzung der Analysezeit für Mikroplastik will Tobias Gerhardt, Chemiker an der Berliner Gesellschaft zur Förderung der naturwissenschaftlich-technischen Forschung (GNF) kommen.

In einem seit Anfang 2020 laufenden, vom Bundeswirtschaftsministerium geförderten Verbundprojekt zur Entwicklung von Mikroemulsionen für die Analytik von MPP und Biofilmen arbeitet sein Team zusammen mit der Universität Bayreuth, der Firma mibic und anderen Partnern daran, durch den gezielten Einsatz von Farbstoffen die Analyse von Mikroplastik zu verbessern und zu beschleunigen. „Durch die Auswahl spezieller Farbstoffe ist es möglich, in der Analyse bestimmte Kunststoffklassen wie z.B. Nylon, PET oder Polypropylen (PP) nur anhand der Fluoreszenzfarbe zu unterscheiden, wodurch wir die Analysezeiten massiv verkürzen können“, sagt Gerhardt. Die Forschenden wollen die Analysezeiten von mehreren Wochen auf einen bis wenige Tage reduzieren. Sichtbar werden die Mikroplastikteilchen dann mit ultraviolettem Licht unter dem Fluoreszenz-Mikroskop.

Farbstoffe für Mikroemulsionen
Eine Herausforderung für die Forschenden: Die Mikroplastikteilchen in der Analyse mit den Farbstoffen optisch von ihrer organischen Umgebung zu trennen. Denn an den Kunststoffpartikeln bilden sich in Gewässern schnell Biofilme und generell enthalten Umweltproben häufig viel organisches Material. Um die notwendige optische Trennung zu erreichen, nutzt Gerhardt in den wässrigen Lösungen, die er untersucht, die Eigenschaften von besonderen Mizellsystemen, und zwar von sogenannten Mikroemulsionen. Das sind dreidimensionale, zusammengelagerte Aggregate aus Tensidmolekülen, in die er Farbstoffe einbringt. Die Mizellen dienen als Transportmittel, um den Farbstoff direkt zum Plastik zu transportieren und dieses dann einzufärben.

„Mit den Mikroemulsionen die wir entwickelt haben, können wir Mikroplastik mit hoher Selektivität einfärben“, erläutert der GNF-Experte. Ein häufiges Problem beim Einfärben von Mikroplastik mit anderen Methoden ist, dass häufig auch biologische Bestandteile der Probe wie Holz und andere Pflanzenreste eingefärbt werden. „Da wir das Mikroplastik nicht nur oberflächlich anfärben, können alle störenden Anfärbungen von biologischem Material wieder abgewaschen werden und nur das Mikroplastik fluoresziert im UV-Licht“, so Gerhardt. Auf diese Weise will das GNF-Team innerhalb kurzer Zeit die Belastung an Mikroplastikpartikeln in einer Probe bestimmen. Die Kunststoffreste, denen die GNF-Wissenschaftler auf der Spur sind, reichen vom Millimeter großen Partikel bis in den Mikrometer-Bereich, der winzigste Teilchen von wenigen Tausendstel Millimeter Größe erfasst.

„Flocki“ für die Wasserwirtschaft
Im optimalen Fall wird Kunststoff in Gewässern gar nicht erst so klein oder aber im Klärwerk erfasst. Um im Klärwerk kleinste Schmutzpartikel im Mikrometerbereich filtern zu können, setzt die Wasserwirtschaft so genannte Flockungsmittel ein, welche die Partikel binden, damit diese zunächst Mikro- und dann Makropartikel bilden. Für deren Dosierung gibt es noch kein industriell etabliertes Verfahren und bekanntlich hilft viel nicht immer viel. Die Gesellschaft zur Förderung angewandter Informatik (GFaI e.V.), wie die GNF in Berlin-Adlershof ansässig, hat deshalb im vom Bundeswirtschaftsministerium geförderten Projekt „Flocki“ zusammen mit einem Industriepartner ein bildbasiertes Messsystem zur optimalen Dosierung für den Einsatz von Flockungsmitteln entwickelt. Es lässt sich auch für Mikroplastik einsetzen. Aus dem Projekt ist ein Aufnahmesystem hervorgegangen, an dem das Schmutzwasser direkt vorbei transportiert und im Anschluss die Aufnahmen analysiert und die Partikel vermessen werden. „Von den aufgezeichneten Bildern mit den sichtbar gemachten Partikeln und Flocken können wir Rückschlüsse auf die nötige Dosierung ableiten“, erklärt GFaI-Experte Martin Pfaff. Neben dem Aufnahmesystem zur Erfassung des Schmutzwassers, spielt der Schwellwertalgorithmus zur Erkennung der Partikel eine zentrale Rolle bei der Auswertung.

Eigene Berechnungen für kleine Bildbereiche
Anders als in der klassischen Digitalfotografie greift der Algorithmus im Projekt „Flocki“ nicht für das ganze Bild, sondern bezieht sich auf viele kleine Bildbereiche, für die jeweils eigene Berechnungen stattfinden. „So lassen sich im Klärwerk unabhängig vom Verschmutzungs- und Flockungsgrad die Agglomerate im Mikrometerbereich zuverlässig aufspüren und gleichzeitig die Dosierung der Flockungsmittel optimieren“, erklärt Pfaff. Dreh- und Angelpunkt des Systems ist jedoch neben dem Aufnahmesystem die Verwendung geeigneter Messparameter, die sich im Forschungsprojekt als aussagekräftig herauskristallisiert haben. Sie beschreiben die Formveränderungen der Partikel über die gesamte Messung und lassen Rückschlüsse über den jeweils aktuellen Dosiergrad zu. Mit ihrer Hilfe kann somit die Beigabe des Flockungsmittels automatisiert werden.

Seitens der GFaI ist man bereit für eine Kommerzialisierung der Technik. „Angesichts der nötigen und voranschreitenden Digitalisierung in der Wasserwirtschaft versprechen wir uns viel von der Technik. Sie kann zu verbesserter Rohstoffeffizienz und zu einem hohen Umweltschutzniveau beim Vermeiden auch des Eintrags von Mikroplastik in Gewässer beitragen“, erklärt GFaI-Abteilungsleiter Frank Püschel.

„Forschende aus Instituten der Zuse-Gemeinschaft nutzen interdisziplinär ihre Expertise aus Chemie, Informatik und Umweltwissenschaften, um die von Mikroplastik ausgehenden Gefahren für die Umwelt einzudämmen“, erklärt der Geschäftsführer der Zuse-Gemeinschaft, Dr. Klaus Jansen.

Quelle:


Zuse-Gemeinschaft

Zuse-Gemeinschaft: Plastik in der Umwelt vermeiden (c) FiW
28.01.2021

Zuse-Gemeinschaft: Plastik in der Umwelt vermeiden

In der Corona-Krise zeigen Kunststoffe ihren Mehrwert und zugleich auf den Handlungsbedarf beim Kampf gegen Umweltverschmutzung. Denn während Kunststoffe z.B. in Medizinprodukten oder Lebensmittelverpackungen der Gesundheit dienen, werden sie falsch entsorgt als Makro- und Mikroplastik zur Gefahr. Forschende aus der Zuse-Gemeinschaft beschreiten mit innovativen Monitoring- und Analysetools neue Wege bei der Erfassung und Bestimmung solcher Stoffe. Teil 1 unserer Serie zur Vermeidung von Plastik in der Umwelt fokussiert auf großes Mikro- und auf Makroplastik.

In der Corona-Krise zeigen Kunststoffe ihren Mehrwert und zugleich auf den Handlungsbedarf beim Kampf gegen Umweltverschmutzung. Denn während Kunststoffe z.B. in Medizinprodukten oder Lebensmittelverpackungen der Gesundheit dienen, werden sie falsch entsorgt als Makro- und Mikroplastik zur Gefahr. Forschende aus der Zuse-Gemeinschaft beschreiten mit innovativen Monitoring- und Analysetools neue Wege bei der Erfassung und Bestimmung solcher Stoffe. Teil 1 unserer Serie zur Vermeidung von Plastik in der Umwelt fokussiert auf großes Mikro- und auf Makroplastik.

Welch große Verantwortung sowohl Verbraucher als auch Handel und Industrie tragen, damit weniger Kunststoff in die Umwelt gelangt, zeigt das aktuelle, vom Bundesforschungsministerium geförderte Projekt InRePlast. In dem Verbundprojekt hat das Forschungsinstitut für Wasser- und Abfallwirtschaft (FiW) in vier Gemeinden im Raum Aachen, vom Dorf bis zur Großstadt, Plastikreste systematisch gesammelt, katalogisiert und klassifiziert. Die Forschenden erfassten Partikel aus großem Mikroplastik (1-5 mm) ebenso wie Makroplastik mit noch sichtbarem ebenso wie mit nicht mehr erkennbarem Produktursprung. „Nach einjähriger Arbeit mit einem Stab von acht Forschenden haben wir rund 165 verschiedene Produkte und Vor-Produkte aus Makro- und großem Mikroplastik im Abwasser identifiziert“, erklärt FiW-Projektleiter Dr. Marco Breitbarth. Untersuchungsorte waren die Kläranlagen der Gemeinden, aber auch Niederschlagsabläufe auf Verkehrswegen.

In den Kläranlagen überall unter den „Top5“ bei den Kunststoffprodukten zu finden: Zigarettenfilter. Eine weitere Problemkategorie sind Bestandteile von Hygieneartikeln. Bei den Verbundmaterialien wie auch insgesamt nahm die Kategorie Feucht-/Desinfektionstücher/Küchenpapier die Spitzenposition ein.

Verhaltensänderung nicht nur bei Verbrauchern notwendig
Nicht nur die Verbraucher müssen ihr Verhalten ändern, wie die Zwischenergebnisse des bis Ende 2021 zusammen mit Verbundpartnern laufenden Projekts deutlich machen. So waren Kügelchen aus der Kunststoffindustrie, so genannte Pellets, an drei der vier Klärwerks-Standorte des Projekts unter den „Top 10“ der vom FiW gefundenen Produkte. Auch an Straßenrändern fanden die Forschenden laut Breitbarth immer wieder Kunststoff-Pellets, die genaue Auswertung steht noch bevor. „Zwar hat die Kunststoffindustrie immer wieder Info-Kampagnen zur Vermeidung von Produktausträgen aufgelegt, doch müssen die Gefahren offenbar noch deutlicher gemacht werden. Angesichts von rund 3.000 klassischen Kunststoffverarbeitern in Deutschland und vielen weiteren Unternehmen, die Kunststoffe nutzen, ist das eine zentrale Aufgabe“, betont der Forscher des FiW, einem Mitglied der Zuse-Gemeinschaft. Eine weitere wichtige Zielbranche zur Vermeidung von Kunststoffeinträgen in die Umwelt ist für ihn die Baubranche, die u.a. beim Umgang mit Dämmmaterialien an Häusern besonders umsichtig sein muss, so bei der Verwendung von Styropor. Bei InRePlast geht es nach der Umwelt-Analyse nun im letzten Projektabschnitt an die Formulierung von Handlungsempfehlungen, u.a. für Kommunen.

Quelle:

Zuse-Gemeinschaft

DITF: Nachhaltige Leuchten aus Papiergarn (c) quintessence design
Demonstratorleuchte „THIRTY-ONE”
12.11.2020

DITF: Nachhaltige Leuchten aus Papiergarn

  • Lichterlebnisse leicht wie Papier
  • Wohlfühlatmosphäre mit Leuchten aus Papiergarn - ökologisch und nachhaltig

Papier ist ein nachwachsender Rohstoff, ist nahezu überall verfügbar und kann recycelt werden. Die Deutschen Institute für Textil- und Faserforschung Denkendorf (DITF) haben diesen natürlichen Werkstoff in Form von Papiergarnen verarbeitet und daraus formschöne Leuchten entwickelt. Das Ergebnis des Forschungsprojekts „Papierlicht“ sind nachhaltige Produkte mit ansprechendem Design, die kostengünstig hergestellt werden können. Die Leuchten sind voll recycelfähig.

Der Klimaschutz und die Umweltbelastung durch Mikroplastik erfordern neue Ideen, wie nachwachsende Ressourcen sinnvoll genutzt werden können. Die Forscher an den DITF haben Papiergarn mit Hilfe der Strukturspultechnologie zu sehr leichten Strukturkörpern verarbeitet. Der Herstellungsprozess ist so flexibel, dass viele verschiedene Formen möglich sind und das Licht je nach Anwendungsgebiet unterschiedlich gelenkt werden kann. Die entsprechenden lichttechnischen Kennwerte wurden an den DITF ermittelt.

  • Lichterlebnisse leicht wie Papier
  • Wohlfühlatmosphäre mit Leuchten aus Papiergarn - ökologisch und nachhaltig

Papier ist ein nachwachsender Rohstoff, ist nahezu überall verfügbar und kann recycelt werden. Die Deutschen Institute für Textil- und Faserforschung Denkendorf (DITF) haben diesen natürlichen Werkstoff in Form von Papiergarnen verarbeitet und daraus formschöne Leuchten entwickelt. Das Ergebnis des Forschungsprojekts „Papierlicht“ sind nachhaltige Produkte mit ansprechendem Design, die kostengünstig hergestellt werden können. Die Leuchten sind voll recycelfähig.

Der Klimaschutz und die Umweltbelastung durch Mikroplastik erfordern neue Ideen, wie nachwachsende Ressourcen sinnvoll genutzt werden können. Die Forscher an den DITF haben Papiergarn mit Hilfe der Strukturspultechnologie zu sehr leichten Strukturkörpern verarbeitet. Der Herstellungsprozess ist so flexibel, dass viele verschiedene Formen möglich sind und das Licht je nach Anwendungsgebiet unterschiedlich gelenkt werden kann. Die entsprechenden lichttechnischen Kennwerte wurden an den DITF ermittelt.

Aus den Papiergarnen werden mit einer neuartigen Methode dreidimensionale Körper gefertigt. Die Garne werden mit einem Klebstoff fixiert, der ebenfalls aus nachwachsenden und abbaubaren Rohstoffen besteht. Auf die sonst übliche tragende Grundstruktur aus Metall kann verzichtet werden. Das hat mehrere Vorteile für die Umwelt: Durch den Wegfall von Draht entsteht bei der Herstellung weniger Kohlenstoffdioxid. Bei der von den DITF entwickelten Leuchte THIRTY-ONE werden dadurch mehr als zwei Kilogramm CO2-Äquivalente eingespart – pro Stück!
Ohne Metallstruktur wiegen die Papierlampen auch deutlich weniger und können leichter transportiert werden. Nach der Nutzung können die Leuchten in das Kreislaufsystem eingebracht werden.

Das Forschungsteam hat drei Demonstratorleuchten aufgebaut die zeigen, was für Möglichkeiten unterschiedliche Garnstärken, Farben und die verschieden gespulten Strukturen eröffnen. Darüber hinaus zeigen die ermittelten mechanischen Kennwerte heute schon ein großes Potential für die Nutzung in anderen Anwendungsfeldern wie beispielsweise Konstruktionsbauteile. Hierfür stehen an den DITF viele Funktionsmuster zur Verfügung.

(c) Hochschule Niederrhein
17.09.2020

Hochschule Niederrhein: Mit Enzymen Polyester-Stoffe nachhaltiger bearbeiten

Textilien aus Polyester begegnen uns im Alltag überall: beim Sport, im Auto, im Bett. Die Kunstfasern aus Polyester fühlen sich leicht und weich an, sind atmungsaktiv und trocknen schnell. Das Problem: „Polyester nimmt Feuchtigkeit nicht gut auf. Viele Hersteller wünschen sich hydrophilere Fasern, also Polyester, der Feuchtigkeit stärker anzieht und Baumwoll-ähnliche Eigenschaften aufweist“, erklärt Sabrina Kolbe, Wissenschaftlerin am Forschungsinstitut für Textil und Bekleidung der Hochschule Niederrhein.

Sie ist Mitarbeiterin im internationalen Forschungsprojekt „EnzyPol – Verbesserte Oberflächenfunktionalität durch enzymatische Behandlung von biobasierten und konventionellen Polyestern“. Darin erforscht sie gemeinsam mit Kolleginnen und Kollegen in Mönchengladbach und in Österreich, wie mit Hilfe von Enzymen die Hydrophilie von Polyester erhöht werden kann.

Textilien aus Polyester begegnen uns im Alltag überall: beim Sport, im Auto, im Bett. Die Kunstfasern aus Polyester fühlen sich leicht und weich an, sind atmungsaktiv und trocknen schnell. Das Problem: „Polyester nimmt Feuchtigkeit nicht gut auf. Viele Hersteller wünschen sich hydrophilere Fasern, also Polyester, der Feuchtigkeit stärker anzieht und Baumwoll-ähnliche Eigenschaften aufweist“, erklärt Sabrina Kolbe, Wissenschaftlerin am Forschungsinstitut für Textil und Bekleidung der Hochschule Niederrhein.

Sie ist Mitarbeiterin im internationalen Forschungsprojekt „EnzyPol – Verbesserte Oberflächenfunktionalität durch enzymatische Behandlung von biobasierten und konventionellen Polyestern“. Darin erforscht sie gemeinsam mit Kolleginnen und Kollegen in Mönchengladbach und in Österreich, wie mit Hilfe von Enzymen die Hydrophilie von Polyester erhöht werden kann.

Enzyme, also Eiweißmoleküle, sind Teil vieler biotechnologischer Prozesse. Weil sie auf natürliche Weise Produkte veredeln oder als Katalysator Produktionsprozesse beschleunigen können, sind sie für viele Industriebereiche unverzichtbar. „Man kann heute schon Polyester so bearbeiten, dass er hydrophiler wird – aber dabei sind viele Chemikalien im Einsatz. Auch Mikroplastik ist ein Problem, das etwa beim Waschen von Kleidung aus bearbeitetem Polyester in den Wasserkreislauf gerät. Der Einsatz von – wiederverwertbaren – Enzymen auf der Polyester-Oberfläche ist also auch im Sinne der Nachhaltigkeit“, erklärt Sabrina Kolbe.

Welche Enzyme sich für die Bearbeitung des Polyesters eignen, untersuchen in diesem transnationalen „CORNET“-Forschungsprojekt („Collective Research Network“) Wissenschaftler der Universitäten Wien und Innsbruck. „Polyester ist ein künstlicher Stoff und kommt so in der Umwelt nicht vor. Doch es gibt Mikroorganismen, die sich bereits an das immense Vorkommen von Polyester angepasst haben und dieses aufspalten können“, sagt Kolbe. „Beispielsweise wurden Mikroorganismen auf PET-Flaschen gefunden.“ Zudem können die Wissenschaftler entsprechende Enzyme wie etwa Polyesterase auch modifizieren, damit sie Polyesterfasern entsprechend schnell „bearbeiten“.

Ein weiterer Schwerpunkt des Projekts „EnzyPol“ wird die Frage sein, an welcher Stelle im textilen Produktionsprozess die Enzyme zum Einsatz kommen. „Es wäre möglich, ganz am Anfang die Fasern entsprechend zu bearbeiten – oder später das fertige Produkt, also beispielsweise ein Shirt“, sagt Sabrina Kolbe. Das CORNET-Projekt läuft über zwei Jahre und hat ein Gesamtvolumen von 633.570 Euro.

Weitere Informationen:
Hochschule Niederrhein Enzyme polyester
Quelle:

Hochschule Niederrhein

Professorin Ellen Bendt Foto: Octavian Carare
Professorin Ellen Bendt
20.12.2019

Mikroplastik-Ausstoß beim Textilwaschen: Hochschule Niederrhein stellt erste Projektergebnisse vor

Das Forschungsinstitut für Textil und Bekleidung der Hochschule Niederrhein forscht daran, wie beim Waschen von synthetischen Textilien der Ausstoß von Partikeln, die kleiner als fünf Millimeter sind, verringert werden kann. Denn diese Mikroplastik genannten Partikel können über den Weg der Wäsche in die Kläranlagen, Klärschwämme und Oberflächengewässer in die Weltmeere gelangen. Jetzt haben Forscherinnen aus Mönchengladbach auf einer Konferenz in Brüssel erste Ergebnisse vorgestellt.

Auf dem Campus Mönchengladbach der Hochschule Niederrhein ist ein Wasch- und Filterlabor aufgebaut, mit dessen Hilfe der Einfluss des Waschverhaltens auf den Mikroplastikausstoß untersucht wird. Ein Ergebnis: Während der ersten Waschgänge eines neuen Kleidungsstücks werden die meisten Mikropartikel freigesetzt. „Dies deutet darauf hin, dass sich häufig noch aus der Produktion stammende lose Faserfragmente im Produkt befinden, die erst bei der Haushaltswäsche ausgetragen werden“, sagte Professorin Ellen Bendt.

Das Forschungsinstitut für Textil und Bekleidung der Hochschule Niederrhein forscht daran, wie beim Waschen von synthetischen Textilien der Ausstoß von Partikeln, die kleiner als fünf Millimeter sind, verringert werden kann. Denn diese Mikroplastik genannten Partikel können über den Weg der Wäsche in die Kläranlagen, Klärschwämme und Oberflächengewässer in die Weltmeere gelangen. Jetzt haben Forscherinnen aus Mönchengladbach auf einer Konferenz in Brüssel erste Ergebnisse vorgestellt.

Auf dem Campus Mönchengladbach der Hochschule Niederrhein ist ein Wasch- und Filterlabor aufgebaut, mit dessen Hilfe der Einfluss des Waschverhaltens auf den Mikroplastikausstoß untersucht wird. Ein Ergebnis: Während der ersten Waschgänge eines neuen Kleidungsstücks werden die meisten Mikropartikel freigesetzt. „Dies deutet darauf hin, dass sich häufig noch aus der Produktion stammende lose Faserfragmente im Produkt befinden, die erst bei der Haushaltswäsche ausgetragen werden“, sagte Professorin Ellen Bendt.

Ein möglicher Lösungsansatz könnte ein der Herstellung unmittelbar angeschlossener Verarbeitungsschritt (z.B. Vorwäsche oder Vortrocknung) sein. Eine Vortrocknung hätte mehrere Vorteile: Die für den Verkauf wichtige Haptik und das Volumen der neuen Kleidungsstücke würde weniger stark beeinflusst als bei einer Wäsche. Diese Lösung würde zu Beginn des Produktlebenszyklus greifen.

Auch für Verbraucher während der Nutzungsphase gibt es Tipps. Einer ist: Die Waschmaschine immer so voll wiemöglich zu beladen. „Der niedrigste Eintrag von Mikroplastik in die aquatische Umwelt lässt sich bei einer voll beladenen Waschmaschine und anschließender Trocknung im Trockner beobachten“, erklärte Ellen Bendt.

Die Hochschule Niederrhein forscht nicht nur an den Ursachen für Mikroplastikverlust, sondern auch an der Entwicklung von Sport- und Outdoortextilien, die von Anfang an einen geringeren Mikroplastikausstoß aufweisen. Malin Obermann, wissenschaftliche Mitarbeiterin im Projekt, erläuterte zwei Ansätze auf verschiedenen Stufen der textilen Produktionskette.

„Während des Strickprozesses in den Produktionshallen der Hersteller von Flächenkonstruktionen gibt es eine starke Belastung durch Mikroplastik. Erste Versuche mit unserer institutseigenen Großrundstrickmaschine zeigen, dass die Veränderung von zwei Maschinenparametern zu einer signifikanten Senkung des Partikelausstoßes führen kann“, sagte Obermann. Wenn das Ausgangsmaterial später von den Konfektionären zu Fleece-Jacken und -Pullovern zusammengefügt wird, gibt es ebenfalls erfolgversprechende Hebel.

Weitere Informationen:
Hochschule Niederrhein Mikroplastik
Quelle:

Hochschule Niederrhein

30.08.2019

LENZING™ Fasern sind vollständig biologisch abbaubar in Wasser, Erde und Kompost

  • Organic Waste Systems und TÜV bestätigen die biologische Abbaubarkeit der Fasern auch in Süßwasser
  • Alle weißen LENZING™ Viscose-, Modal- und Lyocellfasern sind jetzt für alle Entsorgungen zertifiziert
  • Globale Gesetzgeber wollen Plastikabfälle begrenzen, die jahrhundertelang in der Umwelt verbleiben
  • EU-Richtlinie für Einwegkunststoffe regelt die Verwendung bestimmter Plastikprodukte
  • Biologisch abbaubare Materialien wie holzbasierte Fasern sind die beste Alternative zu Einwegplastik

Die Lenzing Gruppe erhielt vom unabhängigen Forschungslabor Organic Waste Systems (OWS) die Bestätigung der vollständigen biologischen Abbaubarkeit ihrer Fasern im Süßwasser. Die neuen und bestehenden internationalen Messungen durch OWS und die anschließenden Zertifizierungen, die durch den TÜV Österreich vergeben werden, bestätigen, dass LENZING™ Viscosefasern, LENZING™ Modalfasern und LENZING™ Lyocellfasern in allen natürlichen und industriellen Umgebungen biologisch abbaubar sind: im Boden, im Kompost sowie in Süß- und Meerwasser.

  • Organic Waste Systems und TÜV bestätigen die biologische Abbaubarkeit der Fasern auch in Süßwasser
  • Alle weißen LENZING™ Viscose-, Modal- und Lyocellfasern sind jetzt für alle Entsorgungen zertifiziert
  • Globale Gesetzgeber wollen Plastikabfälle begrenzen, die jahrhundertelang in der Umwelt verbleiben
  • EU-Richtlinie für Einwegkunststoffe regelt die Verwendung bestimmter Plastikprodukte
  • Biologisch abbaubare Materialien wie holzbasierte Fasern sind die beste Alternative zu Einwegplastik

Die Lenzing Gruppe erhielt vom unabhängigen Forschungslabor Organic Waste Systems (OWS) die Bestätigung der vollständigen biologischen Abbaubarkeit ihrer Fasern im Süßwasser. Die neuen und bestehenden internationalen Messungen durch OWS und die anschließenden Zertifizierungen, die durch den TÜV Österreich vergeben werden, bestätigen, dass LENZING™ Viscosefasern, LENZING™ Modalfasern und LENZING™ Lyocellfasern in allen natürlichen und industriellen Umgebungen biologisch abbaubar sind: im Boden, im Kompost sowie in Süß- und Meerwasser.

Die biologische Abbaubarkeit von Cellulosefasern und den synthetischen Polyesterfasern wurde bei OWS im Süßwasser nach gültigen internationalen Normen wie z.B. ISO 14851 geprüft. Am Ende des Versuchszeitraums erwiesen sich die holzbasierten LENZING™ Cellulosefasern, Baumwolle und Papierzellstoff im Süßwasser im Gegensatz zu synthetischen Polyesterfasern als vollständig biologisch abbaubar. Die Tatsache, dass synthetische Materialien nicht biologisch abbaubar sind, führt zu großen Problemen in Kläranlagen und zur Verschmutzung der Meere. Dies wiederum schadet nicht nur Fischen und Vögeln, die in und in der Nähe der Ozeane leben, sondern auch allen Meeresorganismen und uns Menschen.

„Die Lenzing Gruppe betreibt ein zirkuläres Geschäftsmodell auf Basis des nachwachsenden Rohstoffes Holz, denn die biologisch abbaubaren LENZING™ Fasern können nach Gebrauch wieder vollständig in die Natur zurückgeführt werden. Dieser komplette Zyklus bildet den Ausgangspunkt für den in unserer Unternehmensstrategie sCore TEN verankerten Kernwert der Nachhaltigkeit und ist die Daseinsberechtigung unseres Unternehmens“, sagt Stefan Doboczky, Vorstandsvorsitzender der Lenzing Gruppe. „Um dieser Positionierung gerecht zu werden, verbessern wir nicht nur das Geschäft unserer Lieferanten, Kunden und Partner entlang der gesamten Wertschöpfungskette, sondern machen die Textilbranche und die Vliesstoffbranche ein Stück grüner.“

Sowohl die Textilbranche als auch die Vliesstoffbranche stehen vor großen Herausforderungen in Bezug auf die Verschmutzung der Meere. Wenn sich der aktuelle Trend fortsetzt, werden die Ozeane bis 2050 mehr Plastik als Fisch enthalten. Daher können die Gesetzgebungsorgane weltweit das Thema nicht mehr ignorieren und sind zu Regelungen übergegangen, die darauf abzielen, die riesigen Abfallmengen von Kunststoffen zu begrenzen. Konkret hat die Europäische Union eine Richtlinie für Einwegkunststoffe erlassen, die derzeit in den EU-Mitgliedstaaten in nationales Recht umgesetzt wird.

Herkömmliche Feuchttücher und Hygieneprodukte enthalten meist Kunststoff, weshalb ihre Verwendung von den Gesetzgebern streng beobachtet wird. Weniger umweltschädliche Alternativen werden von NGOs und Gesetzgebern generell gefördert, z.B. Produkte aus biologisch abbaubaren holzbasierten Cellulosefasern. Kunststoffabfälle, einschließlich Mikroplastik, können jahrhundertelang in der Umwelt verbleiben. Im Gegensatz dazu sind biologisch abbaubare Materialien wie holzbasierte Fasern die beste Alternative zu Einweg-Kunststoffen, da sie per Definition vollständig ohne irgendwelche negativen Auswirkungen zu haben in die Natur übergehen und somit nicht recycelt werden müssen.

Quelle:

Corporate Communications & Investor Relations
Lenzing Aktiengesellschaft

18.03.2019

Kreislaufwirtschaft mit PrimaLoft® Bio™-Fasern

  • Erste Synthetikfaser aus 100 % Recyclingmaterial, die biologisch abbaubar* ist und vollständig innerhalb des Wirtschaftskreislaufs verbleiben kann.

PrimaLoft, Inc., Pionier im Bereich Materialforschung, gab bekannt, dass seine PrimaLoft® Bio™-Fasern im Sinne echter Kreislaufwirtschaft erneuerbar sind. In unabhängigen Tests haben sich die Polyesterfasern als chemisch recycelbar erwiesen. In diesem Prozess wird Polyester in seine Bestandteile zerlegt, die dann vollständig zu neuem Grundstoff für technische Materialien verarbeitet werden können, ohne an Leistung einzubüßen. PrimaLoft ist somit die erste Marke, die eine zu 100 % recycelte Synthetikfaser für Isolationen und Stoffe anbietet, die biologisch abbaubar* ist und vollständig innerhalb des Wirtschaftskreislaufs verbleiben kann.

  • Erste Synthetikfaser aus 100 % Recyclingmaterial, die biologisch abbaubar* ist und vollständig innerhalb des Wirtschaftskreislaufs verbleiben kann.

PrimaLoft, Inc., Pionier im Bereich Materialforschung, gab bekannt, dass seine PrimaLoft® Bio™-Fasern im Sinne echter Kreislaufwirtschaft erneuerbar sind. In unabhängigen Tests haben sich die Polyesterfasern als chemisch recycelbar erwiesen. In diesem Prozess wird Polyester in seine Bestandteile zerlegt, die dann vollständig zu neuem Grundstoff für technische Materialien verarbeitet werden können, ohne an Leistung einzubüßen. PrimaLoft ist somit die erste Marke, die eine zu 100 % recycelte Synthetikfaser für Isolationen und Stoffe anbietet, die biologisch abbaubar* ist und vollständig innerhalb des Wirtschaftskreislaufs verbleiben kann.

„Ziel der Entwicklung von PrimaLoft® Bio™ war es von Anfang an, eine Lösung für das Problem des Lebensendes von Kleidungsstücken sowie für das branchenweite Problem von Mikroplastik zu finden“, so Mike Joyce, Präsident und CEO von PrimaLoft. „Biologische Abbaubarkeit ist eine Lösung für das Lebensende von Produkten, die sich nahtlos in das Konzept der Kreislaufwirtschaft einfügt. Mit der Möglichkeit, unsere Fasern tatsächlich wiederzuverwerten, verschieben wir den Fokus vom klassischen Recycling zur echten Kreislaufwirtschaft. Darin sehen wir den nächsten großen Schritt im Bereich Nachhaltigkeit, und wir haben bereits jetzt bewiesen, dass wir dazu in der Lage sind.“

Unabhängige Tests haben gezeigt, dass sich aus PrimaLoft® Bio™-Fasern nach vollständigem chemischem Recyceln 95 % hochqualitatives Material gewinnen lassen. Damit können wieder Isolationen oder Funktionsstoffe hergestellt werden, die nichts an Leistung eingebüßt haben.

In einer echten Kreislaufwirtschaft liegt der Fokus auf Abfallminimierung sowie Wiedergewinnung und Wiederverwertung von Ressourcen. Damit sinkt der Bedarf, neue Rohstoffe in das System einzuführen. Es entsteht ein geschlossener Kreislauf. Die Kreislaufwirtschaft ist eine nachhaltige Alternative zur traditionellen linearen Wirtschaft, die Ressourcen nach dem Muster „Abbau, Fertigung, Entsorgung“ nutzt.

* 86,1 % biologischer Abbau in 499 Tagen unter ASTM D5511-Bedingungen. Standardtestmethode zur Bestimmung des anaeroben biologischen Abbaus von Kunststoffmaterialien unter anaeroben Verdauungsbedingungen mit hohem Feststoffgehalt

* 57.4% biologischer Abbau in 486 Tagen unter ASTM D6691-Bedingungen. Standardtestmethode zur Bestimmung des aeroben biologischen Abbaus von Kunststoffmaterialien in maritimer Umgebung durch ein definiertes mikrobielles Konsortium oder ein natürliches Meerwasser-Inokulum

 

Quelle:

crystal communications GmbH

(c) PrimaLoft GmbH
13.11.2018

PrimaLoft erweitert biologisch abbaubare Technologien

  • PrimaLoft® Bio™ Performance Fabric – der erste Funktionsstoff aus 100% recycelten, biologisch abbaubaren Fasern

LATHAM, NY - MÜNCHEN: PrimaLoft, Inc., weltweit führendes Unternehmen für innovative Materialtechnologien, hat sein Portfolio an biologisch abbaubaren* Technologien erweitert. Mit der Einführung von PrimaLoft® Bio™ Performance Fabric, dem ersten zu 100% recycelten und biologisch abbaubaren synthetischen Funktionsstoff ergänzt das Unternehmen die kürzlich vorgestellte PrimaLoft® Bio™ Insulation, die ebenfalls die erste Technologie ihrer Art ist. Grundlage beider Innovationen ist eine technisch weiter entwickelte Fasertechnologie, die einen stark beschleunigten biologischen Abbau unter bestimmten Umweltbedingungen ermöglicht und so ein potentiell wichtiger Faktor bei der Problematik von Mikroplastik in den Meeren werden könnte. Sowohl PrimaLoft® Bio™ Performance Fabric als auch PrimaLoft® Bio™ Insulation sollen ab Herbst 2020 im Handel verfügbar sein.

  • PrimaLoft® Bio™ Performance Fabric – der erste Funktionsstoff aus 100% recycelten, biologisch abbaubaren Fasern

LATHAM, NY - MÜNCHEN: PrimaLoft, Inc., weltweit führendes Unternehmen für innovative Materialtechnologien, hat sein Portfolio an biologisch abbaubaren* Technologien erweitert. Mit der Einführung von PrimaLoft® Bio™ Performance Fabric, dem ersten zu 100% recycelten und biologisch abbaubaren synthetischen Funktionsstoff ergänzt das Unternehmen die kürzlich vorgestellte PrimaLoft® Bio™ Insulation, die ebenfalls die erste Technologie ihrer Art ist. Grundlage beider Innovationen ist eine technisch weiter entwickelte Fasertechnologie, die einen stark beschleunigten biologischen Abbau unter bestimmten Umweltbedingungen ermöglicht und so ein potentiell wichtiger Faktor bei der Problematik von Mikroplastik in den Meeren werden könnte. Sowohl PrimaLoft® Bio™ Performance Fabric als auch PrimaLoft® Bio™ Insulation sollen ab Herbst 2020 im Handel verfügbar sein.

„Seit Beginn der Entwicklung unserer biologisch abbaubaren Materialien waren Funktionsstoffe ein wichtiger Bestandteil für uns. Dank dieses Durchbruchs können Kleidungstücke ab sofort komplett den Weg zurück in die Natur finden“, sagte Mike Joyce, Präsident und CEO von PrimaLoft. „Da wir bei der Leistung keine Abstriche machen, mussten wir sicherstellen, dass unsere biologisch abbaubaren Fasern dem Herstellungsprozess von Hochleistungs-Funktionsstoffen standhalten und gleichzeitig ihre Fähigkeit zum biologischen Abbau behalten.  Diese Entwicklung öffnet uns neue Horizonte und wir wollen damit Maßstäbe setzen, um die Umweltauswirkungen der Textilindustrie erheblich zu verringern.“

PrimaLoft® Bio™-Fasern bestehen zu 100% aus Recyclingfasern, die sich unter bestimmten Gegebenheiten wie sie in einer Mülldeponie oder im Meerwasser vorherrschen, biologisch abbauen. PrimaLoft hat diese Fasern weiterentwickelt, um sie attraktiver für dort natürlich vorkommende Mikroben zu machen. Diese Mikroben verdauen die Fasern schneller und sorgen dafür, dass der Funktionsstoff zersetzt wird und am Ende lediglich die natürlichen Elemente Wasser, Methan, CO2 und Biomasse zurückbleiben. Die neue Technologie wird dabei  helfen, das wachsende Problem von Mikroplastik in den Ozeanen zu verringern – ein bedeutendes Thema für die Textilindustrie und andere Industriezweige. Laut Schätzungen der Ellen Macarthur Foundation landen jährlich rund eine halbe Million Tonnen Mikrofasern beim Waschen von Textilien auf Kunststoffbasis wie Polyester, Nylon oder Acryl im Meer. PrimaLoft® Bio™-Fasern werden nur abgebaut, wenn sie in Kontakt mit natürlich vorkommenden Mikroben auf Mülldeponien oder im Meer kommen. Dadurch bleiben die Fasern während der gesamten Produktlebenszeit des Kleidungsstücks gewohnt dauerhaft strapazierfähig.

Spezifische Testergebnisse zeigen einen biologischen Abbau von 84,1% in 423 Tagen unter ASTM D5511- Bedingungen* (beschleunigte Deponiesimulation) und 55,1% biologischen Abbau in 409 Tagen unter ASTM D6691- Bedingungen** (beschleunigte Meerwassersimulation). „Wir haben Recycling nie als die endgültige Lösung gesehen. Mit PrimaLoft® Bio™ haben wir nicht nur den Code zur biologischen Abbaubarkeit unserer Fasern geknackt, sondern gehen auch den nächsten Schritt in Sachen Nachhaltigkeit“, sagt Joyce. „Mit neuen Fasertechnologien wie dieser versuchen wir unseren negativen Umwelteinfluss so gering wie möglich zu halten. Das ist Teil unserer Selbstverpflichtung, jeden Tag aufs Neue Verantwortung zu übernehmen. “

Bis heute hat PrimaLoft mehr als 90 Millionen Plastikflaschen wiederaufbereitet und daraus Premium- Isolationen hergestellt. Anfang dieses Jahres präsentierte PrimaLoft bereits seine ersten Isolationen aus 100% recyceltem Material. Bis 2020 werden 90% der PrimaLoft-Isolationsprodukte aus mindestens 50% recyceltem Material (PCR = Post Consumer Recycled) bestehen, ohne dabei Einbußen bei der Leistung aufzuweisen.

PrimaLoft plant, mit einem ähnlichen Bekenntnis zu biologisch abbaubaren Technologien in seinem gesamten Produktportfolio, die Branche weiter voranzutreiben. Mehr Informationen zu PrimaLoft Bio gibt es auch hier: http://primaloft.com/primaloftbio

* Standardtestmethode zur Bestimmung des anaeroben biologischen Abbaus von Kunststoffmaterialien unter anaeroben Verdauungsbedingungen mit hohem Feststoffgehalt
** Standardtestmethode zur Bestimmung des aeroben biologischen Abbaus von Kunststoffmaterialien in maritimer Umgebung durch ein definiertes mikrobielles Konsortium oder ein natürliches Meerwasser-Inokulum

(c) Messe Frankfurt Exhibition GmbH
Logo
25.10.2018

Neonyt: We are water

H2O meets Fashion and Sustainable Innovation
Wie kann die Modeindustrie ihren globalen Impact hinsichtlich Wasserverbrauch und Wasserverschmutzung minimieren und aktiv dazu beitragen, diese lebenswichtige Ressource zu erhalten? Neonyt und Fashionsustain widmen sich 2019 dieser Frage und zeigen progressive Ansätze. Neonyt ist der globale Hub für Mode, Nachhaltigkeit und Innovation. Das internationale Konferenzformat Fashionsustain ist Teil von Neonyt. Beide finden vom 15. bis 17. Januar 2019 während der Berlin Fashion Week im Kraftwerk Berlin statt.

H2O meets Fashion and Sustainable Innovation
Wie kann die Modeindustrie ihren globalen Impact hinsichtlich Wasserverbrauch und Wasserverschmutzung minimieren und aktiv dazu beitragen, diese lebenswichtige Ressource zu erhalten? Neonyt und Fashionsustain widmen sich 2019 dieser Frage und zeigen progressive Ansätze. Neonyt ist der globale Hub für Mode, Nachhaltigkeit und Innovation. Das internationale Konferenzformat Fashionsustain ist Teil von Neonyt. Beide finden vom 15. bis 17. Januar 2019 während der Berlin Fashion Week im Kraftwerk Berlin statt.

„Wasser bedeutet Macht – und Verantwortung“
Mit diesen Worten bringt Thimo Schwenzfeier, Show Director der Neonyt, die Relevanz des Themas auf den Punkt. „Kaum eine andere Industrie weltweit verbraucht so viel Wasser wie die Mode. Neonyt präsentiert inspirierende Best-Practice-Beispiele aus der Welt der Mode und setzt neoneue Impulse für ein Umdenken – konstruktiv und progressiv“, so Schwenzfeier weiter. Tatsächlich lässt sich heute kaum mehr über Mode sprechen, ohne über das Thema Wasser nachzudenken. Ob beim Rohstoffan- und abbau, der Produktion, insbesondere beim Färben und weiteren Veredeln, beim Waschen und beim Thema Mikroplastik – im Kreislauf der Mode ist Wasser allgegenwärtig.

Fashionsustain: H2O meets Fashion and Sustainable Innovation
Im Jahr 2019 hat sich das internationale Konferenzformat Fashionsustain dem Thema Wasser verschrieben. Am Mittwoch, den 16. Januar 2019 dreht sich im Kraftwerk Berlin alles rund um die hochaktuellen Themenkomplexe von Mikroplastik bis ‚Water Stewardship’. Dabei geht es um Strategien, mit denen Unternehmen ihren negativen Impact durch Wasserverbrauch und Wasserverschmutzung erfassen und effektiv reduzieren können. Hochkarätige Redner innovativer Unternehmen präsentieren visionäre Ansätze, die helfen die lebenswichtige Ressource Wasser zu erhalten.

 

Weitere Informationen:
Sustainability Neonyt Messe Frankfurt
Quelle:

Messe Frankfurt Exhibition GmbH