Aus der Branche

Zurücksetzen
35 Ergebnisse
The cushion helps the user to operate different applications by means of sensor surfaces, light and wireless communication, for example an alarm function by light. (c) ITA
The cushion helps the user to operate different applications by means of sensor surfaces, light and wireless communication, for example an alarm function by light.
22.02.2019

Smart Textiles Micro Factory bringt Smart Textiles auf der Texprocess 2019 in Serienproduktion

Die Studie „Technologies, Markets and Players“ von E-Textiles 2018-2028 prognostiziert ein zwei Milliarden Dollar Wachstum des Smart Textile-Marktes. Dieses Wachstum kann nur erreicht werden, wenn die bisherige meist manuelle Fertigung durch Serienfertigung ersetzt wird. Das Institut für Textiltechnik der RWTH Aachen University, kurz ITA, zeigt mit der Smart Textiles Micro Factory auf dem Texprocess-Stand, Standnummer C02, im Übergang der Hallen 4.1 und 5.1 mit der Produktion eines smarten Kissens erstmalig, wie gemeinsam mit verschiedenen Partnern ein smartes Textil vom Design zum fertigen Produkt gefertigt werden kann.

Das Produkt und der Fertigungsprozess sind Ergebnis von Co-Innovation. Zukünftig soll Co-Innovation für Smart Textiles über die Plattform GeniusTex realisiert werden. Im strategischen Großprojekt des BMWi im Rahmen der Smart Service Welt entwickelt das ITA gemeinsam mit Partnern aus Industrie und Forschung den Online-Anlaufpunkt für Smart Textile Innovation.

Die Studie „Technologies, Markets and Players“ von E-Textiles 2018-2028 prognostiziert ein zwei Milliarden Dollar Wachstum des Smart Textile-Marktes. Dieses Wachstum kann nur erreicht werden, wenn die bisherige meist manuelle Fertigung durch Serienfertigung ersetzt wird. Das Institut für Textiltechnik der RWTH Aachen University, kurz ITA, zeigt mit der Smart Textiles Micro Factory auf dem Texprocess-Stand, Standnummer C02, im Übergang der Hallen 4.1 und 5.1 mit der Produktion eines smarten Kissens erstmalig, wie gemeinsam mit verschiedenen Partnern ein smartes Textil vom Design zum fertigen Produkt gefertigt werden kann.

Das Produkt und der Fertigungsprozess sind Ergebnis von Co-Innovation. Zukünftig soll Co-Innovation für Smart Textiles über die Plattform GeniusTex realisiert werden. Im strategischen Großprojekt des BMWi im Rahmen der Smart Service Welt entwickelt das ITA gemeinsam mit Partnern aus Industrie und Forschung den Online-Anlaufpunkt für Smart Textile Innovation.

Bushing heated via induction of the novel glass fibre production line (c) ITA
Bushing heated via induction of the novel glass fibre production line
21.02.2019

ITA at JEC World 2019: newly constructed induction heated glass fibre production line among other exhibits

At the joint stand of the Aachen Centre for Integrative Lightweight Construction (AZL) in Hall 5A, booth D17, the Institut für Textiltechnik of RWTH Aachen University (ITA) will demonstrate its expertise in the field of glass fibres, preforms and textile concrete 12-14 March 2019 in Paris.
The exhibits come from various fields of application and address the automotive, aerospace and mechanical engineering sectors.

At the joint stand of the Aachen Centre for Integrative Lightweight Construction (AZL) in Hall 5A, booth D17, the Institut für Textiltechnik of RWTH Aachen University (ITA) will demonstrate its expertise in the field of glass fibres, preforms and textile concrete 12-14 March 2019 in Paris.
The exhibits come from various fields of application and address the automotive, aerospace and mechanical engineering sectors.

  1. Innovative glass fibre research at ITA
    The newly constructed induction heated glass fibre production line enables increased flexibility in research. For the first time, glass fibres will be produced live at the ITA booth at JEC World. One of the innovations of the system is the inductively heated bushing. It features a flexible design and consists of a platinum/rhodium alloy (Pt/Rh20) for use in high-temperature glasses.
    The glass fibre production line was designed in such a way that new concepts and ideas can be tested quickly. The modular design allows a high flexibility, the induction system a significantly faster operability.
    Research and development projects can therefore be carried out faster and more cost-effectively.
     
  2. DrapeCube - Forming of textile semi-finished products
    The DrapeCube offers a cost-effective design for the production of fibre preforms from textile semi-finished products. It is used in the production of preforms for prototypes and in small series and is suit-able for companies active in the production of fibre-reinforced plas-tics (FRP).
    In the production of FRP components, the preforming process de-fines a large part of the subsequent component costs. In small- and medium-sized enterprises, this process step is often still carried out manually. This results in high quality fluctuations and component prices. Especially in the case of highly stressed structural components, the fluctuation in quality leads to oversizing of the components.
    Thus, the lightweight construction potential of fiber-reinforced plastics is underused. One solution is offered by the stamp forming process adapted from the sheet metal forming industry for shaping rein-forcing textiles. The textile is inserted between two mould halves (male and female) and automatically formed. Due to high plant and tooling costs, this process is used almost exclusively in large-scale production.
    The ITA has developed the DrapeCube forming station which offers a cost-effective alternative and is able to completely reproduce the current state of the art for forming textile half branches. The process steps will be demonstrated in a video at the booth.
     
  3. Carbon fibre reinforced plastic (CFRP) preform
    The CFRP preform consists of carbon multiaxial fabrics formed by expanded polystyrene (EPS) to optimise draping quality. Preforms of increased quality can be produced by gentle, textile-compatible forming with foam expansion. For the first time, foam expansion was used to form preforms in such a way that the draping quality is improved compared to classic stamp forming.
    The advantages of the CFRP preform lie in the savings in plant costs, as the investment is much lower. In addition, the proportion of waste is reduced because near-net-shape production is possible. In addition, rejects are reduced, as fewer faults occur in the textile.
     
  4. Embroidered preform with integrated metal insert
    The 12k carbon fibre rovings are shaped into a preform using Tai-lored Fibre Placement (TFP) which is a technical embroidery pro-cess. For the further layer build-up, a fastener is not only integrated under the roving layers but also fixed by additional loops. The highly integrative preforming approach offers the possibility of reducing weight and process steps as well as increasing mechanical perfor-mance.
    Until now, inserts were glued or holes had to be drilled in the com-ponent. Bonded fasteners are limited by the adhesive surface. The bonding of fasteners into drilled holes results in high drill abrasion and thus high tool wear.
    The advantages of the embroidered preform with integrated metal fasteners are the reduction of scrap due to TFP preforming and the increase in the specific pull-out force. In addition, it is possible to automatize the production of integrative preforms. This makes the preform with integrated metal fasteners interesting for the automotive and aerospace industries.
Weitere Informationen:
RWTH Aachen, ITA, Textiltechnik
Quelle:

Institut für Textiltechnik of RWTH Aachen University

Induktiv beheiztes Bushing der neuartigen Glasfaserspinnanlage (c) ITA
Induktiv beheiztes Bushing der neuartigen Glasfaserspinnanlage,
21.02.2019

ITA zeigt auf der JEC World 2019 u.a. neue Glasfaserspinnanlage

Am Gemeinschaftsstand des Aachener Zentrums für integrativen Leichtbau (AZL) in Halle 5A Stand D17 demonstriert das Institut für Textiltechnik der RWTH Aachen University (ITA) vom 12.-14. März 2019 in Paris seine Kompetenzen in den Bereichen Glasfasern, Preforms und Carbon Composites.
Die Exponate stammen aus unterschiedlichen Anwendungsfeldern und adressieren die Branchen Automotive, Luft- und Raumfahrt und Maschinenbau.

Am Gemeinschaftsstand des Aachener Zentrums für integrativen Leichtbau (AZL) in Halle 5A Stand D17 demonstriert das Institut für Textiltechnik der RWTH Aachen University (ITA) vom 12.-14. März 2019 in Paris seine Kompetenzen in den Bereichen Glasfasern, Preforms und Carbon Composites.
Die Exponate stammen aus unterschiedlichen Anwendungsfeldern und adressieren die Branchen Automotive, Luft- und Raumfahrt und Maschinenbau.

  1. Innovative Glasfaserforschung am ITA
    Der modulare Aufbau der neu entwickelten, induktiv beheizten Glasfaserproduktionsanlage ermöglicht hohe Flexibilität in der Forschung und das Induktionssystem eine deutlich schnellere Bedienbarkeit. Erstmalig werden am Stand des ITA Glasfasern live auf der JEC World hergestellt. Zu den Neuheiten der Anlage gehört das induktiv beheizte Bushing. Es hat ein flexibles Design und besteht aus einer Platin-/Rhodium-Legierung (Pt/Rh20) zum Einsatz für Hochtemperaturgläser. Die Glasfaserproduktionsanlage wurde so konstruiert, dass sich neue Konzepte und Ideen schnell erproben lassen.
     
  2. DrapeCube – Umformung textiler Halbzeuge
    Der DrapeCube bietet eine kostengünstige Konstruktion zur Herstellung von Faservorformlingen aus textilen Halbzeugen. Er kommt zum Tragen bei der Fertigung von Preforms für Prototypen und in der Kleinserie und eignet sich für Unternehmen, die in der von faserverstärkten Kunststoffen (FVK) tätig sind.
    Bei der Produktion von FVK-Bauteilen wird im Preformingprozess ein Großteil der späteren Bauteilkosten definiert. In kleinen und mittelständischen Unternehmen wird dieser Prozessschritt oft noch manuell ausgeführt. Daraus resultieren hohe Qualitätsschwankungen und Bauteilpreise. Besonders bei hochbelasteten Strukturbauteilen führt die Qualitätsschwankung dazu, dass die Bauteile überdimensioniert sind. So wird das Leichtbaupotential von faserverstärkten Kunststoffen zu wenig genutzt.
    Eine Lösung bietet das aus der blechumformende Industrie adaptierte Stempelumformverfahren zur Formgebung von Verstärkungstextilien. Dabei wird das Textil zwischen zwei Formhälften (Patrize und Matrize) eingelegt und automatisiert umgeformt. Dieses Verfahren kommt aufgrund hoher Anlagen- und Werkzeugkosten fast ausschließlich in der Großserie zum Einsatz. Das ITA hat die Formgebungsstation DrapeCube entwickelt, die eine kostengünstige Alternative bietet und in der Lage ist, den aktuellen Stand der Technik für die Formgebung textiler Halbzeige vollständig abzubilden. Am Stand werden die Prozessschritte in einem Video demonstriert.
     
  3. Kohlenstoffaserverstärkter Kunststoff (CFK)-Preform
    Der CFK-Preform besteht aus Carbon-Multiaxial-Gelege, das durch expandiertes Polystyrol (EPS) umgeformt ist, um die Drapierqualität zu optimieren. Durch die schonende, textilgerechte Umformung mittels Schaumexpansion können Preforms in erhöhter Qualität hergestellt werden. Erstmalig wurde die Schaumexpansion genutzt, um Preforms so umzuformen, dass die Drapierqualität im Vergleich zur klassischen Stempelumformung verbessert wird.
    Die Vorteile des so umgeformten CFK-Preforms liegen in der Einsparung von Anlagenkosten, da das Investment viel geringer ist. Dazu wird der Verschnittanteil reduziert, weil eine endkonturnahe Fertigung ermöglicht wird. Darüber hinaus wird der Ausschuß verringert, da weniger Fehler im Textil entstehen.
    Zielgruppe sind die Hersteller von faserverstärkten Bauteilen, insbesondere für die Klein- und Mittelserie, bei denen die klassische Stempelumformung nicht wirtschaftlich ist.
     
  4. Gestickter Preform mit integriertem Metallinsert
    Die 12k Carbonfaserrovings werden durch das Spezial-Stickverfahren Tailored Fibre Placement (TFP) zu einem Preform abgelegt. Beim weiteren Lagenaufbau wird der Insert nicht nur unter den Rovinglagen integriert, sondern durch zusätzliches Umschlaufen fixiert. Der hochintegrative Preformingansatz bietet die Möglichkeit zur Reduktion von Gewicht und Prozessschritten sowie zur Steigerung der mechanischen Performance.
    Bisher wurden Inserts geklebt oder es waren Bohrungen im Bauteil notwendig. Aufgeklebte Inserts sind durch die Klebefläche limitiert. Das Einkleben von Inserts in Bohrungen zieht hohe Bohrerabrasion und damit hohen Werkzeugverschleiß nach sich.
    Die Vorteile des gestickten Preforms mit integriertem Metallinsert bestehen in der Reduktion von Verschnitt durch TFP-Preforming und der Steigerung der spezifischen Ausreißkraft. Dazu besteht die Möglichkeit, die Herstellung integrativer Preforms zu automatisieren. Damit ist der Preform mit integriertem Metallinsert interessant für die Zielgruppe Automotive und Luft- und Raumfahrt.
Weitere Informationen:
RWTH Aachen, ITA, Textiltechnik
Quelle:

Institut für Textiltechnik of RWTH Aachen University

Concrete bar stool with hybrid carbon reinforcement for fast, cost-efficient part production (c) Institut für Textiltechnik of RWTH Aachen University
29.10.2018

ITA at the Composites Europe 2018 in Stuttgart

At the Composites Europe in Stuttgart /06 - 08 November 2018), the Institut für Textiltechnik of RWTH Aachen University, short ITA, will be showing products, components and machines along the fibre composite process chain. The ITA will present itself at the booth of the Aachen Center for Integrative Lightweight Construction (AZL) in hall 9, booth E70. Various demonstrators will be used to present selected innovative processes and products over the individual steps. The exhibits come from different fields of application: From mobility applications to the construction sector. Here is an example from the field of "construction composites":

With the concrete bar stool with hybrid carbon reinforcement, the ITA demonstrates that textiles as reinforcement structures for concrete elements allow a enormous geometrical freedom of Design. So far, manual positioning of the textile reinforcement used to be time-consuming and complex, as permitted tolerances are in the millimetre range. Thus the production mainly contributed to the high costs of textile concrete.

At the Composites Europe in Stuttgart /06 - 08 November 2018), the Institut für Textiltechnik of RWTH Aachen University, short ITA, will be showing products, components and machines along the fibre composite process chain. The ITA will present itself at the booth of the Aachen Center for Integrative Lightweight Construction (AZL) in hall 9, booth E70. Various demonstrators will be used to present selected innovative processes and products over the individual steps. The exhibits come from different fields of application: From mobility applications to the construction sector. Here is an example from the field of "construction composites":

With the concrete bar stool with hybrid carbon reinforcement, the ITA demonstrates that textiles as reinforcement structures for concrete elements allow a enormous geometrical freedom of Design. So far, manual positioning of the textile reinforcement used to be time-consuming and complex, as permitted tolerances are in the millimetre range. Thus the production mainly contributed to the high costs of textile concrete.

At the ITA, the two industrial partners Albani Group GmbH & Co. KG and DuraPact 2.0 Kompetenzzentrum Faserbeton GmbH developed a new hybrid reinforcement with integrated spacer. This hybrid reinforcement reduces the time required to position the reinforcement by up to 60 percent and thus makes the material significantly more

The new, cost-effective hybrid reinforcement contains an integrated spacer and thus faciliates the positioning of dry and coated reinforcements. The integrated spacer allows several layers of reinforcement to be stacked quickly, allowing the desired degree of reinforcement to be set. The hybrid reinforcement consists of a carbon or glass fibre grid joined with a permeable polyamide mat and will be available in roll form from industrial partners in the near future.

Weitere Informationen:
Composites AZL
Quelle:

Institut für Textiltechnik of RWTH Aachen University

Barhocker aus Beton mit hybrider Carbon-Bewehrung zur schnellen, kosteneffizienten Positionierung der Textilbewehrung (c) Institut für Textiltechnik of RWTH Aachen University
29.10.2018

ITA auf der Composites Europe 2018 in Stuttgart

Das Institut für Textiltechnik der RWTH Aachen University, kurz ITA, zeigt auf der Composites Europe in Stuttgart vom 06.-08. November Produkte, Bauteile und Maschinen entlang der Faserverbundprozesskette. Das ITA präsentiert sich auf dem Stand des Aachener Zentrums für integrativen Leichtbau (AZL) in Halle 9, Stand E70. Anhand verschiedener Demonstratoren werden ausgewählte innovative Prozesse und Produkte über die einzelnen Schritte hin dargestellt. Die Exponate stammen aus unterschiedlichen Anwendungsfeldern: Von Mobilitätsanwendungen bis hin zur Baubranche. Anbei ein Beispiel aus dem Baubereich:

Durch den Barhocker aus Beton mit hybrider Carbon-Textilbewehrung beweist das ITA, dass Textilbetonelemente eine enorme geometrische Gestaltungsfreiheit ermöglichen und gleichzeitig einfach herstellbar sind. Bislang war die manuelle Positionierung der Textilbewehrung zeitaufwändig und komplex, da zulässige Toleranzen im Millimeterbereich liegen. So trug die Fertigung hauptsächlich zu den hohen Kosten von Textilbeton bei.

Das Institut für Textiltechnik der RWTH Aachen University, kurz ITA, zeigt auf der Composites Europe in Stuttgart vom 06.-08. November Produkte, Bauteile und Maschinen entlang der Faserverbundprozesskette. Das ITA präsentiert sich auf dem Stand des Aachener Zentrums für integrativen Leichtbau (AZL) in Halle 9, Stand E70. Anhand verschiedener Demonstratoren werden ausgewählte innovative Prozesse und Produkte über die einzelnen Schritte hin dargestellt. Die Exponate stammen aus unterschiedlichen Anwendungsfeldern: Von Mobilitätsanwendungen bis hin zur Baubranche. Anbei ein Beispiel aus dem Baubereich:

Durch den Barhocker aus Beton mit hybrider Carbon-Textilbewehrung beweist das ITA, dass Textilbetonelemente eine enorme geometrische Gestaltungsfreiheit ermöglichen und gleichzeitig einfach herstellbar sind. Bislang war die manuelle Positionierung der Textilbewehrung zeitaufwändig und komplex, da zulässige Toleranzen im Millimeterbereich liegen. So trug die Fertigung hauptsächlich zu den hohen Kosten von Textilbeton bei.

Am ITA wurde gemeinsam mit den beiden Industriepartnern Albani Group GmbH & Co. KG und DuraPact 2.0 Kompetenzzentrum Faserbeton GmbH eine neue Hybridbewehrung mit integriertem Ab-standshalter entwickelt. Diese Hybridbewehrung senkt die erforderliche Zeit zur Positionierung der Bewehrung um bis zu 60 Prozent und macht den Werkstoff damit deutlich wettbewerbsfähiger.

Die kostengünstige, hybride Bewehrung enthält einen integrierten Abstandshalter und ermöglicht damit die einfache Positionierung von trockenen und beschichteten Bewehrungen. Durch den integrierten Abstandhalter lassen sich schnell mehrere Bewehrungslagen stapeln, wodurch der gewünschte Bewehrungsgrad einstellbar ist. Die Hybridbewehrung besteht aus einem Carbon- oder Glasfasergitter, das mit einer durchlässigen Matte aus Polyamid gefügt ist und in naher Zukunft bei den Industriepartnern als Rollenware erhältlich ist.

Weitere Informationen:
Composites AZL
Quelle:

Institut für Textiltechnik of RWTH Aachen University

03.09.2018

New ENGEL Injection Molding System at AZL of RWTH Aachen University

The Aachen Center for Integrative Lightweight Production (AZL) of RWTH Aachen University is installing a new ENGEL injection molding system in its technical center. Engel Deutschland GmbH – in cooperation with the ENGEL Centre for Lightweight Composite Technologies in Austria – will install the 2-component injection molding system with turning plate and 17,000 kN clamping force in 2019. This machine setup is the basis for further developments of efficient inline-combination technologies using different kinds of polymer performance materials.

The ENGEL injection molding system will enable innovative combinations of already established fiber-reinforced plastics (FRP) processes and the development of new individual processes. The focus is on increasing resource efficiency in lightweight production. With the new equipment, new research and development initiatives can explore the more efficient use of materials, which are eventually the key to the mass production of lightweight components. The research will address multi-material systems, continuous processes, process chains as well as self-optimizing processes.

The Aachen Center for Integrative Lightweight Production (AZL) of RWTH Aachen University is installing a new ENGEL injection molding system in its technical center. Engel Deutschland GmbH – in cooperation with the ENGEL Centre for Lightweight Composite Technologies in Austria – will install the 2-component injection molding system with turning plate and 17,000 kN clamping force in 2019. This machine setup is the basis for further developments of efficient inline-combination technologies using different kinds of polymer performance materials.

The ENGEL injection molding system will enable innovative combinations of already established fiber-reinforced plastics (FRP) processes and the development of new individual processes. The focus is on increasing resource efficiency in lightweight production. With the new equipment, new research and development initiatives can explore the more efficient use of materials, which are eventually the key to the mass production of lightweight components. The research will address multi-material systems, continuous processes, process chains as well as self-optimizing processes.

Dr.-Ing. Michael Emonts, Managing Director of the Aachen Center for Integrative Lightweight Production (AZL) is looking forward to realizing new innovative lightweight production process with the new injection molding system: “This new injection molding system offers us as specialists for lightweight production technology in cooperation with the injection molding experts of the Institute of Plastics Processing – the IKV – the opportunity to establish hybrid processes for industrial lightweight applications. The system will expand our existing machinery in the AZL Technical Center and will be available as an important platform for lightweight production research at RWTH Aachen University.”

Being a Partner of the AZL, ENGEL has already been working closely with the AZL for many years as a Partner Company of the AZL Partner Network. Dr. Stefan Engleder, CEO of the ENGEL Group, emphasizes the importance of close collaboration with technical universities and especially with the AZL: “The AZL provides great conditions for industry-related research activities in the field of lightweight composites as it is characterized by a strong interdisciplinary approach. It benefits from the great infrastructure and the collaboration with well-known institutes of the RTWH Aachen University. ENGEL is looking forward to working together with the AZL on developing efficient lightweight composite mass production processes.”

In addition to the numerous composite and lightweight equipment at the RWTH Aachen Campus, the AZL Technical Center comprises large-scale equipment for the development of processes for lightweight production, such as a composite press from Schuler Pressen GmbH with 18,000 kN clamping force.

 

(c) ENGEL AUSTRIA GmbH: (l. to r.) Dr. Norbert Müller (Leiter des ENGEL Technologiezentrums für Leichtbau-Composites), Dr. Michael Emonts (Geschäftsführer des Aachener Zentrums für integrativen Leichtbau (AZL) der RWTH Aachen), Rolf Saß (Geschäftsführer der ENGEL Deutschland GmbH) und Dr. Christoph Steger (Geschäftsführer Vertrieb der ENGEL Holding).
03.09.2018

ENGEL installiert neues Spritzgießsystem im AZL der RWTH Aachen

Das Aachener Zentrum für Integrative Leichtbau (AZL) der RWTH Aachen installiert in seinem Technikum eine neue ENGEL-Spritzgießanlage. Die ENGEL Deutschland GmbH, in Kooperation mit dem ENGEL Technologiezentrum für Leichtbau-Composites in Österreich, wird das 2-Komponenten-Spritzgieß-System mit Drehtisch und 17.000 kN Schließkraft im Jahr 2019 in Betrieb nehmen. Dieser Maschinenaufbau ist die Basis für die Weiterentwicklung effizienter Inline-Kombinations-Technologien mit unterschiedlichen Polymerwerkstoffen.

Das ENGEL-Spritzgießsystem ermöglicht die innovative Kombination bereits etablierter Faserverbundkunststoff-Verfahren und die Entwicklung neuer individueller Verfahren. Im Mittelpunkt steht die Steigerung der Ressourceneffizienz in der Leichtbau-Produktion. Mit der neuen Anlage können neue Forschungs- und Entwicklungsinitiativen einen effizienteren Materialeinsatz adressieren, der letztlich der Schlüssel zur Massenproduktion von Leichtbauteilen ist. Der Fokus wird dabei auf Multimaterialsystemen, kontinuierlichen Prozessen und Prozessketten sowie selbstoptimierenden Prozesse liegen.

Das Aachener Zentrum für Integrative Leichtbau (AZL) der RWTH Aachen installiert in seinem Technikum eine neue ENGEL-Spritzgießanlage. Die ENGEL Deutschland GmbH, in Kooperation mit dem ENGEL Technologiezentrum für Leichtbau-Composites in Österreich, wird das 2-Komponenten-Spritzgieß-System mit Drehtisch und 17.000 kN Schließkraft im Jahr 2019 in Betrieb nehmen. Dieser Maschinenaufbau ist die Basis für die Weiterentwicklung effizienter Inline-Kombinations-Technologien mit unterschiedlichen Polymerwerkstoffen.

Das ENGEL-Spritzgießsystem ermöglicht die innovative Kombination bereits etablierter Faserverbundkunststoff-Verfahren und die Entwicklung neuer individueller Verfahren. Im Mittelpunkt steht die Steigerung der Ressourceneffizienz in der Leichtbau-Produktion. Mit der neuen Anlage können neue Forschungs- und Entwicklungsinitiativen einen effizienteren Materialeinsatz adressieren, der letztlich der Schlüssel zur Massenproduktion von Leichtbauteilen ist. Der Fokus wird dabei auf Multimaterialsystemen, kontinuierlichen Prozessen und Prozessketten sowie selbstoptimierenden Prozesse liegen.

Dr.-Ing. Michael Emonts, Geschäftsführer des Aachener Zentrums für integrativen Leichtbau (AZL) freut sich darauf, mit dem neuen Spritzgießsystem neue innovative Leichtbauverfahren zu realisieren: „Diese neue Spritzgießanlage bietet uns als Spezialisten für die Leichtbau-Produktionstechnik in Kooperation mit den Spritzgießexperten des Instituts für Kunststoffverarbeitung – dem IKV – die Möglichkeit, Hybridverfahren für industrielle Leichtbau-Anwendungen zu etablieren. Das System wird unseren bestehenden Maschinenpark im AZL-Technikum erweitern und als wichtige Plattform für die Leichtbau-Forschung an der RWTH zur Verfügung stehen."

Als aktive Partnerfirma des AZL-Partnernetzwerks arbeitet ENGEL bereits seit vielen Jahren eng mit dem AZL zusammen. Dr. Stefan Engleder, CEO der ENGEL-Gruppe, betont die Bedeutung dieser engen Zusammenarbeit mit den Technischen Universitäten und insbesondere mit dem AZL: „Das AZL bietet beste Voraussetzungen für industrienahe Forschungsaktivitäten im Bereich Leichtbau-Verbundwerkstoffe, da es sich durch einen starken interdisziplinären Ansatz auszeichnet. Das AZL profitiert von der guten Infrastruktur und der Zusammenarbeit mit namhaften Instituten der RTWH Aachen. ENGEL freut sich auf die Zusammenarbeit mit dem AZL bei der Entwicklung effizienter Leichtbau-Verbundwerkstoff-Massenproduktionsverfahren.“

Das AZL-Technikum umfasst neben den zahlreichen Faserverbund- und Leichtbauanlagen auf dem Campus der RWTH Aachen zusätzliches Großserien-Equipment für die Entwicklung von Verfahren zur Leichtbau-Produktion, wie zum Beispiel eine Composite-Presse der Schuler Pressen GmbH mit 18.000 kN Schließkraft.

Weitere Informationen:
AZL
Quelle:

AZL Aachen GmbH

27.11.2017

AZL baut auf dem Erfolg der Studie zu Composites in Bau und Infrastruktur auf

Das AZL wird seine Zusammenarbeit zu Composites in Gebäuden und im Infrastrukturbereich fortsetzen, nachdem es eine erste Markt- und Technologiestudie abgeschlossen hat, die neue Potenziale für Composite-Technologien in Bau- und Infrastrukturmärkten identifiziert hat. Ziel der neuen AZL Workgroup, die am 25. Januar 2018 erstmals zusammentritt, ist es, gemeinsam neue Anwendungen zu entwickeln und die Geschäftsentwicklung für Composites in diesen beiden Wachstumsmärkten zu unterstützen. Die Veranstaltung steht interessierten Unternehmen aus der Composite-Industrie sowie dem Bau- und Infrastrukturmarkt offen

Das AZL wird seine Zusammenarbeit zu Composites in Gebäuden und im Infrastrukturbereich fortsetzen, nachdem es eine erste Markt- und Technologiestudie abgeschlossen hat, die neue Potenziale für Composite-Technologien in Bau- und Infrastrukturmärkten identifiziert hat. Ziel der neuen AZL Workgroup, die am 25. Januar 2018 erstmals zusammentritt, ist es, gemeinsam neue Anwendungen zu entwickeln und die Geschäftsentwicklung für Composites in diesen beiden Wachstumsmärkten zu unterstützen. Die Veranstaltung steht interessierten Unternehmen aus der Composite-Industrie sowie dem Bau- und Infrastrukturmarkt offen

Ziel des ersten Arbeitsgruppentreffens ist es, Erkenntnisse aus der Studie in eine langfristige Arbeitsgruppenzusammenarbeit zu überführen und Themen und Initiativen für die gemeinsame Zusammenarbeit auf dem Gebiet der Prozess- und Fertigungstechnologien, Brandschutzvorschriften, Werkstoffe sowie Normen und Standards zu definieren. Industrielle Keynote-Präsentationen stellen diese Handlungsfelder vor und geben Einblicke in Bau- und Infrastrukturanwendungen für Verbundwerkstoffe. Darüber hinaus bietet das Treffen eine Plattform, um Unternehmen entlang der gesamten Wertschöpfungskette zu vernetzen.

Dr. Amer Affan, CEO und Gründer von AFFAN Innovative Structures mit Sitz in Dubai, ist verantwortlich für verschiedene Composite-Projekte in Gebäudeanwendungen wie beispielsweise das Museum of the Future in Dubai: „Seit 2010 setzen wir strukturelle Composites im Bauwesen ein. Composites sind im Vergleich zu den traditionellen Baustoffen (Stahl, Beton, Holz und Aluminium) in der Tat ein Hightech-Werkstoff, aber in der konservativen und preissensiblen Bauindustrie sind sie noch nicht als solcher anerkannt. Das AZL, insbesondere sein Standort an der RWTH Aachen und seine Partnerfirmen, bieten eine gute Plattform, um den Einsatz von Verbundwerkstoffen im Bauwesen voranzutreiben.“

Das AZL hat zusammen mit mehr als 25 Unternehmen die gemeinsame Markt- und Technologiestudie zum Thema „Neue Potenziale für Verbundwerkstofftechnologien in Bau und Infrastruktur“ abgeschlossen und damit ein breites Wissen über das Geschäftspotential für Composite-Technologien in diesen beiden Wachstumsmärkten aufgebaut. In einem strukturierten Ansatz ermittelte die Studie die Schlüsselsegmente sowie die Technologien/Anwendungen mit dem höchsten Markt- und Technologiepotenzial. Analysen von 20 Marktsegmenten, die Untersuchung von 438 Anwendungen, Technologieanalysen von 25 Highlight-Komponenten und 11 detaillierte Business Cases wurden während der gesamten Studie erarbeitet. Neben Bedarfsanalysen für Werkstoffe und Fertigungstechnologien wurden neue Konzepte für effiziente, rentable Fertigungstechnologien und Kostenanalysen entwickelt. Mit der Workgroup wird das AZL diese Initiative einen Schritt weiter treiben mit dem Ziel, eine langfristige Kooperationsplattform für Verbundwerkstoffe in Bau- und Infrastrukturmärkten aufzubauen.

Justin Jin, CEO des koreanischen Unternehmens AXIA Materials, nahm an der Studie teil und ist Teil des AZL-Partner-Netzwerks: „Als Hersteller großflächiger thermoplastischer Composite-Platten und Composite SIP (Structural Insulated Panel) sind wir bestrebt, Composites in B&I-Anwendungen auf die effizienteste Art und Weise voran zu treiben. Die AZL-Studie über Gebäude und Infrastruktur bot uns eine hervorragende Vernetzung mit den wichtigsten Akteuren in diesem Geschäftsfeld und die Möglichkeit, unsere Produkte mit Schlüsselkomponenten von Partnern zu stärken. Die Studie vermittelte uns auch ein angemessenes Marktverständnis, einschließlich Marktgröße/Volumen in Zahlen, um den Wert unserer Technologie für die Bauindustrie zu belegen. Wir freuen uns darauf, diese ersten Erkenntnisse weiterzuverfolgen und gemeinsam mit dem AZL und seinen Partnern Anwendungen zu realisieren.“

Neben den Networking-Möglichkeiten bietet das Workgroup-Treffen die Möglichkeit, einen Einblick in die Aktivitäten des AZL-Netzwerks zu erhalten, das aus neun Forschungsinstituten am RWTH Aachen Campus und mehr als 80 Unternehmen aus 21 Ländern besteht. Im Rahmen einer optionalen Führung besuchen die Teilnehmer ausgewählte Institute auf dem Campus der RWTH Aachen. Die Veranstaltung steht allen interessierten Unternehmen offen und ist kostenlos.

 

Mehr Informationen zum Meeting und zur Studie:

Informationen zu AZL-Aktivitäten im Bereich Bau und Infrastruktur:
www.azl-lightweight-production.com/composites-buildings-infrastructure

Details und Registrierung zum Workgroup Meeting am 25. Januar 2018:
http://www.azl-lightweight-production.com/termine/1st-workgroup-meeting-buildings-infrastructure

KlimaExpo.NRW Institut für Textiltechnik of RWTH Aachen University
KlimaExpo.NRW
18.07.2017

Projekte der RWTH Aachen University werden Teil der KlimaExpo.NRW

Die Herstellung von Werkstoffen wie Beton oder Kunststoff ist mit erheblichen CO2-Emissionen verbunden. Das Institut für Textiltechnik (ITA) der RWTH Aachen University forscht in seinen Projekten BasFlair und GreenBraid am Einsatz klimafreundlicher Alternativen aus Naturstoffen. Dafür wurden die Projekte nun von der KlimaExpo.NRW geehrt. Dr. Heinrich Dornbusch, Vorsitzender Geschäftsführer der Landesinitiative, überreichte den Projektleitern am Dienstag die offizielle Urkunde zur Aufnahme in die landesweite Leistungsschau für den Klimaschutz. Das Projekt BasFlair setzt für die Herstellung eines klimafreundlichen Betons Basaltfasern aus vulkanischem Gestein ein. Im Projekt GreenBraid verwenden die Aachener Forscherinnen und Forscher Flachs für die Produktion naturfaserverstärkter Kunststoffe. „Die beiden vorbildlichen und innovativen Projekte zeigen eindrucksvoll die Möglichkeiten, Werkstoffe energieeffizient und CO2-arm zu produzieren. Damit sind sie zwei gelungene Beispiele für den Fortschrittsmotor Klimaschutz“, sagte KlimaExpo.NRW-Geschäftsführer Dr.

Die Herstellung von Werkstoffen wie Beton oder Kunststoff ist mit erheblichen CO2-Emissionen verbunden. Das Institut für Textiltechnik (ITA) der RWTH Aachen University forscht in seinen Projekten BasFlair und GreenBraid am Einsatz klimafreundlicher Alternativen aus Naturstoffen. Dafür wurden die Projekte nun von der KlimaExpo.NRW geehrt. Dr. Heinrich Dornbusch, Vorsitzender Geschäftsführer der Landesinitiative, überreichte den Projektleitern am Dienstag die offizielle Urkunde zur Aufnahme in die landesweite Leistungsschau für den Klimaschutz. Das Projekt BasFlair setzt für die Herstellung eines klimafreundlichen Betons Basaltfasern aus vulkanischem Gestein ein. Im Projekt GreenBraid verwenden die Aachener Forscherinnen und Forscher Flachs für die Produktion naturfaserverstärkter Kunststoffe. „Die beiden vorbildlichen und innovativen Projekte zeigen eindrucksvoll die Möglichkeiten, Werkstoffe energieeffizient und CO2-arm zu produzieren. Damit sind sie zwei gelungene Beispiele für den Fortschrittsmotor Klimaschutz“, sagte KlimaExpo.NRW-Geschäftsführer Dr. Heinrich Dornbusch, während er die Urkunden an Andreas Koch, Projektleiter von BasFlair, sowie an Viktor Reimer und Marie-Isabel Popzyk, Projektleiter von GreenBraid, überreichte.

Quelle:

Institut für Textiltechnik of RWTH Aachen University

Prof. Dr. Konstantin Kornev Prof. Dr. Konstantin Kornev
Prof. Dr. Konstantin Kornev
30.06.2017

Kármán-Fellow Prof. Dr. Kornev, Clemson University, USA, am ITA

Prof. Dr. Konstantin Kornev, Clemson University, USA, hat am Institut für Textiltechnik (ITA) der RWTH-Aachen University einen Vortrag über biologisch inspirierte, Faser-basierte Nanofluidik gehalten. In einem sehr lebendigen Vortrag zeigte er auf, wie durch Butterfly proboscis, eine flexible Faser, die als Fütterungsgerät von Schmetterlingen und Motten dient, die Rolle der Oberflächenmorphologie und Chemie dieser komplexen multifunktionellen Fasern zu verstehen ist. Hierbei konnte er mit Hilfe der Röntgenphasen-Kontrast-Bildgebung, der Hochgeschwindigkeitsoptischen Bildgebung und von magnetischen Sonden komplexe Mechanismen von Fluid- und Rüssel-Wechselwirkungen nachweisen. Mit den Grundprinzipien des Rüssel-Funktionierens demonstrierte er anschaulich in dem Vortrag, wie flexible Faser-basierte Sonden für den Transport von kleinen Mengen an Flüssigkeiten entworfen und produziert wurden. Garne aus Nanofasern mit entsprechender Porosität haben außergewöhnliche Fähigkeiten, unterschiedliche Flüssigkeiten zu transportieren. Einige Biotechnologie-Anwendungen von Faser-basierten Sonden wurden im Vortrag gezeigt.

Prof. Dr. Konstantin Kornev, Clemson University, USA, hat am Institut für Textiltechnik (ITA) der RWTH-Aachen University einen Vortrag über biologisch inspirierte, Faser-basierte Nanofluidik gehalten. In einem sehr lebendigen Vortrag zeigte er auf, wie durch Butterfly proboscis, eine flexible Faser, die als Fütterungsgerät von Schmetterlingen und Motten dient, die Rolle der Oberflächenmorphologie und Chemie dieser komplexen multifunktionellen Fasern zu verstehen ist. Hierbei konnte er mit Hilfe der Röntgenphasen-Kontrast-Bildgebung, der Hochgeschwindigkeitsoptischen Bildgebung und von magnetischen Sonden komplexe Mechanismen von Fluid- und Rüssel-Wechselwirkungen nachweisen. Mit den Grundprinzipien des Rüssel-Funktionierens demonstrierte er anschaulich in dem Vortrag, wie flexible Faser-basierte Sonden für den Transport von kleinen Mengen an Flüssigkeiten entworfen und produziert wurden. Garne aus Nanofasern mit entsprechender Porosität haben außergewöhnliche Fähigkeiten, unterschiedliche Flüssigkeiten zu transportieren. Einige Biotechnologie-Anwendungen von Faser-basierten Sonden wurden im Vortrag gezeigt.

Weitere Informationen:
RWTH Aachen, ITA, Textiltechnik
Quelle:

Institut für Textiltechnik of RWTH Aachen University

Oerlikon presents take up winder Source: www.ita.rwth-aachen.de
Oerlikon presents take up winder
30.05.2017

Oerlikon presents new take-up winder to ITA as partial gift

In May 2017, Jochen Adler, Vice-President and Chief Technology Officer at Oerlikon Textile GmbH & Co. KG, presented a Oerlikon Barmag take-up winder as a partial gift to Prof. Dr Thomas Gries, head of the Institut für Textiltechnik (ITA) at RWTH Aachen University. The new Type ASW602 winder, which is equipped with modern control software and user interface, replaces the former institute’s Barmag take-up winder.

In May 2017, Jochen Adler, Vice-President and Chief Technology Officer at Oerlikon Textile GmbH & Co. KG, presented a Oerlikon Barmag take-up winder as a partial gift to Prof. Dr Thomas Gries, head of the Institut für Textiltechnik (ITA) at RWTH Aachen University. The new Type ASW602 winder, which is equipped with modern control software and user interface, replaces the former institute’s Barmag take-up winder.


Due to this modernisation, ITA has access to a latest generation take-up winder which is used for various research projects. The new winder is applied at ITA’s two pilot melt spinning plants and ensures the transfer of new research and development insights into the pilot scale. Furthermore, this winder has two winding positions and operates with winding speeds between 2500 m/min and 5500 m/min. The new winder is suitable for all kinds of polymers, from polypropylene to polyethylene, polyester, polyamide etc. as well as for the production of several types of yarn, such as industrial yarn, pre-oriented yarn and fully-drawn yarn.
“We thank Oerlikon Barmag for the generous partial gifting and the support during the set-up of the new take-up winder”, says Prof. Dr Thomas Gries. “The new equipment will keep the institute’s machine park on a high and powerful level.” The head of ITA’s chemical fibre department Dr Thorsten Anders adds: “This winder is designed for the needs of chemical yarn research. It allows state of the art technology research and development and pilot-scale production. We will use it for the melt spinning plants in the single- and bi-component spinning process. This way, we can access a wide variety of producible yarn types.“

Weitere Informationen:
Oerlikon, ITA
Quelle:

Institut für Textiltechnik of RWTH Aachen University

Oerlikon Barmag Institut für Textiltechnik of RWTH Aachen University
Oerlikon Barmag
30.05.2017

Oerlikon überreicht neuen Wickler als Teilschenkung ans ITA

Jochen Adler, Vice-President und Chief Technology Officer der Oerlikon Textile GmbH & Co. KG, überreichte im Mai Prof. Dr. Thomas Gries, Leiter des Instituts für Textiltechnik (ITA) der RWTH Aachen University, einen Oerlikon Barmag Take-Up Wickler als Teilschenkung. Der neue Wickler vom Typ ASW602 ersetzt den vorherigen Barmag Take-Up Wickler des Institutes und ist mit moderner Steuerungssoftware und Bedienoberfläche ausgestattet. Durch diese Modernisierung steht dem Institut für Textiltechnik ein Take-Up Wickler der neusten Generation für die vielfältigen Forschungsprojekte zur Verfügung. Der neue Wickler wird an den beiden Pilotschmelzspinnanlagen des ITA verwendet und gewährleistet die Übertragung neuer Erkenntnisse aus der Forschung und Entwicklung vom Labor- in den Pilotmaßstab. Dazu verfügt er über zwei Wickelpositionen und läuft mit Wickelgeschwindigkeiten von 2500 m/min bis 5500 m/min. Geeignet ist der neue Wickler für unterschiedliche Polymere von Polypropylen über Polyethylen, Polyester, Polyamid etc. und Garntypen wie z. B. Industriegarn, vorverstrecktes und vollverstreckte Garne.

Jochen Adler, Vice-President und Chief Technology Officer der Oerlikon Textile GmbH & Co. KG, überreichte im Mai Prof. Dr. Thomas Gries, Leiter des Instituts für Textiltechnik (ITA) der RWTH Aachen University, einen Oerlikon Barmag Take-Up Wickler als Teilschenkung. Der neue Wickler vom Typ ASW602 ersetzt den vorherigen Barmag Take-Up Wickler des Institutes und ist mit moderner Steuerungssoftware und Bedienoberfläche ausgestattet. Durch diese Modernisierung steht dem Institut für Textiltechnik ein Take-Up Wickler der neusten Generation für die vielfältigen Forschungsprojekte zur Verfügung. Der neue Wickler wird an den beiden Pilotschmelzspinnanlagen des ITA verwendet und gewährleistet die Übertragung neuer Erkenntnisse aus der Forschung und Entwicklung vom Labor- in den Pilotmaßstab. Dazu verfügt er über zwei Wickelpositionen und läuft mit Wickelgeschwindigkeiten von 2500 m/min bis 5500 m/min. Geeignet ist der neue Wickler für unterschiedliche Polymere von Polypropylen über Polyethylen, Polyester, Polyamid etc. und Garntypen wie z. B. Industriegarn, vorverstrecktes und vollverstreckte Garne.


„Wir bedanken uns herzlich für die großzügige Teilschenkung durch Oerlikon Barmag und die Unterstützung während der Inbetriebnahme des neuen Take-Up Wicklers“, freut sich Prof. Dr. Thomas Gries. „Durch die neue Ausstattung wird der Maschinenpark des Institutes auf einem modernen und leistungsfähigen Niveau gehalten.“ Und Chemiefasertechnik-Bereichsleiter Dr. Thorsten Anders ergänzt: „Dieser Wickler ist speziell auf die Anforderungen in der Chemiefaserforschung zugeschnitten. Er ermöglicht Forschung und Entwicklung auf dem Stand der Technik und die Produktion im Pilotmaßstab. Wir werden ihn für die Schmelzspinnanlagen im Einkomponenten- und Zweikomponenten-Spinnprozess verwenden. So können wir auf eine große Spanne an produzierbaren Garneigenschaften zurückgreifen.“

Quelle:

Institut für Textiltechnik of RWTH Aachen University

Mezzo forte´s double bass Institut für Textiltechnik of RWTH Aachen University
Mezzo forte´s double bass
16.05.2017

ITA und mezzo-forte treffen den richtigen Ton mit einem zerlegbaren Kontrabass aus carbonfaserverstärkten Kunststoff

Das Institut für Textiltechnik (ITA) der RWTH Aachen University hat gemeinsam mit der Firma mezzo-forte Streichinstrumente aus Werther einen zerlegbaren Kontrabass aus carbonfaserverstärkten Kunststoff (CFK) entwickelt, dessen Hals und Corpus durch eine Verbindungsstelle aus CFK zerlegt werden können. Hier ergibt sich ein großer Vorteil beim Transport: So misst der zerlegbare Kontrabass maximal 1,10 m in der Länge anstelle von 2 m Länge in nicht-zerlegtem Zustand. Damit kann der zerlegbare Kontrabass per PKW und in Standardgepäckboxen transportiert werden und spart die bisherigen hohen Transportkosten als Sondergepäck ein.

Das Institut für Textiltechnik (ITA) der RWTH Aachen University hat gemeinsam mit der Firma mezzo-forte Streichinstrumente aus Werther einen zerlegbaren Kontrabass aus carbonfaserverstärkten Kunststoff (CFK) entwickelt, dessen Hals und Corpus durch eine Verbindungsstelle aus CFK zerlegt werden können. Hier ergibt sich ein großer Vorteil beim Transport: So misst der zerlegbare Kontrabass maximal 1,10 m in der Länge anstelle von 2 m Länge in nicht-zerlegtem Zustand. Damit kann der zerlegbare Kontrabass per PKW und in Standardgepäckboxen transportiert werden und spart die bisherigen hohen Transportkosten als Sondergepäck ein.


Die eigentliche Innovation liegt darin, dass sowohl Verbindungsstelle als auch das Instrument aus CFK gefertigt sind und so keine klanglichen Einbußen durch einen Werkstoffwechsel in der Verbindungsstelle entstehen. Warum? Eine Verbindungstelle muss gleichzeitig sehr steif und robust sein. Hier stellt carbonfaserverstärkten Kunststoff das ideale Baumaterial für einen Kontrabass dar, da er eine hohe Steifigkeit und gute mechanische Eigenschaften besitzt. Wenn Instrument und Verbindungsstelle aus unterschiedlichen Werkstoffen sind, kann dies zu einer klanglich inaktiven Region im Instrument und damit zu einem schlechten Klang und einem instabilen Instrument führen.

Quelle:

Institut für Textiltechnik of RWTH Aachen University

Institut für Kunststoffverarbeitung AZL Aachen GmbH
Institut für Kunststoffverarbeitung
09.05.2017

Konsortiale Markt- und Technologiestudie zu High-Performance-SMC offen für zusätzliche Partner

Im Juni 2017 startet die AZL Aachen GmbH in Kooperation mit dem Institut für Kunststoffverarbeitung (IKV) in Industrie und Handwerk an der RWTH Aachen eine Konsortialstudie zu Hochleistungs-SMC. Ziel ist es, den Einsatz einer neuen Generation von SMC-Werkstoffen in der industriellen Anwendung voranzutreiben. Firmen entlang der gesamten SMC-Wertschöpfungskette sowie Firmen mit einem Interesse am SMC-Markt sind eingeladen, an der Studie teilzunehmen.

Im Juni 2017 startet die AZL Aachen GmbH in Kooperation mit dem Institut für Kunststoffverarbeitung (IKV) in Industrie und Handwerk an der RWTH Aachen eine Konsortialstudie zu Hochleistungs-SMC. Ziel ist es, den Einsatz einer neuen Generation von SMC-Werkstoffen in der industriellen Anwendung voranzutreiben. Firmen entlang der gesamten SMC-Wertschöpfungskette sowie Firmen mit einem Interesse am SMC-Markt sind eingeladen, an der Studie teilzunehmen.


SMC (Sheet Molding Compound) ist seit Jahren die erste Wahl, um Metallkomponenten zu ersetzen. Um zusätzliche Gewichtseinsparungen sowie eine Reduktion der CO2-Emissionen zu erzielen, wird jedoch eine neue Generation von High-Performance-SMC (HP-SMC) notwendig, die aus kurzen oder kontinuierlichen faserverstärkten Systemen mit entweder Karbon- oder Glasfasern und speziellen Harzmassen besteht. Die SMC-Hochleistungsvariante zeichnet sich durch einen hohe Anzahl an Wechselwirkungen zwischen Material und Prozess aus, die Herausforderung und Chance zugleich sind.
Die konsortiale Markt- und Technologiestudie zu High-Performance SMC ( www.lightweight-production.com/go/hp-smc-study ) des AZL und IKV zielt darauf ab, das Verständnis dieser Wechselwirkungen zu weiten, indem detailliertes Wissen zu SMC-Anwendungen und -Technologie, zentralen Herausforderungen und technologischen Lösung zur Etablierung einer neuen SMC-Generation geboten wird. Dieses Wissen bietet die Basis, um Design-Richtlinien auszuarbeiten, zielgerichtete Entwicklung voranzutreiben und neue Geschäftsmöglichkeiten zu eröffnen.

Weitere Informationen:
SMC, AZL, RWTH Aachen
Quelle:

AZL Aachen GmbH

Steuerung eines Industrieroboters per Datenhandschuh Institut für Textiltechnik der RWTH Aachen University
Steuerung eines Industrieroboters per Datenhandschuh
04.04.2017

Wirtschaftlicher Erfolg durch Industrie 4.0: Digital Capability Center in Aachen eröffnet

Der Forschungsstandort Aachen ist um ein einmaliges Angebot reicher: Am Freitag eröffnete mit dem Digital Capability Center (DCC) eine neuartige Lernfabrik mit dem Schwerpunkt Industrie 4.0. In einer realitätsgetreuen Fabrikumgebung erhalten Fach- und Führungskräfte produzierender Unternehmen sowie angehende Ingenieure das Handwerkszeug, um die digitale Transformation im eigenen Unternehmen voranzutreiben. Das Motto: erkunden, ausprobieren, anwenden. Das DCC ist eine Kooperation der Unternehmensberatung McKinsey & Company, des Instituts für Textiltechnik (ITA) der RWTH Aachen University und führenden Technologieunternehmen wie dem Softwareanbieter PTC. Das DCC ist das erste seiner Art weltweit – weitere DCCs werden von McKinsey in diesem Jahr noch in Singapur, Chicago, Peking und Venedig eröffnet.

Der Forschungsstandort Aachen ist um ein einmaliges Angebot reicher: Am Freitag eröffnete mit dem Digital Capability Center (DCC) eine neuartige Lernfabrik mit dem Schwerpunkt Industrie 4.0. In einer realitätsgetreuen Fabrikumgebung erhalten Fach- und Führungskräfte produzierender Unternehmen sowie angehende Ingenieure das Handwerkszeug, um die digitale Transformation im eigenen Unternehmen voranzutreiben. Das Motto: erkunden, ausprobieren, anwenden. Das DCC ist eine Kooperation der Unternehmensberatung McKinsey & Company, des Instituts für Textiltechnik (ITA) der RWTH Aachen University und führenden Technologieunternehmen wie dem Softwareanbieter PTC. Das DCC ist das erste seiner Art weltweit – weitere DCCs werden von McKinsey in diesem Jahr noch in Singapur, Chicago, Peking und Venedig eröffnet.

Die praxisnahen Workshops im DCC helfen Unternehmen, sich dem Thema Industrie 4.0 systematisch und zielgerichtet zu nähern. Sie lernen, wo und wie neueste Technologien entlang der gesamten Wertschöpfungskette eingesetzt werden können – von der ersten Kundenanfrage über die Entwicklung, Produktion und Auslieferung bis zum Servicegeschäft. Aber auch die Anforderungen an das Management sowie die Befähigung der Mitarbeiter und die allgemeine Akzeptanz der mit der Transformation einhergehenden Veränderungen werden thematisiert. Workshop-Teilnehmer erarbeiten konkrete Lösungen für ihre individuelle Problemstellung und erhalten Einblick in zentrale digitale Lösungen und Technologien wie Echtzeit-Diagnosewerkzeuge, Big Data Analytics, prädiktive Instandhaltung, digitales Performancemanagement, 3D-Druck oder kollaborative Roboter.

Quelle:

Institut für Textiltechnik der RWTH Aachen University