Aus der Branche

Zurücksetzen
7 Ergebnisse
(c) Swiss Textile Machinery Swissmem
16.02.2024

Recycled fibres: Swiss manufacturers for circularity

Many end-users now expect recycled materials to be in textile products they purchase – and this is driving innovation throughout the industry. However, there are still many technical and economic issues facing yarn and fabric producers using recycled resources. Members of the Swiss Textile Machinery Association offer some effective solutions to these challenges.

Synthetic recycled materials such as PET can usually be treated similarly to new yarn, but there are additional complexities where natural fibres like wool and cotton are involved. Today, there’s a trend towards mechanically recycled wool and cotton fibres.

Many end-users now expect recycled materials to be in textile products they purchase – and this is driving innovation throughout the industry. However, there are still many technical and economic issues facing yarn and fabric producers using recycled resources. Members of the Swiss Textile Machinery Association offer some effective solutions to these challenges.

Synthetic recycled materials such as PET can usually be treated similarly to new yarn, but there are additional complexities where natural fibres like wool and cotton are involved. Today, there’s a trend towards mechanically recycled wool and cotton fibres.

Spinning recycled cotton
The use of mechanically recycled fibres in spinning brings specific quality considerations: they have higher levels of short fibres and neps – and may often be colored, particularly if post-consumer material is used. It’s also true that recycled yarns have limitations in terms of fineness. The Uster Statistics 2023 edition features an extended range of fibre data, supporting sustainability goals, including benchmarks for blends of virgin and recycled cotton.
In general, short fibres such as those in recycled material can easily be handled by rotor spinning machines. For ring spinning, the shorter the fibres, the more difficult it is to guide them through the drafting zone to integrate them into the yarn body. Still, for wider yarn counts and higher yarn quality, the focus is now shifting to ring spinning. The presence of short fibres is a challenge, but Rieter offers solutions to address this issue.

Knitting recycled wool
For recycling, wool fibres undergo mechanical procedures such as shredding, cutting, and re-spinning, influencing the quality and characteristics of the resulting yarn. These operations remove the natural scales and variations in fibre length of the wool, causing a decrease in the overall strength and durability of the recycled yarn. This makes the yarn more prone to breakage, especially under the tension exerted during knitting.

Adapting to process recycled materials often requires adjustments to existing machinery. Knitting machines must be equipped with positive yarn suppliers to control fibre tension. Steiger engages in continuous testing of new yarns on the market, to check their suitability for processing on knitting machines. For satisfactory quality, the challenges intensify, with natural yarns requiring careful consideration and adaptation in the knitting processes.

From fibres to nonwovens
Nonwovens technology was born partly from the idea of recycling to reduce manufacturing costs and to process textile waste and previously unusable materials into fabric structures. Nonwovens production lines, where fibre webs are bonded mechanically, thermally or chemically, can easily process almost all mechanically and chemically recycled fibres.

Autefa Solutions offers nonwovens lines from a single source, enabling products such as liners, wipes, wadding and insulation to be produced in a true closed loop. Fibres are often used up to four times for one product.

Recycling: total strategy
Great services, technology and machines from members of Swiss Textile Machinery support the efforts of the circular economy to process recycled fibres. The machines incorporate the know-how of several decades, with the innovative power and quality standards in production and materials.
Stäubli’s global ESG (environmental, social & governance) strategy defines KPIs in the context of energy consumption, machine longevity and the recycling capacity in production units worldwide, as well in terms of machinery recyclability. The machine recyclability of automatic drawing in machines, weaving systems and jacquard machines ranges from 96 to 99%.

Weitere Informationen:
Swissmem recycled fibers recycled yarn
Quelle:

Swiss Textile Machinery Swissmem

Gewinner des AVK-Innovationspreis 2023 (c) AVK
Gewinner des AVK-Innovationspreis 2023
25.10.2023

Gewinner des AVK-Innovationspreis 2023

Die Gewinner des renommierten Innovationspreises für Faserverbundkunststoffe der AVK– Industrievereinigung Verstärkte Kunststoffe wurden in diesem Jahr in Salzburg präsentiert. Der Preis geht an Unternehmen, Institute und deren Partner jeweils in den drei Kategorien „Produkte und Anwendungen“, „Prozesse und Verfahren“ sowie „Forschung und Wissenschaft“ für herausragende Composites-Innovationen. Eine Fachjury aus Ingenieuren, Wissenschaftlern und Fachjournalisten bewertet die Einreichungen in den drei Kategorien anhand von Kriterien wie Innovationshöhe, Realisierungsgrad und Nachhaltigkeit.

Kategorie „Innovative Produkte und Anwendungen“
1. Platz: „Isolierende Kupplungswelle für Schienenfahrzeuge“ – Leichtbauzentrum Sachsen GmbH, Partner: KWD Kupplungswerk Dresden GmbH

2. Platz: „Elektroauto-Batteriegehäuse-Komponenten auf Basis von innovativen endlosfaserverstärkten Phenolharz-Verbundwerkstoffen“ – SGL Carbon

Die Gewinner des renommierten Innovationspreises für Faserverbundkunststoffe der AVK– Industrievereinigung Verstärkte Kunststoffe wurden in diesem Jahr in Salzburg präsentiert. Der Preis geht an Unternehmen, Institute und deren Partner jeweils in den drei Kategorien „Produkte und Anwendungen“, „Prozesse und Verfahren“ sowie „Forschung und Wissenschaft“ für herausragende Composites-Innovationen. Eine Fachjury aus Ingenieuren, Wissenschaftlern und Fachjournalisten bewertet die Einreichungen in den drei Kategorien anhand von Kriterien wie Innovationshöhe, Realisierungsgrad und Nachhaltigkeit.

Kategorie „Innovative Produkte und Anwendungen“
1. Platz: „Isolierende Kupplungswelle für Schienenfahrzeuge“ – Leichtbauzentrum Sachsen GmbH, Partner: KWD Kupplungswerk Dresden GmbH

2. Platz: „Elektroauto-Batteriegehäuse-Komponenten auf Basis von innovativen endlosfaserverstärkten Phenolharz-Verbundwerkstoffen“ – SGL Carbon

3. Platz: „HiPeR High Performance Recycled Carbon Fiber Materials” – Composites Technology Center GmbH (CTC GmbH), Partner: Faserinstitut Bremen e. V, Sächsisches Textilforschungsinstitut e.V., C.A.R. FiberTec GmbH; Partner Japan: CFRI Carbon Fiber Recycle Industry Co., Ltd., IHI Logistics and Machinery Corporation, ICC Kanazawa Institute of Technology

Kategorie „Innovative Prozesse und Verfahren“
1. Platz: „Chopped Fiber Direct Processing (CFP)“ – KraussMaffei Technologies GmbH, Partner: Wirthwein SE

2. Platz: „CIRC – Complete Inhouse Recycling of Thermoplastic Compounds“ – Fraunhofer-Institut für Produktionstechnik und Automatisierung (IPA), Partner: Schindler Handhabetechnik GmbH, Vision & Control GmbH

3. Platz: „CarboScreen – Sensorgestützte Überwachung der Carbonfaserproduktion“ – CarboScreen GmbH, Partner: Institut für Textiltechnik der RWTH Aachen

Kategorie „Forschung und Wissenschaft“
1. Platz: „Entwicklung eines Stereokomplex-PLA-Blends im Technikumsmaßstab“ – Faserinstitut Bremen e. V.

2. Platz: „Faserverstärktes Salz als robustes, verlorenes Kernmaterial“ – Technische Universität München, Lehrstuhl für Carbon Composites, Partner: Appex GmbH, Haas Metallguss GmbH

3. Platz: „VliesSMC – rezyklierte Carbonfasern mit zweitem Leben im SMC-Prozess‘“ – Sächsisches Textilforschungsinstitut e.V. (STFI), Partner: Fraunhofer-Institut für Chemische Technologie (ICT)

 

Die Ausschreibung für den Innovationspreis 2024 startet im Januar 2024

Quelle:

AVK – Industrievereinigung Verstärkte Kunststoffe e.V.

Am STFI entwickelte Vliesstoffkonstruktion ebnet den Weg zur Mehrwegnutzung für biobasierte Hygieneprodukte Foto: STFI
27.03.2023

STFI zeigt nachhaltige Vliesstoffentwicklungen auf der INDEX 23

Das Sächsische Textilforschungsinstitut e.V. (STFI) wird in Genf Neues aus der Vliesstoffforschung präsentieren. Gezeigt werden unter anderem ein biobasierter Hygienevliesstoff, das Recycling von Hochleistungsfasern am Beispiel des Projekts VliesSMC, ein innovatives Schlauchlinersystem und Wasserstrahlvliesstoffe aus recycelten Fasern.

Das Sächsische Textilforschungsinstitut e.V. (STFI) wird in Genf Neues aus der Vliesstoffforschung präsentieren. Gezeigt werden unter anderem ein biobasierter Hygienevliesstoff, das Recycling von Hochleistungsfasern am Beispiel des Projekts VliesSMC, ein innovatives Schlauchlinersystem und Wasserstrahlvliesstoffe aus recycelten Fasern.

Biobasierter Hygienevliesstoff: BioHyg
Ausgangspunkt für die Innovation war die Suche nach einer waschbaren und somit wiederverwendbaren Saugeinlage aus vollständig biobasierten Materialien für Anwendungen in der Baby-, Damen- und Inkontinenzhygiene. Zwei Hauptanforderungen standen im Fokus: Eine schnelle und effiziente Flüssigkeitsverteilung sowie eine hohe Saugfähigkeit sollen Rücknässung und Auslaufen minimieren. Beides gewährleisten Spezial-Viskosefasern von Kelheim Fibres, die seit vielen Jahren diesen essenziellen Beitrag in absorbierenden Hygieneprodukten wie Tampons leisten.
Dabei sind die Vorteile von Vliesstoffen in Kombination mit Spezial-Viskosefasern hinsichtlich Absorptionsfähigkeit (durch z. B. offenporigere Strukturen) aus dem Bereich der petrochemisch- in die Welt der biobasierten Fasermaterialien transferiert worden.

Wiederverwendbare Produkte müssen beim Waschen und über mehrere Nutzungszyklen hinweg stabil bleiben. Um das zu gewährleisten, wurde am Sächsischen Textilforschungsinstitut e.V. eine innovative Vliesstoffkonstruktion entwickelt. Sie schließt die technologische Lücke aus ausreichender Dimensionsstabilität und möglichst geringer Faserschädigung durch die Verfestigungsmechanismen. Die entwickelten Vliesstofflagen können als eigenständige Lösung als Single-Use Produkt mit biobasierten Materialien verwendet oder in eine waschbare Verbundstruktur, wie der Windel vom Start-up Sumo, integriert werden. Die neue Lösung vereint die Welten von Hygiene und Nachhaltigkeit und zeigt, dass leistungsstarke wiederverwendbare absorbierende Produkte ohne fossile Materialien entwickelt werden können.

Recycling von Hochleistungsfasern: VliesSMC
Das STFI informiert auf der INDEX über 23 Neuerungen im Recycling von Hochleistungsfasern. Ausgestellt wird ein Batteriegehäuse, das gemeinsam mit dem Forschungspartner Fraunhofer ICT, Pfinztal, erarbeitet wurde. Am STFI, Chemnitz, erfolgten detaillierte Untersuchungen zum Einsatz rezyklierter Carbonfasern in der SMC-Prozesskette. Hierzu wurden Vliesstoffe entwickelt, die es ermöglichen, die rezyklierten Carbonfasern der SMC-Anlage zuzuführen. Die hergestellten SMC-Halbzeuge konnten anschließend sowohl im Form- als auch Fließpressverfahren verarbeitet werden. Der Vergleich mit konventionellen SMC-Produkten zeigt, dass bei niedrigerem Faservolumengehalt vergleichbare Kennwerte erzielt werden konnten. Zukunftsweisende Materialien bieten zudem die Entwicklungen aus dem Bereich nachwachsender Rohstoffe in Kombination mit biobasierten Harzsystemen.   
 
Von der Recyclingfaser zum Wasserstrahlvliesstoff
Das STFI stellt Vliesstoffstrukturen aus, die nach dem mechanischen Recycling mittels Reißmaschine durch das Wasserstrahlverfahren bzw. Nähwirktechnologien verfestigt wurden. Die Vliesstoffe zeichnen sich insbesondere durch ihre weiche Haptik und Optik aus. Ob nassfeste Wipes, klassische Polfaserwirkvliesstoffe mit Polster- und Isolationseigenschaften oder nachhaltige Nadelvliesstoffe; durch den Einsatz von Reißfasern in Kombination mit etablierten Vliesbildungsprozessen werden am STFI neue Anwendungen für Alttextilien gefunden und Stoffkreisläufe geschlossen.  

 

Quelle:

STFI

(c) Freudenberg Performance Materials Holding SE & Co. KG
13.02.2023

Freudenberg Performance Materials mit Lösungen für die Verbundwerkstoff-Industrie auf der JEC 2023

Freudenberg Performance Materials (Freudenberg) präsentiert auf der JEC in Paris, Frankreich, Oberflächenvliesstoffe und Kernmaterialien für faserverstärkte Kunststoffe. Durchflussmedien und Abstandhalter von Enka® Solutions für effiziente Vakuuminfusions-, Harztransfer- und Schaumspritzguss-Prozesse erweitern das Produktportfolio des Herstellers technischer Textilien.

Die faserverstärkten Kunststoffe umfassen eine Vielzahl an Vliesstoffen aus Glas, PAN und PET sowie Kernmaterialien für die Herstellung von Leichtbaukonstruktionen. Die Materialien sind für verschiedene Anwendungsbereiche geeignet -  vom Aufbau einer Korrosionsschutzschicht im Rohr- und Behälterbau über die Erzeugung glatter, UV-beständiger Oberflächen bei Fassadenplatten bis hin zu speziellen Einsatzzwecken in diversen Endanwendungen. Für die Oberflächenvergütung faserverstärkter Kunststoffe bietet Freudenberg abriebfeste, korrosionsbeständige, optisch glatte und mechanisch belastbare Hightech-Vliesstoffe an.

Freudenberg Performance Materials (Freudenberg) präsentiert auf der JEC in Paris, Frankreich, Oberflächenvliesstoffe und Kernmaterialien für faserverstärkte Kunststoffe. Durchflussmedien und Abstandhalter von Enka® Solutions für effiziente Vakuuminfusions-, Harztransfer- und Schaumspritzguss-Prozesse erweitern das Produktportfolio des Herstellers technischer Textilien.

Die faserverstärkten Kunststoffe umfassen eine Vielzahl an Vliesstoffen aus Glas, PAN und PET sowie Kernmaterialien für die Herstellung von Leichtbaukonstruktionen. Die Materialien sind für verschiedene Anwendungsbereiche geeignet -  vom Aufbau einer Korrosionsschutzschicht im Rohr- und Behälterbau über die Erzeugung glatter, UV-beständiger Oberflächen bei Fassadenplatten bis hin zu speziellen Einsatzzwecken in diversen Endanwendungen. Für die Oberflächenvergütung faserverstärkter Kunststoffe bietet Freudenberg abriebfeste, korrosionsbeständige, optisch glatte und mechanisch belastbare Hightech-Vliesstoffe an.

Die Produkte von Enka® Solutions zeichnen sich durch ihre typischen 3D-Strukturen aus verschränkten Polymerfilamenten aus, durch die sie sich bei der Herstellung von Verbundwerkstoffen besonders gut als Fließmedien und Abstandhalter eignen.

Quelle:

Freudenberg Performance Materials Holding SE & Co. KG

Foto: DITF
05.05.2022

Forschungsprojekt SensorStrick 4.0: Fehler früh erkennen und Kosten sparen

Digitalisierte Fertigungsverfahren ermöglichen eine individualisierte Produktion. Eine geringe Fehlerquote ist besonders bei E-Textiles wichtig, da Fehler bei den smarten Zusatzfunktionen in Textilien oft erst am Ende der Wertschöpfungskette erkannt werden. Dadurch werden textile Wearables sehr teuer und ein Mehrwert zu nichttextilen Wearables wie Smartwatches ist nicht mehr gegeben. Die Deutschen Institute für Textil- und Faserforschung Denkendorf (DITF) entwickeln für das Prozessmanagement einen globalen „Industrie 4.0-Ansatz“, der bereits bei der Garnherstellung beginnt und sich über alle Prozessketten erstreckt.

Digitalisierte Fertigungsverfahren ermöglichen eine individualisierte Produktion. Eine geringe Fehlerquote ist besonders bei E-Textiles wichtig, da Fehler bei den smarten Zusatzfunktionen in Textilien oft erst am Ende der Wertschöpfungskette erkannt werden. Dadurch werden textile Wearables sehr teuer und ein Mehrwert zu nichttextilen Wearables wie Smartwatches ist nicht mehr gegeben. Die Deutschen Institute für Textil- und Faserforschung Denkendorf (DITF) entwickeln für das Prozessmanagement einen globalen „Industrie 4.0-Ansatz“, der bereits bei der Garnherstellung beginnt und sich über alle Prozessketten erstreckt.

Für hochelastische smarte Textilprodukte werden Garne verwendet, die häufig sowohl aus leitfähigen als auch nichtleitfähigen Komponenten bestehen. Dazu werden zum Beispiel konventionelle hochelastische Garne mit leitfähigen Feinstdrähten umwunden. Die Elastizität der Garnkomponente bleibt auf diese Weise weitgehend erhalten. Beim Stricken werden die Fäden jedoch so stark belastet, dass die leitfähigen Garnkomponenten geschädigt werden können. Da dabei häufig nicht das gesamte Garn bricht, wird bei den derzeitigen Produktionsabläufen der Fehler während des Strickprozesses nicht erkannt. Im Extremfall ist das fertige Strickteil Ausschuss. Bei fully fashioned gestrickten Teilen ist der Schaden wegen der relativ geringen Produktivität des Flachstrickprozesses und des relativ hohen Verlusts an Produktionszeit besonders groß.

Um Fehler der elektrischen Eigenschaften bereits während des Herstellungsprozesses zu erkennen, werden im Forschungsprojekt SensorStrick 4.0 Prozess- und Umgebungsdaten bei der Textilproduktion in verschiedenen Prozessstufen erfasst.

Dazu werden Umwinde- und Flachstrickmaschinen mit verteilter Sensorik ausgerüstet, die Temperatur, Feuchte, Licht, Näherung und Fadenzugkraft sowie die Fadengeschwindigkeit misst. Zusätzlich überwachen Mikrofone die Geräusche in der direkten Produktionsumgebung. Diese akustischen Messdaten weisen zum Beispiel auf Vibrationen hin und können besonders gut mit künstlicher Intelligenz ausgewertet werden. Bei der Umwindegarnherstellung werden die erfassten Prozessgrößen direkt für die Steuerung der Prozessparameter verwendet.

Darüber hinaus werden neue kostengünstige Sensoren entwickelt. Für laufende Garne wurde zum Beispiel ein Prinzip mit vier Messröhrchen entwickelt, die schnell und berührungsfrei messen, wie leitfähig das durchlaufende Garn ist und wie seine sensorischen Eigenschaften sind. Diese Sensoren sind so ausgelegt, dass sie in möglichst vielen Textilprozessen eingesetzt werden können ohne sie aufwendig an unterschiedliche Abläufe anpassen zu müssen.

Die Garne werden also sowohl bei der Umwindegarnherstellung als auch im anschließenden Strickprozess überwacht. Tritt ein Bruch der leitfähigen Garnkomponente auf, wird er sofort entdeckt. Luftfeuchtigkeit und Umgebungstemperatur beeinträchtigen die Messgenauigkeit nicht. Die Überwachung der Prozesse funktioniert nicht nur bei Gestricken, sondern auch bei anderen textilen Flächen.

Im weiteren Projektverlauf werden die Sensoren bei der Herstellung von hochelastischen Umwindegarnen und Strickteilen eingesetzt und dabei getestet wie effektiv die auftretenden Fehler erkannt werden.

Mit diesen neu entwickelten Verfahren können fehlerhafte Halbzeuge rechtzeitig aus der Prozesskette genommen werden. Teure zusätzliche Kontrollen während späterer Prozessschritte werden überflüssig.

Weitere Informationen:
DITF E-Textiles Garne
Quelle:

DITF

(c) Kai-Chieh Kuo
17.11.2021

ITA-Doktorand Kai-Chieh Kuo erhält Förderpreis der Walter Reiners-Stiftung

Kai-Chieh Kuo, Doktorand am Institut für Textiltechnik der RWTH Aachen, wurde für seine Masterarbeit mit dem Titel „Modifikation des Schlauchwebprozesses feiner Garne zur Herstellung von gewebten ultra-low profile Stentgrafts“ mit dem Förderpreis beste Masterarbeit des Deutschen Textilmaschinenbaues 2021 ausgezeichnet. Der Preis ist mit 3.500€ dotiert. Peter D. Dornier, Vorstandsvorsitzender der Walter Reiners-Stiftung, hat den Preis anlässlich der ADD International Textile Conference am 9. November 2021 virtuell überreicht.

Kai-Chieh Kuo, Doktorand am Institut für Textiltechnik der RWTH Aachen, wurde für seine Masterarbeit mit dem Titel „Modifikation des Schlauchwebprozesses feiner Garne zur Herstellung von gewebten ultra-low profile Stentgrafts“ mit dem Förderpreis beste Masterarbeit des Deutschen Textilmaschinenbaues 2021 ausgezeichnet. Der Preis ist mit 3.500€ dotiert. Peter D. Dornier, Vorstandsvorsitzender der Walter Reiners-Stiftung, hat den Preis anlässlich der ADD International Textile Conference am 9. November 2021 virtuell überreicht.

Die minimalinvasive endovaskuläre Aortenreparatur (EVAR) mit textilen Stentgraftsystemen ist heutzutage ein klinisch etabliertes Therapieverfahren zur Behandlung von abdominalen Aortenaneurysmen (AAA) – krankhaften Aussackungen der Hauptschlagader. Aufgrund zu großer Profilstärken der gefalteten Stentgraftsysteme besteht aktuell bei der Implantation ein hohes Risiko, verengte oder stark angulierte Zugangsgefäße von innen zu verletzen. Abhilfe sollen Stentgraftsysteme mit kleinerer Profilstärke schaffen, die durch geringere Biegesteifigkeiten komplizierte Zugangswege überwinden sollen. Ein möglicher Lösungsansatz zur Reduktion der Systemprofile ist der Einsatz dünnwandiger Schlauchgewebe aus hochfeinen Multifilamentgarnen (≤20 dtex) als Graftmaterial.

Bislang ist es textiltechnisch nicht möglich, die feinen Garne mit der geforderten hohen Fadendichte (>200 Fäden/cm) und der verfügbaren Webtechnik zu verarbeiten, um eine ausreichende Dichtigkeit gegenüber Blut zu gewährleisten. In seiner Masterarbeit hat Kai-Chieh Kuo durch geeignete Modifikationen einer Schützenbandwebmaschine sowie Anpassungen in der Webereivorbereitung erstmals eine hochdichte Schlauchwebverarbeitung von Feinstfilamentgarnen ermöglicht. Dabei entwickelte er unter anderem eine neuartige innovative Riettechnologie, die die Kettfadenreibung im Fachwechsel reduziert und so die Prozessstabilität des dichten Schlauchwebprozesses feiner Garne verbessert.

Durch die Prozessmodifikation wurden daraufhin hochdichte, dünnwandige Schlauchgewebe hergestellt, die sich zur Herstellung eines Stentgrafts eignen. Das Potential dieser Schlauchgewebe steckt vor allem im höchst dünnwandigen Gewebeprofil, das gleichzeitig gut gegenüber Blut abdichtet. Durch den Einsatz dieser neuartigen Schlauchgewebe als Graftmaterial von Stentgrafts kann das Systemprofil des gefalteten Stentgraftsystems verringert werden, ohne Einbußen in der Blutdichtigkeit des Implantats eingehen zu müssen.

Die von Herrn Kuo entwickelte Technologie kann nicht nur für Stentgraftsysteme verwendet werden, sondern bietet große Einsatzmöglichkeiten in sämtlichen weiteren endovaskulären Implantaten wie bspw. Transkatheterherzklappen, gecoverte Stents und kleinlumigen Gefäßprothesen.

 Künstliche Intelligenz für Maschinen hilft Mensch und Umwelt (c) SKZ
Vliesstoff-Kompaktanlage (DILO) zur Herstellung von Nadel-Vliesen aus Sonderfasern.
23.06.2021

Künstliche Intelligenz für Maschinen hilft Mensch und Umwelt

Der Maschinenbau ist eine Stärke der deutschen Industrie. In Leitbranchen, deren Produkte in einem globalisierten Umfeld starker Konkurrenz ausgesetzt sind, kann der Einsatz Künstlicher Intelligenz (KI) dazu beitragen, Industriekapazitäten und Knowhow in Deutschland zu halten, im Maschinenbau und nachgelagerten Branchen. Doch erst durch praxisnahe Anwendung in der Industrie kann KI seine Stärken für Unternehmen voll entfalten. Wie das mit dem Beitrag angewandter Forschung geht, zeigen Textilindustrie und -maschinenbau ebenso wie die Kunststoffbranche.

Mit der Corona-Krise sind Vliesstoffe über die Fachwelt hinaus bekannt geworden, denn sie bilden das Ausgangsmaterial für Schutzmasken. Die aufgetretenen Engpässe am Markt 2020 zeigten, wie stark Deutschland hier von Lieferungen aus dem Ausland abhängig ist. Zugleich ist Deutschland in anderen Vliesstoff-Segmenten und bei Maschinen für die Vliesstoffherstellung eine wichtige Größe auf den Weltmärkten. Damit das so bleibt, arbeitet die Branche an Innovationen. Ein zentraler Baustein dafür: Die Nutzung Künstlicher Intelligenz (KI).

Das Auge auf der lernenden Maschine

Der Maschinenbau ist eine Stärke der deutschen Industrie. In Leitbranchen, deren Produkte in einem globalisierten Umfeld starker Konkurrenz ausgesetzt sind, kann der Einsatz Künstlicher Intelligenz (KI) dazu beitragen, Industriekapazitäten und Knowhow in Deutschland zu halten, im Maschinenbau und nachgelagerten Branchen. Doch erst durch praxisnahe Anwendung in der Industrie kann KI seine Stärken für Unternehmen voll entfalten. Wie das mit dem Beitrag angewandter Forschung geht, zeigen Textilindustrie und -maschinenbau ebenso wie die Kunststoffbranche.

Mit der Corona-Krise sind Vliesstoffe über die Fachwelt hinaus bekannt geworden, denn sie bilden das Ausgangsmaterial für Schutzmasken. Die aufgetretenen Engpässe am Markt 2020 zeigten, wie stark Deutschland hier von Lieferungen aus dem Ausland abhängig ist. Zugleich ist Deutschland in anderen Vliesstoff-Segmenten und bei Maschinen für die Vliesstoffherstellung eine wichtige Größe auf den Weltmärkten. Damit das so bleibt, arbeitet die Branche an Innovationen. Ein zentraler Baustein dafür: Die Nutzung Künstlicher Intelligenz (KI).

Das Auge auf der lernenden Maschine

Am ITA Augsburg hat man dafür Grundlagen in einem Projekt gelegt, auf denen sich nun aufbauen lässt. Die Vision: Die Maschine zur Vliesstoffproduktion passt die Parameter entsprechend den Erfordernissen im laufenden Betrieb autonom an. Etwaig auftretende Fehler werden von der Maschine selbstständig diagnostiziert, die Drehzahlen entsprechend angepasst. „Wir haben im Projekt EasyVlies gezeigt, wie sich mit der Nutzung von Algorithmen für die Vliesstoffproduktion Material- und Energiekosten einsparen lassen. Zusammen mit Partnern aus der Industrie haben wir erreicht, dass die Maschine zentrale Parameter wie Drehzahlen und Abstände, von denen eine große Kombinationsmenge für das Erreichen der gewünschten Produktqualität notwendig sind, durch das entwickelte KI-Modell vorhergesagt werden. „Die Abstände der bis zu 40 Arbeitselemente in der Maschine bestimmen dabei in Kombination mit den Drehzahlen der beteiligten Walzen die Öffnung der Faserflocken bis zur Einzelfaser und die Bildung des Vlieses“, erläutert ITA-Augsburg Geschäftsführer Prof. Stefan Schlichter. Die naturwissenschaftlichen Zusammenhänge und Wechselwirkungen zwischen den Drehzahlen und den Qualitätsparametern der Vliesstoffproduktion sind nicht eindeutig bekannt. Gerade deshalb kann KI hier seine Vorteile ausspielen. „Denn Künstliche Intelligenz kann auch diffuse Zusammenhänge modellieren und simulieren“, betont Schlichter. Die Algorithmen dafür hat Maschinenbauingenieur Dr. Frederik Cloppenburg aus dem Aachener ITA-Stammhaus entwickelt, 280 Versuche wurden im Zusammenspiel mit der KI-Entwicklung durchgeführt.

In der unternehmerischen Praxis lernen die Algorithmen nun hinzu. Das zeigt  bei einem Vliesstoffbetrieb der Fahrzeugbranche bereits erste Erfolge in der betrieblichen Praxis. Im nächsten Schritt arbeiten die ITA-Forschenden daran, Messtechnik wie Kamerasysteme und strahlungsbasierte Messsysteme für die Gleichmäßigkeit des Vliesstoffs in die Maschinen zu integrieren. Ziel: Fehler so prognostizieren, dass sie gar nicht erst auftreten. Das Aufkommen an Vliesstoff-Ausschuss soll so um 30 bis 50 Prozent sinken. Angesichts von bislang jährlich allein in Deutschland anfallender Ausschussware im Wert von 150 Mio. Euro, das entspricht 10 Prozent des Branchenumsatzes, ein erheblicher Anreiz. „Die hoch qualifizierten Facharbeiter beaufsichtigen sozusagen die lernende Maschine“, erklärt Schlichter.

Industrie 4.0 wird in der Kunststoffbranche künftig auch benötigt, um das Ziel höherer Recyclingquoten zu erreichen. Denn eine weniger einheitliche Rohstoffbasis macht lernende Maschinen noch wertvoller. Das ist auch Ausgangspunkt des vom Bundesforschungsministerium (BMBF) geförderten Verbundprojekts CYCLOPS des Kunststoff-Zentrums (SKZ) und namhaften Partnern aus Wissenschaft und Wirtschaft. Durch den Einsatz von KI sollen Materialströme automatisiert klassifiziert werden, damit sie sich optimal verwenden lassen. „Die Maschinen sollen künftig eigenständig erkennen, in welche Anwendungen produzierte Materialien eines bestimmten Typs gehen können“ erläutert SKZ-Gruppenleiter Digitalisierung, Christoph Kugler. Ein Faktor: Die Fließfähigkeit des Kunststoffs, seine Viskosität. Je kürzer die Polymerketten des Materials, desto größer, vereinfacht gesagt, ihre Fließfähigkeit. Für diese Fließfähigkeit spielt andererseits auch das Druckniveau in der Maschine eine Rolle. Hier kommt wiederum die KI ins Spiel: „Durch Künstliche Intelligenz können Materialeigenschaften und selbst lernende Maschinensteuerungen sehr gut ineinanderwirken, so unsere Erwartung“, erklärt Kugler. Grundlage für die angewandte Forschung im Projekt CYCLOPS sind sowohl Prozessdaten aus den Maschinen, welche die Materialqualität beschreiben können, als auch Daten entlang des Lebenswegs von Material und Produkt. Im Rahmen des Projektes werden damit die Transparenz und die Informationsdichte erhöht, welche nach wie vor einige der größten Hemmnisse der Kreislaufwirtschaft sind.

Neue Expertisefelder wie Erklärbare KI erschlossen

Das SKZ baut mit dem Projekt auf KI-Expertise auf, die über abgeschlossene und noch laufende Projekte erarbeitet wurde. In der Vergangenheit lag der Schwerpunkt in der Entwicklung sogenannter Softsensoren aus Prozessdaten zur Berechnung komplexer Qualitätskennwerte wie z.B. Viskosität oder Vernetzungsgrad des Kunststoffs. Durch die Weiterentwicklung der Technologie werden neue Expertisefelder erschlossen, so z.B. Optimierung der Prozessmodellierung durch KI, Prognose von Materialverhalten unter Last oder auch erklärbare KI (XAI), sie beschreibt den Weg, auf dem Algorithmen zu ihren Ergebnissen gelangen. In den letzten Jahren wurde ebenfalls der Einsatz von digitalen Technologien und KI im Kontext der Kreislaufwirtschaft am SKZ forciert, so in den noch jeweils bis ins nächste Jahr hinein laufenden Projekten Di-Plast und DiLinK. Während Di-Plast ein EU-Projekt ist, wird DiLink ebenfalls vom BMBF gefördert. Mit dem FIR e.V. ist ein weiteres Institut der Zuse-Gemeinschaft im DiLink-Projektkonsortium vertreten, mit dem Fokus auf dem Thema Geschäftsmodelle. Denn diese verändern sich durch das Vordringen der KI in immer mehr Aspekten des Maschinenbaus.