Aus der Branche

Zurücksetzen
81 Ergebnisse
Pumpenkomponenten aus Zirkoniumoxid-Keramik (c) Oerlikon
Pumpenkomponenten aus Zirkoniumoxid-Keramik
12.11.2020

Oerlikon: Robuste Pumpen für anspruchsvolle Spezialfasern

Auf den ersten Blick haben Ruderboote, der Airbus 380, Sicherheitsausrüstungen oder Stadionüberdachungen nur wenig gemeinsam. Dabei erhalten sie ihre spezifischen Eigenschaften unter anderem durch den Einsatz von speziellen Fasern: Aramidfasern und Kohlenstofffasern (Carbonfasern) werden zu Spezialgarnen verarbeitet, die häufig als Verbundstoffe eingesetzt werden. Die Nachfrage nach diesen Fasern wächst, da weltweit versucht wird, die Abhängigkeit von fossilen Brennstoffen zu verringern; neue Lösungen sind erforderlich, um das Gewicht zu reduzieren und schwere Metallteile zu ersetzen.

Aramidfasern werden in einem sehr aggressiven, hochchemischen Prozess hergestellt. Auch das Verfahren, mit dem das polymere Ausgangsprodukt aus Acryl produziert wird, das zur Herstellung von Kohlenstofffasern verwendet wird, ist zwar ein anderer, aber nicht minder schwieriger Vorgang. Bei diesen anspruchsvollen Prozessen sind die Zahnradpumpen nicht nur für die hochpräzise Steuerung der Schmelzeförderung verantwortlich; Langlebigkeit, Widerstandsfähigkeit in einer aggressiven Umgebung und Kosteneffizienz spielen eine ebenso entscheidende Rolle.

Auf den ersten Blick haben Ruderboote, der Airbus 380, Sicherheitsausrüstungen oder Stadionüberdachungen nur wenig gemeinsam. Dabei erhalten sie ihre spezifischen Eigenschaften unter anderem durch den Einsatz von speziellen Fasern: Aramidfasern und Kohlenstofffasern (Carbonfasern) werden zu Spezialgarnen verarbeitet, die häufig als Verbundstoffe eingesetzt werden. Die Nachfrage nach diesen Fasern wächst, da weltweit versucht wird, die Abhängigkeit von fossilen Brennstoffen zu verringern; neue Lösungen sind erforderlich, um das Gewicht zu reduzieren und schwere Metallteile zu ersetzen.

Aramidfasern werden in einem sehr aggressiven, hochchemischen Prozess hergestellt. Auch das Verfahren, mit dem das polymere Ausgangsprodukt aus Acryl produziert wird, das zur Herstellung von Kohlenstofffasern verwendet wird, ist zwar ein anderer, aber nicht minder schwieriger Vorgang. Bei diesen anspruchsvollen Prozessen sind die Zahnradpumpen nicht nur für die hochpräzise Steuerung der Schmelzeförderung verantwortlich; Langlebigkeit, Widerstandsfähigkeit in einer aggressiven Umgebung und Kosteneffizienz spielen eine ebenso entscheidende Rolle.

Spezielle Werkstoffe für spezielle Aufgaben
Der Prozess, die erwartete Lebensdauer der Pumpe und die Wartungshäufigkeit sind für die Wahl der Materialien, aus denen die Pumpe und ihre Komponenten hergestellt werden, die ausschlaggebenden Faktoren. Für ein optimales Ergebnis bietet Oerlikon Barmag Lösungen, die unterschiedliche Werkstoffe und neueste Technologien intelligent miteinander kombinieren. Ob Oberflächen mit keramischer Beschichtung, Zahnräder und Wellen mit DLC Beschichtungen, Pumpen aus Kobaltlegierungen (StelliteTM) oder die robusten und langlebigen Oerlikon Barmag-Hybridkonstruktionen aus Zirkoniumoxid-Keramik und Duplex-Stahl, die hochpräzisen Pumpen der ZP- und GM-Baureihen werden je nach Einsatzart optimiert ausgelegt. Unterschiedliche Dichtsysteme und individuelle Antriebskonzepte runden das Pumpenprogramm ab.

Weitere Informationen:
Oerlikon aramid Carbonfaser Fasern
Quelle:

Oerlikon

DITF: Nachhaltige Leuchten aus Papiergarn (c) quintessence design
Demonstratorleuchte „THIRTY-ONE”
12.11.2020

DITF: Nachhaltige Leuchten aus Papiergarn

  • Lichterlebnisse leicht wie Papier
  • Wohlfühlatmosphäre mit Leuchten aus Papiergarn - ökologisch und nachhaltig

Papier ist ein nachwachsender Rohstoff, ist nahezu überall verfügbar und kann recycelt werden. Die Deutschen Institute für Textil- und Faserforschung Denkendorf (DITF) haben diesen natürlichen Werkstoff in Form von Papiergarnen verarbeitet und daraus formschöne Leuchten entwickelt. Das Ergebnis des Forschungsprojekts „Papierlicht“ sind nachhaltige Produkte mit ansprechendem Design, die kostengünstig hergestellt werden können. Die Leuchten sind voll recycelfähig.

Der Klimaschutz und die Umweltbelastung durch Mikroplastik erfordern neue Ideen, wie nachwachsende Ressourcen sinnvoll genutzt werden können. Die Forscher an den DITF haben Papiergarn mit Hilfe der Strukturspultechnologie zu sehr leichten Strukturkörpern verarbeitet. Der Herstellungsprozess ist so flexibel, dass viele verschiedene Formen möglich sind und das Licht je nach Anwendungsgebiet unterschiedlich gelenkt werden kann. Die entsprechenden lichttechnischen Kennwerte wurden an den DITF ermittelt.

  • Lichterlebnisse leicht wie Papier
  • Wohlfühlatmosphäre mit Leuchten aus Papiergarn - ökologisch und nachhaltig

Papier ist ein nachwachsender Rohstoff, ist nahezu überall verfügbar und kann recycelt werden. Die Deutschen Institute für Textil- und Faserforschung Denkendorf (DITF) haben diesen natürlichen Werkstoff in Form von Papiergarnen verarbeitet und daraus formschöne Leuchten entwickelt. Das Ergebnis des Forschungsprojekts „Papierlicht“ sind nachhaltige Produkte mit ansprechendem Design, die kostengünstig hergestellt werden können. Die Leuchten sind voll recycelfähig.

Der Klimaschutz und die Umweltbelastung durch Mikroplastik erfordern neue Ideen, wie nachwachsende Ressourcen sinnvoll genutzt werden können. Die Forscher an den DITF haben Papiergarn mit Hilfe der Strukturspultechnologie zu sehr leichten Strukturkörpern verarbeitet. Der Herstellungsprozess ist so flexibel, dass viele verschiedene Formen möglich sind und das Licht je nach Anwendungsgebiet unterschiedlich gelenkt werden kann. Die entsprechenden lichttechnischen Kennwerte wurden an den DITF ermittelt.

Aus den Papiergarnen werden mit einer neuartigen Methode dreidimensionale Körper gefertigt. Die Garne werden mit einem Klebstoff fixiert, der ebenfalls aus nachwachsenden und abbaubaren Rohstoffen besteht. Auf die sonst übliche tragende Grundstruktur aus Metall kann verzichtet werden. Das hat mehrere Vorteile für die Umwelt: Durch den Wegfall von Draht entsteht bei der Herstellung weniger Kohlenstoffdioxid. Bei der von den DITF entwickelten Leuchte THIRTY-ONE werden dadurch mehr als zwei Kilogramm CO2-Äquivalente eingespart – pro Stück!
Ohne Metallstruktur wiegen die Papierlampen auch deutlich weniger und können leichter transportiert werden. Nach der Nutzung können die Leuchten in das Kreislaufsystem eingebracht werden.

Das Forschungsteam hat drei Demonstratorleuchten aufgebaut die zeigen, was für Möglichkeiten unterschiedliche Garnstärken, Farben und die verschieden gespulten Strukturen eröffnen. Darüber hinaus zeigen die ermittelten mechanischen Kennwerte heute schon ein großes Potential für die Nutzung in anderen Anwendungsfeldern wie beispielsweise Konstruktionsbauteile. Hierfür stehen an den DITF viele Funktionsmuster zur Verfügung.

Fraunhofer UMSICHT: Auf dem Weg zu einem geschlossenen Kohlenstoffkreislauf © Fraunhofer UMSICHT
Ein Blick auf den Hochdruckreaktor, der bei der elektrochemischen Reduktion zum Einsatz kam.
28.10.2020

Fraunhofer UMSICHT: Auf dem Weg zu einem geschlossenen Kohlenstoffkreislauf

  • Wie überkritisches Kohlendioxid die elektrochemische Reduktion von CO2 beeinflusst

Auf dem Weg zu einer klimaneutralen Industrie spielt die elektrochemische Reduktion von Kohlendioxid eine wichtige Rolle: Mit ihrer Hilfe lässt sich unter Einsatz erneuerbarer Energien CO2 in Brennstoffe oder Grundchemikalien umwandeln. Der Haken an der Sache: Bislang funktioniert diese Katalyse lediglich im Labor. Bei der Übertragung auf den industriellen Maßstab treten immer noch Schwierigkeiten auf – von der begrenzten Haltbarkeit der Katalysatorsysteme bis zur unerwünschten Entwicklung von Wasserstoff. Forschende der Ruhr-Universität Bochum, des Fritz-Haber-Instituts und des Fraunhofer UMSICHT haben sich auf die Suche nach Lösungen gemacht und dabei den Einfluss von überkritischem Kohlendioxid auf die elektrochemische Reduktion von CO2 untersucht.

  • Wie überkritisches Kohlendioxid die elektrochemische Reduktion von CO2 beeinflusst

Auf dem Weg zu einer klimaneutralen Industrie spielt die elektrochemische Reduktion von Kohlendioxid eine wichtige Rolle: Mit ihrer Hilfe lässt sich unter Einsatz erneuerbarer Energien CO2 in Brennstoffe oder Grundchemikalien umwandeln. Der Haken an der Sache: Bislang funktioniert diese Katalyse lediglich im Labor. Bei der Übertragung auf den industriellen Maßstab treten immer noch Schwierigkeiten auf – von der begrenzten Haltbarkeit der Katalysatorsysteme bis zur unerwünschten Entwicklung von Wasserstoff. Forschende der Ruhr-Universität Bochum, des Fritz-Haber-Instituts und des Fraunhofer UMSICHT haben sich auf die Suche nach Lösungen gemacht und dabei den Einfluss von überkritischem Kohlendioxid auf die elektrochemische Reduktion von CO2 untersucht.

Im Zentrum ihrer Überlegungen stand sogenanntes überkritisches Kohlendioxid. Kurz: scCO2. Dabei handelt es sich um Kohlenstoffdioxid in einem fluiden Zustand – sowohl über seiner kritischen Temperatur als auch über seinem kritischen Druck. »Jüngste Berichte haben gezeigt, dass die Entwicklung von Wasserstoff bei der elektrochemischen Reaktion signifikant unterdrückt werden kann, wenn aprotische Lösungsmittel mit wohldefiniertem Wassergehalt als Elektrolyt verwendet werden«, erläutert Ulf-Peter Apfel, Professor an der Ruhr-Universität Bochum und Wissenschaftler am Fraunhofer UMSICHT. »Da eine Erhöhung des CO2-Drucks zu einer höheren CO2-Konzentration in aprotischen Lösungsmitteln führt, schien die Verwendung von überkritischem Kohlendioxid als Lösungsmittel eine elegante Möglichkeit.«

In der Folge führten die Forschenden eine Vergleichsstudie durch: Sie beleuchteten die Katalyse sowohl unter normalen als auch unter überkritischen Bedingungen und setzten dabei auf kohlenstoffgeträgerte Kupferkatalysatoren als Benchmark-Systeme. »Wir konnten u.a. zeigen, dass die Verwendung von überkritischem Kohlendioxid zu einer Unterdrückung der Entwicklung von Wasserstoff und zur Bildung von Ameisensäure führt«, so Ulf-Peter Apfel. »Um die vorteilhaften Eigenschaften von scCO2 für die elektrochemische Reduktion von Kohlendioxid zu nutzen, wird sich die zukünftige Forschung auf die Untersuchung weiterer Katalysatoren für den Einsatz mit scCO2-Gemischen, alternativen Co-Lösungsmitteln und die Verbesserung der Elektrodenstabilität konzentrieren.«

Quelle:

Fraunhofer UMSICHT

Anlagentechnik zum Carbonfaser-Recycling im Zentrum für Textilen Leichtbau am STFI, Foto: Dirk Hanus.
28.10.2020

Innovationen beim Recycling von Carbonfasern

  • Kohlenstoff mit mehreren Leben

Geht es um die Zukunft der motorisierten Mobilität, reden alle vom Antrieb: Wie viel E-Auto, wie viel Verbrenner verträgt die Umwelt und braucht der Mensch? Zugleich stellen neue Antriebe erhöhte Anforderungen nicht nur an den Motor, sondern auch an dessen Gehäuse und die Karosse: Für solch anspruchsvolle Anwendungen kommen häufig Carbonfasern zum Einsatz. Wie der Antrieb der Zukunft, sollten auch die Werkstoffe am Fahrzeug umweltfreundlich sein. Deshalb ist Recycling von Carbonfasern gefragt. Lösungen dafür haben Institute der Zuse-Gemeinschaft entwickelt.

  • Kohlenstoff mit mehreren Leben

Geht es um die Zukunft der motorisierten Mobilität, reden alle vom Antrieb: Wie viel E-Auto, wie viel Verbrenner verträgt die Umwelt und braucht der Mensch? Zugleich stellen neue Antriebe erhöhte Anforderungen nicht nur an den Motor, sondern auch an dessen Gehäuse und die Karosse: Für solch anspruchsvolle Anwendungen kommen häufig Carbonfasern zum Einsatz. Wie der Antrieb der Zukunft, sollten auch die Werkstoffe am Fahrzeug umweltfreundlich sein. Deshalb ist Recycling von Carbonfasern gefragt. Lösungen dafür haben Institute der Zuse-Gemeinschaft entwickelt.

Carbonfasern, auch als Kohlenstofffasern oder verkürzt als Kohlefasern bekannt, bestehen fast vollständig aus reinem Kohlenstoff. Sehr energieaufwändig wird er bei 1.300 Grad Celsius aus dem Kunststoff Polyacrylnitril gewonnen. Die Vorteile der Carbonfasern: Sie haben kaum Eigengewicht, sind enorm bruchfest und stabil. Solche Eigenschaften benötigt man z.B. am Batteriekasten von E-Mobilen oder in Strukturbauteilen der Karosserie. So arbeitet das Sächsische Textilforschungsinstitut e.V. (STFI) aktuell gemeinsam mit Industriepartnern daran, statisch-mechanische Stärken der Carbonfasern mit Eigenschaften zur Schwingungsdämpfung zu verknüpfen, um die Gehäuse von E-Motoren im Auto zu verbessern. Angedacht ist in dem vom Bundeswirtschaftsministerium geförderten Projekt die Entwicklung sogenannter Hybridvliesstoffe, die neben der Carbonfaser als Verstärkung weitere Faserstoffe enthalten. „Wir wollen, die Vorteile unterschiedlicher Faserstoffe verbinden und so ein optimal auf die Anforderungen abgestimmtes Produkt entwickeln“, erläutert Marcel Hofmann, STFI-Abteilungsleiter Textiler Leichtbau.

Damit würden die Chemnitzer Forschenden bisherige Vliesstoff-Lösungen ergänzen. Sie blicken auf eine 15-jährige Geschichte in der Arbeit mit recycelten Carbonfasern zurück. Der globale Jahresbedarf der hochwertigen Fasern hat sich im vergangenen Jahrzehnt fast vervierfacht, laut Angaben der Industrievereinigung AVK auf zuletzt rd. 142.000 t. „Die steigende Nachfrage hat das Recycling immer stärker in den Fokus gerückt“, betont Hofmann. Carbonfaserabfälle sind ihm zufolge für etwa ein Zehntel bis ein Fünftel des Preises von Primärfasern erhältlich, müssen aber noch aufbereitet werden. Dreh- und Angelpunkt für den Forschungserfolg der recycelten Fasern sind konkurrenzfähige Anwendungen. Die hat das STFI nicht nur am Auto, sondern auch im Sport-Freizeitsektor sowie in der Medizintechnik gefunden, so in Komponenten für Computertomographen. "Während Metalle oder Glasfasern als potenzielle Konkurrenzprodukte Schatten werfen, stört Carbon die Bilddarstellung nicht und kann seine Vorteile voll ausspielen“, erläutert Hofmann.

Papier-Knowhow nutzen
Können recycelte Carbonfasern nochmals den Produktkreislauf durchlaufen, verbessert das ihre CO2-Bilanz deutlich. Zugleich gilt: Je kürzer die Carbonfasern, desto unattraktiver sind sie für die weitere Verwertung. Vor diesem Hintergrund entwickelten das Forschungsinstitut Cetex und die Papiertechnische Stiftung (PTS), beide Mitglieder der Zuse-Gemeinschaft, im Rahmen eines Forschungsvorhabens ein neues Verfahren, das bislang wenig geeignet erscheinende Recycling-Carbonfasern ein zweites Produktleben gibt. „Während klassische Textilverfahren die ohnehin sehr spröden Recycling-Carbonfasern in Faserlängen von mind. 80 mm trocken verarbeiten, beschäftigten wir uns mit einem Verfahren aus der Papierindustrie, welches die Materialien nass verarbeitet. Am Ende des Prozesses erhielten wir, stark vereinfacht gesprochen, eine flächige Matte aus recycelten Carbonfasern und Kunststofffasern“, erläutert Cetex-Projektingenieur Johannes Tietze das Verfahren, mit dem auch 40 mm kurze Carbonfasern zu attraktiven Zwischenprodukten recycelt werden können. Das danach in einem Heißpressprozess entstandene Erzeugnis dient als Grundmaterial für hochbelastbare Strukturbauteile. Zusätzlich wurden die mechanischen Eigenschaften der Halbzeuge durch die Kombination mit endlosfaserverstärkten Tapes verbessert. Das Recyclingprodukt soll, so die Erwartung der Forschenden, glasfaserverstärkten Kunststoffen, Konkurrenz machen, z.B. bei Anwendungen im Schienen- und Fahrzeugbau. Die Ergebnisse fließen nun in weiterführende Forschung und Entwicklung im Kooperationsnetzwerk Ressourcetex ein, einem geförderten Verbund von 18 Partnern aus Industrie und Wissenschaft.

Erfolgreiche Umsetzung in der Autoindustrie
Industriereife Lösungen für die Verwertung von Carbonfaser-Produktionsabfällen werden im Thüringischen Institut für Textil- und Kunststoff-Forschung Rudolstadt (TITK) entwickelt. Mehrere dieser Entwicklungen wurden mit Partnern beim Unternehmen SGL Composites in Wackersdorf industriell umgesetzt. Die Aufbereitung der so genannten trockenen Abfälle, hauptsächlich aus Verschnittresten, erfolgt nach einem eigenen Verfahren. „Dabei führen wir die geöffneten Fasern verschiedenen Prozessen zur Vliesherstellung zu“, sagt die zuständige Abteilungsleiterin im TITK, Dr. Renate Lützkendorf. Neben den Entwicklungen für den Einsatz z.B. im BMW i3 in Dach oder Hintersitzschale wurden im TITK spezielle Vliesstoffe und Verfahren für die Herstellung von Sheet Molding Compounds (SMC) etabliert, das sind duroplastische Werkstoffe, die aus Reaktionsharzen und Verstärkungsfasern bestehen und zum Pressen von Faser-Kunststoff-Verbunden verwendet werden. Eingang fand dies z.B. in einem Bauteil für die C-Säule des 7er BMW. „In seinen Projekten setzt das TITK vor allem auf die Entwicklung leistungsfähigerer Prozesse und kombinierter Verfahren, um den Carbonfaser-Recyclingmaterialien auch von den Kosten her bessere Chancen in Leichtbauanwendungen einzuräumen“, betont Lützkendorf. So liege der Fokus gegenwärtig auf dem Einsatz von CF-Recyclingfasern in thermoplastischen Prozessen zur Platten- und Profilextrusion. „Ziel ist es, die Kombination von Kurz- und Endlosfaserverstärkung in einem einzigen, leistungsfähigen Prozess-Schritt zu realisieren.“

Quelle:

Deutsche Industrieforschungsgemeinschaft Konrad Zuse e.V.

Lenzing Logo (c) Lenzing Gruppe
29.09.2020

Lenzing ist Gründungspartner der Renewable Carbon Initiative

Elf führende Unternehmen aus sechs Ländern haben im September 2020 unter der Leitung des nova-Instituts (Deutschland) die Renewable Carbon Initiative (RCI) gegründet. Ziel der Initiative ist es, den Übergang von fossilen Rohstoffen wie Erdöl, Erdgas und Kohle zu erneuerbarem Kohlenstoff für alle organischen Chemikalien und Materialien zu unterstützen und zu beschleunigen.

Neben Lenzing sind diese zehn Unternehmen Gründungsmitglieder der RCI und bilden auch den Kernbeirat: Beiersdorf (Deutschland), Cosun Beet Company (Niederlande), Covestro (Deutschland), Henkel (Deutschland), LanzaTech (USA), NESTE (Finnland), SHV Energy (Niederlande), Stahl (Niederlande), Unilever (Großbritannien) und UPM (Finnland).

Elf führende Unternehmen aus sechs Ländern haben im September 2020 unter der Leitung des nova-Instituts (Deutschland) die Renewable Carbon Initiative (RCI) gegründet. Ziel der Initiative ist es, den Übergang von fossilen Rohstoffen wie Erdöl, Erdgas und Kohle zu erneuerbarem Kohlenstoff für alle organischen Chemikalien und Materialien zu unterstützen und zu beschleunigen.

Neben Lenzing sind diese zehn Unternehmen Gründungsmitglieder der RCI und bilden auch den Kernbeirat: Beiersdorf (Deutschland), Cosun Beet Company (Niederlande), Covestro (Deutschland), Henkel (Deutschland), LanzaTech (USA), NESTE (Finnland), SHV Energy (Niederlande), Stahl (Niederlande), Unilever (Großbritannien) und UPM (Finnland).

Die Renewable Carbon Initiative befasst sich mit dem Kernproblem des Klimawandels, der Gewinnung und Nutzung von fossilem Kohlenstoff. Die Vision ist klar formuliert: Bis 2050 soll fossiler Kohlenstoff vollständig durch erneuerbaren Kohlenstoff aus alternativen Quellen ersetzt werden: Biomasse, direkte CO2-Nutzung und Recycling. Die Gründer sind überzeugt, dass die organische Chemie- und Materialindustrie nur so nachhaltig, klimafreundlich und Teil der Kreislaufwirtschaft – sprich Teil der Zukunft – werden kann.

Robert van de Kerkhof, Chief Commercial Officer der Lenzing Gruppe: „Wir bei Lenzing glauben, dass wir systemischen Wandel nur durch strategische Partnerschaften erreichen können. Daher unterstützen wir die Renewable Carbon Initiative. Es ist der richtige Schritt und voll und ganz im Einklang mit unserer Unternehmensstrategie. Deshalb sind wir von Anfang an Teil der RCI und ihrer Verpflichtung, sofort zu handeln.“ Michael Carus, CEO des nova-Instituts und Leiter der Renewable Carbon Initiative: „Hier geht es um eine grundlegende Veränderung in der chemischen Industrie. So wie die Energiewirtschaft auf erneuerbare Energien umgestellt wird, wird erneuerbarer Kohlenstoff das neue Fundament der zukünftigen Chemie- und Materialindustrie. Die Initiative beginnt heute und wird von nun an sichtbar präsent sein. Wir wollen den Wandel beschleunigen.“

Die RCI will vorwiegend über drei Wege Veränderungen bewirken: Sie zielt zum einen darauf ab, branchenübergreifende Plattformen zu schaffen, die die Machbarkeit von erneuerbarem Kohlenstoff bei konkreten Aktivitäten demonstrieren. Zweitens wird ein Hauptziel darin bestehen, sich für Gesetzes-, Steuer- und Regulierungsänderungen einzusetzen, um für erneuerbaren Kohlenstoff gleiche wirtschaftliche Wettbewerbsbedingungen zu schaffen. Der dritte Weg wird schließlich darin bestehen, durch die Schärfung des Bewusstseins und des Verständnisses für erneuerbaren Kohlenstoff in der Geschäftswelt und der breiten Öffentlichkeit eine größere Anziehungskraft für nachhaltige Alternativen zu schaffen.

Mit insgesamt elf internationalen Mitgliedsunternehmen und der persönlichen Unterstützung von mehr als 100 Branchenexperten legte die RCI einen starken Start hin. Die Initiative hofft, in den kommenden Monaten viele weitere Mitglieder und Unterstützer zu gewinnen, um die starke Dynamik der Initiative aufrechtzuerhalten. Gemeinsam wird die RCI den Übergang von fossilem zu erneuerbarem Kohlenstoff für alle organischen Chemikalien und Materialien unterstützen und beschleunigen.

Letztendlich ist das Ziel ebenso komplex wie einfach: erneuerbare Energien und erneuerbarer Kohlenstoff für eine nachhaltige Zukunft. Im Rahmen der RCI wird sich Lenzing insbesondere auf die weitere Ökologisierung der Textil- und Vliesstoffbranchen konzentrieren. Lenzing wird dieses Konzept fördern und ihre Partner ermutigen, Teil dieser Vision zu werden.

Mehr Informationen zur Renewable Carbon Initiative finden Sie unter www.renewable-carbon-initiative.com.

Quelle:

Lenzing Gruppe

Berliner Bildungscampus für Gesundheitsberufe von Charité und Vivantes © drapilux
In den Verwaltungsräumen schafft drapilux 109 08 eine freundliche Atmosphäre
02.09.2020

Berliner Bildungscampus für Gesundheitsberufe von Charité und Vivantes

  • Gemeinsam für die Zukunft der Pflege

Berlin - Die Pflege- und Gesundheitsberufe sind vom Fachkräftemangel besonders betroffen. Um dem entgegenzuwirken, haben sich die Charité – Universitätsmedizin Berlin und die Vivantes Netzwerk für Gesundheit GmbH in der Hauptstadt zusammengeschlossen und in diesem Jahr einen Ausbildungscampus für Gesundheitsberufe gegründet. Für bis zu 3.500 Auszubildende wollen sie in Zukunft an einem Campus Aus- und Weiterbildungen für die Gesundheitsberufe anbieten. Bis dahin wird an drei Standorten in Berlin-Neukölln, Mitte und Reinickendorf gelehrt und gelernt.

  • Gemeinsam für die Zukunft der Pflege

Berlin - Die Pflege- und Gesundheitsberufe sind vom Fachkräftemangel besonders betroffen. Um dem entgegenzuwirken, haben sich die Charité – Universitätsmedizin Berlin und die Vivantes Netzwerk für Gesundheit GmbH in der Hauptstadt zusammengeschlossen und in diesem Jahr einen Ausbildungscampus für Gesundheitsberufe gegründet. Für bis zu 3.500 Auszubildende wollen sie in Zukunft an einem Campus Aus- und Weiterbildungen für die Gesundheitsberufe anbieten. Bis dahin wird an drei Standorten in Berlin-Neukölln, Mitte und Reinickendorf gelehrt und gelernt.

Anfang 2020 ist mit dem Berliner Bildungscampus für Gesundheitsberufe (BBG) der größte Ausbildungscampus für Pflegeberufe in Deutschland eröffnet worden. Unter dem Motto „nah an der Praxis, nah am Menschen“ erlernen bereits jetzt 2.100 Auszubildende Pflege- und Gesundheitsberufe an drei verschiedenen Standorten in Berlin. In den nächsten Jahren werden die beiden Träger Vivantes und die Charité die Zahl der Ausbildungsplätze schrittweise auf 3.500 erhöhen. Neben den neun Ausbildungsberufen besteht am BBG auch die Möglichkeit, sich weiterzubilden und zu qualifizieren. Da Lehre und Forschung im Gesundheitswesen in den letzten Jahren immer näher aneinandergerückt sind, bietet der Campus in Kooperation mit drei Fachhochschulen außerdem Duale Studiengänge an. „So schaffen wir neue Dimensionen des Austausches, verbinden verschiedene Fachbereiche und Akteure des Gesundheitswesens und legen den Grundstein für ganzheitliche Pflegeansätze“, sagt Judith Sefzik, Marketingreferentin des BBG.

Für die zukunftsweisende Ausbildung mussten neue Räumlichkeiten her. In Reinickendorf wurde deswegen ein ehemaliges Bürogebäude angemietet und umgestaltet. „Die Herausforderung war, dass die bestehende Raumaufteilung nicht für den Schulbetrieb geeignet war“, so Ralf Ruske, Inhaber von r2_innenarchitektur und design und verantwortlich für den Umbau. „Entsprechend haben wir alle Wände bis auf die tragenden entfernt und die Stockwerke neu strukturiert.“ Die Restrukturierung erfolgte in Rekordzeit. Nach nur vier Monaten wurde im September 2019 der erste Bauabschnitt übergegeben, der zweite folgte nach einem weiteren knappen halben Jahr im März 2020. In den neuen lichtdurchfluteten, modern ausgestatteten Räumen des Campus Nord lernen nun die Auszubildenden der Pflegeschule 1, Pflegeschule 2 und Pflegehilfeschule. In jedem Klassenzimmer befindet sich ein Smartboard, das interaktiven Unterricht ermöglicht, dessen Ergebnisse allen Lernenden zur Verfügung gestellt werden können. Unterstützt und betreut werden die Auszubildenden von Lehrenden und Verwaltungsangestellten, die sich in hellen, freundlichen Räumen um alle Belange von der Anmeldung über die Erstellung von Unterrichtskonzepten bis zur Zeugniskonferenz kümmern.

Große Fenster sowie sandbeige Böden und Möbel in Weiß und aus hellem Holz verleihen allen Räumen eine gewisse Leichtigkeit und Großzügigkeit. Zur besseren Orientierung im Gebäudekomplex wurde ein gebäudeübergreifendes Farbkonzept für die Unterrichtsräume und die Verwaltung entwickelt. Dieses spiegelt sich an Wänden sowie in den Vorhängen wider. Für letztere fiel die Wahl auf Stoffe des Emsdettener Textilherstellers drapilux. „Wir haben Stoffe gesucht, die praktisch und strapazierfähig sind. Die drapilux-Stoffe passen sich hervorragend in das Gesamtkonzept der Innenausstattung ein und erfüllen die technischen Anforderungen. Sie sind flammhemmend, pflegeleicht und knitterarm“, erläutert Torsten Jacques, Raumausstatter und Geschäftsführer der zoom GmbH.

Insgesamt kamen 1,4 Kilometer des Faux-Uni 109 zum Einsatz. Passend zur Akzentfarbe der Stirnwand wurde in den Unterrichtsräumen ein beruhigendes Blau gewählt. In den Büros und Konferenzräumen der Verwaltung hängt ein helles, trendiges Grau vor den Fenstern. An sonnigen Tagen spendet der semi-transparente Stoff Schutz vor der Sonne, während die Räume weiterhin hell bleiben. Ausgestattet mit der intelligenten Zusatzfunktion drapilux air sorgen die Textilien zudem für eine gute Raumluft. Metallsalze, die in die Stoffe eingearbeitet sind, brechen Geruchsmoleküle auf und verwandeln sie in unbedenkliches Kohlenstoffdioxid und Wasser. Auf diese Weise werden schlechte Gerüche permanent abgebaut. „Wir sind sehr zufrieden mit den neuen Räumlichkeiten“, so Judith Sefzik. „Die helle, freundliche Atmosphäre schafft eine wunderbare Lernumgebung.“

Quelle:

schönknecht : kommunikation
gesellschaft für public relations und marketing mbh

Muster aus der Entwicklung des nanoporösen Hochtemperatur-Wärmedämmstoffs Muster aus der Entwicklung des nanoporösen Hochtemperatur-Wärmedämmstoffs (© ZAE Bayern).
12.08.2020

Konsortium entwickelt neue Generation der Wärmedämmung für Hochtemperaturöfen

In dem vom Bundeswirtschaftsministerium (BMWi) geförderten Verbundprojekt „AeroFurnace“ ist es dem Konsortium, bestehend aus dem Bayerischen Zentrum für Angewandte Energieforschung e.V. (ZAE Bayern) als Verbundkoordinator, dem Ofenbauer FCT Systeme und der SGL Carbon, gelungen, die Wärmedämmeigenschaften eines neuen Verbundwerkstoffs gegenüber kommerziell verfügbaren filzbasierten Kohlenstoff-Werkstoffen um bis zu 120 Prozent zu verbessern. Damit konnten die Projektpartner in eine neue Qualitätsstufe der Wärmedämmung bei industriellen Hochtemperaturanwendungen vorstoßen und den Weg für energieeffizientere Wärmedämmung ebnen.

Dr. Gudrun Reichenauer, Koordinatorin des Verbundprojekts und Leiterin der Arbeitsgruppe Nanomaterialien am ZAE Bayern: „In diesem Projekt ist es uns durch intensive Zusammenarbeit gelungen, neueste Erkenntnisse aus der Welt der Nanomaterialien für den Markt zugänglich zu machen und damit neue Maßstäbe im Bereich der Wärmedämmmaterialien zu setzen.“

In dem vom Bundeswirtschaftsministerium (BMWi) geförderten Verbundprojekt „AeroFurnace“ ist es dem Konsortium, bestehend aus dem Bayerischen Zentrum für Angewandte Energieforschung e.V. (ZAE Bayern) als Verbundkoordinator, dem Ofenbauer FCT Systeme und der SGL Carbon, gelungen, die Wärmedämmeigenschaften eines neuen Verbundwerkstoffs gegenüber kommerziell verfügbaren filzbasierten Kohlenstoff-Werkstoffen um bis zu 120 Prozent zu verbessern. Damit konnten die Projektpartner in eine neue Qualitätsstufe der Wärmedämmung bei industriellen Hochtemperaturanwendungen vorstoßen und den Weg für energieeffizientere Wärmedämmung ebnen.

Dr. Gudrun Reichenauer, Koordinatorin des Verbundprojekts und Leiterin der Arbeitsgruppe Nanomaterialien am ZAE Bayern: „In diesem Projekt ist es uns durch intensive Zusammenarbeit gelungen, neueste Erkenntnisse aus der Welt der Nanomaterialien für den Markt zugänglich zu machen und damit neue Maßstäbe im Bereich der Wärmedämmmaterialien zu setzen.“

Dr. Thomas Kirschbaum, Leiter des Projekts bei der SGL Carbon: „In Ofensimulationen beim Partner FCT konnten wir bereits nachweisen, was das neue Material kann: Je nach Temperaturprogramm können mit dem neuen Wärmedämmwerkstoff bis zu 40 Prozent der benötigten Prozessenergie eingespart werden. Das Potential des neuen Werkstoffs ist groß.“ Diese Vorhersage wird im Rahmen des noch laufenden BMWi-Projekts im zweiten Halbjahr 2020 in einem Demonstratorbauteil unter realen Bedingungen überprüft werden.

Dr. Jürgen Hennicke, Leiter des Projekts und der F&E-Abteilung bei FCT Systeme: „Als führender Hersteller von industriellen Vakuum- oder Schutzgas-Hochtemperaturöfen können wir mit der neuen Generation von Isoliermaterialien Öfen realisieren, die ein günstigeres Verhältnis von Nutzraum zu den Außenmaßen haben, und damit dem Kunden eine bessere Kosteneffizienz und Produktivität bieten.“

Aktuell konnte anhand von Labormustern in Form von Platten bereits gezeigt werden, dass sich die Herstellung des neuen Werkstoffs über technisch einfache Prozesse abbilden lässt und prinzipiell gut skalierbar ist. Bis zum serienreifen Produkt ist allerdings noch ein Stück Weg zu gehen.

Der drittgrößte Anteil der Endenergie in Deutschland wird für die Erzeugung von Wärme in industriellen Prozessen verbraucht (22,6 Prozent). In vielen Branchen, z. B. in der Stahl- und Keramikindustrie, laufen energieintensive Hochtemperaturprozesse oberhalb von 1000°C ab – diese allein benötigen knapp 50 Prozent der industriellen Prozesswärme. Geeignete Wärmedämmmaterialien können den Energiebedarf bei gleichbleibendem Nutzvolumen deutlich senken.

Quelle:

SGL CARBON SE

USCTP Infografik (c) U.S. Cotton Trust Protocol
15.07.2020

U.S. Cotton Trust Protocol: Neue Initiative macht Nachhaltigkeit von Baumwolle messbar

Am 15. Juli 2020 ist das U.S. Cotton Trust Protocol in Kraft getreten. Der neue Dokumentationsprozess unterstützt die Nachverfolgbarkeit und Auswertung von Daten im Herstellprozess von U.S.-amerikanischer Baumwolle. Textilhersteller und Handel können dem U.S. Cotton Trust Protocol beitreten, einem neuen System für verantwortungsvoll angebaute Baumwolle, das in Übereinstimmung mit den UN-Nachhaltigkeitszielen Jahresvergleichsdaten in sechs Nachhaltigkeitskategorien liefert. Die neuartige Erhebung der Jahresvergleichsdaten ermöglicht Textilproduzenten und Handel, ihren Fortschritt in der Umsetzung der eigenen Nachhaltigkeitsverpflichtungen besser messbar zu machen.

Das U.S. Cotton Trust Protocol wurde speziell für das besondere Umfeld der Baumwoll-Massenproduktion in den Vereinigten Staaten konzipiert. Dabei soll es andere Nachhaltigkeits-Initiativen nicht ersetzen, sondern ergänzen.

Am 15. Juli 2020 ist das U.S. Cotton Trust Protocol in Kraft getreten. Der neue Dokumentationsprozess unterstützt die Nachverfolgbarkeit und Auswertung von Daten im Herstellprozess von U.S.-amerikanischer Baumwolle. Textilhersteller und Handel können dem U.S. Cotton Trust Protocol beitreten, einem neuen System für verantwortungsvoll angebaute Baumwolle, das in Übereinstimmung mit den UN-Nachhaltigkeitszielen Jahresvergleichsdaten in sechs Nachhaltigkeitskategorien liefert. Die neuartige Erhebung der Jahresvergleichsdaten ermöglicht Textilproduzenten und Handel, ihren Fortschritt in der Umsetzung der eigenen Nachhaltigkeitsverpflichtungen besser messbar zu machen.

Das U.S. Cotton Trust Protocol wurde speziell für das besondere Umfeld der Baumwoll-Massenproduktion in den Vereinigten Staaten konzipiert. Dabei soll es andere Nachhaltigkeits-Initiativen nicht ersetzen, sondern ergänzen.

Die neue Baumwoll-Dokumentation fördert und verifiziert die Fortschritte im Bereich Nachhaltigkeit durch sorgfältige Datenerfassung über die komplette Lieferkette – von den Anbaudaten bis in den Handel – und organisiert deren Validierung durch unabhängige Sachverständige. U.S. Cotton Trust Protocol setzt dabei auf die Zusammenarbeit mit den Organisationen „Field to Market, The Alliance for Sustainable Agriculture“ und „Control Union Certifications North America“. Textilindustrie und Handel erhalten auf diese Weise nachverfolgbare Herkunftsdaten für die Baumwollprodukte ihrer Lieferketten. Mitglieder der Initiative haben Zugriff auf die aggregierten Jahresvergleichsdaten zu Wassereinsatz, Treibhausgas-Emissionen, Energieverbrauch, Kohlenstoffgehalt der Böden und Landnutzungseffizienz.

Im vergangenen Monat wurde U.S. Cotton Trust Protocol durch die gemeinnützige Organisation „Textile Exchange“ in die Liste der 36 bevorzugten Fasern und Materialien aufgenommen, an der mehr als 170 teilnehmende Textilproduzenten und Händler im Rahmen des Material Change Index-Programms ihre Einkaufsstrategien ausrichten.

Quelle:

Hill+Knowlton Strategies GmbH

Wilhelm-Lorch-Stiftung zeichnet ITA-Absolventin und ein Projekt am ITA aus (c) Wilhelm-Lorch-Stiftung
Wilhelm-Lorch-Stiftung-Förderpreisträgerbild 2020 (Ricarda Wissel: Reihe 1, erste von rechts, Simon Kammler, Reihe 4, erster von rechts), Wilhelm-Lorch-Stiftung-Förderpreisträgerbild 2020 (Ricarda Wissel: Reihe 1, erste von rechts, Simon Kammler, Reihe 4, erster von rechts)
25.06.2020

Wilhelm-Lorch-Stiftung zeichnet ITA-Absolventin und ein Projekt am ITA aus

Kohlenstoffdioxid-basierte Faser für den Klimaschutz und interdisziplinäre Ausbildung mit neuartigem Smart Textiles-Prüfstand

Die Wilhelm-Lorch-Stiftung mit Sitz in Frankfurt am Main zeichnet am 25. Juni 2020 ein Projekt des Instituts für Textiltechnik der RWTH Aachen University, kurz ITA, aus und vergibt einen Förderpreis an die ITA-Absolventin Ricarda Wissel. Sie wird für ihre herausragende Bachelor-Arbeit „Anwendung von elastischen Garnen aus thermoplastischem Polyurethan auf Kohlenstoffdioxid-Basis in Strümpfen“ mit einem Förderpreisgeld für eine fachspezifische Weiterbildung prämiert. Das ITA erhält den Projektförderpreis für das Projekt „Smart Textiles – eine interdisziplinäre Ausbildung zur Förderung wissenschaftlicher Nachwuchskräfte in Zukunftstechnologien“, das der ITA-Promovend Simon Kammler bei der Wilhelm-Lorch-Stiftung eingereicht hatte.
 
Kohlenstoffdioxid-basierte Faser aus Industrieabfällen trägt zum Klimaschutz bei

Kohlenstoffdioxid-basierte Faser für den Klimaschutz und interdisziplinäre Ausbildung mit neuartigem Smart Textiles-Prüfstand

Die Wilhelm-Lorch-Stiftung mit Sitz in Frankfurt am Main zeichnet am 25. Juni 2020 ein Projekt des Instituts für Textiltechnik der RWTH Aachen University, kurz ITA, aus und vergibt einen Förderpreis an die ITA-Absolventin Ricarda Wissel. Sie wird für ihre herausragende Bachelor-Arbeit „Anwendung von elastischen Garnen aus thermoplastischem Polyurethan auf Kohlenstoffdioxid-Basis in Strümpfen“ mit einem Förderpreisgeld für eine fachspezifische Weiterbildung prämiert. Das ITA erhält den Projektförderpreis für das Projekt „Smart Textiles – eine interdisziplinäre Ausbildung zur Förderung wissenschaftlicher Nachwuchskräfte in Zukunftstechnologien“, das der ITA-Promovend Simon Kammler bei der Wilhelm-Lorch-Stiftung eingereicht hatte.
 
Kohlenstoffdioxid-basierte Faser aus Industrieabfällen trägt zum Klimaschutz bei

Der ITA-Wissenschaftler Dr.-Ing. Pavan Manvi hat am ITA einen Schmelzspinnprozess zur Herstellung eines Garns aus kohlenstoffdioxid-basiertem thermoplastischem Polyurethan entwickelt. Die ITA-Studentin Ricarda Wissel setzte in ihrer Bachelorarbeit erstmals das am ITA ausgesponnene Garn erfolgreich in einem textilen Endprodukt ein. In Zusammenarbeit mit der Firma FALKE und Dr. Manvi, die Frau Wissels Arbeit betreut haben, wurde mithilfe des Garns eine Socke hergestellt (s. Abbildung „FALKE-Socke mit Kohlenstoffdioxid-Filamenten“).

Durch die Wiederverwendung von Kohlenstoffdioxid aus Industrieabfällen als Rohstoff für Textil- und Bekleidungsprodukte wird die Kohlenstoffdioxid-Bilanz verbessert und trägt so direkt zum Klimaschutz bei. Der Förderpreis der Wilhelm-Lorch-Stiftung ist mit 6.000 € für die fachspezifische Weiterbildung von Frau Wissel dotiert.

Interdisziplinäre Ausbildung mit Entwicklung eines neuartigen Messstandes für zukunftsweisendes Forschungsfeld „Smart Textiles“

Die Entwicklung von Textilien mit digitalen Zusatzfunktionen, sogenannten „Smart Textiles“, gelten als zukunftsweisendes Forschungsfeld. ITA-Doktorand Simon Kammler hat in seine Projekteinreichung ein Konzept für eine Vorlesungsreihe zu Smart Textiles am ITA vorgestellt und entwickelt einen neuartigen Messstand zur Messung der Kapazität und Leitfähigkeit von Fasern. Das Projekt wird von der Wilhelm-Lorch-Stiftung mit einem Preisgeld in Höhe von 10.000 Euro gefördert.

Smart Textiles ermöglichen die Interaktion des Textils mit der Umgebung und dem menschlichen Anwender. Daher sind sie heute in vielen Bereichen des Alltags wie Sport, Gesundheit, Wohnen, Leben und Mobilität gefragt und bieten völlig neue praktische Lösungsansätze. In Kombination mit digitalen vernetzten Diensten versprechen Smart Textiles Unterstützung und Innovation in fast allen Situationen des täglichen Lebens.

Mit der Konzeption einer neuen Vorlesungsreihe unterstützt Simon Kammler das ITA in seinem Ziel, den wissenschaftlichen Nachwuchs bestmöglich auszubilden. Im Vordergrund steht dabei das Vermitteln von weitreichenden interdisziplinären Kompetenzen, um Herausforderungen aktueller Forschungsfelder meistern zu können.

Hintergrund:

Die Wilhelm-Lorch-Stiftung fördert besonders begabte Nachwuchskräfte aus allen Bereichen der Textil- und Modebranche. Ihr Zweck ist die Förderung der fachspezifischen Aus- und Weiterbildung sowie die Förderung von Projekten an Hochschulen, Akademien und Berufsschulen, die sich durch nachhaltige Vermittlung innovativer Lerninhalte in Wissenschaft und Forschung auszeichnen. Insgesamt wurden in 2020 dreizehn Förderpreise vergeben. Aufgrund der Corona-Krise musste das Forum der TextilWirtschaft, in dessen Rahmen die Förderpreisverleihung sonst stattfindet, in 2020 leider ausfallen.

(c) Arc’teryx
21.04.2020

Arc’teryx stellt erstmals Fahrplan für Umweltziele vor

  • 65 % weniger Emissionen geplant

Die Outdoor-Marke setzt sich zwei wissenschaftlich entwickelte Ziele, um bis 2030 Treibhausgase deutlich zu reduzieren.

2020, zum 50. Jahrestag des Earth Day, verpflichtet sich Arc’teryx Equipment zu sofortigen, wissenschaftlich fundierten Maßnahmen gegen den Klimawandel. Als offizieller Sponsor der Earth Day 50 Initiative beschloss das globale Designunternehmen, seinen Teil dazu beizutragen, indem es wissenschaftsbasierte Ziele zur Reduzierung der Treibhausgasemissionen festlegt.

Bis 2030 will Arc’teryx zwei Ziele erreichen, die vom Science Based Targets Institute überprüft wurden:

  • 65 % weniger Emissionen geplant

Die Outdoor-Marke setzt sich zwei wissenschaftlich entwickelte Ziele, um bis 2030 Treibhausgase deutlich zu reduzieren.

2020, zum 50. Jahrestag des Earth Day, verpflichtet sich Arc’teryx Equipment zu sofortigen, wissenschaftlich fundierten Maßnahmen gegen den Klimawandel. Als offizieller Sponsor der Earth Day 50 Initiative beschloss das globale Designunternehmen, seinen Teil dazu beizutragen, indem es wissenschaftsbasierte Ziele zur Reduzierung der Treibhausgasemissionen festlegt.

Bis 2030 will Arc’teryx zwei Ziele erreichen, die vom Science Based Targets Institute überprüft wurden:

  • Für den Arc’teryx-Hauptsitz, die kanadische Produktionsstätte und die weltweit 164 Einzelhandelsgeschäfte: Reduzierung der absoluten Scope 1 & 2 THG-Emissionen* um 65% bis 2030.
  • Für Arc’teryx-Materialien, -Produkte, -Fabriken, -Werke, -Versand und -Distributionszentren: Reduzierung der Scope 3-THG-Emissionen* um 65% pro Einheit der Wertschöpfung bis 2030

Um diese wissenschaftsbasierten Ziele zu erreichen und die Emissionen zu reduzieren, wird die Marke einen strategischen, vierstufigen Ansatz verfolgen: Materialien und Produktdesign mit geringerer Umweltbelastung, Projekte für erneuerbare Energien, Energieeffizienz und Geschäftsmodelle mit einem geschlossenen Produktkreislauf.

“Gerade sehen wir mehr denn je die Bedeutung und den Wert der Gemeinschaft und hoffen, dass wir andere dazu inspirieren können, sich uns in dieser dringenden Angelegenheit anzuschließen”, sagt Katie Wilson, Senior Managerin für soziale und ökologische Nachhaltigkeit bei Arc’teryx. “Die ehrgeizigen Ziele werden sicherstellen, dass unser Unternehmen die notwendigen Veränderungen zur Bekämpfung des Klimawandels und hin zu einer kohlenstoffarmen Wirtschaft unternimmt.“

Borealis produziert zertifiziertes, erneuerbares Polypropylen in eigenen Anlagen in Belgien (c) Borealis
Borealis produziert zertifiziertes, erneuerbares Polypropylen in eigenen Anlagen in Belgien
10.03.2020

Borealis produziert zertifiziertes, erneuerbares Polypropylen in eigenen Anlagen in Belgien

  • EverMinds™ in der Praxis: ein weiterer Meilenstein auf Borealis‘ Weg zur Förderung der Kreislaufwirtschaft
  • Produktionsstandorte in Kallo und Beringen erhalten ISCC-Plus-Zertifizierung
  • Zusammenarbeit mit vor- und nachgelagerten Partnern entlang der Wertschöpfungskette, wie beispielsweise Neste und Henkel

Borealis hat mit der Produktion von auf erneuerbaren Rohstoffen basierendem Polypropylen (PP), in Kallo und Beringen in Belgien, begonnen. Dies ist das erste Mal, dass Borealis auf fossilen Brennstoffen basierende Rohstoffe in der kommerziellen PP-Produktion im Industriemaßstab durch eine Alternative ersetzt. Die belgischen Anlagen wurden vor kurzem von der International Sustainability and Carbon Certification (ISCC) Organisation mit dem ISCC-Plus-Zertifikat für ihr erneuerbares PP ausgezeichnet. Borealis bringt damit sein Engagement für die Kreislaufwirtschaft auf die nächste Stufe und fördert seine Ziele im Rahmen von EverMinds™. Dieser bahnbrechende Schritt in Richtung einer nachhaltigeren Produktion erfolgt in enger Kooperation mit vor- und nachgelagerten Partnern entlang der Wertschöpfungskette, wie beispielsweise Neste und Henkel.

  • EverMinds™ in der Praxis: ein weiterer Meilenstein auf Borealis‘ Weg zur Förderung der Kreislaufwirtschaft
  • Produktionsstandorte in Kallo und Beringen erhalten ISCC-Plus-Zertifizierung
  • Zusammenarbeit mit vor- und nachgelagerten Partnern entlang der Wertschöpfungskette, wie beispielsweise Neste und Henkel

Borealis hat mit der Produktion von auf erneuerbaren Rohstoffen basierendem Polypropylen (PP), in Kallo und Beringen in Belgien, begonnen. Dies ist das erste Mal, dass Borealis auf fossilen Brennstoffen basierende Rohstoffe in der kommerziellen PP-Produktion im Industriemaßstab durch eine Alternative ersetzt. Die belgischen Anlagen wurden vor kurzem von der International Sustainability and Carbon Certification (ISCC) Organisation mit dem ISCC-Plus-Zertifikat für ihr erneuerbares PP ausgezeichnet. Borealis bringt damit sein Engagement für die Kreislaufwirtschaft auf die nächste Stufe und fördert seine Ziele im Rahmen von EverMinds™. Dieser bahnbrechende Schritt in Richtung einer nachhaltigeren Produktion erfolgt in enger Kooperation mit vor- und nachgelagerten Partnern entlang der Wertschöpfungskette, wie beispielsweise Neste und Henkel. Das Unterfangen steht zudem im Einklang mit Borealis‘ Ziel, sicherzustellen, dass bis zum Jahr 2025 100 % seiner Verbrauchsgüter recycelbar oder wiederverwendbar sind oder auf Basis von Rohstoffen aus erneuerbaren Quellen produziert werden.

Kooperation entlang der Wertschöpfungskette im Sinne einer stärkeren Kreislauforientierung
Borealis und sein in der Wertschöpfungskette vorgelagerter Partner Neste bringen die Branche dank der Produktion von erneuerbarem PP, die im Dezember 2019 angelaufen ist, näher an eine Kunststoff-Kreislaufwirtschaft heran. Nach der Herstellung von Bio-Propan unter Verwendung seiner proprietären NEXBTL™-Technologie verkauft Neste sein Bio-Propan an Borealis’ Propan-Dehydrierungsanlage in Kallo. Dort wird es zu erneuerbarem Propylen, und in der Folge in den Anlagen in Kallo und Beringen zu erneuerbarem PP verarbeitet.

Die vor kurzem abgeschlossenen Audits durch eine unabhängige externe Organisation, führten zur ISCC-Plus-Zertifizierung des erneuerbaren PP, das sowohl in Kallo als auch in Beringen produziert wird. Diese Zertifizierung erfasst und analysiert die gesamte Wertschöpfungskette. Sie bestätigt, dass alle eingesetzten erneuerbaren Rohstoffe erneuerbar und nachhaltig produziert wurden und auch als solche zertifiziert sind, wobei unter anderem die Nachverfolgbarkeit bis zum Ursprungsort berücksichtigt wird.

Zu den nachgelagerten Partnern zählen eine Reihe von Branchen, wie beispielsweise der Konsumverpackungsbereich, der Automobilsektor, der Pharmabereich, sowie die Haushaltsgeräteindustrie, die ihre Endprodukte dank des erneuerbaren Propylens und Polypropylens, das in Borealis‘ Anlagen in Belgien produziert wird, mit einem geringeren Kohlenstofffußabdruck vermarkten können. Angesichts der steigenden Nachfrage arbeitet Borealis mit Partnern entlang der gesamten Wertschöpfungskette daran, die Verfügbarkeit der Rohstoffe weiter zu verbessern.

Henkel, ein globaler Marktführer in der Klebstoffindustrie, der für seine starken Marken in den Bereichen Wasch- und Reinigungsmittel sowie im Kosmetiksektor bekannt ist, hat die Werte der Kreislaufwirtschaft ebenfalls bereits übernommen. Indem das Unternehmen den Einsatz nachhaltiger Materialien zu einer zentralen Säule seiner Verpackungsstrategie gemacht hat, bekennt sich Henkel zur Zusammenarbeit mit seinen Partnern entlang der Wertschöpfungskette, um nachhaltige Verpackungslösungen zu forcieren. Die Nutzung von erneuerbarem PP in der Verpackung einer wichtigen Henkel-Marke, die im Laufe des Jahres umgesetzt wird, stellt einen weiteren Schritt im Rahmen seiner Bestrebungen dar, die Verwendung von Kunststoffneuware, die auf fossilen Brennstoffen basiert, bis 2025 um fünfzig Prozent zu senken.

„Die Herstellung von erneuerbarem PP auf Grundlage regenerierbarer Rohstoffe der zweiten Generation ist ein weiterer konkreter Schritt in Richtung einer kohlenstoffärmeren Zukunft“, erklärt Lucrèce Foufopoulos, Borealis Vorstandsmitglied für Polyolefins, Innovation and Circular Economy Solutions. „Die enge Zusammenarbeit mit Partnern, wie Neste und Henkel, die unseren EverMinds™-Mindset teilen, ist der Schlüssel, um gemeinsam eine bessere Zukunft zu gestalten. Kreislauforientiert zu denken bedeutet, Wachstumschancen zu nutzen, die den Umstieg auf eine Kreislaufwirtschaft beschleunigen.“

„Es ist großartig, zum ersten Mal in der Geschichte eine Propan-Dehydrierungsanlage zu sehen, die erneuerbares Propan als Ersatz für fossile Rohstoffe verwendet und es Borealis ermöglicht, für nachhaltigkeitsorientierte Marken wie Henkel Massenbilanz-zertifiziertes erneuerbares Polypropylen herzustellen. Dies ist ein außergewöhnliches Beispiel für eine Zusammenarbeit entlang der Wertschöpfungskette, die sich positiv auf die Nachhaltigkeit im Polymersektor auswirkt “, sagt Mercedes Alonso, Neste Vorstandsmitglied für Renewable Polymers and Chemicals.

Weitere Informationen:
Borealis
Quelle:

Borealis

(c) Sabine Schmidt, das-design-plus.de
21.02.2019

Technische Textilien: In Aachen entwickeln Bauwirtschaft und Wissenschaft gemeinsam Innovationen

Aus Luft- und Raumfahrt, Automobilbau oder Windkraft sind Textilfasern bereits nicht mehr wegzudenken. Technische Textilien, zum Beispiel aus Kohlenstofffasern, sowie aus ihnen produzierte Halbzeuge werden auch das Bauwesen nachhaltig verändern. Die innovativen Werkstoffe und Bauteile bergen enormes Potenzial für die Branche. Dies zu heben, ist ein Ziel des Vereins AACHEN BUILDING EXPERTS. Hierfür bringt er alle relevanten Akteure zusammen.

Aus Luft- und Raumfahrt, Automobilbau oder Windkraft sind Textilfasern bereits nicht mehr wegzudenken. Technische Textilien, zum Beispiel aus Kohlenstofffasern, sowie aus ihnen produzierte Halbzeuge werden auch das Bauwesen nachhaltig verändern. Die innovativen Werkstoffe und Bauteile bergen enormes Potenzial für die Branche. Dies zu heben, ist ein Ziel des Vereins AACHEN BUILDING EXPERTS. Hierfür bringt er alle relevanten Akteure zusammen.

Ressourceneffizientes und nachhaltiges Bauen mit technischen Textilien
Textilbeton oder Gelege aus textilen Werkstoffen weisen entscheidende Vorteile gegenüber klassischen Baustoffen wie Stahl, Glas und Beton auf. Die textile Bewehrung im Betonbau ermöglichst aufgrund ihrer Korrosionsbeständigkeit vergleichsweise schlanke Betonbauteile mit geringem Eigengewicht, die dennoch sehr tragfähig und beständig sind. Die enorme Gewichtseinsparung senkt Transportkosten und ermöglicht es, höher zu bauen. Dies spart Grundfläche. Textilbeton benötigt darüber hinaus bis zu 80 Prozent weniger Beton. Daher schont der Baustoff Ressourcen, zum Beispiel den knapp werdenden Bausand. Besonders die starke Reduktion des Zementbedarfs ermöglicht 80 Prozent weniger Kohlendioxid-Emissionen. Die Zementherstellung der globalen Bauwirtschaft verursacht höhere CO2 -Emissionen als der weltweite Luftverkehr. Somit leistet Textilbeton einen wichtigen Beitrag zum ressourceneffizienten und nachhaltigen Bauen – der Zukunft der Bauwirtschaft.
Bei der Membranbauweise spielt die Leichtigkeit der Konstruktionen eine große Rolle. Hiermit lassen sich große Flächen überdachen. Gleichzeitig wird die textile Architektur höchsten ästhetischen Ansprüchen gerecht. Bekanntes Beispiel bildet das Gerry-Weber-Stadion mit seiner etwa 6.000 m2 umfassenden Dachkonstruktion.
Tragende Komponenten beim textilen Bauen sind textile Konstruktionen aus Hochleistungsfasern. Sie zeichnen sich durch extrem hohe Festigkeiten auch bei hohen Zugkräften aus - bei gleichzeitig geringem Gewicht. Meist werden die textilen Ausgangsmaterialien vor ihrer Verwendung zusätzlich beschichtet oder imprägniert. Diese Behandlungen ermöglichen spezifische Funktionalisierungen für den jeweiligen Zweck. Dies sorgt für eine große Anwendungsbreite. Teilweise sind textile Bauteile lichtdurchlässig, gleichzeitig schützen sie vor Wärme. Auch verbessern „Hightex“-Materialien akustische Eigenschaften von Räumen. Nicht zuletzt bieten textile Architekturen nahezu unbegrenzte Möglichkeiten der Form- und Farbgebung.

Aachener Innovationsnetzwerk fördert Wissenstransfer
„Die vielfältigen Möglichkeiten des Baustoffes Textil und das hohe Potenzial von technischen Fasern und Textilien sind in der Baubranche noch viel zu wenig bekannt“, so Goar T. Werner, Geschäftsführer des AACHEN BUILDING EXPERTS e. V. (ABE). Daher führt der ABE gezielt Experten aus Wissenschaft und Wirtschaft zusammen. Unterstützt wird er dabei unter anderem vom Institut für Textiltechnik und Lehrstuhl für Textilmaschinenbau (ITA) an der RWTH Aachen University. „Bauunternehmer und Architekten fragen sich, wo sie technische Textilien anwenden können und welche Vorteile diese Bauprodukte haben. Die Anbieter technischer Textilien wiederum überlegen: Wo können wir unsere innovativen Produkte unterbringen?“, weiß Prof. Dr.-Ing. Thomas Gries, Leiter des ITA. Zur Beantwortung eben dieser Fragen auf beiden Marktseiten und der Vernetzung dieser beiden „Welten“ will der ABE, das interdisziplinäre Kompetenznetzwerk für innovatives Bauen, beitragen. Dabei kooperiert der ABE ebenfalls eng mit den Instituten für Baustoffforschung (ibac) der RWTH Aachen University sowie dem TFI - Institut für Bodensysteme an der RWTH Aachen e.V. „Gemeinsam sorgen wir für den entsprechenden Wissenstransfer und bieten mit unserem `Innovationsnetzwerk Textiles Bauen´ ein Forum dafür, dass Innovationen eng am Bedarf der Bauwirtschaft entstehen“, erläutert Goar T. Werner.

Weitere Informationen:
Bauwirtschaft
Quelle:

AACHEN BUILDING EXPERTS e. V.

Induktiv beheiztes Bushing der neuartigen Glasfaserspinnanlage (c) ITA
Induktiv beheiztes Bushing der neuartigen Glasfaserspinnanlage,
21.02.2019

ITA zeigt auf der JEC World 2019 u.a. neue Glasfaserspinnanlage

Am Gemeinschaftsstand des Aachener Zentrums für integrativen Leichtbau (AZL) in Halle 5A Stand D17 demonstriert das Institut für Textiltechnik der RWTH Aachen University (ITA) vom 12.-14. März 2019 in Paris seine Kompetenzen in den Bereichen Glasfasern, Preforms und Carbon Composites.
Die Exponate stammen aus unterschiedlichen Anwendungsfeldern und adressieren die Branchen Automotive, Luft- und Raumfahrt und Maschinenbau.

Am Gemeinschaftsstand des Aachener Zentrums für integrativen Leichtbau (AZL) in Halle 5A Stand D17 demonstriert das Institut für Textiltechnik der RWTH Aachen University (ITA) vom 12.-14. März 2019 in Paris seine Kompetenzen in den Bereichen Glasfasern, Preforms und Carbon Composites.
Die Exponate stammen aus unterschiedlichen Anwendungsfeldern und adressieren die Branchen Automotive, Luft- und Raumfahrt und Maschinenbau.

  1. Innovative Glasfaserforschung am ITA
    Der modulare Aufbau der neu entwickelten, induktiv beheizten Glasfaserproduktionsanlage ermöglicht hohe Flexibilität in der Forschung und das Induktionssystem eine deutlich schnellere Bedienbarkeit. Erstmalig werden am Stand des ITA Glasfasern live auf der JEC World hergestellt. Zu den Neuheiten der Anlage gehört das induktiv beheizte Bushing. Es hat ein flexibles Design und besteht aus einer Platin-/Rhodium-Legierung (Pt/Rh20) zum Einsatz für Hochtemperaturgläser. Die Glasfaserproduktionsanlage wurde so konstruiert, dass sich neue Konzepte und Ideen schnell erproben lassen.
     
  2. DrapeCube – Umformung textiler Halbzeuge
    Der DrapeCube bietet eine kostengünstige Konstruktion zur Herstellung von Faservorformlingen aus textilen Halbzeugen. Er kommt zum Tragen bei der Fertigung von Preforms für Prototypen und in der Kleinserie und eignet sich für Unternehmen, die in der von faserverstärkten Kunststoffen (FVK) tätig sind.
    Bei der Produktion von FVK-Bauteilen wird im Preformingprozess ein Großteil der späteren Bauteilkosten definiert. In kleinen und mittelständischen Unternehmen wird dieser Prozessschritt oft noch manuell ausgeführt. Daraus resultieren hohe Qualitätsschwankungen und Bauteilpreise. Besonders bei hochbelasteten Strukturbauteilen führt die Qualitätsschwankung dazu, dass die Bauteile überdimensioniert sind. So wird das Leichtbaupotential von faserverstärkten Kunststoffen zu wenig genutzt.
    Eine Lösung bietet das aus der blechumformende Industrie adaptierte Stempelumformverfahren zur Formgebung von Verstärkungstextilien. Dabei wird das Textil zwischen zwei Formhälften (Patrize und Matrize) eingelegt und automatisiert umgeformt. Dieses Verfahren kommt aufgrund hoher Anlagen- und Werkzeugkosten fast ausschließlich in der Großserie zum Einsatz. Das ITA hat die Formgebungsstation DrapeCube entwickelt, die eine kostengünstige Alternative bietet und in der Lage ist, den aktuellen Stand der Technik für die Formgebung textiler Halbzeige vollständig abzubilden. Am Stand werden die Prozessschritte in einem Video demonstriert.
     
  3. Kohlenstoffaserverstärkter Kunststoff (CFK)-Preform
    Der CFK-Preform besteht aus Carbon-Multiaxial-Gelege, das durch expandiertes Polystyrol (EPS) umgeformt ist, um die Drapierqualität zu optimieren. Durch die schonende, textilgerechte Umformung mittels Schaumexpansion können Preforms in erhöhter Qualität hergestellt werden. Erstmalig wurde die Schaumexpansion genutzt, um Preforms so umzuformen, dass die Drapierqualität im Vergleich zur klassischen Stempelumformung verbessert wird.
    Die Vorteile des so umgeformten CFK-Preforms liegen in der Einsparung von Anlagenkosten, da das Investment viel geringer ist. Dazu wird der Verschnittanteil reduziert, weil eine endkonturnahe Fertigung ermöglicht wird. Darüber hinaus wird der Ausschuß verringert, da weniger Fehler im Textil entstehen.
    Zielgruppe sind die Hersteller von faserverstärkten Bauteilen, insbesondere für die Klein- und Mittelserie, bei denen die klassische Stempelumformung nicht wirtschaftlich ist.
     
  4. Gestickter Preform mit integriertem Metallinsert
    Die 12k Carbonfaserrovings werden durch das Spezial-Stickverfahren Tailored Fibre Placement (TFP) zu einem Preform abgelegt. Beim weiteren Lagenaufbau wird der Insert nicht nur unter den Rovinglagen integriert, sondern durch zusätzliches Umschlaufen fixiert. Der hochintegrative Preformingansatz bietet die Möglichkeit zur Reduktion von Gewicht und Prozessschritten sowie zur Steigerung der mechanischen Performance.
    Bisher wurden Inserts geklebt oder es waren Bohrungen im Bauteil notwendig. Aufgeklebte Inserts sind durch die Klebefläche limitiert. Das Einkleben von Inserts in Bohrungen zieht hohe Bohrerabrasion und damit hohen Werkzeugverschleiß nach sich.
    Die Vorteile des gestickten Preforms mit integriertem Metallinsert bestehen in der Reduktion von Verschnitt durch TFP-Preforming und der Steigerung der spezifischen Ausreißkraft. Dazu besteht die Möglichkeit, die Herstellung integrativer Preforms zu automatisieren. Damit ist der Preform mit integriertem Metallinsert interessant für die Zielgruppe Automotive und Luft- und Raumfahrt.
Weitere Informationen:
RWTH Aachen, ITA, Textiltechnik
Quelle:

Institut für Textiltechnik of RWTH Aachen University

Outdoor-Kleidung: bei Kauf auf fluorfreie Beschichtungen achten © Peter Bernhaupt/piclease
06.02.2019

Outdoor-Kleidung: bei Kauf auf fluorfreie Beschichtungen achten

  • Fluorkohlenstoffverbindungen gefährden Umwelt und Gesundheit – Forderung nach transparenten Lieferketten

Gut gerüstet gegen Regen, Wind und Schnee? Für Aktivitäten an der frischen Luft wird zunehmend Funktionskleidung gekauft. Atmungsaktiv, wasserdicht, öl- und schmutzabweisend soll sie sein: Eigenschaften, für die Chemikalien eingesetzt werden. Doch wie gefährlich das Herstellen der Beschichtungen für Gesundheit und Umwelt ist, war bisher nicht ausreichend erforscht. In einem von der Deutschen Bundesstiftung Umwelt (DBU) fachlich und finanziell mit knapp 290.000 Euro geförderten Projekt wurden ausgewählte fluorkohlenstoffhaltige Chemikalien sowie fluorfreie Alternativen ökotoxikologisch untersucht. Fazit: „Auf ölabweisende Beschichtungen sollte im alltäglichen Gebrauch besser verzichtet werden“, fasst Alexander Bonde, DBU-Generalsekretär, zusammen. Projektergebnisse und Abschlussveranstaltung mit Vertretern von Hochschulen, Umweltbundesamt und Outdoorunternehmen ergaben, dass der Nutzen das hohe Gesundheits- und Umweltrisiko bei der Herstellung nicht rechtfertigen würde.

  • Fluorkohlenstoffverbindungen gefährden Umwelt und Gesundheit – Forderung nach transparenten Lieferketten

Gut gerüstet gegen Regen, Wind und Schnee? Für Aktivitäten an der frischen Luft wird zunehmend Funktionskleidung gekauft. Atmungsaktiv, wasserdicht, öl- und schmutzabweisend soll sie sein: Eigenschaften, für die Chemikalien eingesetzt werden. Doch wie gefährlich das Herstellen der Beschichtungen für Gesundheit und Umwelt ist, war bisher nicht ausreichend erforscht. In einem von der Deutschen Bundesstiftung Umwelt (DBU) fachlich und finanziell mit knapp 290.000 Euro geförderten Projekt wurden ausgewählte fluorkohlenstoffhaltige Chemikalien sowie fluorfreie Alternativen ökotoxikologisch untersucht. Fazit: „Auf ölabweisende Beschichtungen sollte im alltäglichen Gebrauch besser verzichtet werden“, fasst Alexander Bonde, DBU-Generalsekretär, zusammen. Projektergebnisse und Abschlussveranstaltung mit Vertretern von Hochschulen, Umweltbundesamt und Outdoorunternehmen ergaben, dass der Nutzen das hohe Gesundheits- und Umweltrisiko bei der Herstellung nicht rechtfertigen würde. Verbraucher sollten auf hochwertige im Markt erhältliche Alternativen achten.

Für risikoarme Herstellung hoher Standard erforderlich
„Das Herstellen des Materials ist häufig eine erhebliche Gefahr für Mensch und Umwelt, wenn keine hohen Standards in der Arbeitssicherheit, gut ausgerüstete Produktionsstätten, kein geschultes Personal und kein gutes Abfall- und Abwassermanagement damit einhergehen“, sagt Projektleiter Prof. Dr. Stefan Stolte von der Technischen Universität Dresden, Institut für Wasserchemie. Bei vielen Produktionsstätten beispielsweise in Asien sei dies derzeit jedoch der Fall. „Im Labor haben wir unter kontrollierten Bedingungen nachgewiesen, dass krebserregende, giftige oder gesundheitsschädliche Verbindungen zur Herstellung der Textilien verwendet werden“, so Stolte. Ohne kontrollierte Umweltstandards bei der Produktion würden die Chemikalien über das Abwasser ungehindert in die Gewässer gelangen. „Die Nutzung problematischer Chemikalien bei der Produktion bedeutet aber nicht, dass diese auch in den Textilien zu finden sind“ stellt Stolte heraus.

Umwelt- und Gesundheitsgefahren durch Fluorkohlenstoffverbindungen
Dr. Max Hempel, DBU-Fachreferent für Umweltchemie: „Vor allem PFC, also per- und polyfluorierte Chemikalien, bleiben sehr lange in der Umwelt, reichern sich in Organismen an, sind gesundheitsgefährdend und können die Fortpflanzung beeinträchtigen.“ Langkettige PFC mit mehr als acht Kohlenstoffatomen seien 2016 deshalb von der Europäischen Union (EU) als Substanzen mit besonders Besorgnis erregenden Eigenschaften eingestuft und für viele Anwendungen verboten worden. „Bisher wurden kurzkettige PFC als Alternativen für die langkettigen angesehen“, erläutert der Projektleiter, der zu Projektbeginn an der Universität Bremen, Zentrum für Umweltforschung und nachhaltige Technologien, lehrte. „Hierfür fehlte den Unternehmen allerdings die chemische und ökotoxikologische Expertise.“ Im jetzt abgeschlossenen Projekt seien Wissenslücken geschlossen worden.

Im Alltag reichen atmungsaktive und wasserabweisende Funktionen
Dr. Jürgen Arning vom Umweltbundesamt in Dessau, das das Projekt begleitet hat: „Die Nutzung von kurzkettigen PFC birgt neue Gefahren, weil diese viel mobiler in der Umwelt sind.“ Solange es keine Alternative zu den Chemikalien gebe, sollte die Nutzung auf das unbedingt erforderliche Maß reduziert werden. „Bei persönlicher Schutzkleidung wie im Krankenhaus oder bei der Feuerwehr macht der Einsatz von öl- und schmutzabweisenden Materialien Sinn“, so der Wissenschaftler. Aber im normalen Alltag und bei der Freizeitgestaltung würden atmungsaktive und wasserabweisende Funktionen reichen, die auch ohne fluorhaltige Chemikalien erzielt werden könnten und im Markt auch angeboten würden. Der Bundesverband der Deutschen Sportartikel-Industrie (BSI, Bonn), Kooperationspartner des Projekts, und viele mittelständische Outdoor-Unternehmen seien aufgrund der Umwelt- und Gesundheitsgefahren bestrebt, alternative Textilveredelungschemikalien mit vergleichbarer Funktionalität zu ermitteln. Die Forscher hatten kurzkettige PFC, die auch öl- und schmutzabweisend sind, sowie PFC-freie Substanzen, die nur wasserabweisende Eigenschaften haben, untersucht. Beides wird derzeit von Outdoor-Herstellern für die Beschichtung von beispielsweise Jacken, Hosen und Zelten eingesetzt.

Gesetzliche Standards kontrollieren und Lieferketten transparent machen
„Die Outdoorbranche lebt davon, dass Freizeitaktivitäten als gesundheitsförderlich empfunden werden. Das Bewusstsein für Umwelt und Gesundheit ist bei vielen dieser Unternehmen ausgeprägter als in anderen Branchen“, so Hempel. Kunden könnten und sollten beim Kauf von Outdoortextilien auf die Inhaltsstoffe achten oder im Geschäft nachfragen. Kritisch sehen die Projektbeteiligten derzeit allerdings die Deklaration der Inhaltsstoffe. Hempel: „In den untersuchten Proben wurden Gefahrstoffe nachgewiesen, die teilweise nicht im Sicherheitsdatenblatt der Hersteller aufgeführt wurden.“ Gesetzliche Standards gebe es bereits, doch die Kontrolle müsse noch verbessert werden. Für transparente Lieferketten müsse ebenso gesorgt werden.

Den Abschlussbericht finden Sie hier zum Download.

Weitere Informationen:
DBU Outdoor
Quelle:

Deutsche Bundesstiftung Umwelt

04.02.2019

EU-Produktpolitik: Auch Textilien im Fokus

  • BTE beteiligt sich an öffentlicher Konsultation

2015 verabschiedete die EU den Aktionsplan für die Kreislaufwirtschaft. Eine Maßnahme dieses Plans ist die Analyse des bestehenden Rahmens der EU-Produktpolitik. Die breite Palette von Produkten im EU Binnenmarkt unterliegt einer Vielzahl unterschiedlicher EU-Politiken, die sich in Bezug auf Anwendungsbereich, Art und Ansatz voneinander unterscheiden.

Diese Politiken umfassen verschiedene Formen von Rechtsvorschriften, Leitlinien sowie finanzielle und/oder Marktanreize. Sie verfolgen verschiedene politische Ziele, wie die Gewährleistung der Sicherheit von Menschen, die die Produkte nutzen oder verbrauchen, die Aufrechterhaltung eines fairen Wettbewerbs im EU-Binnenmarkt, Klima-, Umwelt- und Verbraucherschutz und die Förderung nachhaltigerer Produkte. Diese Ziele stehen im Allgemeinen in Einklang mit einer Kreislaufwirtschaft. Die politischen Instrumente wurden jedoch in ihrem jeweiligen spezifischen Kontext entwickelt, ohne dabei notwendigerweise den Übergang der EU zu einer kohlenstoffarmen Kreislaufwirtschaft zu berücksichtigen.

  • BTE beteiligt sich an öffentlicher Konsultation

2015 verabschiedete die EU den Aktionsplan für die Kreislaufwirtschaft. Eine Maßnahme dieses Plans ist die Analyse des bestehenden Rahmens der EU-Produktpolitik. Die breite Palette von Produkten im EU Binnenmarkt unterliegt einer Vielzahl unterschiedlicher EU-Politiken, die sich in Bezug auf Anwendungsbereich, Art und Ansatz voneinander unterscheiden.

Diese Politiken umfassen verschiedene Formen von Rechtsvorschriften, Leitlinien sowie finanzielle und/oder Marktanreize. Sie verfolgen verschiedene politische Ziele, wie die Gewährleistung der Sicherheit von Menschen, die die Produkte nutzen oder verbrauchen, die Aufrechterhaltung eines fairen Wettbewerbs im EU-Binnenmarkt, Klima-, Umwelt- und Verbraucherschutz und die Förderung nachhaltigerer Produkte. Diese Ziele stehen im Allgemeinen in Einklang mit einer Kreislaufwirtschaft. Die politischen Instrumente wurden jedoch in ihrem jeweiligen spezifischen Kontext entwickelt, ohne dabei notwendigerweise den Übergang der EU zu einer kohlenstoffarmen Kreislaufwirtschaft zu berücksichtigen.

Dies soll sich nach Auffassung der EU zukünftig ändern. Um Änderungen in diesem Bereich vorzunehmen, wurde von Ende November 2018 bis zum 24. Januar 2019 eine öffentliche Konsultation durchgeführt. Die Abfrage konzentrierte sich auf Produktkategorien mit nachweislich hohem Potential für die Kreislaufwirtschaft.

Im Fokus standen die Produktkategorien Elektro- und Elektronik-Geräte, Möbel, Textilien (Kleidung, Schuhwerk, Teppiche usw.) und Spielzeug. Der BTE hat über den HDE an der Konsultation teilgenommen und für den Bereich Textilien auf die derzeitigen, bestehenden Regelwerke (z.B. Textilkennzeichnungsverordnung, ProduktsicherheitsVO, REACH, EU-Umweltzeichen, Abfallrahmenrichtlinie) hingewiesen.

Der BTE erachtet die bestehenden Regelwerke als völlig ausreichend, da sie den o.g. Zielen bereits schon heute gerecht werden. Der BTE hat darauf hingewiesen, dass weitere, schärfere Vorschriften und Regelwerke unverhältnismäßig sind und zusätzliche Bürokratie nach sich ziehen würden. Mit hoher Wahrscheinlichkeit wäre auch mit zusätzlichen Kosten für die jeweiligen Branchen zu rechnen.

Die Kommission wird die Beiträge der Konsultation zur Ausarbeitung einer Arbeitsunterlage verwenden, in der analysiert wird, inwiefern die Instrumente der EU-Produktpolitik den Übergang zur Kreislaufwirtschaft fördern und welche möglichen Lücken oder Hindernisse der Erreichung dieses Ziels im Wege stehen.

 

Weitere Informationen:
BTE Kreislaufwirtschaft
Quelle:

BTE/BLE/VDB

Arbeit mit den Elementen: Chemisch-Technische Assistentin im Fachbereich Biomaterialien. (c) INNOVENT e.V.
Arbeit mit den Elementen: Chemisch-Technische Assistentin im Fachbereich Biomaterialien.
27.12.2018

Arbeit mit den Elementen: Zum Internationalen Jahr des Periodensystems

Es ist 150 Jahre jung, wächst weiter und hat ein faszinierendes Innenleben: Das Periodensystem der Elemente wird von den Vereinten Nationen wegen seines Stellenwerts für Wissenschaft und Wirtschaft 2019 mit einem Weltjahr geehrt. Viele Forschungsinstitute der Zuse-Gemeinschaft haben eine besondere Beziehung zum Periodensystem, denn sie sind spezialisiert auf innovative Anwendungen in Chemie, Physik und Materialwissenschaften.

Unabhängig voneinander ordneten Dmitri Mendelejew (1834–1907) und wenige Monate später Lothar Meyer (1830–1895) die chemischen Elemente nach ihren Eigenschaften so, dass Prognosen über noch nicht entdeckte Elemente leichter fielen. Derzeit listet das Periodensystem 118 verschiedene Elemente, beginnend mit Wasserstoff und auf heutigen Darstellungen meist endend mit dem erst 2005 entdeckten Element 118, dem Oganesson.

Es ist 150 Jahre jung, wächst weiter und hat ein faszinierendes Innenleben: Das Periodensystem der Elemente wird von den Vereinten Nationen wegen seines Stellenwerts für Wissenschaft und Wirtschaft 2019 mit einem Weltjahr geehrt. Viele Forschungsinstitute der Zuse-Gemeinschaft haben eine besondere Beziehung zum Periodensystem, denn sie sind spezialisiert auf innovative Anwendungen in Chemie, Physik und Materialwissenschaften.

Unabhängig voneinander ordneten Dmitri Mendelejew (1834–1907) und wenige Monate später Lothar Meyer (1830–1895) die chemischen Elemente nach ihren Eigenschaften so, dass Prognosen über noch nicht entdeckte Elemente leichter fielen. Derzeit listet das Periodensystem 118 verschiedene Elemente, beginnend mit Wasserstoff und auf heutigen Darstellungen meist endend mit dem erst 2005 entdeckten Element 118, dem Oganesson.

Menschen-Atome zu mehr als 99 Prozent Wasserstoff, Sauerstoff, Kohlenstoff, Stickstoff
Während die Grundlagenforschung im Periodensystem auf der Suche nach immer schwereren, neuen Elementen mit extrem kurzen Halbwertszeiten ist, gewinnt die anwendungsorientierte Forschung ihren Reiz auch aus der Arbeit mit der riesigen Vielfalt der Eigenschaften, welche die Verbindung verschiedener Elemente schafft. Mehr als 99 Prozent der Atome, aus denen der Mensch besteht, sind entweder Wasserstoff, Kohlenstoff, Stickstoff oder Sauerstoff. Jedes der Elemente im verbleibenden Prozent ist aber genauso wichtig, so z.B. Kalzium für den Knochenbau, Eisen für das Blutbild, oder Magnesium für Muskelfunktion und Eiweißsynthese.

Weitere Informationen:
Zuse-Gemeinschaft
Quelle:

Deutsche Industrieforschungsgemeinschaft Konrad Zuse e.V.

Die Carbonfaser revolutionieren – RCCF eröffnet Technikum (c) TU Dresden
05.11.2018

Die Carbonfaser revolutionieren – RCCF eröffnet Technikum

  • Mit einem Festakt haben Dr. Eva-Maria Stange, Staatsministerin für Wissenschaft und Kunst des Freistaates Sachsen, Prof. Gerhard Rödel, Prorektor für Forschung der Technischen Universität Dresden, Prof. Hubert Jäger und Prof. Chokri Cherif am 02.11.2018 das Carbonfaser-Technikum des Research Center Carbon Fibers (RCCF) eröffnet.

Das RCCF, eine gemeinsame wissenschaftliche Einrichtung des Instituts für Leichtbau und Kunststofftechnik (ILK) und des Instituts für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM) der TU Dresden, wurde gegründet, um die Carbonfasern vom Faserrohstoff bis zum fertigen Bauteil zu erforschen und neue Eigenschaften und Anwendungsmöglichkeiten zu entdecken.

  • Mit einem Festakt haben Dr. Eva-Maria Stange, Staatsministerin für Wissenschaft und Kunst des Freistaates Sachsen, Prof. Gerhard Rödel, Prorektor für Forschung der Technischen Universität Dresden, Prof. Hubert Jäger und Prof. Chokri Cherif am 02.11.2018 das Carbonfaser-Technikum des Research Center Carbon Fibers (RCCF) eröffnet.

Das RCCF, eine gemeinsame wissenschaftliche Einrichtung des Instituts für Leichtbau und Kunststofftechnik (ILK) und des Instituts für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM) der TU Dresden, wurde gegründet, um die Carbonfasern vom Faserrohstoff bis zum fertigen Bauteil zu erforschen und neue Eigenschaften und Anwendungsmöglichkeiten zu entdecken.

„Sachsen verfügt in der Schlüsseltechnologie Werkstoff-, Material- und Nanowissenschaft über hervorragende Rahmenbedingungen und hoch motivierte Wissenschaftler an Hochschulen und Forschungseinrichtungen, die in dieser Spezialisierung weltweit ihresgleichen suchen“, erklärt dazu Staatsministerin Dr. Stange. „Beinahe alle Materialklassen von Metallen, Polymeren, Keramiken bis hin zu Verbund- und Naturwerkstoffen werden auf international hohem Niveau bearbeitet. Dabei greifen Grundlagen- und Angewandte Forschung in zahlreichen Feldern eng ineinander und bilden geschlossene Entwicklungsketten bis zu einem Transfer in die Wirtschaft – regional, national und international.“

Der Prorektor für Forschung der TU Dresden, Prof. Gerhard Rödel, ergänzt: „Mit dem Carbonfaser-Technikum ist im Research Center Carbon Fibers eine weltweit einzigartige Anlage entstanden, die völlig neue Möglichkeiten eröffnet. Es geht darum, Fasern mit einem möglichst hohen Individualisierungsgrad zu designen – je nach Bedarf und Einsatzbereich.“

Auf der derzeit installierten, einzigartigen Anlage erforschen Wissenschaftler des RCCF unter Reinraum-Bedingungen die Grundlagen für maßgeschneiderte Kohlenstofffasern und erschließen deren hohes Innovationspotential. Dabei greifen die Forscher auf einzelne Anlagenmodule zur Stabilisierung und Carbonisierung mit industrienahem Ofendesign und individuell einstellbaren Parameterkombinationen zurück. Durch den außerordentlichen Reinheitsgrad sind die Carbonfasern für die Anforderungen der Luft-/Raumfahrt- und der Automobilindustrie maßgeschneidert.

„Die Carbonfaser ist der Stahl des 21. Jahrhunderts“, führt Prof. Hubert Jäger, Sprecher des Instituts für Leichtbau und Kunststofftechnik (ILK), aus. „Ganze Branchen erfinden sich derzeit durch diesen Werkstoff neu und erreichen mit ihren Produkten nie gedachte Dimensionen. Das Problem ist jedoch die Verfügbarkeit. Wir werden mit dem Carbonfaser-Technikum einen Beitrag dazu leisten, dass aus Sachsen heraus dieser Werkstoff nicht nur leichter verfügbar, sondern auch besser und maßgeschneidert einsetzbar wird für Anwendungen in der Luft- und Raumfahrt, Fahrzeugbau, Architektur und Hochleistungselektronik.“

„Mit der Inbetriebnahme des Carbonfaser-Technikums unter Reinraumbedingungen am RCCF gelingt es uns, die Prozesskette zur Fertigung maßgeschneiderter Kohlenstofffasern signifikant zu erweitern. Die notwendigen Maschinentechniken des ITM einschließlich der bereits gewonnenen Erfahrungen bei Prozessoptimierungen zur Herstellung von Precursorfasern, dem Ausgangsmaterial für die neuen Stabilisierungs- und Carbonisierungslinien, stehen in künftigen Forschungsvorhaben den Wissenschaftlern des RCCF zur Verfügung. Somit geben wir am exzellenten Forschungsstandort Dresden die Initialzündung für die weiterführende Grundlagen- und anwendungsorientierte Forschung auf dem Gebiet der Kohlenstofffasern“, ergänzt Prof. Chokri Cherif, Direktor des ITM und Inhaber der Professur für Textiltechnik.

Das Carbonfaser-Technikum umfasst einen mehr als 300 m² großen Reinraum der Klasse ISO 8. Neben den beiden auf etwa 30 Metern aufgestellten Stabilisierungs- und Carbonisierungslinien sind weitere Flächen für künftige Erweiterungen der Gesamtanlage vorgesehen, zum Beispiel ein weiterer Hochtemperaturofen, in dem Carbonfasern bis zu Temperaturen über 2000°C graphitierbar sind oder unikale Beschichtungsanlagen zur Oberflächenaktivierung.

Die RCCF-Wissenschaftler ergründen die Wechselwirkungen zwischen Prozessparametern, Faserstruktur und weiteren mechanischen, thermischen und elektrischen Eigenschaften bei der Herstellung von Carbonfasern, um die Fähigkeiten des Hightech-Werkstoffes weiter zu steigern. Zusätzlich nehmen die Forscher die Entwicklung multifunktionaler Fasern mit neuartigen Eigenschaftsprofilen wie hohe Leitfähigkeit bei hoher Festigkeit oder ausgeprägter Verformbarkeit sowie die Nutzung erneuerbarer Ausgangsstoffe in den Fokus ihrer Arbeiten.

Ein weiterer Schwerpunkt der RCCF-Aktivitäten ist die tiefgreifende studentische Ausbildung im Bereich der Carbonfaser-Herstellung. Den Studierenden werden dabei fundierte Kenntnisse in Herstellung und Weiterverarbeitung von Carbonfasern vermittelt, damit sie in diesem Bereich der Zukunftstechnologien dem sächsischen und deutschen Arbeitsmarkt zur Verfügung stehen. Etwa 15 Studierende werden pro Jahr in Forschungsbereiche wie die Prozessführung, -modellierung und -überwachung sowie die Entwicklung, Fertigung und Charakterisierung neuer Carbonfasern und Verbundwerkstoffe einbezogen.

Weitere Informationen:
TU Dresden Carbonfaser
Quelle:

Technische Universität Dresden  - Fakultät Maschinenwesen   
Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM)

 

Erstes thermoplastisches Polyurethan auf Basis der CO2-Technologie (c) Covestro
11.10.2018

Erstes thermoplastisches Polyurethan auf Basis der CO2-Technologie

  • Neue Polyole verringern Kohlenstoff-Fußabdruck
  • Weitere TPU-Entwicklungen für die Textilanwendung und Oberflächengestaltung

Unter dem Namen cardyon™ entwickelt und vermarktet Covestro neue Polyethercarbonatpolyole, die mit Hilfe des Treibhausgases Kohlendioxid (CO2) hergestellt werden. Mit Desmopan® 37385A bietet das Unternehmen nun den ersten Vertreter einer neuen Reihe von thermoplastischen Polyurethanen (TPU) an, die Polyethercarbonatpolyole auf Basis der CO2-Technologie enthalten.

Verglichen mit konventionellen TPU-Materialien hinterlassen die neuen TPU-Werkstoffe einen geringeren ökologischen Fußabdruck und helfen, den Kohlenstoffkreislauf zu schließen. Außerdem schonen sie die fossilen Rohstoffquellen und treten im Gegensatz zu vielen biobasierten Materialien nicht in Konkurrenz zur Produktion von Nahrungsmitteln.

  • Neue Polyole verringern Kohlenstoff-Fußabdruck
  • Weitere TPU-Entwicklungen für die Textilanwendung und Oberflächengestaltung

Unter dem Namen cardyon™ entwickelt und vermarktet Covestro neue Polyethercarbonatpolyole, die mit Hilfe des Treibhausgases Kohlendioxid (CO2) hergestellt werden. Mit Desmopan® 37385A bietet das Unternehmen nun den ersten Vertreter einer neuen Reihe von thermoplastischen Polyurethanen (TPU) an, die Polyethercarbonatpolyole auf Basis der CO2-Technologie enthalten.

Verglichen mit konventionellen TPU-Materialien hinterlassen die neuen TPU-Werkstoffe einen geringeren ökologischen Fußabdruck und helfen, den Kohlenstoffkreislauf zu schließen. Außerdem schonen sie die fossilen Rohstoffquellen und treten im Gegensatz zu vielen biobasierten Materialien nicht in Konkurrenz zur Produktion von Nahrungsmitteln.

„Unsere Kunden können mit dem neuen TPU den ökologischen Fußabdruck ihrer Erzeugnisse verringern und dadurch gegenüber ihren Wettbewerbern eine Vorreiterrolle in puncto Nachhaltigkeit einnehmen“, erklärt Georg Fuchte, TPU-Experte bei Covestro. „Das gilt besonders für Unternehmen der Konsumgüterindustrie, die häufig Produkte mit nur kurzer Lebensdauer herstellen.“

Exzellente mechanische Eigenschaften

Desmopan® 37385A hat eine Härte von 85 Shore A. Seine mechanischen Eigenschaften liegen mindestens auf dem Niveau von konventionellen TPU-Typen ähnlicher Härte, übertreffen diese sogar zum Teil. Beispielsweise hat es eine Zugfestigkeit von 36 Megapascal. Die Reißdehnung erreicht 660 Prozent (DIN 53504). Der Kunststoff ist für die Extrusion ausgelegt, eignet sich aber auch für das Spritzgießen. „Das Einsatzspektrum deckt typische Anwendungen von konventionellen TPU-Typen mit vergleichbarer Härte ab und reicht von Sohlen und Komponenten des Oberschuhs über Sportbekleidung, Griffe und Knäufe bis hin zu Verpackungen für empfindliche Elektronik“, so Fuchte.

Verschiedene Produktvarianten

Covestro plant, die neue TPU-Reihe um Varianten unterschiedlicher Härte zu erweitern. In der Entwicklung weit vorangeschritten ist zum Beispiel ein Produkt mit einer Härte von 95 Shore A, dessen Schmelze bei der Verarbeitung schnell aushärtet. „Wir zielen damit auf spritzgegossene Anwendungen, in denen es besonders auf eine wirtschaftliche Fertigung in kurzen Zykluszeiten ankommt“, erläutert Fuchte.

Covestro kooperiert eng mit Unternehmen und Forschungseinrichtungen, um die CO2-Technologie auch als Syntheseplattform für andere großchemisch eingesetzte Rohstoffe zu nutzen. Zum Beispiel wird an neuen CO2-basierten Polyolen für Polyurethan-Hartschäume gearbeitet, die etwa in der Wärmedämmung von Gebäuden, im Automobil und in Sportartikeln Verwendung finden könnten. Im Werk Dormagen betreibt Covestro bereits eine Produktionsanlage, auf der CO2-basierte Polyole für Polyurethan-Weichschäume produziert werden. Letztere kommen in der kommerziellen Fertigung von Polstermöbeln und Matratzen zum Einsatz.

Weitere TPU-Highlights auf der Fakuma

Garn: Covestro zeigt auch innovative TPU-Entwicklungen auf petrochemischer Basis. Dazu gehören gleichförmige und glänzende Fasern aus TPU und Polyamid für gestrickte Gewebe. Die Fasern haben eine einzigartige Haptik und kommen vor allem in Sportschuhen zum Einsatz, wo die Verwendung gestrickten Obermaterials groß in Mode ist. Dabei sind viele dekorative Varianten möglich. Die Gewebe lassen sich wirtschaftlich in einem einzigen Strickprozess herstellen, auch mittels automatisierter Produktion.

Oberflächenstruktur: Seit Jahrzehnten ist die herausragende Abbildegenauigkeit von TPU-Produkten der Desmopan® Serie bekannt. Durch Einsatz verschiedener Technologien können einzigartige Oberflächenstrukturen erzeugt werden. Zurzeit arbeitet Covestro mit dem Partner J. & F. Krüth in Solingen zusammen, um mit Hilfe der innovativen und volldigitalen 3D-Laser-Gravur nahezu unbegrenzte Möglichkeiten für die Oberflächengestaltung zu erschließen.

Weitere Informationen:
Covestro polyurethane
Quelle:

Covestro AG Communications

34. Internationale Baumwolltagung 2018 in Bremen (c) Bremer Baumwollbörse
34. Internationale Baumwolltagung 2018 in Bremen
06.04.2018

COTTON USA auf der 34. Internationalen Baumwolltagung

Zum Thema innovative Baumwollprodukte und -technologien trat CCI Executive Director Bruce Atherley auf der 34. Internationalen Baumwolltagung in Bremen als einer der Redner auf. Atherley informierte die Teilnehmer über CCI’s neue Initiative „WHAT’S NEW IN COTTON™?“ und diskutierte im Expertenforum über neue Chancen für innovative Baumwollprodukte. Im Fokus der diesjährigen Bremer Baumwoll-Konferenz standen die Handlungsfelder nachhaltige Baumwoll- und Textilproduktion, Traceability sowie innovative textile Prozesse. Mehr als 450 Baumwollexperten aus aller Welt nahmen an der Veranstaltung teil.

Innovative textile Prozesse, Rückverfolgbarkeit von Baumwolle und Qualitätstextilien waren nur einige der Themen, die zum Teil kontrovers im historischen Rathaus der Hansestadt Bremen diskutiert wurden. Die Non-Profitmarketingorganisation CCI, vertreten durch Bruce Atherley, referierte über neue Technologien für Textilien aus Baumwolle und Baumwollmischgeweben und zeigte innovative Ideen auf, die mit USA-Baumwolle realisiert werden.

Zum Thema innovative Baumwollprodukte und -technologien trat CCI Executive Director Bruce Atherley auf der 34. Internationalen Baumwolltagung in Bremen als einer der Redner auf. Atherley informierte die Teilnehmer über CCI’s neue Initiative „WHAT’S NEW IN COTTON™?“ und diskutierte im Expertenforum über neue Chancen für innovative Baumwollprodukte. Im Fokus der diesjährigen Bremer Baumwoll-Konferenz standen die Handlungsfelder nachhaltige Baumwoll- und Textilproduktion, Traceability sowie innovative textile Prozesse. Mehr als 450 Baumwollexperten aus aller Welt nahmen an der Veranstaltung teil.

Innovative textile Prozesse, Rückverfolgbarkeit von Baumwolle und Qualitätstextilien waren nur einige der Themen, die zum Teil kontrovers im historischen Rathaus der Hansestadt Bremen diskutiert wurden. Die Non-Profitmarketingorganisation CCI, vertreten durch Bruce Atherley, referierte über neue Technologien für Textilien aus Baumwolle und Baumwollmischgeweben und zeigte innovative Ideen auf, die mit USA-Baumwolle realisiert werden.

Das vor sechs Monaten erstmals von COTTON USA vorgestellte Innovationsprogramm WHAT’S NEW IN COTTON™? setzt auf Kooperation mit Innovationsunternehmen, um innovative Lösungen für ein neues Leistungsspektrum der USA-Baumwolle zu entwickeln. Argaman Technologies aus Israel entwickelte ein Verfahren, dass Baumwolle vor dem Spinnprozess unter Zugabe von Kupferkomponenten in die Faser hautfreundlicher macht und die Regeneration der Hautzellen unterstützt. Dieses Verfahren bietet sich beispielsweise für Bettwäsche, Unterwäsche und auch in der Kosmetikindustrie an.

Im Rahmen der Bremer Experten-Sessions waren ‚Tracebility‘ also Rückverfolgbarkeit und Nachhaltigkeit wichtige Themen. Die US Baumwollindustrie konnte in Bremen über Ihre Vorreiterrolle berichten. Die USA verfügen über eines der umfassendsten Systeme zur Überwachung und Messung aller relevanten Metriken im Bereich Nachhaltigkeit. Grundlage sind die Daten des USDA und die Daten der Field-to-Market Plattform (2006 gegründete Multistakeholder-Initiative).

Den meisten US-Farmen sind Familienunternehmen, denen das Land gehört, welches sie bewirtschaften. Ihre Felder befinden sich seit Generationen im Familienbesitz. In Amerika wird zunehmend nach dem Modell der Präzisionslandwirtschaft unter Einsatz modernster Technologien gearbeitet, wodurch der ökologische Fußabdruck fortschreitend reduziert wird. In den USA fällt der Baumwollanbau unter die Gesetzgebung des Lebensmittelanbaus.US-Baumwollfarmer unterliegen daher den umfangreichsten und strengsten Anbau-Reglementierungen weltweit, deren Einhaltung kontrolliert wird. Bei Nichteinhaltung drohen massive strafrechtliche und zivilrechtliche Folgen.

In den letzen 35 Jahren erzielte die amerikanische Baumwollindustrie grosse ökologische Verbesserungen und somit eine stete Optimierung des Fußabdrucks. Bis heute wurde eine 31%ige Reduzierung der Anbaufläche erzielt, die für die Produktion von einem Pfund Baumwolle nötig ist. Der Bodenabtrag im Gleichgewicht mit der Humusbildung wurde um 44% reduziert. Ein um 82% minimierter Wassereinsatz wurde erzielt, d.h. mehr Fasern wurden mit einem Liter Wasser hergestellt. Der Energieverbrauch wurde um 38%, die Treibhausgas- Emission um 30% gesenkt. Nur ein Drittel der gesamten US-Baumwollernte wird heute noch zusatzbewässert. Zwei Drittel kommen mit natürlichem Regen- und Grundwasser aus. Gleichzeitig wurde der Kohlenstoffgehalt im Boden um 30% erhöht.

ESF ESF
ESF
28.06.2017

Spitzenforschung in Sachsen: Symbiose der Hochtechnologiefelder „Leichtbau mit Carbon“ und „Energiespeicherung“

Vor dem Hintergrund globaler Megatrends, wie der Verknappung von natürlichen Ressourcen bei einer gleichzeitig zunehmend individualisierten Lebensweise, stellen Energiespeicherung und Leichtbau wesentliche Schlüsseltechnologien unter anderem im Bereich innovativer Mobilitätskonzepte dar. Eine besondere Bedeutung bei der Entwicklung neuer Hightech-Produkte in diesen Branchen am Standort Sachsen spielt der nachhaltige Einsatz von neuartigen anforderungsgerechten Werkstoffen mit hoher Funktionsdichte, wofür Kohlenstofffasern ein enormes Potenzial aufweisen.
Wissenschaftlern der TU Dresden (TUD) ist es gelungen, eine interdisziplinäre Nachwuchsforschergruppe „e -Carbon“ (ESF-SAB 100310387), bestehend aus Chemikern, Textilern und Kunststofftechnikern ins Leben zu rufen, die in den nächsten 3 Jahren, beginnend ab 1. Juli 2017, maßgeschneiderte und multifunktionale Kohlenstofffasern für die Speicherung hoher Energiedichten gemeinsam entwickeln wird. Dieses zukunftsträchtige Projekt wurde von der TU Dresden und der Sächsischen Aufbaubank SAB-ESF aus mehr als 40 Anträgen als zukunftsweisendes Projekt ausgewählt.

Vor dem Hintergrund globaler Megatrends, wie der Verknappung von natürlichen Ressourcen bei einer gleichzeitig zunehmend individualisierten Lebensweise, stellen Energiespeicherung und Leichtbau wesentliche Schlüsseltechnologien unter anderem im Bereich innovativer Mobilitätskonzepte dar. Eine besondere Bedeutung bei der Entwicklung neuer Hightech-Produkte in diesen Branchen am Standort Sachsen spielt der nachhaltige Einsatz von neuartigen anforderungsgerechten Werkstoffen mit hoher Funktionsdichte, wofür Kohlenstofffasern ein enormes Potenzial aufweisen.
Wissenschaftlern der TU Dresden (TUD) ist es gelungen, eine interdisziplinäre Nachwuchsforschergruppe „e -Carbon“ (ESF-SAB 100310387), bestehend aus Chemikern, Textilern und Kunststofftechnikern ins Leben zu rufen, die in den nächsten 3 Jahren, beginnend ab 1. Juli 2017, maßgeschneiderte und multifunktionale Kohlenstofffasern für die Speicherung hoher Energiedichten gemeinsam entwickeln wird. Dieses zukunftsträchtige Projekt wurde von der TU Dresden und der Sächsischen Aufbaubank SAB-ESF aus mehr als 40 Anträgen als zukunftsweisendes Projekt ausgewählt.
Die komplexe Themenstellung wird durch Nachwuchswissenschaftler der TUD vom Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM), Institut für Leichtbau und Kunststofftechnik (ILK) sowie von der Professur für Anorganische Chemie I (AC1) bearbeitet. Durch die interdisziplinäre Ausrichtung des Konsortiums werden die besten Voraussetzungen mit weltweitem Alleinstellungsmerkmal für eine intensive wissenschaftliche und industrielle Vernetzung der Nachwuchsforscher in neuen Forschungsgebieten mit hoher praktischer Relevanz auf regionaler, nationaler und internationaler Ebene geschaffen. Das Hauptaugenmerk liegt dabei auf der Qualifizierung und Weiterbildung von Fachkräften für den sächsischen Arbeitsmarkt sowie auf der Ausgründung von Start-Ups und der Übernahme unternehmerischer Verantwortung in der Hochtechnologiebranche.
Professor Chokri Cherif, Koordinator der Nachwuchsforschergruppe und Direktor des ITM: „Die Arbeiten der Nachwuchsforschergruppe geben die Initialzündung für die weiterführende Grundlagen- und anwendungsorientierte Forschung auf dem Gebiet der Kohlenstofffasern. Wir werden einen neuen Maßstab in der Kohlenstofffaserentwicklung setzen und besondere Impulse weltweit ausstrahlen.“

 

Quelle:

Technische Universität Dresden