Aus der Branche

Zurücksetzen
27 Ergebnisse
(c) AVK - Industrievereinigung Verstärkte Kunststoffe e. V.
24.11.2021

AVK – Industrievereinigung Verstärkte Kunststoffe vergibt Innovationspreise

Die AVK – Industrievereinigung Verstärkte Kunststoffe hat 2021 erneut Innovationspreise an Unternehmen, Institute und deren Partner vergeben. Jeweils drei Composites-Innovationen aus den drei Kategorien „Produkte und Anwendungen“, „Prozesse und Verfahren“ sowie „Forschung und Wissenschaft“ wurden während des neuen Events JEC Forum DACH am 23. November 2021 ausgezeichnet, das in seiner ersten Ausgabe in Frankfurt stattfand.

„Auch in diesem Jahr waren wieder viele sehr interessante und vielversprechende Produkte und Verfahren dabei. Der Innovationspreis zeigt, wie leistungsfähig, wirtschaftlich und nachhaltig sich Faserverstärkte Kunststoffe und mit ihnen die Firmen und Institute präsentieren,“ erklärte AVK-Geschäftsfüher Dr. Elmar Witten. Die hochkarätig besetzte Fachjury ehrte in diesem Jahr u.a. folgende Innovationen:

Die AVK – Industrievereinigung Verstärkte Kunststoffe hat 2021 erneut Innovationspreise an Unternehmen, Institute und deren Partner vergeben. Jeweils drei Composites-Innovationen aus den drei Kategorien „Produkte und Anwendungen“, „Prozesse und Verfahren“ sowie „Forschung und Wissenschaft“ wurden während des neuen Events JEC Forum DACH am 23. November 2021 ausgezeichnet, das in seiner ersten Ausgabe in Frankfurt stattfand.

„Auch in diesem Jahr waren wieder viele sehr interessante und vielversprechende Produkte und Verfahren dabei. Der Innovationspreis zeigt, wie leistungsfähig, wirtschaftlich und nachhaltig sich Faserverstärkte Kunststoffe und mit ihnen die Firmen und Institute präsentieren,“ erklärte AVK-Geschäftsfüher Dr. Elmar Witten. Die hochkarätig besetzte Fachjury ehrte in diesem Jahr u.a. folgende Innovationen:

Kategorie Forschung und Wissenschaft
Den 1. Platz in der Kategorie „Forschung und Wissenschaft“ erhielt das Deutsche Zentrum für Luft- und Raumfahrt (DLR) mit der Bondline Control Technologie (BCT). Das innovative Verfahren dient der Qualitätskontrolle und -sicherung von Klebverbindungen. Kernelement ist ein poröses Gewebe, das mittels Epoxidklebstoff oder Matrixharz auf eine Fügefläche appliziert wird. Das Abschälen des Gewebes erzeugt eine chemisch reaktive und hinterschnittige Oberfläche und kann gleichzeitig als Adhäsionstest zum Untergrund dienen Die BCT bietet verschiedene Anwendungsmöglichkeiten. Zum Beispiel können Abreißgewebe durch das BCT-Gewebe ersetzt werden, um Verbundbauteile mit optimierter Fügefläche herzustellen. Der kostengünstige Schältest kann in der Couponprüfung und zur Prozesskontrolle genutzt werden. Außerdem kann die kombinierte Haftprüfung und Oberflächenvorbehandlung zur Qualitätssicherung geklebter Reparaturen an Faserverbundstrukturen eingesetzt werden.

Den 2. Platz erhielt das Institut für Textiltechnik (ITA) der RWTH Aachen University und seinen Partnern AEROVIDE GmbH, Altropol Kunststoff GmbH, Basamentwerke Böcke GmbH, TechnoCarbon Technologies GbR mit „StoneBlade - Leichtbau mit Granit für die Windindustrie“. Die Innovation ermöglicht die Reduzierung von nicht-recyclefähigem Material im Rotorblattbau. Gleichzeitig wird das Gewicht reduziert und die mechanischen Eigenschaften zur Standsicherheit von Windkraftanlagen erhöht. Hierzu wird glasfaserverstärkter Kunststoff in den Blattkomponenten durch Hartgestein als naturbasiertes, kostengünstiges und verwertbares Leichtbaumaterial ersetzt. Die auf wenige Millimeter Dicke geschliffenen Gesteinsplatten werden in ein Faserverbund-Laminat mit Carbonfasern eingebracht und so für wechselnde Lastfälle stabilisiert. Das vorgespannte Material ist im Verbund druckstabil und kann ohne einen Verlust von Steifigkeit Zugkräfte im Dauerwechsellastfall aufnehmen.

Platz 3 ging an die Technische Universität Dresden – Institut für Leichtbau und Kunststofftechnik (ILK) mit dem Partner Mercedes Benz AG mit der interdisziplinären Entwicklung eines hochintegrierten induktiven Lademoduls für Elektrofahrzeuge. Das ultra-dünne Lademodul sollte dabei den Raum im Fahrzeugunterboden optimal ausnutzen ohne die Bodenfreiheit zu verringern. Dafür wurde ein interdisziplinärer Entwicklungsprozess angewendet und eine übergreifende elektrische, mechanische und prozesstechnische Charakterisierung von Hochfrequenzlitzen, ferromagnetischer Folie und Metalldrahtgeweben durchgeführt und ein Simulationsmodelll erstellt. Das Ergebnis ist ein Demonstrator für ein Ladesystem mit  einer Aufbauhöhe von 15 mm und einem Gesamtgewicht von 8 kg. Es erreicht eine Übertragungseffizienz von bis zu 92 Prozent bei 7,2 kW Nennleistung und aktiver Luftkühlung. Der Hardware-Demonstrator wurde in einem 3-stufigen Prozess unter Nutzung des RTM- und VARI-Verfahrens hergestellt.

Übersicht aller Preisträger in den drei Kategorien:
Kategorie „Innovative Produkte und Anwendungen“
1. Platz: „Verkehrsschilder von Nabasco (N-BMC)“ – Nabasco Products BV und Lorenz Kunststofftechnik GmbH, Partner: Pol Heteren BV und NPSP BV
2. Platz: „Neuentwickeltes ultratoughes Vinylesterharz für den Großschiffbau“ Evonik Operations GmbH
3. Platz: „Lufteinlassgehäuse in Multi-Material-Design für Gasturbinen“ – MAN Energy Solutions SE, Leichtbau-Zentrum Sachsen GmbH und Leichtbau-Systemtechnologien KORROPOL GmbH
Kategorie „Innovative Prozesse und Verfahren“
1. Platz: „In-Mould Wrapping“ werkzeugfallende, folierte Faserverbundbauteile für Exterieur-Anwendungen– BMW Group, Partner: Renolit SE
2. Platz: „Adaptive automatisierte Reparatur von Composite-Strukturkomponenten in der Luftfahrt“ – Lufthansa Technik AG, Partner: iSAM AG
3. Platz: „Automatisierte Oberflächenvorbehandlung mittels VUV-Excimer Lampen – CTC GmbH
Kategorie „Forschung und Wissenschaft“
1. Platz: „Bondline Control Technologie (BCT)“ – Deutsches Zentrum für Luft- und Raumfahrt (DLR)
2. Platz: „StoneBlade - Leichtbau mit Granit für die Windindustrie“ – Institut für Textiltechnik der RWTH Aachen University, Partner: AEROVIDE GmbH, Altropol Kunststoff GmbH, Basamentwerke Böcke GmbH, TechnoCarbon Technologies GbR
3. Platz: „Interdisziplinäre Entwicklung eines hochintegrierten induktiven Lademoduls für Elektrofahrzeuge“ – Technische Universität Dresden – Institut für Leichtbau und Kunststofftechnik (ILK), Partner: Mercedes Benz AG

Die Ausschreibung für den nächsten Innovationspreis startet Ende Januar 2022.

Quelle:

AVK - Industrievereinigung Verstärkte Kunststoffe e. V.

© ITM / TU Dresden
10.11.2021

Kreativitätspreis des Deutschen Textilmaschinenbaues 2021 geht an Irina Kuznik

Die Verleihung der Förder- und Kreativitätspreise 2021 der Walter Reiners-Stiftung des VDMA, Fachverband Textilmaschinen an Studierende und Nachwuchswissenschaftler:innen deutscher Universitäten für Spitzenleistungen in Studium und Promotion fand am 09. November 2021 im Rahmen der Aachen-Dresden-Denkendorf International Textile Conference 2021 statt. Die bundesweit ausgeschriebenen Förder- und Kreativitätspreise wurden erneut online durch Herrn Peter D. Dornier, Vorstandsvorsitzender der Walter Reiners-Stiftung, verliehen.

Frau Dipl.-Ing. Irina Kuznik vom Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM) der TU Dresden wurde mit dem 3.000 EUR dotierten Kreativitätspreis des Deutschen Textilmaschinenbaues 2021 für ihre exzellente Diplomarbeit „Entwicklung zur umweltfreundlichen Herstellung neuartiger Chitosanfasergarne unter Einsatz von ionischen Flüssigkeiten" ausgezeichnet.

Die Verleihung der Förder- und Kreativitätspreise 2021 der Walter Reiners-Stiftung des VDMA, Fachverband Textilmaschinen an Studierende und Nachwuchswissenschaftler:innen deutscher Universitäten für Spitzenleistungen in Studium und Promotion fand am 09. November 2021 im Rahmen der Aachen-Dresden-Denkendorf International Textile Conference 2021 statt. Die bundesweit ausgeschriebenen Förder- und Kreativitätspreise wurden erneut online durch Herrn Peter D. Dornier, Vorstandsvorsitzender der Walter Reiners-Stiftung, verliehen.

Frau Dipl.-Ing. Irina Kuznik vom Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM) der TU Dresden wurde mit dem 3.000 EUR dotierten Kreativitätspreis des Deutschen Textilmaschinenbaues 2021 für ihre exzellente Diplomarbeit „Entwicklung zur umweltfreundlichen Herstellung neuartiger Chitosanfasergarne unter Einsatz von ionischen Flüssigkeiten" ausgezeichnet.

In ihrer Diplomarbeit entwickelte Frau Kuznik einen völlig neuen Ansatz zur ökologischen und ökonomischen Herstellung von Chitosangarnen. Unter Nutzung ionischer Flüssigkeiten als gut geeignetes, neuartiges Lösungsmittel für Chitosan lässt sich Chitosan mit geringen Deacetylierungsgraden sowie reines Chitin erfolgreich auflösen. In einem Nassspinnverfahren können damit erzeugte Spinnlösungen zu neuartigen Chitosan- bzw. Chitinmonofilamenten mit sehr guten morphologischen Eigenschaften hergestellt werden. Des Weiteren lässt sich die ionische Flüssigkeit mittels eines Verdampfungsverfahrens aus dem Abwasser zurückgewinnen und wiederaufbereitet werden.

Weitere Informationen:
VDMA Textilmaschinen chitosan
Quelle:

Technische Universität Dresden
Institut für Textilmaschinen und Textile Hochleistungswerkstofftechnik (ITM)

Thomas Reutter neuer Vice President Product Asset Management and Supply Chain (c) Borealis
05.08.2021

Borealis: Thomas Reutter neuer Vice President Product Asset Management and Supply Chain

Borealis gibt die Ernennung von Thomas Reutter (43) zum Vice President Product Asset Management and Supply Chain mit Wirkung vom 1. August 2021 bekannt.
Er hat einen Master-Abschluss in Betriebswirtschaftslehre von der Martin-Luther-Universität Halle, Deutschland, mit einer Spezialisierung in Controlling und Supply Chain.

Thomas Reutter kommt von Dow zu Borealis und bringt umfangreiche Erfahrungen in den Bereichen Product Asset Management und Supply Chain mit. Seit seinem Einstieg bei Dow im Jahr 2008 war er in verschiedenen Positionen mit zunehmender Verantwortung im Produktmanagement, Supply Chain Management und Vertrieb in den Niederlanden, Mexiko und der Schweiz tätig. Zuletzt war er Senior Product Director für lineares Polyethylen mit niedriger Dichte (LLDPE) in der Schweiz.

 

Borealis gibt die Ernennung von Thomas Reutter (43) zum Vice President Product Asset Management and Supply Chain mit Wirkung vom 1. August 2021 bekannt.
Er hat einen Master-Abschluss in Betriebswirtschaftslehre von der Martin-Luther-Universität Halle, Deutschland, mit einer Spezialisierung in Controlling und Supply Chain.

Thomas Reutter kommt von Dow zu Borealis und bringt umfangreiche Erfahrungen in den Bereichen Product Asset Management und Supply Chain mit. Seit seinem Einstieg bei Dow im Jahr 2008 war er in verschiedenen Positionen mit zunehmender Verantwortung im Produktmanagement, Supply Chain Management und Vertrieb in den Niederlanden, Mexiko und der Schweiz tätig. Zuletzt war er Senior Product Director für lineares Polyethylen mit niedriger Dichte (LLDPE) in der Schweiz.

 

Weitere Informationen:
Borealis
Quelle:

Borealis

(c) Gebr. Otto
07.07.2021

Ökologischer Anspruch: Gebr. Otto präsentiert Baumwollgarn recot2

  • 25% aus Recycling-Material

2007 begann die Gebr. Otto Baumwollfeinzwirnerei mit der Entwicklung eines Baumwollgarns mit verbesserter Ökobilanz durch Recycling-Anteil. Kreisläufe sollten mit Abgängen aus der eigenen Produktion geschlossen werden.

„Beim Spinnen sowie bei nachfolgenden Weiterverarbeitungsprozessen fallen Abgänge an, Spulenreste, Webkanten und so weiter. Diese Prozessabfälle werden aufbereitet und die Fasern wieder vereinzelt, damit diese in die Wertschöpfungskette re-integriert werden können“, so Geschäftsführer Andreas Merkel. Eine Herausforderung sei es gewesenm die unterschiedliche Faserlänge von Neu- zu Recyclingfaser zusammenzubringen. Die Stapellängen von Baumwolle variieren zwischen etwa 22 mm bis über 38 mm. Darauf ist das Ringspinnverfahren ausgelegt. Recycelte Fasern sind deutlich kürzer – was zur Folge hatte, dass Gebr. Otto ein neues Spinnverfahren entwickeln musste, um recot2 herstellen zu können.

  • 25% aus Recycling-Material

2007 begann die Gebr. Otto Baumwollfeinzwirnerei mit der Entwicklung eines Baumwollgarns mit verbesserter Ökobilanz durch Recycling-Anteil. Kreisläufe sollten mit Abgängen aus der eigenen Produktion geschlossen werden.

„Beim Spinnen sowie bei nachfolgenden Weiterverarbeitungsprozessen fallen Abgänge an, Spulenreste, Webkanten und so weiter. Diese Prozessabfälle werden aufbereitet und die Fasern wieder vereinzelt, damit diese in die Wertschöpfungskette re-integriert werden können“, so Geschäftsführer Andreas Merkel. Eine Herausforderung sei es gewesenm die unterschiedliche Faserlänge von Neu- zu Recyclingfaser zusammenzubringen. Die Stapellängen von Baumwolle variieren zwischen etwa 22 mm bis über 38 mm. Darauf ist das Ringspinnverfahren ausgelegt. Recycelte Fasern sind deutlich kürzer – was zur Folge hatte, dass Gebr. Otto ein neues Spinnverfahren entwickeln musste, um recot2 herstellen zu können.

Ein Kilogramm recot2–Textil erreicht eine Wasserersparnis von rund 5.000 Litern, wie die Universität Ulm, Projektpartner für recot2, errechnete. Beim Energieeinsatz liegt die Ersparnis bei zehn bis 20 Prozent. Da weniger Neu-Baumwolle benötigt wird, ergeben sich weitere Vorteile: Geringere Emissionen, weniger Flächenverbrauch und ein geringerer Einsatz von Pflanzenschutzmitteln und Dünger.

Recot2 bedient bei den Kunden den Anspruch nach Differenzierung, mittlerweile sind Nachhaltigkeit und Transparenz in der Textilindustrie ein gefragtes Gut. So ist recot2 beispielsweise fester Bestandteil der capsule "Responsible" von Hugo Boss. Auch der Wunsch nach möglichst geschlossenen Kreisläufen hat recot2, so das Unternehmen, laut einen deutlichen Nachfrage-Boost gegeben. Die verarbeitete neue Bio-Baumwolle ist GOTS-zertifiziert.

Für 2021 erwartet Gebr. Otto, dass sich die Menge des verkauften Recycling-Baumwollgarns im Vergleich zum Vorjahr verdoppeln wird.

Quelle:

Gebr. Otto Baumwollfeinzwirnerei GmbH + Co. KG 

Doktorandin des ITFT erhält den Manfred Hirschvogel Preis (c) DITF Denkendorf
02.07.2021

Doktorandin des ITFT erhält den Manfred Hirschvogel Preis

Dr.-Ing. Larissa Born, wissenschaftliche Mitarbeiterin am Institut für Textil- und Fasertechnologien (ITFT), wurde am 02. Juli 2021 im Rahmen der Abschlussfeier der Masterabsolvent:innen der Maschinenbau-Fakultäten an der Universität Stuttgart mit dem Manfred Hirschvogel Preis 2021 ausgezeichnet. Der mit 5.000 Euro dotierte Preis wird jährlich an allen TU9-Universitäten für die beste Dissertation aus dem Bereich Maschinenbau verliehen. Die prämierte Doktorarbeit trägt den Titel „Grundlagen für die Auslegung und Gestaltung eines Hybridmaterials für außen liegende, adaptive Fassadenbauteile aus Faserverbundkunststoff“. Dr.-Ing. Marc Hirschvogel, Kuratoriumsvorsitzender der Frank Hirschvogel Stiftung, lobte bei der Preisverleihung insbesondere den innovativen Ansatz und die wissenschaftliche Tiefe der Arbeit.

Dr.-Ing. Larissa Born, wissenschaftliche Mitarbeiterin am Institut für Textil- und Fasertechnologien (ITFT), wurde am 02. Juli 2021 im Rahmen der Abschlussfeier der Masterabsolvent:innen der Maschinenbau-Fakultäten an der Universität Stuttgart mit dem Manfred Hirschvogel Preis 2021 ausgezeichnet. Der mit 5.000 Euro dotierte Preis wird jährlich an allen TU9-Universitäten für die beste Dissertation aus dem Bereich Maschinenbau verliehen. Die prämierte Doktorarbeit trägt den Titel „Grundlagen für die Auslegung und Gestaltung eines Hybridmaterials für außen liegende, adaptive Fassadenbauteile aus Faserverbundkunststoff“. Dr.-Ing. Marc Hirschvogel, Kuratoriumsvorsitzender der Frank Hirschvogel Stiftung, lobte bei der Preisverleihung insbesondere den innovativen Ansatz und die wissenschaftliche Tiefe der Arbeit.

Mit ihrer Doktorarbeit stellt Larissa Born eine grundlegende Methodik zur Entwicklung adaptiver Faserverbundkunststoffe zur Verfügung und wandte diese beispielhaft auf ein Hybridmaterial aus glasfaserverstärktem Kunststoff, Elastomer und thermoplastischem Polyurethan an. Zwischen steifen Bauteilbereichen werden lokal nachgiebige Bereiche (Gelenke) durch Anpassung des Materialaufbaus integriert. Um die adaptiven Material-eigenschaften analysieren zu können, entwickelte sie darüber hinaus ein neues Prüf-verfahren, das die Biegung eines Prüfkörpers um bis zu 180° ermöglicht. Das neuartige Hybridmaterial lässt eine Dauerbelastung von 5.000 Biegezyklen um 180° mit lediglich marginalem Festigkeitsverlust zu. Ergebnis der durchgeführten Analysen ist eine Datenbasis inklusive Regressionsmodell auf deren Grundlage sich die mechanischen Eigenschaften eines Gelenk-Bauteils einstellen lassen.

Das Hybridmaterial hat bereits in verschiedenen Demonstratoren Anwendung gefunden, die mit dem AVK Innovation Award (Flectofold) und dem Materialica Gold Award (Flexafold) ausgezeichnet wurden. „Mit ihrer Arbeit ist es Larissa Born gelungen, eine völlig neue, materialtechnische Grundlage für die Entwicklung adaptiver Faserverbundkunststoffe zu schaffen.“, lobte Prof. Dr.-Ing. Götz T. Gresser, Doktorvater und Institutsleiter des ITFT, die Arbeit anlässlich der Preisverleihung. „Die Anwendung ist nicht beschränkt auf den architek-tonischen Kontext, sondern kann ebenso auf andere Bereiche wie beispielsweise Automobil und Luftfahrt übertragen werden. So können mechanische, wartungsintensive Gelenke durch verschleißarme, nachgiebige Mechanismen ersetzt werden.“

Nach der abgeschlossenen Promotion wird Larissa Born als stellvertretende Institutsleiterin des ITFT ihre Forschungsarbeiten am Institut fortsetzen. Gemeinsam mit Prof. Gresser gilt es, das bisherige Forschungsfeld zu vertiefen und neue Forschungsthemen im Bereich Faserverbund zu eröffnen.

(c) German Popp. Dr. Marina Crnoja-Cosic (Kelheim Fibres) und Linda Dengler (Microbify)
28.06.2021

Kelheim Fibres überreicht Preis beim „Plan B“-Gründerwettbewerb

Zum vierten Mal zeichnete in diesem Jahr der internationale Start-up Wettbewerb „Plan B – Biobasiert.Business.Bayern.“ des BioCampus Straubing die besten Geschäftsideen für biobasierte Lösungen aus.

Dr. Crnoja-Cosic, Director New Business Development, und Matthew North, Commercial Director, vertraten Kelheim Fibres bei der Preisverleihung. Der Hersteller von Viskosespezialfasern arbeitet seit Jahren mit dem BioCampus Straubing zusammen und unterstützt den Wettbewerb in diesem Jahr als Preis-Pate. In dieser Funktion gratulierte Dr. Crnoja-Cosic dem neu gegründeten Team der Microbify GmbH zum dritten Platz und überreichte einen Scheck über 3.000 Euro. Dr. Crnoja-Cosic würdigte vor allem den Ansatz, bestehende Infrastruktur innovativ umzunutzen.
Als Ausgründung aus der Universität Regensburg arbeitet Microbify unter anderem an der Nutzung alter Erdgasspeicher für die Produktion von grünem Erdgas durch extremophile Mikroorganismen.

Zum vierten Mal zeichnete in diesem Jahr der internationale Start-up Wettbewerb „Plan B – Biobasiert.Business.Bayern.“ des BioCampus Straubing die besten Geschäftsideen für biobasierte Lösungen aus.

Dr. Crnoja-Cosic, Director New Business Development, und Matthew North, Commercial Director, vertraten Kelheim Fibres bei der Preisverleihung. Der Hersteller von Viskosespezialfasern arbeitet seit Jahren mit dem BioCampus Straubing zusammen und unterstützt den Wettbewerb in diesem Jahr als Preis-Pate. In dieser Funktion gratulierte Dr. Crnoja-Cosic dem neu gegründeten Team der Microbify GmbH zum dritten Platz und überreichte einen Scheck über 3.000 Euro. Dr. Crnoja-Cosic würdigte vor allem den Ansatz, bestehende Infrastruktur innovativ umzunutzen.
Als Ausgründung aus der Universität Regensburg arbeitet Microbify unter anderem an der Nutzung alter Erdgasspeicher für die Produktion von grünem Erdgas durch extremophile Mikroorganismen.

Der Wandel von einer fossilen zu einer biobasierten Wirtschaft voranzutreiben, ist ein erklärtes Ziel von Kelheim Fibres, dessen Spezialfasern fossile Materialien in immer mehr Anwendungen ersetzen sollen. Dazu sucht der Faserhersteller in einem Open Innovation-Ansatz Inspiration und Austausch innerhalb der eigenen Branche ebenso wie mit branchenfremden Innovationspartnern, Start-ups und der Wissenschaft.

Weitere Informationen:
Kelheim Fibres Microbify GmbH
Quelle:

Kelheim Fibres GmbH

 Künstliche Intelligenz für Maschinen hilft Mensch und Umwelt (c) SKZ
Vliesstoff-Kompaktanlage (DILO) zur Herstellung von Nadel-Vliesen aus Sonderfasern.
23.06.2021

Künstliche Intelligenz für Maschinen hilft Mensch und Umwelt

Der Maschinenbau ist eine Stärke der deutschen Industrie. In Leitbranchen, deren Produkte in einem globalisierten Umfeld starker Konkurrenz ausgesetzt sind, kann der Einsatz Künstlicher Intelligenz (KI) dazu beitragen, Industriekapazitäten und Knowhow in Deutschland zu halten, im Maschinenbau und nachgelagerten Branchen. Doch erst durch praxisnahe Anwendung in der Industrie kann KI seine Stärken für Unternehmen voll entfalten. Wie das mit dem Beitrag angewandter Forschung geht, zeigen Textilindustrie und -maschinenbau ebenso wie die Kunststoffbranche.

Mit der Corona-Krise sind Vliesstoffe über die Fachwelt hinaus bekannt geworden, denn sie bilden das Ausgangsmaterial für Schutzmasken. Die aufgetretenen Engpässe am Markt 2020 zeigten, wie stark Deutschland hier von Lieferungen aus dem Ausland abhängig ist. Zugleich ist Deutschland in anderen Vliesstoff-Segmenten und bei Maschinen für die Vliesstoffherstellung eine wichtige Größe auf den Weltmärkten. Damit das so bleibt, arbeitet die Branche an Innovationen. Ein zentraler Baustein dafür: Die Nutzung Künstlicher Intelligenz (KI).

Das Auge auf der lernenden Maschine

Der Maschinenbau ist eine Stärke der deutschen Industrie. In Leitbranchen, deren Produkte in einem globalisierten Umfeld starker Konkurrenz ausgesetzt sind, kann der Einsatz Künstlicher Intelligenz (KI) dazu beitragen, Industriekapazitäten und Knowhow in Deutschland zu halten, im Maschinenbau und nachgelagerten Branchen. Doch erst durch praxisnahe Anwendung in der Industrie kann KI seine Stärken für Unternehmen voll entfalten. Wie das mit dem Beitrag angewandter Forschung geht, zeigen Textilindustrie und -maschinenbau ebenso wie die Kunststoffbranche.

Mit der Corona-Krise sind Vliesstoffe über die Fachwelt hinaus bekannt geworden, denn sie bilden das Ausgangsmaterial für Schutzmasken. Die aufgetretenen Engpässe am Markt 2020 zeigten, wie stark Deutschland hier von Lieferungen aus dem Ausland abhängig ist. Zugleich ist Deutschland in anderen Vliesstoff-Segmenten und bei Maschinen für die Vliesstoffherstellung eine wichtige Größe auf den Weltmärkten. Damit das so bleibt, arbeitet die Branche an Innovationen. Ein zentraler Baustein dafür: Die Nutzung Künstlicher Intelligenz (KI).

Das Auge auf der lernenden Maschine

Am ITA Augsburg hat man dafür Grundlagen in einem Projekt gelegt, auf denen sich nun aufbauen lässt. Die Vision: Die Maschine zur Vliesstoffproduktion passt die Parameter entsprechend den Erfordernissen im laufenden Betrieb autonom an. Etwaig auftretende Fehler werden von der Maschine selbstständig diagnostiziert, die Drehzahlen entsprechend angepasst. „Wir haben im Projekt EasyVlies gezeigt, wie sich mit der Nutzung von Algorithmen für die Vliesstoffproduktion Material- und Energiekosten einsparen lassen. Zusammen mit Partnern aus der Industrie haben wir erreicht, dass die Maschine zentrale Parameter wie Drehzahlen und Abstände, von denen eine große Kombinationsmenge für das Erreichen der gewünschten Produktqualität notwendig sind, durch das entwickelte KI-Modell vorhergesagt werden. „Die Abstände der bis zu 40 Arbeitselemente in der Maschine bestimmen dabei in Kombination mit den Drehzahlen der beteiligten Walzen die Öffnung der Faserflocken bis zur Einzelfaser und die Bildung des Vlieses“, erläutert ITA-Augsburg Geschäftsführer Prof. Stefan Schlichter. Die naturwissenschaftlichen Zusammenhänge und Wechselwirkungen zwischen den Drehzahlen und den Qualitätsparametern der Vliesstoffproduktion sind nicht eindeutig bekannt. Gerade deshalb kann KI hier seine Vorteile ausspielen. „Denn Künstliche Intelligenz kann auch diffuse Zusammenhänge modellieren und simulieren“, betont Schlichter. Die Algorithmen dafür hat Maschinenbauingenieur Dr. Frederik Cloppenburg aus dem Aachener ITA-Stammhaus entwickelt, 280 Versuche wurden im Zusammenspiel mit der KI-Entwicklung durchgeführt.

In der unternehmerischen Praxis lernen die Algorithmen nun hinzu. Das zeigt  bei einem Vliesstoffbetrieb der Fahrzeugbranche bereits erste Erfolge in der betrieblichen Praxis. Im nächsten Schritt arbeiten die ITA-Forschenden daran, Messtechnik wie Kamerasysteme und strahlungsbasierte Messsysteme für die Gleichmäßigkeit des Vliesstoffs in die Maschinen zu integrieren. Ziel: Fehler so prognostizieren, dass sie gar nicht erst auftreten. Das Aufkommen an Vliesstoff-Ausschuss soll so um 30 bis 50 Prozent sinken. Angesichts von bislang jährlich allein in Deutschland anfallender Ausschussware im Wert von 150 Mio. Euro, das entspricht 10 Prozent des Branchenumsatzes, ein erheblicher Anreiz. „Die hoch qualifizierten Facharbeiter beaufsichtigen sozusagen die lernende Maschine“, erklärt Schlichter.

Industrie 4.0 wird in der Kunststoffbranche künftig auch benötigt, um das Ziel höherer Recyclingquoten zu erreichen. Denn eine weniger einheitliche Rohstoffbasis macht lernende Maschinen noch wertvoller. Das ist auch Ausgangspunkt des vom Bundesforschungsministerium (BMBF) geförderten Verbundprojekts CYCLOPS des Kunststoff-Zentrums (SKZ) und namhaften Partnern aus Wissenschaft und Wirtschaft. Durch den Einsatz von KI sollen Materialströme automatisiert klassifiziert werden, damit sie sich optimal verwenden lassen. „Die Maschinen sollen künftig eigenständig erkennen, in welche Anwendungen produzierte Materialien eines bestimmten Typs gehen können“ erläutert SKZ-Gruppenleiter Digitalisierung, Christoph Kugler. Ein Faktor: Die Fließfähigkeit des Kunststoffs, seine Viskosität. Je kürzer die Polymerketten des Materials, desto größer, vereinfacht gesagt, ihre Fließfähigkeit. Für diese Fließfähigkeit spielt andererseits auch das Druckniveau in der Maschine eine Rolle. Hier kommt wiederum die KI ins Spiel: „Durch Künstliche Intelligenz können Materialeigenschaften und selbst lernende Maschinensteuerungen sehr gut ineinanderwirken, so unsere Erwartung“, erklärt Kugler. Grundlage für die angewandte Forschung im Projekt CYCLOPS sind sowohl Prozessdaten aus den Maschinen, welche die Materialqualität beschreiben können, als auch Daten entlang des Lebenswegs von Material und Produkt. Im Rahmen des Projektes werden damit die Transparenz und die Informationsdichte erhöht, welche nach wie vor einige der größten Hemmnisse der Kreislaufwirtschaft sind.

Neue Expertisefelder wie Erklärbare KI erschlossen

Das SKZ baut mit dem Projekt auf KI-Expertise auf, die über abgeschlossene und noch laufende Projekte erarbeitet wurde. In der Vergangenheit lag der Schwerpunkt in der Entwicklung sogenannter Softsensoren aus Prozessdaten zur Berechnung komplexer Qualitätskennwerte wie z.B. Viskosität oder Vernetzungsgrad des Kunststoffs. Durch die Weiterentwicklung der Technologie werden neue Expertisefelder erschlossen, so z.B. Optimierung der Prozessmodellierung durch KI, Prognose von Materialverhalten unter Last oder auch erklärbare KI (XAI), sie beschreibt den Weg, auf dem Algorithmen zu ihren Ergebnissen gelangen. In den letzten Jahren wurde ebenfalls der Einsatz von digitalen Technologien und KI im Kontext der Kreislaufwirtschaft am SKZ forciert, so in den noch jeweils bis ins nächste Jahr hinein laufenden Projekten Di-Plast und DiLinK. Während Di-Plast ein EU-Projekt ist, wird DiLink ebenfalls vom BMBF gefördert. Mit dem FIR e.V. ist ein weiteres Institut der Zuse-Gemeinschaft im DiLink-Projektkonsortium vertreten, mit dem Fokus auf dem Thema Geschäftsmodelle. Denn diese verändern sich durch das Vordringen der KI in immer mehr Aspekten des Maschinenbaus.