Aus der Branche

Zurücksetzen
2 Ergebnisse
© ITM/TU Dresden
Gewebte Halbkugel für den Einsatz in Radomantennen
15.12.2022

AVK-Innovationspreis 2022 an Nachwuchsingenieur:innen vom ITM

  • Auszeichnung für endkonturnahe 3D Gewebe für den Einsatz in Faserkunststoffverbundbauteile verliehen

Im Rahmen des JEC FORUM DACH 2022 fand am 29. November die Verleihung der AVK-Innovationspreise in Augsburg statt. Der Innovationspreis in der Kategorie „Forschung/Wissenschaft“ (1. Platz) wurde für die Entwicklung sphärisch gekrümmte Faserkunststoffverbundbauteile (FKV) aus endkonturnah gefertigten Geweben an das Wissenschaftlerteam Dipl.-Ing. Dominik Nuss, Dr.-Ing. Cornelia Sennewald und Prof. Dr.-Ing. habil. Chokri Cherif verliehen.

Mit der Entwicklung der Technologie des abzugsfreien Jacquard-Webens sowie des seit vielen Jahren am ITM der TU Dresden fest etablierten technologischen Know-hows auf dem Gebiet hochkomplexer 2D- und 3D-Gewebegeometrien ist es Dominik Nuss gelungen, allein durch gezielte Variation der Gewebebindung lokal unterschiedliche Garnlängen in die Gewebestruktur einzuarbeiten. Dadurch lassen sich ohne zusätzliches Drapieren völlig neuartige Gewebe herstellen, insbesondere sphärisch gekrümmte Gewebe, aber auch großformatige Spiralgewebe oder Kurvengewebe.

  • Auszeichnung für endkonturnahe 3D Gewebe für den Einsatz in Faserkunststoffverbundbauteile verliehen

Im Rahmen des JEC FORUM DACH 2022 fand am 29. November die Verleihung der AVK-Innovationspreise in Augsburg statt. Der Innovationspreis in der Kategorie „Forschung/Wissenschaft“ (1. Platz) wurde für die Entwicklung sphärisch gekrümmte Faserkunststoffverbundbauteile (FKV) aus endkonturnah gefertigten Geweben an das Wissenschaftlerteam Dipl.-Ing. Dominik Nuss, Dr.-Ing. Cornelia Sennewald und Prof. Dr.-Ing. habil. Chokri Cherif verliehen.

Mit der Entwicklung der Technologie des abzugsfreien Jacquard-Webens sowie des seit vielen Jahren am ITM der TU Dresden fest etablierten technologischen Know-hows auf dem Gebiet hochkomplexer 2D- und 3D-Gewebegeometrien ist es Dominik Nuss gelungen, allein durch gezielte Variation der Gewebebindung lokal unterschiedliche Garnlängen in die Gewebestruktur einzuarbeiten. Dadurch lassen sich ohne zusätzliches Drapieren völlig neuartige Gewebe herstellen, insbesondere sphärisch gekrümmte Gewebe, aber auch großformatige Spiralgewebe oder Kurvengewebe.

Besonders hervorzuheben ist, dass mit deutlich reduzierten Preformingschritten die geforderte endkonturnahe Geometrie des zu verstärkenden Bauteils abgebildet werden kann. Ein durchgängiges simulations-gestütztes Engineering vom CAD-Entwurf bis zur integral gewebten 2D- und 3D-Preform mittels hochkomplexer Bindungsentwicklung für räumliche Konstruktionen ist ein Alleinstellungsmerkmal am ITM, welches unerlässlich für die Entwicklung dieser zukunftsträchtigen gewebten Hightech-Strukturen war. Diese Technologie ist völlig neuartig und wurde bisher so in keinster Weise durchgeführt. Die Gewebestrukturen zeichnen sich aufgrund ihrer Geometrievielfalt und den Einsatzmöglichkeiten durch einen hohen Innovationsgrad aus, können in zahlreichen Anwendungen eingesetzt werden und zur Erschließung völlig neuer Anwendungsfelder beitragen. Die Technologie ist auf allen Jacquard-Webmaschinen mit einer Zusatzvorrichtung umsetzbar und die Preformgeometrie wird lediglich durch die Ansteuerung der Jacquardmaschine bestimmt. Die Preformgeometrie kann die volle Arbeitsbreite der Webmaschine einnehmen.

Professor Chokri Cherif, Institutsdirektor des ITM freut sich mit seinem Team sehr über die kontinuierlichen Forschungserfolge auf dem stetig wachsenden Forschungsfeld der 3D-Webtechnik, die am ITM in enger Kooperation mit der Industrie und Anwendern erzielt werden. „Diese Auszeichnung ist für unser Institut eine besondere Ehre und bestätigt, dass unsere langjährigen exzellenten Forschungsleistungen auf dem Gebiet endkonturnahen 3D-Gewebe für den Faserkunststoffbereich eine bedeutende Rolle spielen und wir mit unserer Entwicklung einen wesentlichen Beitrag für eine nachhaltige und ressourceneffiziente Fertigung von Leichtbaustrukturen leisten“.

Quelle:

ITM/TU Dresden

Doktorandin des ITFT erhält den Manfred Hirschvogel Preis (c) DITF Denkendorf
02.07.2021

Doktorandin des ITFT erhält den Manfred Hirschvogel Preis

Dr.-Ing. Larissa Born, wissenschaftliche Mitarbeiterin am Institut für Textil- und Fasertechnologien (ITFT), wurde am 02. Juli 2021 im Rahmen der Abschlussfeier der Masterabsolvent:innen der Maschinenbau-Fakultäten an der Universität Stuttgart mit dem Manfred Hirschvogel Preis 2021 ausgezeichnet. Der mit 5.000 Euro dotierte Preis wird jährlich an allen TU9-Universitäten für die beste Dissertation aus dem Bereich Maschinenbau verliehen. Die prämierte Doktorarbeit trägt den Titel „Grundlagen für die Auslegung und Gestaltung eines Hybridmaterials für außen liegende, adaptive Fassadenbauteile aus Faserverbundkunststoff“. Dr.-Ing. Marc Hirschvogel, Kuratoriumsvorsitzender der Frank Hirschvogel Stiftung, lobte bei der Preisverleihung insbesondere den innovativen Ansatz und die wissenschaftliche Tiefe der Arbeit.

Dr.-Ing. Larissa Born, wissenschaftliche Mitarbeiterin am Institut für Textil- und Fasertechnologien (ITFT), wurde am 02. Juli 2021 im Rahmen der Abschlussfeier der Masterabsolvent:innen der Maschinenbau-Fakultäten an der Universität Stuttgart mit dem Manfred Hirschvogel Preis 2021 ausgezeichnet. Der mit 5.000 Euro dotierte Preis wird jährlich an allen TU9-Universitäten für die beste Dissertation aus dem Bereich Maschinenbau verliehen. Die prämierte Doktorarbeit trägt den Titel „Grundlagen für die Auslegung und Gestaltung eines Hybridmaterials für außen liegende, adaptive Fassadenbauteile aus Faserverbundkunststoff“. Dr.-Ing. Marc Hirschvogel, Kuratoriumsvorsitzender der Frank Hirschvogel Stiftung, lobte bei der Preisverleihung insbesondere den innovativen Ansatz und die wissenschaftliche Tiefe der Arbeit.

Mit ihrer Doktorarbeit stellt Larissa Born eine grundlegende Methodik zur Entwicklung adaptiver Faserverbundkunststoffe zur Verfügung und wandte diese beispielhaft auf ein Hybridmaterial aus glasfaserverstärktem Kunststoff, Elastomer und thermoplastischem Polyurethan an. Zwischen steifen Bauteilbereichen werden lokal nachgiebige Bereiche (Gelenke) durch Anpassung des Materialaufbaus integriert. Um die adaptiven Material-eigenschaften analysieren zu können, entwickelte sie darüber hinaus ein neues Prüf-verfahren, das die Biegung eines Prüfkörpers um bis zu 180° ermöglicht. Das neuartige Hybridmaterial lässt eine Dauerbelastung von 5.000 Biegezyklen um 180° mit lediglich marginalem Festigkeitsverlust zu. Ergebnis der durchgeführten Analysen ist eine Datenbasis inklusive Regressionsmodell auf deren Grundlage sich die mechanischen Eigenschaften eines Gelenk-Bauteils einstellen lassen.

Das Hybridmaterial hat bereits in verschiedenen Demonstratoren Anwendung gefunden, die mit dem AVK Innovation Award (Flectofold) und dem Materialica Gold Award (Flexafold) ausgezeichnet wurden. „Mit ihrer Arbeit ist es Larissa Born gelungen, eine völlig neue, materialtechnische Grundlage für die Entwicklung adaptiver Faserverbundkunststoffe zu schaffen.“, lobte Prof. Dr.-Ing. Götz T. Gresser, Doktorvater und Institutsleiter des ITFT, die Arbeit anlässlich der Preisverleihung. „Die Anwendung ist nicht beschränkt auf den architek-tonischen Kontext, sondern kann ebenso auf andere Bereiche wie beispielsweise Automobil und Luftfahrt übertragen werden. So können mechanische, wartungsintensive Gelenke durch verschleißarme, nachgiebige Mechanismen ersetzt werden.“

Nach der abgeschlossenen Promotion wird Larissa Born als stellvertretende Institutsleiterin des ITFT ihre Forschungsarbeiten am Institut fortsetzen. Gemeinsam mit Prof. Gresser gilt es, das bisherige Forschungsfeld zu vertiefen und neue Forschungsthemen im Bereich Faserverbund zu eröffnen.