Textination Newsline

Zurücksetzen
134 Ergebnisse
Carbon U Profil (c) vombaur GmbH & Co. KG
19.09.2023

„Ein Raumschiff wird ja nicht von der Stange gefertigt.“

vombaur-Pioniere für Spezialtextilien im Interview
Technische Schmaltextilien, Speziallösungen, mittelständischer Textilproduzent und Entwicklungspartner für Filtration Textiles, Composite Textiles und Industrial Textiles: vombaur. Digitalisierung, Nachhaltigkeit, Energiepreise, Pionierarbeit und ungebrochene Begeisterung – Textination sprach mit zwei leidenschaftlichen Textilern: Carl Mrusek, Chief Sales Officer (CSO), und Johannes Kauschinger, Sales Manager für Composites und Industrietextilien, in der vombaur GmbH, die wie JUMBO-Textil zur Textation Group gehört.
 

vombaur-Pioniere für Spezialtextilien im Interview
Technische Schmaltextilien, Speziallösungen, mittelständischer Textilproduzent und Entwicklungspartner für Filtration Textiles, Composite Textiles und Industrial Textiles: vombaur. Digitalisierung, Nachhaltigkeit, Energiepreise, Pionierarbeit und ungebrochene Begeisterung – Textination sprach mit zwei leidenschaftlichen Textilern: Carl Mrusek, Chief Sales Officer (CSO), und Johannes Kauschinger, Sales Manager für Composites und Industrietextilien, in der vombaur GmbH, die wie JUMBO-Textil zur Textation Group gehört.
 
Wer auf Ihre Geschichte und damit bis in die Anfänge des 19. Jahrhunderts zurückschaut, sieht eine Bändermanufaktur und ab 1855 eine Fabrikation von Seiden- und Hutbändern. Heute produzieren Sie Filtra¬tionstextilien, Industrietextilien und Textilien für Verbundstoffe. Zwar fertigen Sie auch heute noch Schmaltextilien, aber das Motto „Transformation als Chance“ scheint bei vombaur gelebte Realität.
 
Carl Mrusek, Chief Sales Officer: Ja, vombaur hat sich in seiner fast 220-jährigen Unternehmensgeschichte einige Male verwandelt. Dabei ist sich das Unternehmen als Schmaltextiler immer treu geblieben. Das zeugt von der Veränderungsbereitschaft bei den Menschen im Unternehmen und von ihrer Neugier. Erfolgreiche Transformation ist eine gemeinsame Entwicklung, es liegt eine Chance in der Veränderung. Das hat vombaur in den vergangenen fast 220 Jahren schon häufig bewiesen: Wir haben unsere Produkt-Portfolio an neue Zeiten angepasst, wir haben neue Fabrikgebäude und neue Maschinenparks errichtet, haben neue Materialien eingeführt und neue Technologien entwickelt, wir sind neue Partnerschaften – wie zuletzt als Teil der Textation Group – eingegangen. Aktuell planen wir unsere neue Zentrale. Wir erfinden uns damit nicht neu, aber eine Art Transformationsprozess werden wir auch mit dem Umzug in die brandneuen, klimagerechten Hightech-Räume durchlaufen.

 

Können Sie die Herausforderungen dieses Transformationsprozesses beschreiben?
 
Johannes Kauschinger, Sales Manager für Composites und Industrietextilien: Eine Transformation vollzieht sich in der Regel technisch, fachlich, organisatorisch und nicht zuletzt – vielleicht sogar zuallererst – kulturell. Die technischen Herausforderungen liegen auf der Hand. Um die neuen Technologien zu managen und zu nutzen, braucht es zweitens entsprechendes Fachwissen im Unternehmen. Jede Transformation bringt drittens neue Prozesse mit sich, Teams und Abläufe müssen angepasst werden. Und schließlich verändert sich viertens auch die Unternehmenskultur. Technik, kann man sich beschaffen, Fachwissen erwerben, die Organisation anpassen. Zeit dagegen können wir nicht kaufen. Die größte Herausforderung sehe ich deshalb darin, die personellen Ressourcen bereitzustellen: Damit wir die Transformation aktiv gestalten und nicht durch die Entwicklung getrieben werden, brauchen wir ausreichend Fachkräfte.

 

Beim Besuch Ihrer Website fällt sofort der Claim „pioneering tech tex“ ins Auge. Weshalb sehen Sie Ihr Unternehmen als Pionier, und worin bestehen die bahnbrechenden oder wegbereitenden Innovationen von vombaur?

Carl Mrusek: Wir sind mit unserem einzigartigen Maschinenpark Pionier*innen für nahtlos rundgewebte Textilien. Und als Entwicklungspartner betreten wir mit jedem Auftrag ein kleines Stück weit Neuland. Wir nehmen immer neue projektspezifische Veränderungen vor: an den Endprodukten, an den Produkteigenschaften, an den Maschinen. Dass wir für ein spezielles nahtlos gewebtes Formtextil eine Webmaschine anpassen, bisweilen auch ganz neu entwickeln, kommt regelmäßig vor.
 
Mit unserem jungen, erstklassigen und wachsenden Team für Development and Innovation um Dr. Sven Schöfer, lösen wir unseren Anspruch „pioneering tech tex“ immer wieder ein, indem wir mit und für unsere Kunden spezielle textile Hightech-Lösungen entwickeln. Parallel erkunden wir aktiv neue Möglichkeiten. Zuletzt mit nachhaltigen Materialien für den Leichtbau und Forschungen zu neuartigen Sonderfiltrationslösungen etwa zur Filtration von Mikroplastik. Für dieses Team ist im Neubau ein hochmodernes textiltechnisches Labor vorgesehen.

 

Die Entwicklung der technischen Textilien in Deutschland ist eine Erfolgsgeschichte. Mit Massenware können wir global betrachtet nur noch in Ausnahmefällen reüssieren. Wie schätzen Sie die Bedeutung technischer Textilien made in Germany für den Erfolg anderer, insbesondere hoch technologisierter Branchen ein?

Carl Mrusek: Wir sehen die Zukunft der Industrie in Europa in individuell entwickelten Hightech-Produkten. vombaur steht gerade für hochwertige, zuverlässige und langlebige Produkte und Spezialanfertigungen. Und gerade das – passgenau Produkte, statt Überschuss- und Wegwerfware – ist die Zukunft für nachhaltige Wirtschaft insgesamt.

 

Welchen Anteil hat das Projektgeschäft an Ihrer Produktion gegenüber einem Standardsortiment, und inwiefern fühlen Sie sich noch mit der Bezeichnung „Textilproduzent“ wohl?

Johannes Kauschinger: Unser Anteil an Speziallösungen liegt bei nahezu 90 Prozent. Wir entwickeln für aktuelle Projekte unserer Kunden textiltechnische Lösungen. Hierfür sind wir in engem Austausch mit den Kolleg*innen aus der Produktentwicklung unserer Kunden. Gerade bei den Composite Textiles sind vorwiegend Speziallösungen gefragt. Das kann ein Bauteil für die Raumfahrt sein – ein Raumschiff wird ja nicht von der Stange gefertigt. Wir bieten auch hochwertige Serienartikel, etwa im Bereich Industrial Textiles, wo wir rundgewebte Schläuche für Transportbänder bieten. So gesehen sind wir Textilproduzent, aber mehr als das: Wir sind dabei auch Textilentwickler.

 

Composites Germany hat im August die Ergebnisse seiner 21. Markterhebung vorgestellt. Dabei wird die aktuelle Geschäftslage sehr kritisch gesehen, das Investitionsklima trübt sich ein und Zukunftserwartungen drehen ins Negative. vombaur hat in seinem Portfolio ebenfalls hochfeste textile Verbundwerkstoffe aus Carbon, Aramid, Glas und Hybriden. Teilen Sie die Beurteilung der Wirtschaftslage, wie sie die Umfrage spiegelt?

Carl Mrusek: Wir sehen für vombaur eine durchaus positive Entwicklung voraus, da wir sehr lösungsorientiert entwickeln und unseren Kunden einen echten Mehrwert bieten. Denn gerade Zukunftstechnologien benötigen individuelle, zuverlässige und leichte Bauteile. Das reicht von Entwicklungen für das Lufttaxi bis zu Windrädern. Textilien sind ein prädestiniertes Material für die Zukunft. Die Herausforderung besteht auch darin, hier mit natürlichen Rohstoffen wie Flachs und recycelten und recycelbaren Kunststoffen und effektiven Trenntechniken nachhaltige und kreislauffähige Lösungen anzubieten.

 

Es gibt heutzutage fast kein Unternehmen, das nicht die aktuellen Buzzwords bedient wie Klimaneutralität, Kreislaufwirtschaft, Energieeffizienz und erneuerbare Energien. Was unternimmt Ihr Unternehmen in diesen Bereichen und wie definieren Sie die Bedeutung dieser Ansätze für einen wirtschaftlichen Erfolg?

Carl Mrusek: vombaur verfolgt eine umfassende Nachhaltigkeitsstrategie. Ausgehend von unserer Leitbildentwicklung arbeiten wir aktuell an einer Nachhaltigkeitserklärung. Unsere Verantwortung für die Natur wird sich sehr konkret und messbar in unserem Neubau mit Dachbegrünung und Solaranlage realisieren. In unserer Produktentwicklung fließen die hohen Nachhaltigkeitsansprüche – unsere eigenen und die unserer Kunden – schon jetzt in umwelt- und ressourcenschonende Produkte und in Produktentwicklungen für nachhaltige Projekte wie Windparks oder Filtrationsanlagen ein.

 

Stichwort Digitalisierung: Der Mittelstand, zu dem vombaur mit seinen 85 Mitarbeitenden gehört, wird oft dafür gescholten, in diesem Bereich zu zögerlich zu sein. Was würden Sie auf diesen Vorwurf antworten?

Johannes Kauschinger: Wir hören derzeit oft von der Stapelkrise. Angelehnt daran ließe sich von der Stapeltransformation sprechen. Wir, die mittelständischen Unternehmen, transformieren uns gleichzeitig in einer Reihe von unterschiedlichen Dimensionen: Digitale Transformation, Klimaneutralität, Fachkräftemarkt und Bevölkerungsentwicklung, Unabhängigkeit von den vorherrschenden Lieferketten. Wir sind veränderungsfähig und veränderungswillig. Politik und Verwaltung könnten es uns an einigen Stellen etwas leichter machen. Stichwort Verkehrs-Infrastruktur, Genehmigungszeiten, Energiepreise. Wir tun alles, was auf unserer Seite des Feldes zu ist, damit mittelständische Unternehmen die treibende Wirtschaftskraft bleiben, die sie sind.

 

Was empfinden Sie bei dem Begriff Fachkräftemangel? Beschreiten Sie auch unkonventionelle Wege, um Talente und Fachkräfte in einer so spezialisierten Branche zu finden und zu halten? Oder stellt sich das Problem nicht?

Carl Mrusek: Klar, auch wir bekommen den Fachkräftemangel zu spüren, gerade im gewerblichen Bereich. Die Entwicklung war aber abzusehen. Das Thema spielte eine gewichtige Rolle bei der Entscheidung mit unserem Schwesterunternehmen JUMBO-Textil zusammen unter das Dach der Textation Group zu ziehen. Die Nachwuchsgewinnung und -förderung lässt sich gemeinsam – zum Beispiel mit gruppenübergreifenden Kampagnen und Kooperationen – besser meistern.

 

Wenn Sie ein persönliches Schlüsselerlebnis beschreiben müssten, das Ihre Einstellung zur Textilindustrie und deren Zukunft geprägt hat, was wäre das?

Johannes Kauschinger: Ein sehr guter Freund meiner Familie hat mich darauf angesprochen, dass wir in einer Gegend mit sehr aktiver Textilindustrie leben, die gleichzeitig Probleme hat, Nachwuchskräfte zu finden. Ich besuchte zwei Betriebe zur Vorstellung und schon auf dem Betriebsrundgang in jeder der beiden Firmen war das Zusammenwirken von Menschen, Maschinen und Textil bis zum tragbaren Endprodukt beeindruckend. Dazu kam, dass ich einen Beruf mit sehr großem Bezug zum täglichen Leben erlernen konnte. Bis heute bin ich über die Breite der Einsatzmöglichkeiten von Textilien, speziell in technischen Anwendungen, fasziniert und bereue die damalige Entscheidung keinesfalls.

Carl Mrusek: Bereits in jungen Jahren kam ich mit der Textil- und Modewelt in Berührung. Ich erinnere mich noch gut daran, wie ich mit meinem Vater Rolf Mrusek das erste Mal durch die vollstufige Textil-Produktion eines Unternehmens in Nordhorn ging. Das Thema hat mich seitdem nicht mehr losgelassen. Schon vor Beginn meiner Studienzeit hatte ich mich bewusst für eine Karriere in dieser Industrie entschieden und habe es bis heute nicht bereut, im Gegenteil. Die Vielfältigkeit der in der Textation Group entwickelten Speziallösungen fasziniert mich immer wieder aufs Neue.
 

vombaur ist Spezialist für nahtlos rund- und in Form gewebte Schmaltextilien und branchenweit als Entwicklungspartner für Filtration Textiles, Composite Textiles und Industrial Textiles aus Hochleistungsfasern bekannt. Die technischen Schmaltextilien von vombaur dienen zum einen zur Filtration – u. a. in der Lebensmittel- und Chemieindustrie. Als hochleistungsfähige Verbundwerkstoffe kommen sie beispielsweise im Flugzeugbau oder in der Medizintechnik zum Einsatz. Für technische Anwendungen entwickelt vombaur speziell beschichtete Industrietextilien zur Isolierung, Verstärkung oder für den Transport in ganz unterschiedlichen industriellen Prozessen – von der Feinmechanik bis zur Bauindustrie. Das Wuppertaler Unternehmen wurde 1805 gegründet. Aktuell arbeiten 85 Beschäftigte im Unternehmen.
 

Branchen

  • Aviation & Automotive
  • Sports & Outdoor    
  • Bau- & Wasserwirtschaft
  • Sicherheit & Protection    
  • Chemie & Lebensmittel
  • Anlagenbau & Elektronik    
  • Medizin & Orthopädie

 

Heimtextil Trends 24/25 © SPOTT trends & business for Heimtextil
12.09.2023

Heimtextil Trends 24/25: New Sensitivity

Unter dem Leitthema „New Sensitivity“ steht textile Transformation im Mittelpunkt der Heimtextil Trends 24/25. Drei Ansätze zeigen Wege zu einer sensibleren Welt der Textilien auf: die pflanzenbasierte Herstellung von Textilien, die Unterstützung textiler Kreisläufe durch Technologie und die biotechnologische Verwendung natürlicher Inhaltsstoffe. Darüber hinaus kuratieren die Future Materials regenerative Materialien und Designs.
 
Nachdem im letzten Jahr bereits zirkuläre Lösungen im Fokus lagen, stellen die Heimtextil Trends 24/25 erneut transformative Textilinnovationen in den Mittelpunkt.

Unter dem Leitthema „New Sensitivity“ steht textile Transformation im Mittelpunkt der Heimtextil Trends 24/25. Drei Ansätze zeigen Wege zu einer sensibleren Welt der Textilien auf: die pflanzenbasierte Herstellung von Textilien, die Unterstützung textiler Kreisläufe durch Technologie und die biotechnologische Verwendung natürlicher Inhaltsstoffe. Darüber hinaus kuratieren die Future Materials regenerative Materialien und Designs.
 
Nachdem im letzten Jahr bereits zirkuläre Lösungen im Fokus lagen, stellen die Heimtextil Trends 24/25 erneut transformative Textilinnovationen in den Mittelpunkt.
Unter dem Titel „New Sensitivity“ stehen neben ästhetischen Aspekten Innovationen und Veränderungen in der Zusammensetzung von Textilien im Mittelpunkt. „In diesem Zusammenhang bedeutet Sensibilität, dass bei Entscheidungen oder der Entwicklung eines Produkts Auswirkungen auf die Umwelt von Anfang an berücksichtigt werden. Zu verstehen, wie natürliche Ökosysteme funktionieren, und dem Gleichgewicht den Vorrang zu geben, ist der Schlüssel,“ so Anja Bisgaard Gaede von SPOTT trends & business.

Wie lässt sich die neue Sensibilität in der Lifestyle-Branche konkret umsetzen und was bedeutet eine sensible Herangehensweise für Design und Produkte? Auch der Einsatz von Artificial General Intelligence (AGI) hat das Potenzial, innovative Lösungen in der Textilindustrie zu bieten, birgt aber auch gesellschaftliche Herausforderungen. AGI erfordert eine sensible Herangehensweise, um Komplexität zu reduzieren, Kreativität zu fördern und bisher unentdeckte Lösungen in der Textilwelt und darüber hinaus zu finden.
     
„Mit den Heimtextil Trends 24/25: New Sensitivity ermutigen wir die Textilbranche, sich der Zukunft mit Bedacht und rücksichtsvoll zu nähern. Konkret sehen wir diesen Wandel in drei verschiedenen Strömungen für eine sensiblere Welt der Textilien: biotechnisch, pflanzenbasiert und technologisch,“ so Bisgaard Gaede weiter.

Plant-based: Textilien aus Pflanzen und pflanzlichen Nebenerzeugnissen
Die Fasern von Textilien auf Pflanzenbasis stammen von etwas Gewachsenem und werden nicht synthetisch hergestellt. Der nachhaltige Vorteil von Textilien auf pflanzlicher Basis ist, dass sie natürlichen Ursprungs sind und daher eher für die Rückführung in existierende Ökosysteme wiederverwendet werden können. Sie können in zwei Aspekte unterteilt werden. Der erste ist die Herstellung von Textilien aus Pflanzenkulturen. Neue widerstandsfähige Pflanzen wie Kaktus, Hanf, Abaka (Manilahanf), Seegras und Kautschuk bieten hier neue, nachhaltige Textillösungen. Aufgrund der mechanischen Extraktion können sie trotz Klimaveränderungen wachsen und benötigen bei der Entwicklung weniger Chemikalien. Die zweite Gruppe sind Textilien, die aus pflanzlichen Nebenprodukten hergestellt werden, d. h. aus Rohstoffen wie Bananen, Oliven, Kakis und Hanf, die bei der Produktion übrigbleiben.

Technological: Technologie und technische Lösungen, die Textilien verändern
Technologie kann die Umwandlung von Textilien durch verschiedene Methoden unterstützen: Upcycling und Recycling von Textilien, Textilkonstruktion und Textildesign. Aufgrund der jahrzehntelangen Produktion sind Textilien heute Materialien, die im Überfluss vorhanden sind. Die Entwicklung von Technologien zur Wiederverwertung von Textilabfällen und zum textilen Upcycling erhöht die zirkuläre Nutzung bereits hergestellter Textilien. Darüber hinaus sind auch alte Textilkonstruktionstechniken ein Weg zu nachhaltigen Lösungen. Durch die Verwendung von Stricktechniken für Möbelbezüge wird weniger Textilabfall produziert, demgegenüber können durch die Webtechnik mit wenigen farbigen Garnen optisch mehrere Farben erzeugt werden. Textile Design Thinking befasst sich mit kritischen Themen wie dem Energieverbrauch oder der Haltbarkeit von Naturfasern und verbessert diese durch technologische Weiterentwicklung.

Bio-engineered: entwickelt zur Verbesserung der biologischen Abbaubarkeit
Bei bio-technisch hergestellten Textilien verschmelzen pflanzliche und technische Textilien. Bio-Engineering schlägt eine Brücke zwischen Natur und Technik und verändert die Art und Weise, wie Textilien hergestellt werden. Sie können in zwei Richtungen unterteilt werden: vollständig biotechnisch hergestellte und biologisch abbaubare Textilien. Bei vollständig biotechnologisch hergestellten Textilien werden von der Natur inspirierte Strategien angewandt. Anstatt die Pflanzen anzubauen und daraus Fasern zu extrahieren, werden Proteine und Kohlenhydrate aus Mais, Gras und Rohrzucker oder Bakterien eingesetzt. Die Textilien werden durch einen biomolekularen Prozess hergestellt, bei dem Filamente entstehen, die zu Garnen werden. Der nachhaltige Vorteil von biotechnologisch hergestellten Textilien besteht darin, dass sie einige der gleichen Funktionalitäten wie synthetisch hergestellte Textilien haben können. Da sie jedoch natürlichen Ursprungs sind, können sie biologisch abgebaut werden. „Biodegradable Fibres“ können herkömmlichen Textilien wie Polyester zugesetzt werden und verbessern deren Fähigkeit, sich zu in der Natur vorkommenden Materialien zurückzuverwandeln und sich somit in natürlichen Umgebungen wie Wasser oder Erdboden biologisch abzubauen. Die biologisch verbesserten Textilien werden zwar nicht vollständig, aber bis zu 93 Prozent im Vergleich zu herkömmlichen Textilien biologisch abgebaut.

Heimtextil Trends 24/25: Farben
Ein sensibler Ansatz bei den Färbemethoden kommt in einer dynamischen und gleichzeitig subtilen Farbpalette zum Ausdruck. Sie wird mit natürlichen, aus der Erde stammenden Pigmenten erzeugt, während traditionelle Färbeverfahren durch innovative Biotechnologie auf die nächste Stufe gebracht werden. In dem Bestreben, Farben zu erschaffen, die Emotionen hervorrufen und gleichzeitig Werte beim Umweltschutz respektieren, erzeugen Farbbakterien durch Pigmentwachstum Farbtöne von beeindruckendem Reichtum und großer Tiefe.
               
Zu dieser neuen Sensibilität gehört auch die Akzeptanz natürlicher Farbverläufe, da die Farben mit der Zeit verblassen oder sich in eine neue Farbrichtung verwandeln können. Die Farbtöne der Heimtextil Trends 24/25 wurden von natürlichen Farben inspiriert, die aus Avocadokernen, Algen, lebenden Bakterien, antiken Pigmenten wie Roh Sienna und biotechnisch hergestelltem Indigo und Cochenille stammen. Der hohe Schwarzanteil in den meisten Farben ermöglicht eine breite Anwendung und eine größere Vielfalt an Kombinationen. Die kräftigen, gesättigten Akzente beleben Sinne und Stimmung. Im Gegensatz dazu stehen die erdenden Neutraltöne in verschiedenen Grauabstufungen, Terra und sogar dunklem Violett, die für Ruhe und Gelassenheit sorgen.
     
Future Materials: regeneratives Design
Wie werden regenerative Textilien und Materialien definiert? Regeneratives Design hat sich dem Ziel verschrieben, ganzheitliche kreative Praktiken zu entwickeln, die die Ressourcen wiederherstellen oder erneuern, eine positive Auswirkung auf die Umwelt haben und das Gedeihen von Gemeinschaften fördern. Für die Heimtextil 2024 kuratiert die Design-Zukunftsberatung FranklinTill ein globales Schaufenster hochmoderner Textilien und Materialien, um die Prinzipien des regenerativen Designs zu veranschaulichen und bahnbrechende Designer*innen, Erzeuger*innen und Hersteller*innen zu würdigen, die an der Spitze des regenerativen Designs stehen.
Der Trend Space auf der Heimtextil in Frankfurt vom 9. bis 12. Januar 2023 präsentiert diese Lösungen auf inspirierende Weise. Zusätzlich bieten die Heimtextil Trends Besuchern in Form von Workshops, Vorträgen und weiteren interaktiven Formaten Orientierung und Einblicke in die Zukunft von Wohn- und Objekttextilien.

Quelle:

Heimtextil, Messe Frankfurt

Foto unsplash.com
05.09.2023

Ananas Anam und TENCEL™ kooperieren mit Calvin Klein

Auf der Suche nach einem besseren, umweltfreundlichen Schuhmaterial findet sich die Lösung in einer ungewöhnlichen Zutat: den Blättern der Ananas. Diese besondere Textilzutat steht im Mittelpunkt der jüngsten Schuhdesign-Kooperation zwischen Ananas Anam, TENCEL™ und Calvin Klein. Calvin Klein bringt den ersten Turnschuh auf den Markt, dessen Obermaterial aus PIÑAYARN® kombiniert mit TENCEL™ Lyocell-Fasern gestrickt ist.
 
Die als "The Sustainable Knit Trainer" bekannten Turnschuhe sind ein zeitloser Klassiker, der – versehen mit dem bekannten Calvin Klein-Logo - in den traditionellen Farben Schwarz und Off-White erhältlich ist. Das Obermaterial aus PIÑAYARN®-Strick, das zu 70 % aus TENCEL™ Lyocell und zu 30 % aus Anam PALF™ Ananasblattfasern besteht, ist sowohl pflanzlichen Ursprungs als auch biobasiert.
          

Auf der Suche nach einem besseren, umweltfreundlichen Schuhmaterial findet sich die Lösung in einer ungewöhnlichen Zutat: den Blättern der Ananas. Diese besondere Textilzutat steht im Mittelpunkt der jüngsten Schuhdesign-Kooperation zwischen Ananas Anam, TENCEL™ und Calvin Klein. Calvin Klein bringt den ersten Turnschuh auf den Markt, dessen Obermaterial aus PIÑAYARN® kombiniert mit TENCEL™ Lyocell-Fasern gestrickt ist.
 
Die als "The Sustainable Knit Trainer" bekannten Turnschuhe sind ein zeitloser Klassiker, der – versehen mit dem bekannten Calvin Klein-Logo - in den traditionellen Farben Schwarz und Off-White erhältlich ist. Das Obermaterial aus PIÑAYARN®-Strick, das zu 70 % aus TENCEL™ Lyocell und zu 30 % aus Anam PALF™ Ananasblattfasern besteht, ist sowohl pflanzlichen Ursprungs als auch biobasiert.
          
Da die Modebranche begonnen hat, die negativen Umweltauswirkungen synthetischer Materialien zu erkennen, haben sich viele Marken pflanzlichen Materialien wie PIÑAYARN® zugewandt. PIÑAYARN® wird in einem umweltfreundlichen Verfahren aus Abfällen von Ananasblättern gewonnen und in einem wasserfreien Spinnverfahren hergestellt. Die Zugabe von TENCEL™ Lyocell, einer Zellstofffaser aus nachhaltig bewirtschafteten Wäldern, die in einem Lösungsmittelspinnverfahren hergestellt wird, bei dem sowohl das Lösungsmittel als auch das Wasser mit einer Rückgewinnungsrate von mehr als 99 % recycelt werden, ermöglicht die vollständige Rückverfolgbarkeit der TENCEL™-Faser im fertigen Mischgarn.
 
Melissa Braithwaite, PIÑAYARN® Product Development Manager bei Ananas Anam, sagte: "Die Inspiration für PIÑAYARN® entstand aus dem Bedürfnis, der Textilindustrie eine Alternative zu übermäßig genutzten, oft umweltbelastenden, konventionellen Fasern wie Baumwolle oder Polyester zu bieten. Wir verfügen in unserem Geschäftsbereich über eine Fülle von nutzbaren Ressourcen, und die Erweiterung unseres Produktangebots bedeutet, dass wir mehr Abfälle verwerten können, wodurch sich unser positiver Einfluss auf die Umwelt und die Gesellschaft erhöht."

Mit der wachsenden Nachfrage der Verbraucher nach umweltfreundlichen Textilprodukten und Schuhen steigt auch die Beliebtheit von Textilfasern auf Holzbasis als Materialalternative. Die Zusammenarbeit von Ananas Anam und TENCEL™ mit Calvin Klein war insofern ein Erfolg, als sich die physikalischen Eigenschaften und die umweltfreundlichen Vorteile der PIÑAYARN®- und TENCEL™-Fasern perfekt ergänzen und ein weiches, für verschiedene Web- und Strickanwendungen geeignetes Mischmaterial ergeben.

Für Materialentwickler wie Ananas Anam, die den idealen Partner für Fasermischungen zur Herstellung von PIÑAYARN® suchten, sind TENCEL™ Lyocellfasern bekannt für ihre Vielseitigkeit und ihre Fähigkeit, mit einer Vielzahl von Textilien wie Hanf, Leinen und natürlich der Anam PALF™ Ananasblattfaser gemischt zu werden, um die Ästhetik, Leistung und Funktionalität von Stoffen zu verbessern. Darüber hinaus können TENCEL™ Lyocell-Fasern nicht nur in Schuhoberteilen verwendet werden, sondern auch in jedem Teil des Schuhs, einschließlich des Obermaterials, des Futters, der Einlegesohlen, der Polsterung, der Schnürsenkel, des Reißverschlusses und des Nähgarns. TENCEL™ Lyocell kann ebenfalls in Pulverform für die Laufsohle von Schuhen verwendet werden.

„Wir freuen uns sehr über die Zusammenarbeit mit Ananas Anam bei der Markteinführung von The Sustainable Knit Trainer by Calvin Klein, einem umweltfreundlichen Schuh für bewusste Konsumenten. Diese Partnerschaft ist ein perfektes Beispiel für unser Engagement, Bildung und Fachwissen zur Verfügung zu stellen, um jeden zu unterstützen, der sich dafür entscheidet, die Umwelt- und Sozialverträglichkeit seiner Produkte durch die Verwendung verantwortungsvoller Materialien zu verbessern“, so Nicole Schram, Global Business Development Manager bei Lenzing.
Quelle: Lenzing AG

Quelle:

Lenzing AG

(c) Institut auf dem Rosenberg
01.09.2023

'Blue Nomad' - Auf Flachsfasern in die Zukunft gleiten

Da die Menschheit mit dem Klimawandel und dem steigenden Meeresspiegel zu kämpfen hat, ist unsere kollektive Vorstellungskraft wichtiger denn je. Vor diesem Hintergrund war bcomp von Arbeit der Studenten des Instituts auf dem Rosenberg in St. Gallen und SAGA Space Architects fasziniert. Sie haben entwickelten eine außergewöhnliche Lösung für die ökologischen Herausforderungen, mit denen wir konfrontiert sind: das schwimmende Lebensraumprojekt "Blue Nomad".

‘Blue Nomad" ist ein solarbetriebenes Heim, das für ein komfortables Leben auf dem Meer konzipiert wurde. Es symbolisiert eine Zukunft, in der wir die sich verändernde Umwelt der Erde erforschen und uns an sie anpassen müssen. Inspiriert von den ersten polynesischen Nomadensiedlungen und ausgestattet mit Solarpaneelen zur Selbstversorgung, fördert das Habitat die Vision des Lebens und Reisens auf dem Wasser.

Da die Menschheit mit dem Klimawandel und dem steigenden Meeresspiegel zu kämpfen hat, ist unsere kollektive Vorstellungskraft wichtiger denn je. Vor diesem Hintergrund war bcomp von Arbeit der Studenten des Instituts auf dem Rosenberg in St. Gallen und SAGA Space Architects fasziniert. Sie haben entwickelten eine außergewöhnliche Lösung für die ökologischen Herausforderungen, mit denen wir konfrontiert sind: das schwimmende Lebensraumprojekt "Blue Nomad".

‘Blue Nomad" ist ein solarbetriebenes Heim, das für ein komfortables Leben auf dem Meer konzipiert wurde. Es symbolisiert eine Zukunft, in der wir die sich verändernde Umwelt der Erde erforschen und uns an sie anpassen müssen. Inspiriert von den ersten polynesischen Nomadensiedlungen und ausgestattet mit Solarpaneelen zur Selbstversorgung, fördert das Habitat die Vision des Lebens und Reisens auf dem Wasser.

bcomp begeistert besonders an dem Projekt, dass das in London und Monaco ausgestellte Modell die eigenen ampliTex™ Flachsfasern enthält. Das Institut auf dem Rosenberg und SAGA entwickeln derzeit einen Plan für den Bau eines tatsächlichen Prototyps des schwimmenden Hauses. Es könnte aus einem strukturell optimierten Gewebe aus Flachsfasern hergestellt werden und die Zukunft organischer und regenerativer Hochleistungsmaterialien aufzeigen, die herkömmliche synthetische und fossile Technologien ersetzen.

Blue Nomad" ist nicht nur ein solitärer Lebensraum, sondern ein Konzept für eine neue Art von Gemeinschaft. Als modulare Blöcke konzipiert, können diese Lebensräume größere Gemeinschaften und Meeresfarmen bilden, die es den Bewohnern ermöglichen, Ressourcen zu teilen, während sie von einer Meeresfarm zur nächsten ziehen. Es ist eine beeindruckende Vision einer Zukunft, in der die Grenzen zwischen Land und Wasser verschwimmen und Nachhaltigkeit und Gemeinschaftsbildung im Mittelpunkt der menschlichen Siedlungen stehen.

Doch diese Vision ist nicht nur eine theoretische. Geplant ist eine Jungfernfahrt des "Blue Nomad" quer durch Europa, die ausschließlich mit Solarenergie betrieben wird und die Nachhaltigkeit der Ozeane, die Klimatologie und das Nomadentum der Zukunft fördert.

Dieses Projekt erinnert daran, was wir erreichen können, wenn wir Bildung, innovatives Design und Nachhaltigkeit miteinander verbinden. Der "Blue Nomad" repräsentiert die Zukunft - eine Zukunft, in der nachhaltige Materialien eine entscheidende Rolle beim Schutz unseres Planeten spielen.

Das Projekt "Blue Nomad" wurde auf der Londoner Design-Biennale 2023 sowie der Monaco Energy Boat Challenge ausgestellt, wo es Besucher in seinen Bann zog und große Begeisterung in der Öffentlichkeit auslöste.

Quelle:

Bcomp

sportswear Stocksnap, Pixabay
30.08.2023

Eine smarte Laufhose warnt vor …

ETH-Forschende haben ein elektronisches Garn entwickelt, das Körperbewegungen sehr genau misst. Der Textilsensor kann direkt in Sport- oder Arbeitskleidung integriert werden und sagt die Müdigkeit des Trägers während körperlicher Belastung voraus.

Wer erschöpft ist, verletzt sich leichter – sowohl beim Sport als auch bei körperlicher Arbeit. ETH-Forschende um Carlo Menon, Professor für mobile Gesundheitstechnologien, haben nun einen Textilsensor entwickelt, der in Echtzeit misst, wie erschöpft Menschen während körperlicher Belastung sind. Getestet haben sie den neuen Senor an einer Laufhose. Mit einem Blick auf das Smartphone konnten die Probanden feststellen, wann sie an ihre Belastungsgrenze kommen und besser eine Pause einlegen sollten.

ETH-Forschende haben ein elektronisches Garn entwickelt, das Körperbewegungen sehr genau misst. Der Textilsensor kann direkt in Sport- oder Arbeitskleidung integriert werden und sagt die Müdigkeit des Trägers während körperlicher Belastung voraus.

Wer erschöpft ist, verletzt sich leichter – sowohl beim Sport als auch bei körperlicher Arbeit. ETH-Forschende um Carlo Menon, Professor für mobile Gesundheitstechnologien, haben nun einen Textilsensor entwickelt, der in Echtzeit misst, wie erschöpft Menschen während körperlicher Belastung sind. Getestet haben sie den neuen Senor an einer Laufhose. Mit einem Blick auf das Smartphone konnten die Probanden feststellen, wann sie an ihre Belastungsgrenze kommen und besser eine Pause einlegen sollten.

Die von der ETH Zürich zum Patent angemeldete Erfindung könnte den Weg ebnen für eine neue Generation von smarten Kleidern: Denn bei vielen auf dem Markt verfügbaren Produkten werden elektronische Bauteile wie Sensoren, Batterien oder Chips nachträglich an der Kleidung fixiert. Dies macht die Herstellung umständlich, führt zu hohen Preisen und erschwert die Pflege der Produkte.

Im Unterschied dazu wird der Dehnungssensor der ETH-Forschenden direkt in die Stofffasern elastischer und enganliegender Sport- oder Arbeitskleidung integriert, was die industrielle Produktion erleichtert und den Preis senkt. Ein weiterer Vorteil: «Durch den engen Körperkontakt des Sensors können wir Körperbewegungen sehr genau erfassen, ohne dass der Nutzer oder die Nutzerin das bemerkt», sagt Menon.

Ein außergewöhnliches Garn
Wenn Menschen müde werden, bewegen sie sich anders. So auch beim Laufen: Die Schritte werden kürzer und weniger regelmäßig. Diesen Effekt messen die ETH-Forschenden mit ihrem neuen Sensor, der aus einem speziellen Garn besteht. Möglich wird dies durch den Aufbau des Garns: Die innere Faser besteht aus einem leitenden, elastischen Gummi. Spiralförmig um diesen herum wickelten die Forschenden einen steifen Draht, der mit einer dünnen Kunststoffschicht verkleidet ist. «Die beiden Fasern wirken als Elektroden und erzeugen ein elektrisches Feld. Sie bilden gemeinsam einen Kondensator, der eine elektrische Ladung speichern kann, die wir als Kapazität bezeichnen», erklärt Tyler Cuthbert, der als Postdoc in Menons Gruppe forschte und maßgeblich an der Entwicklung beteiligt war.

Die intelligente Laufhose
Stickt man dieses Garn nun auf der Höhe des Oberschenkels auf eine elastische Laufhose wird es beim Laufen in einem gewissen Rhythmus gedehnt und wieder gelockert. Bei jeder Bewegung ändert sich der Abstand zwischen den beiden Fasern und damit auch das elektrische Feld sowie die Kapazität des Kondensators.

Unter normalen Umständen wären diese Kapazitätsschwankungen sehr klein und würden nicht ausreichen, um damit Körperbewegungen messen zu können. Doch die Eigenschaften des Garns sind alles andere als normal: «Im Unterschied zu den meisten anderen Materialien wird es dicker, wenn man daran zieht», erklärt Cuthbert. Dadurch wird das Garn sehr viel sensibler gegenüber kleinsten Bewegungen. Dehnt es sich geringfügig aus, entstehen deutlich messbare Schwankungen in der Kapazität des Sensors. Bereits subtile Veränderungen im Laufverhalten können so gemessen und ausgewertet werden.

Doch wie kann man daraus die Müdigkeit einer Person ableiten? In einem früheren Forschungsprojekt haben Cuthbert und Menon eine Reihe von Probanden beim Laufen beobachtet, während sie eine Laufhose mit einem ähnlichen Sensor trugen. Sie zeichneten auf, wie sich die elektrischen Signale des Sensors bei zunehmender Müdigkeit änderten. Aus diesem Muster haben die Forschenden dann ein Modell erstellt, das die Erschöpfung von Läufern vorhersagt und auch für den neuen Textilsensor eingesetzt werden kann. Damit das Modell auch außerhalb des Labors zuverlässige Vorhersagen macht, braucht es allerdings noch zahlreiche weitere Tests und eine Menge Bewegungsdaten.

Textilantenne für die kabellose Datenübertragung
Um die elektrischen Signale des Textilsensors ohne Kabel an ein Smartphone zu übertragen, haben ihn die Forschenden mit einer Spulenantenne aus leitendem Garn verbunden, die ebenfalls direkt auf die Laufhose gestickt wurde. «Sensor und Antenne bilden zusammen einen elektrischen Schaltkreis, der vollständig in der Kleidung integriert ist», sagt Valeria Galli, Doktorandin in Menons Gruppe.

Das elektrische Signal des Dehnungssensors führt nun dazu, dass die Antenne ein Signal in einer bestimmten Frequenz aussendet, das von einem Smartphone gelesen werden kann. Wird der Sensor während des Laufens bewegt, entsteht ein Signalmuster mit einer ständig schwankend Frequenz, die von einer App in Echtzeit aufgezeichnet und ausgewertet werden kann. Dies ist allerdings Zukunftsmusik und erfordert noch einiges an Entwicklungsarbeit.

Anwendungen im Sport und am Arbeitsplatz
Aktuell arbeiten die Forschenden daran, aus dem Prototyp ein marktreifes Produkt zu machen. Dafür bewerben sie sich um eines der begehrten Pioneer Fellowship der ETH Zürich. «Unser Ziel ist, intelligente Kleidung günstiger herzustellen und damit einer breiteren Öffentlichkeit zugänglich zu machen», sagt ETH-Professor Menon. Anwendungen sieht Menon dabei nicht nur im Sport, sondern auch am Arbeitsplatz, um ermüdungsbedingten Verletzungen vorzubeugen, oder im Bereich der Rehabilitationsmedizin.

Quelle:

ETH Zürich

Photo: zephylwer0, Pixabay
29.08.2023

Ein neuer Weg, Feuer mit nanoskaligem Material zu zähmen

Unter Einsatz von Hochtemperaturflammen entsteht eine Vielzahl von Materialien - doch wenn man ein Feuer entfacht, kann es schwierig werden zu kontrollieren, wie die Flamme mit dem zu bearbeitenden Material interagiert. Forscher haben nun eine Technik entwickelt, bei der eine moleküldünne Schutzschicht die Wechselwirkung zwischen der Hitze der Flamme und dem Material steuert - so wird das Feuer gebändigt und der Benutzer kann die Eigenschaften des verarbeiteten Materials präzise abstimmen.

„Feuer ist ein wertvolles technisches Werkzeug - schließlich ist auch ein Hochofen nur ein intensives Feuer“, sagt Martin Thuo, korrespondierender Autor eines Artikels über die Arbeit und Professor für Materialwissenschaften und Technik an der North Carolina State University. „Wenn man jedoch ein Feuer entfacht, hat man oft wenig Kontrolle über sein Verhalten.“

Unter Einsatz von Hochtemperaturflammen entsteht eine Vielzahl von Materialien - doch wenn man ein Feuer entfacht, kann es schwierig werden zu kontrollieren, wie die Flamme mit dem zu bearbeitenden Material interagiert. Forscher haben nun eine Technik entwickelt, bei der eine moleküldünne Schutzschicht die Wechselwirkung zwischen der Hitze der Flamme und dem Material steuert - so wird das Feuer gebändigt und der Benutzer kann die Eigenschaften des verarbeiteten Materials präzise abstimmen.

„Feuer ist ein wertvolles technisches Werkzeug - schließlich ist auch ein Hochofen nur ein intensives Feuer“, sagt Martin Thuo, korrespondierender Autor eines Artikels über die Arbeit und Professor für Materialwissenschaften und Technik an der North Carolina State University. „Wenn man jedoch ein Feuer entfacht, hat man oft wenig Kontrolle über sein Verhalten.“

„Bei unserer Technik, die wir als inverse thermische Degradation (inverse thermal degradation ITD) bezeichnen, wird ein dünner Film im Nanomaßstab auf ein bestimmtes Material aufgebracht. Der dünne Film verändert sich in Reaktion auf die Hitze des Feuers und reguliert die Menge an Sauerstoff, die in das Material eindringen kann. Das bedeutet, dass wir die Geschwindigkeit steuern können, mit der sich das Material erwärmt - was wiederum die chemischen Reaktionen im Material beeinflusst. Im Grunde können wir genau einstellen, wie und wo das Feuer das Material verändert.“

„ITD funktioniert folgendermaßen. Sie beginnen mit Ihrem Zielmaterial, z. B. einer Zellulosefaser. Diese Faser wird dann mit einer nanometerdicken Schicht aus Molekülen beschichtet. Die beschichteten Fasern werden dann einer intensiven Flamme ausgesetzt. Die äußere Oberfläche der Moleküle verbrennt leicht, wodurch sich die Temperatur in der unmittelbaren Umgebung erhöht. Die innere Oberfläche der molekularen Beschichtung verändert sich jedoch chemisch und bildet eine noch dünnere Glasschicht um die Zellulosefasern. Dieses Glas begrenzt die Menge an Sauerstoff, die zu den Fasern gelangen kann, und verhindert, dass die Zellulose in Flammen aufgeht. Stattdessen schwelen die Fasern - sie brennen langsam von innen nach außen.“

„Ohne die Schutzschicht des ITD würde die Beflammung von Zellulosefasern nur zu Asche führen“, sagt Thuo. „Mit der Schutzschicht des ITD erhält man Kohlenstoffröhren.“

„Wir können die Schutzschicht so gestalten, dass die Menge des Sauerstoffs, die das Zielmaterial erreicht, angepasst wird. Und wir können das Zielmaterial so gestalten, dass es die gewünschten Eigenschaften aufweist.“

Die Forscher führten Probeläufe mit Zellulosefasern durch, um Kohlenstoffröhren im Mikromaßstab herzustellen. Sie konnten die Stärke der Kohlenstoffrohrwände steuern, indem sie die Größe der durch das Einbringen Zellulosefasern, mit denen sie begannen, kontrollierten, indem sie verschiedene Salze in die Fasern einbrachten (was die Verbrennungsgeschwindigkeit zusätzlich steuert) und indem sie die Sauerstoffmenge, die durch die Schutzschicht dringt, variierten.

"Wir haben bereits mehrere Anwendungsmöglichkeiten im Kopf, die wir in zukünftigen Studien untersuchen werden", sagt Thuo. "Wir sind auch offen für eine Zusammenarbeit mit dem privaten Sektor, um verschiedene praktische Anwendungen zu erforschen, wie z. B. die Entwicklung von technischen Kohlenstoffröhren für die Öl-Wasser-Trennung, was sowohl für industrielle Anwendungen als auch für die Umweltsanierung nützlich wäre.

Die Arbeit mit dem Titel „Spatially Directed Pyrolysis via Thermally Morphing Surface Adducts“ wurde in der Zeitschrift Angewandte Chemie veröffentlicht. Mitautoren sind Dhanush Jamadgni und Alana Pauls, Doktoranden am NC State, Julia Chang und Andrew Martin, Postdoktoranden am NC State, Chuanshen Du, Paul Gregory, Rick Dorn und Aaron Rossini von der Iowa State University und E. Johan Foster von der University of British Columbia.

Quelle:

North Carolina State University, Matt Shipman

Point of View: Let’s end fast fashion, Prof Minna Halme. Foto: Veera Konsti / Aalto University
18.08.2023

Standpunkt: Schluss mit Fast Fashion!

Sich auf kurzfristige Gewinne zu fokussieren, ist nicht nachhaltig. Was können wir also tun, um in die richtige Richtung zu gehen? In allen Branchen die Widerstandsfähigkeit der Effizienz vorziehen.

Sich auf kurzfristige Gewinne zu fokussieren, ist nicht nachhaltig. Was können wir also tun, um in die richtige Richtung zu gehen? In allen Branchen die Widerstandsfähigkeit der Effizienz vorziehen.

Wir kaufen billige Produkte im Wissen, dass wir sie bald ersetzen müssen. Wir werfen gebrauchte Gegenstände weg, anstatt sie zu reparieren oder wiederzuverwenden. Arbeitgeber planen in Bezug auf finanzielle Quartale, obwohl sie hoffen, längerfristig bedeutend und stabil zu bleiben. Sogar Länder geben der kurzfristigen Wirtschaftsleistung den Vorrang und stellen das Bruttoinlandsprodukt (BIP) über jeden anderen Indikator.
 
Unsere globale Besessenheit von kurzfristiger wirtschaftlicher Effizienz - und die Frage, wie man sie überwinden kann - ist ein großes Rätsel, über das Minna Halme, Professorin für Nachhaltigkeitsmanagement, die meiste Zeit ihrer Karriere nachgedacht hat. Schon als Studentin an der Wirtschaftshochschule war sie irritiert, wie sehr sich ihr Unterricht auf kurzfristige Ziele konzentrierte.

„Es ging darum, mehr zu verkaufen, die Gewinne der Aktionäre zu maximieren, ökologisch zu wachsen - aber nicht wirklich zu fragen: Warum? Was ist der Zweck von all dem?“, so Halme.
„Selbst mir als 20-Jähriger kam das irgendwie seltsam vor.“

„Was versuchen wir hier zu tun? Versuchen wir, eine bessere Wirtschaft für alle oder für die meisten Menschen zu schaffen? Wessen Leben versuchen wir zu verbessern, wenn wir mehr unterschiedlich verpackte Joghurtsorten oder Kleidung verkaufen, die schnell unmodern ist?“

Halme hat ihre Karriere der Untersuchung dieser Fragen gewidmet. Heute ist sie eine Vordenkerin im Bereich innovativer Geschäftspraktiken und wurde unter anderem als Mitglied des finnischen Expertengremiums für nachhaltige Entwicklung und des Gremiums für globale Nachhaltigkeit der Vereinten Nationen anerkannt.

Ihr oberstes Ziel? Pionierarbeit zu leisten, zu forschen und für alternative Denkweisen einzutreten, die Werte wie langfristige wirtschaftliche Nachhaltigkeit und Widerstandsfähigkeit in den Vordergrund stellen - Alternativen, von denen sie und andere Experten glauben, dass sie allen einen dauerhaften, weitreichenden Nutzen bringen würden.
 
Wie traditionelle Indikatoren versagt haben
Ein Weg, in der unsere Vorliebe für wirtschaftliche Effizienz die Art und Weise prägt, wie wir den allgemeinen Wohlstand oder Status eines Landes messen, ist das BIP. Das ist nicht die Schuld des Erfinders des modernen Konzepts des BIP, der in den 1930er Jahren ausdrücklich davor warnte, es auf diese Weise zu verwenden.

„Das BIP war nie dazu gedacht, uns etwas über das Wohlergehen der Bürger eines Landes zu sagen", sagt Halme. Vor fünfundsiebzig Jahren war es jedoch leicht, beides miteinander zu verwechseln. Viele Länder waren eher bestrebt, ihren Wohlstand unter ihren Bürgern umzuverteilen, und Bevölkerungsumfragen zeigen, dass das BIP bis in die 1970er Jahre häufig mit dem allgemeinen Wohlstand korrelierte.

Doch mit dem Aufkommen eines zunehmend rücksichtsloseren Kapitalismus der freien Marktwirtschaft wurde dies immer weniger der Fall - und die Unzulänglichkeiten des BIP wurden umso deutlicher. „Wir befinden uns in einer Situation, in der die Verteilung des Reichtums mehr und mehr zu denjenigen wandert, die bereits über Kapital verfügen. Diejenigen, die es nicht haben, befinden sich in einer rückläufigen wirtschaftlichen Position", sagt Halme. Tatsächlich besitzen die reichsten 1 % der Weltbevölkerung heute fast die Hälfte des weltweiten Vermögens.

„Einige Regierungen, wie die finnische, berücksichtigen zwar Indikatoren für den ökologischen und sozialen Fortschritt. Aber keiner wird als so wichtig für die Entscheidungsfindung angesehen wie das BIP", sagt Halme - und das BIP gilt auch als Maßstab für den Erfolg einer Regierung. Diese Einstellung versucht Halme durch ihre Arbeit als Beraterin der finnischen Regierung zu Nachhaltigkeitspraktiken sowie durch ihre eigene Forschung zu ändern.

Wo die Industrie versagt hat
Unsere oft ausschließliche Konzentration auf die Ökonomie - und insbesondere darauf, so schnell und effizient wie möglich Gewinne zu erzielen - vermittelt kein klares Bild davon, wie es allen in einer Gesellschaft geht. Schlimmer noch, es hat die Industrie ermutigt, mit einer kurzfristigen Perspektive zu handeln, die zu längerfristigen Problemen führt.
 
Fast Fashion ist ein Beispiel dafür. Gegenwärtig sind die Lieferketten für Bekleidung - wie die der meisten Waren - linear. Die Rohstoffe kommen von einem Standort und werden Schritt für Schritt verarbeitet, in der Regel in verschiedenen Produktionsstätten auf der ganzen Welt, wobei Materialien, Energie und Transportmittel verwendet werden, die „billig“ sind, weil ihre hohen Umweltkosten nicht berücksichtigt werden.

Schließlich werden sie von einem Verbraucher gekauft, der das Produkt vorübergehend trägt, bevor er es wegwirft. Um die Gewinnspannen zu erhöhen, setzt die Branche auf schnell wechselnde Trends. Eine erschreckende Menge dieser Kleidungsstücke landet auf der Mülldeponie - einige davon, bevor sie überhaupt getragen worden sind.

Wie der COVID Lockdown gezeigt haben, ist diese Art linearer Lieferketten nicht belastbar. Und sie sind auch nicht nachhaltig.

Schätzungen zufolge ist die Modebranche derzeit die zweitgrößte Umweltverschmutzungsbranche der Welt und für bis zu 10 % aller Treibhausgasemissionen verantwortlich. Forscher der Aalto-Universität haben festgestellt, dass die Branche jährlich mehr als 92 Millionen Tonnen Deponieabfälle produziert. Bis 2030 wird ein Anstieg auf 134 Millionen Tonnen erwartet.
„Die Verringerung des CO2-Fußabdrucks der Modebranche ist nicht nur gut für die Umwelt, sondern auch für die langfristigen Aussichten der Branche selbst. Mit dieser Art von falschem Effizienzdenken untergräbt man die Grundlage unserer langfristigen Widerstandsfähigkeit sowohl für die Ökologie als auch für die Gesellschaft", sagt Halme.

Um aus dieser Falle herauszukommen, sagen sie und andere Forscher, ist ein kompletter Paradigmenwechsel erforderlich. „Es ist wirklich schwierig, nur an den Rändern zu feilen", sagt sie.
Auf dem Weg zur Resilienz

Mehrere Jahre lang erforschte und studierte Halme die ökologische Effizienz und suchte nach Möglichkeiten, wie Unternehmen mehr Produkte mit weniger Umweltbelastungen herstellen könnten. Doch allmählich wurde ihr klar, dass dies nicht die Antwort ist. Obwohl die Unternehmen durch Innovationen effizientere Produkte und Technologien entwickeln konnten, stieg ihr absoluter Verbrauch an natürlichen Ressourcen weiter an.

„Ich begann zu denken: Wenn nicht Effizienz, was dann?", sagt Halme. Sie erkannte, dass die Lösung in der Resilienz liegt, d. h. in der Förderung von Möglichkeiten, wie Systeme, einschließlich der Umwelt, in der Zukunft fortbestehen und sich sogar regenerieren können, anstatt sie in der Gegenwart weiter zu schädigen.
Die Lösung ist nicht „mehr von allem“, auch nicht von „nachhaltigen“ Materialien. Es ist weniger.

„Die einzige Möglichkeit, Fast Fashion zu verbessern, ist, sie zu beenden“, schreiben Halme und ihre Mitautoren. Das bedeutet, dass Kleidung so gestaltet werden muss, dass sie lange hält, dass Geschäftsmodelle die Wiederverwendung und Reparatur erleichtern und dass dem Upcycling Vorrang eingeräumt wird. Auch die Recyclingsysteme müssen überarbeitet werden, um festzustellen, wann ein Kleidungsstück wirklich ausgedient hat - insbesondere im Hinblick auf synthetische Mischfasern, die schwer zu trennen und abzubauen sind.

Dies würde die derzeitige Konzentration auf kurzfristige Einnahmen über den Haufen werfen. Und, so Halme, dies ist ein weiteres Beispiel dafür, dass wir bessere Möglichkeiten brauchen, um den Erfolg dieser Branchen zu messen, indem wir Faktoren wie Belastbarkeit und Nachhaltigkeit berücksichtigen - und nicht nur kurzfristige Gewinne.
Und obwohl jeder Einzelne etwas bewirken kann, müssen diese Veränderungen letztlich von der Industrie ausgehen.

„Textilien sind ein gutes Beispiel, denn wenn sie schnell kaputt gehen und man keine Reparaturwerkstatt in der Nähe hat oder wenn die Stoffe von so schlechter Qualität sind, dass es keinen Sinn macht, sie zu reparieren, dann ist das für die meisten Menschen ein zu großer Aufwand“, sagt Halme. Die meisten Lösungen sollten also von der Unternehmensseite kommen. Und das Ziel sollte sein, es den Verbrauchern sowohl modisch als auch einfach zu machen, ökologisch und sozial nachhaltige Entscheidungen zu treffen.
 
Was ist erforderlich?
Die ultimative Herausforderung, sagt Lauri Saarinen, Assistenzprofessor an der Aalto der Aalto-Universität für Wirtschaftsingenieurwesen, ist die Frage, wie man zu einem nachhaltigeren Modell gelangt und gleichzeitig die Wettbewerbsfähigkeit der Unternehmen erhält. Aber er glaubt, dass es Möglichkeiten gibt.

„Eine Möglichkeit besteht darin, die Produktion lokal zu halten. Wenn wir mit der kostengünstigen Offshore-Fertigung konkurrieren, indem wir die Dinge vor Ort und in einem geschlossenen Kreislauf herstellen, dann haben wir den doppelten Vorteil, indem wir lokal Arbeitsplätze schaffen und uns in Richtung einer nachhaltigeren Lieferkette bewegen“, sagt Saarinen. Wenn beispielsweise Kleidung näher am Verbraucher produziert würde, wäre es einfacher, Kleidungsstücke zur Reparatur zurückzuschicken oder gebrauchte Artikel zurückzunehmen und weiterzuverkaufen.

Lokale Produktion ist ein weiteres Beispiel dafür, dass wir die Methode, mit der wir den gesellschaftlichen Erfolg messen, neu überdenken müssen. Schließlich scheinen Outsourcing und Offshoring zugunsten einer billigeren Produktion kurzfristig die Kosten zu senken, aber dies geschieht zu Lasten dessen, was nach Ansicht von Halme und anderen Experten wirklich wichtig ist: eine längerfristige wirtschaftliche Tragfähigkeit, Widerstandsfähigkeit und Nachhaltigkeit. Es ist nicht einfach, zu dieser Art von Denken überzugehen. Dennoch sehen Saarinen und Halme vielversprechende Signale.
 
Für Finnland verweist Halme beispielsweise auf das Start-up-Unternehmen Menddie, das es leicht und bequem macht, Kleidungsstücke zum Reparieren oder Ändern wegzuschicken. Sie hebt auch die Bekleidungs- und Lifestyle-Marke Marimekko hervor, die ihre gebrauchten Kleidungsstücke in einem Online-Secondhand-Shop weiterverkauft, sowie das Label Anna Ruohonen, ein Konzept für Maßanfertigungen und Kunden auf Abruf, bei dem keine überschüssigen Kleidungsstücke entstehen.

Genau diese Art von Projekten findet Halme interessant - und sie hofft, mit ihrer Arbeit sowohl für diese zu werben als auch Pionierarbeit zu leisten.
„Momentan haben diese Veränderungen noch nicht zu einer echten Transformation geführt“, sagt sie. Auf globaler Ebene sind wir noch weit von einem echten Wandel hin zu längerfristiger Resilienz entfernt. Aber das könne sich, wie sie betont, schnell ändern. Schließlich hat sich das in der Vergangenheit auch bereits geändert: „Man muss sich nur ansehen, was uns hierhergebracht hat.“

„Das Streben nach Wirtschaftswachstum wurde in relativ kurzer Zeit - nur über etwa sieben Jahrzehnte - zu einem so dominanten Schwerpunkt“, sagt sie. Der Wandel hin zu einer längerfristigen Resilienz ist durchaus möglich. Wissenschaftler und Entscheidungsträger müssen nur ihr Hauptziel auf langfristige Widerstandsfähigkeit umstellen. Die Kernfrage ist, ob unsere mächtigsten Wirtschaftsakteure klug genug sind, dies zu tun.
 
Im Rahmen ihrer Forschung hat Halme Projekte geleitet, die Pionierarbeit für die Art von Veränderungen leisten, die die Modeindustrie vornehmen könnte. Gemeinsam mit ihrer Aalto-Kollegin Linda Turunen hat sie beispielsweise kürzlich ein Messverfahren entwickelt, mit dem die Modeindustrie die Nachhaltigkeit eines Produkts klassifizieren könnte. Dabei wird gemessen, wie haltbar das Produkt ist, wie leicht es recycelt werden kann und ob bei der Herstellung gefährliche Chemikalien verwendet werden - was den Verbrauchern bei der Kaufentscheidung helfen könnte. Ihre Kollegen haben vor kurzem eine Ausstellung kuratiert, in der gezeigt wurde, was wir in einer nachhaltigen Zukunft tragen könnten, z. B. eine Lederalternative, die aus weggeworfenen Blumenstecklingen hergestellt wird, oder modulare Designs, mit denen ein und dasselbe Kleidungsstück mehrfach verwendet werden kann, indem z. B. ein Rock in ein Hemd verwandelt wird.

Da all dies längerfristiges Denken, Innovation und Investitionen erfordert, ist die Industrie zurückhaltend, diese Veränderungen vorzunehmen, sagt Halme. Eine Möglichkeit, die Industrie zu einem schnelleren Wandel zu bewegen, ist die Regulierung. In der Europäischen Union beispielsweise müssen Unternehmen mit mehr als 500 Mitarbeitern aufgrund einer aktualisierten Reihe von Richtlinien nun über eine Reihe von Faktoren der Unternehmensverantwortung Bericht erstatten, die von den Auswirkungen auf die Umwelt bis zur Behandlung der Mitarbeiter reichen. Diese Vorschriften werden nicht nur dazu beitragen, Verbraucher, Investoren und andere Interessengruppen über die Rolle eines Unternehmens bei globalen Herausforderungen zu informieren. Sie werden auch dazu beitragen, Investitionsrisiken zu bewerten und abzuwägen, ob ein Unternehmen die notwendigen Maßnahmen ergreift, um langfristig finanziell stabil zu sein.

Quelle:

Aalto University, Amanda Ruggeri. Übersetzung Textination

Foto: Claude Huniade
11.07.2023

Ionisch leitfähige Fasern als neuer Weg für intelligente und Funktionstextilien

Elektronisch leitfähige Fasern werden bereits in intelligenten Textilien verwendet, doch in einem kürzlich veröffentlichten Forschungsartikel wurde nachgewiesen, dass ionisch leitfähige Fasern von zunehmendem Interesse sind. Die sogenannten Ionenfasern sind flexibler und haltbarer und entsprechen der Art von Leitfähigkeit, die unser Körper nutzt. In Zukunft könnten sie unter anderem für Textilbatterien, Textildisplays und Textilmuskeln verwendet werden.

Das Forschungsprojekt wird von dem Doktoranden Claude Huniade an der Universität Borås durchgeführt und ist Teil eines größeren Projekts, Weafing. Sein Ziel es ist, neuartige, noch nie dagewesene Kleidungsstücke für haptische Stimulation zu entwickeln, die flexible und tragbare textile Aktoren und Sensoren, einschließlich Steuerelektronik, als eine neue Art von textilbasierter Großflächenelektronik umfassen.

Elektronisch leitfähige Fasern werden bereits in intelligenten Textilien verwendet, doch in einem kürzlich veröffentlichten Forschungsartikel wurde nachgewiesen, dass ionisch leitfähige Fasern von zunehmendem Interesse sind. Die sogenannten Ionenfasern sind flexibler und haltbarer und entsprechen der Art von Leitfähigkeit, die unser Körper nutzt. In Zukunft könnten sie unter anderem für Textilbatterien, Textildisplays und Textilmuskeln verwendet werden.

Das Forschungsprojekt wird von dem Doktoranden Claude Huniade an der Universität Borås durchgeführt und ist Teil eines größeren Projekts, Weafing. Sein Ziel es ist, neuartige, noch nie dagewesene Kleidungsstücke für haptische Stimulation zu entwickeln, die flexible und tragbare textile Aktoren und Sensoren, einschließlich Steuerelektronik, als eine neue Art von textilbasierter Großflächenelektronik umfassen.

WEAFING steht für Wearable Electroactive Fabrics Integrated in Garments. Das Projekt startete am 1. Januar 2019 und endete am 30. Juni 2023.

Diese Wearables basieren auf einer neuen Art von Textilmuskeln, deren Garne mit elektromechanisch aktiven Polymeren beschichtet sind und sich zusammenziehen, wenn eine niedrige Spannung angelegt wird. Textilmuskeln bieten eine völlig neue und sehr unterschiedliche Qualität haptischer Empfindungen und sprechen auch Rezeptoren unseres taktilen Sinnessystems an, die nicht auf Vibration, sondern auf sanften Druck oder Schlag reagieren.

Da es sich um textile Materialien handelt, bieten sie zudem eine neue Möglichkeit, tragbare Haptik zu entwerfen und herzustellen. Sie können nahtlos in Stoffe und Kleidungsstücke integriert werden. Für diese neuartige Form der textilen Muskeln ist eine große Bandbreite an haptischen Anwendungsmöglichkeiten abzusehen: für Ergonomie, Bewegungscoaching im Sport oder Wellness, zur Unterstützung von Virtual- oder Augmented-Reality-Anwendungen in Spielen oder zu Trainingszwecken, zur Inklusion von sehbehinderten Menschen durch Informationen über ihre Umgebung, zur Stressreduktion oder sozialen Kommunikation, für anpassungsfähige Möbel, die Automobilindustrie und vieles mehr.

Im Projekt von Claude Huniade geht es darum, leitfähige Garne ohne leitfähige Metalle herzustellen.

„In meiner Forschung geht es um die Herstellung elektrisch leitfähiger Textilfasern - letzendlich von Garnen - durch die nachhaltige Beschichtung handelsüblicher Garne mit Nicht-Metallen. Die größte Herausforderung besteht darin, ein Gleichgewicht zwischen der Beibehaltung der textilen Eigenschaften und dem Hinzufügen der leitenden Eigenschaft zu finden“, so Claude Huniade.

Ionofasern könnten als Sensoren verwendet werden, da ionische Flüssigkeiten empfindlich auf ihre Umgebung reagieren. So können die Ionenfasern beispielsweise Änderungen der Luftfeuchtigkeit, aber auch jede Dehnung oder jeden Druck, dem sie ausgesetzt sind, wahrnehmen.

„Ionofasern könnten wirklich herausragen, wenn sie mit anderen Materialien oder Geräten kombiniert werden, die Elektrolyte benötigen. Ionofasern ermöglichen es, dass bestimmte Phänomene, die derzeit nur in Flüssigkeiten möglich sind, auch in der Luft auf leichtgewichtige Weise realisiert werden können. Die Anwendungsmöglichkeiten sind vielfältig und einzigartig, zum Beispiel für Textilbatterien, textile Displays oder textile Muskeln“, so Claude Huniade.

Weitere Forschung ist erforderlich
Es sind noch weitere Forschungsarbeiten erforderlich, um die Ionenfasern mit anderen funktionellen Fasern zu kombinieren und spezielle textile Produkte herzustellen.

Wie unterscheiden sie sich von herkömmlichen elektronisch leitfähigen Fasern?

„Im Vergleich zu elektronisch leitfähigen Fasern unterscheiden sich Ionofasern dadurch, wie sie Elektrizität leiten. Sie sind weniger leitfähig, bringen aber andere Eigenschaften mit, die elektronisch leitfähigen Fasern oft fehlen. Ionofasern sind flexibler und haltbarer und entsprechen der Art der Leitung, die unser Körper verwendet. Sie entsprechen sogar besser als elektronisch leitende Fasern der Art, wie Elektrizität in der Natur vorkommt“, schloss er.

Derzeit liegt die Einzigartigkeit seiner Forschung in den Beschichtungsstrategien. Diese Methoden umfassen sowohl die Verfahren als auch die verwendeten Materialien.

Verwendung von ionischen Flüssigkeiten
Eine der Spuren, die er verfolgt, betrifft eine neue Art von Material als Textilbeschichtung, nämlich ionische Flüssigkeiten in Kombination mit handelsüblichen Textilfasern. Genau wie Salzwasser leiten sie Strom, aber ohne Wasser. Ionische Flüssigkeiten sind stabilere Elektrolyte als Salzwasser, da nichts verdunstet.

„Der Faktor der Verarbeitbarkeit ist eine wichtige Voraussetzung, da die Textilproduktion Fasern stark beansprucht, vor allem, wenn sie in größerem Maßstab eingesetzt werden. Die Fasern können auch zu Geweben oder Gewirken verarbeitet werden, ohne dass sie mechanisch beschädigt werden, wobei ihre Leitfähigkeit erhalten bleibt. Überraschenderweise ließen sie sich sogar glatter zu Stoffen verarbeiten als die handelsüblichen Garne, aus denen sie hergestellt werden“, erklärte Claude Huniade.

Quelle:

University of Borås

Fadenähnliche Pumpen können in Kleidung eingewebt werden (c) LMTS EPFL
27.06.2023

Fadenähnliche Pumpen können in Kleidung eingewebt werden

Forscher der Ecole Polytechnique Fédérale de Lausanne (EPFL) haben faserähnliche Pumpen entwickelt, die es ermöglichen, Hochdruck-Fluidkreisläufe in Textilien einzuweben, ohne dass eine externe Pumpe benötigt wird. Weiche, stützende Exoskelette, thermoregulierende Kleidung und immersive Haptik können so von Pumpen angetrieben werden, die in den Geweben der Vorrichtungen selbst eingenäht sind.

Viele flüssigkeitsbasierte, tragbare Hilfstechnologien benötigen heute eine große und laute Pumpe, die unpraktisch - wenn nicht gar unmöglich - in die Kleidung integriert werden kann. Dies führt zu einem Widerspruch: Tragbare Geräte sind routinemäßig an untragbare Pumpen gebunden. Forscher des Soft Transducers Laboratory (LMTS) an der School of Engineering haben nun eine elegante und einfache Lösung für dieses Dilemma entwickelt.

Forscher der Ecole Polytechnique Fédérale de Lausanne (EPFL) haben faserähnliche Pumpen entwickelt, die es ermöglichen, Hochdruck-Fluidkreisläufe in Textilien einzuweben, ohne dass eine externe Pumpe benötigt wird. Weiche, stützende Exoskelette, thermoregulierende Kleidung und immersive Haptik können so von Pumpen angetrieben werden, die in den Geweben der Vorrichtungen selbst eingenäht sind.

Viele flüssigkeitsbasierte, tragbare Hilfstechnologien benötigen heute eine große und laute Pumpe, die unpraktisch - wenn nicht gar unmöglich - in die Kleidung integriert werden kann. Dies führt zu einem Widerspruch: Tragbare Geräte sind routinemäßig an untragbare Pumpen gebunden. Forscher des Soft Transducers Laboratory (LMTS) an der School of Engineering haben nun eine elegante und einfache Lösung für dieses Dilemma entwickelt.

„Wir präsentieren die weltweit erste Pumpe in Form einer Faser, also eines Schlauches, der seinen eigenen Druck und Durchfluss erzeugt“, so LMTS-Chef Herbert Shea. "Jetzt können wir unsere Faserpumpen direkt in Textilien und Kleidung einnähen und herkömmliche Pumpen hinter uns lassen." Die Forschungsergebnisse wurden in der Zeitschrift Science veröffentlicht.

Leicht, leistungsstark ... und waschbar
Sheas Labor hat eine lange Tradition in der zukunftsweisenden Fluidik. Im Jahr 2019 stellten sie die erste dehnbare Pumpe der Welt her.

„Diese Arbeit baut auf unserer vorherigen Generation von Soft-Pumpen auf“, erläutert Michael Smith, ein LMTS-Post-Doktorand und Hauptautor der Studie. „Das Faserformat ermöglicht es uns, leichtere und leistungsstärkere Pumpen herzustellen, die besser mit tragbarer Technologie kompat-bel sind.“

Die LMTS-Faserpumpen nutzen ein Prinzip namens Ladungsinjektion-Elektrohydrodynamik (EHD), um einen Flüssigkeitsstrom ohne bewegliche Teile zu erzeugen. Zwei schraubenförmige Elektroden, die in die Pumpenwand eingebettet sind, ionisieren und beschleunigen die Moleküle einer speziellen, nicht leitenden Flüssigkeit. Die Ionenbewegung und die Form der Elektroden erzeugen einen Netto-Fluidstrom, der geräuschlos und ohne Vibrationen arbeitet und nur ein handtellergroßes Netzteil und eine Batterie benötigt.

Um die einzigartige Struktur der Pumpe zu erreichen, entwickelten die Forscher ein neuartiges Herstellungsverfahren, bei dem Kupferdrähte und Polyurethanfäden um einen Stahlstab gewickelt und dann durch Hitze verschmolzen werden. Nachdem der Stab entfernt wurde, können die 2 mm dicken Fasern mit herkömmlichen Web- und Nähtechniken in Textilien integriert werden.

Die einfache Konstruktion der Pumpe hat eine Reihe von Vorteilen. Die benötigten Materialien sind preiswert und leicht verfügbar, der Herstellungsprozess lässt sich leicht skalieren. Da die Höhe des von der Pumpe erzeugten Drucks direkt mit ihrer Länge zusammenhängt, können die Schläuche auf die jeweilige Anwendung zugeschnitten werden, um die Leistung zu optimieren und gleichzeitig das Gewicht zu minimieren. Die robuste Konstruktion kann auch mit herkömmlichen Waschmitteln gereinigt werden.

Vom Exoskelett zur virtuellen Realität
Die Autoren haben bereits gezeigt, wie diese Faserpumpen in neuen und spannenden tragbaren Technologien eingesetzt werden können. So können sie beispielsweise heiße und kalte Flüssigkeiten durch Kleidungsstücke zirkulieren lassen, die in Umgebungen mit extremen Temperaturen oder in therapeutischen Umgebungen zur Behandlung von Entzündungen und sogar zur Optimierung sportlicher Leistungen eingesetzt werden.

„Diese Anwendungen erfordern ohnehin lange Schläuche, und in unserem Fall sind die Schläuche die Pumpe. Das bedeutet, dass wir sehr einfache und leichte Flüssigkeitskreisläufe herstellen können, die bequem und angenehm zu tragen sind“, erklärt Smith.

In der Studie werden auch künstliche Muskeln aus Stoff und eingebetteten Faserpumpen beschrieben, die als Antrieb für weiche Exoskelette verwendet werden könnten, um Patienten beim Bewegen und Gehen zu helfen.

Die Pumpe könnte sogar eine neue Dimension in die Welt der virtuellen Realität bringen, indem sie das Temperaturempfinden simuliert. In diesem Fall tragen die Nutzer einen Handschuh mit Pumpen, die mit heißer oder kalter Flüssigkeit gefüllt sind, so dass sie die Temperaturveränderungen als Reaktion auf den Kontakt mit einem virtuellen Objekt spüren können.

Aufgepumpt für die Zukunft
Die Forscher sind bereits dabei, die Leistung ihres Geräts zu verbessern. "Die Pumpen funktionieren bereits gut, und wir sind zuversichtlich, dass wir mit weiteren Arbeiten weitere Verbesserungen in Bereichen wie Effizienz und Lebensdauer erzielen können", sagt Smith. Es wurde bereits damit begonnen, die Produktion der Faserpumpen zu erhöhen, und das LMTS plant auch, sie in komplexere tragbare Geräte einzubauen.

„Wir sind überzeugt, dass diese Innovation die Wearable Technology entscheidend verändern wird“, sagt Shea.

Weitere Informationen:
EPFL Fasern Exoskelette wearables
Quelle:

Celia Luterbacher, School of Engineering | STI
Übersetzung: Textination

Foto: Unsplash
13.06.2023

Umweltauswirkungen von Textilproduktion und -abfällen

  • Mit „Fast Fashion“ hat die Menge der produzierten und weggeworfenen Kleidungsstücke stark zugenommen.

„Fast Fashion“ ist das ständige Angebot an neuer Mode zu sehr niedrigen Preisen. Um die Auswirkungen auf die Umwelt anzugehen, will die EU Textilabfälle reduzieren und den Lebenszyklus und das Recycling von Textilien verbessern. Dies ist Teil des Plans, bis 2050 eine Kreislaufwirtschaft verwirklichen.

  • Mit „Fast Fashion“ hat die Menge der produzierten und weggeworfenen Kleidungsstücke stark zugenommen.

„Fast Fashion“ ist das ständige Angebot an neuer Mode zu sehr niedrigen Preisen. Um die Auswirkungen auf die Umwelt anzugehen, will die EU Textilabfälle reduzieren und den Lebenszyklus und das Recycling von Textilien verbessern. Dies ist Teil des Plans, bis 2050 eine Kreislaufwirtschaft verwirklichen.

Übermäßiger Verbrauch von natürlichen Ressourcen
Für die Herstellung von Textilien werden große Mengen Wasser sowie Flächen zum Anbau von Baumwolle und anderen Fasern benötigt. Schätzungen zufolge wurden in der weltweiten Textil- und Bekleidungsindustrie im Jahr 2015 79 Milliarden Kubikmeter Wasser verbraucht, während sich der Wasserverbrauch in der gesamten Wirtschaft der EU im Jahr 2017 auf 266 Milliarden Kubikmeter belief. Für die Herstellung eines einzigen Baumwoll-T-Shirts werden schätzungsweise 2.700 Liter Süßwasser benötigt, was der Menge entspricht, die eine Person in 2,5 Jahren trinkt.

Der Textilsektor war im Jahr 2020 die drittgrößte Quelle für Wasserverschmutzung und Flächenverbrauch. In diesem Jahr wurden im Durchschnitt neun Kubikmeter Wasser, 400 Quadratmeter Land und 391 Kilogramm Rohstoffe benötigt, um Kleidung und Schuhe für jeden EU-Bürger herzustellen.

Wasserverschmutzung
Durch die Färbung und Veredelung von Textilien im Rahmen ihrer Herstellung werden schätzungsweise rund 20 Prozent der weltweiten Wasserverschmutzung verursacht.

Etwa 35 Prozent des primären Mikroplastiks, das in die Umwelt gelangt, hat seinen Ursprung im Waschen von synthetischen Textilien. Bei einer einzigen Wäsche von Polyesterkleidung können 700.000 Mikroplastikfasern freigesetzt werden, die in die Nahrungskette gelangen können.

Der größte Teil des Mikroplastiks aus Textilien wird bei den ersten Waschgängen freigesetzt. „Fast Fashion“ basiert auf Massenproduktion, niedrigen Preisen und hohen Verkaufszahlen, was viele erste Waschgänge begünstigt.

Das Waschen synthetischer Produkte hat dazu geführt, dass sich mehr als 14 Millionen Tonnen Mikroplastik auf dem Grund der Ozeane angesammelt haben. Zusätzlich zu diesem globalen Problem hat die durch die Bekleidungsproduktion verursachte Umweltverschmutzung verheerende Auswirkungen auf die Gesundheit der Menschen, Tiere und Ökosysteme vor Ort, wo die Fabriken angesiedelt sind.

Treibhausgasemissionen
Schätzungen zufolge verursacht die Modebranche 10 Prozent der weltweiten CO₂-Emissionen – mehr als internationale Luftfahrt und Seeschifffahrt zusammen.

Nach Angaben der Europäischen Umweltagentur wurden durch den Kauf von Textilien in der EU im Jahr 2020 pro Person rund 270 Kilogramm CO₂-Emissionen verursacht. Das bedeutet, dass die in der EU verbrauchten Textilerzeugnisse Treibhausgasemissionen in Höhe von 121 Millionen Tonnen verursachten.

Textilabfälle auf Deponien
Auch die Art und Weise, wie sich die Menschen nicht mehr erwünschter Kleidung entledigen, hat sich geändert: Die Kleidungsstücke werden heute eher weggeworfen als gespendet. Weniger als die Hälfte der Altkleider wird zur Wiederverwendung oder zum Recycling gesammelt, und nur ein Prozent wird zu neuer Kleidung recycelt, da Technologien, die das Recycling von Kleidung zu neuen Fasern ermöglichen würden, erst jetzt aufkommen.

Zwischen 2000 und 2015 hat sich die Bekleidungsproduktion verdoppelt, während die durchschnittliche Nutzungsdauer eines Kleidungsstücks gesunken ist.

Die Europäer kaufen jedes Jahr fast 26 Kilogramm Textilien und werfen etwa elf Kilogramm davon weg. Altkleider können in Länder außerhalb der EU exportiert werden, werden aber größtenteils (87 Prozent) verbrannt oder landet auf Deponien.

Ausschlaggebend für den Anstieg des Verbrauchs ist das Aufkommen von „Fast Fashion“, das zum Teil durch die sozialen Medien und die Industrie vorangetrieben wird, die Modetrends schneller als in der Vergangenheit an mehr Verbraucher weitergibt.

Zu den neuen Strategien zur Bewältigung dieses Problems gehören die Entwicklung neuer Geschäftsmodelle für den Verleih von Kleidung, die Gestaltung von Produkten, die die Wiederverwendung und das Recycling erleichtern (Kreislaufmode), die Überzeugung der Verbraucher, weniger Kleidung von besserer Qualität zu kaufen („Slow Fashion“) und die allgemeine Lenkung des Verbraucherverhaltens in Richtung nachhaltigerer Optionen.

Die EU-Strategie für nachhaltige und kreislauffähige Textilien
Im Rahmen des Aktionsplans für die Kreislaufwirtschaft stellte die Europäische Kommission im März 2022 eine neue Strategie vor, um Textilien haltbarer, reparierbarer, wiederverwendbar und recycelbar zu machen, gegen „Fast Fashion“ vorzugehen und Innovationen innerhalb des Sektors zu fördern.

Die neue Strategie umfasst neue Ökodesign-Anforderungen für Textilien, klarere Informationen, einen digitalen Produktpass und eine Aufforderung an die Unternehmen, Verantwortung zu übernehmen und Maßnahmen zu ergreifen, um ihren ökologischen Fußabdruck zu minimieren.

Am 1. Juni 2023 legten die Abgeordneten des Europäischen Parlaments Vorschläge für strengere EU-Maßnahmen zur Eindämmung der übermäßigen Produktion und des Verbrauchs von Textilien vor. In dem Bericht des Parlaments wird gefordert, dass bei der Herstellung von Textilien die Menschen-, Sozial- und Arbeitsrechte sowie der Umwelt- und Tierschutz beachtet werden müssen.

Bestehende EU-Maßnahmen für Textilabfälle
Gemäß der Abfallrichtlinie, die vom Europäischen Parlament im Jahr 2018 angenommen wurde, müssen die EU-Mitgliedstaaten Textilabfälle ab 2025 getrennt sammeln. Die neue Strategie der Kommission umfasst auch Maßnahmen gegen gefährliche Chemikalien und zur Unterstützung der Verbraucher bei der Wahl nachhaltiger Textilien. Zudem werden Hersteller dazu aufgefordert, die Verantwortung für ihre Produkte entlang der Wertschöpfungskette zu übernehmen, auch wenn diese zu Abfall werden.

Mit dem EU-Umweltzeichen, das Hersteller, die ökologische Kriterien beachten, verwenden können, werden ein begrenzter Schadstoffeinsatz und geringere Wasser- und Luftverschmutzung sichergestellt.

Die EU hat auch Maßnahmen eingeführt, um die Umweltauswirkungen von Textilabfällen zu mindern. Mit dem Programm Horizont 2020 wird das Projekt RESYNTEX zur Anwendung von chemischem Recycling gefördert, das ein kreislauforientiertes Geschäftsmodell für die Textilindustrie sein könnte.

Ein nachhaltigeres Modell der Textilproduktion hat auch das Potenzial, die Wirtschaft anzukurbeln. „Europa befindet sich in einer beispiellosen Gesundheits- und Wirtschaftskrise, die zeigt, wie instabil die globalen Lieferketten sind“, sagte der federführende Europaabgeordnete Huitema. „Die Förderung neuer innovativer Geschäftsmodelle wiederum wird neues Wirtschaftswachstum und neue Beschäftigungsmöglichkeiten schaffen, die Europa für den Aufbau benötigt.“

Quelle:

Europäisches Parlament

Abtrennen von Mikroplastik Foto: H & M Foundation
22.05.2023

Schallwellen filtern Mikroplastik aus Abwässern

Die vom Hong Kong Research Institute of Textiles and Apparel (HKRITA) mit Unterstützung der H&M Foundation entwickelte Technologie kann mithilfe von Schallwellen Mikroplastik aus dem Abwasser herausfiltern. Acousweep ist eine Plug-and-Play- Anwendung. Sie lässt sich leicht transportieren und an jede Abwasseranlage anschließen. Wenn die Technologie im industriellen Maßstab eingesetzt wird, wird sie einen erheblichen Einfluss auf den nachhaltigen Fußabdruck der Modeindustrie haben.
 

Die vom Hong Kong Research Institute of Textiles and Apparel (HKRITA) mit Unterstützung der H&M Foundation entwickelte Technologie kann mithilfe von Schallwellen Mikroplastik aus dem Abwasser herausfiltern. Acousweep ist eine Plug-and-Play- Anwendung. Sie lässt sich leicht transportieren und an jede Abwasseranlage anschließen. Wenn die Technologie im industriellen Maßstab eingesetzt wird, wird sie einen erheblichen Einfluss auf den nachhaltigen Fußabdruck der Modeindustrie haben.
 
Die Verschmutzung durch Mikroplastik ist ein weltweites Problem und stellt eine Gefahr für Ökosysteme, Tiere und Menschen dar. Mikroplastik stammt aus einer Vielzahl von Quellen, u. a. aus größerem Plastikmüll, der sich in immer kleinere Teile auflöst, oder aus Mikroperlen in Gesundheits- und Kosmetikprodukten oder Reinigungsmitteln wie Zahnpasta. Nach Angaben der Europäischen Umweltagentur stammt die Hauptquelle der Verschmutzung der Ozeane durch Mikroplastik, etwa 16 % bis 35 % weltweit, aus synthetischen Textilien.

Professorin Christine Loh, leitende Entwicklungsstrategin am Institute for the Environment, The Hong Kong University of Science and Technology, teilt die Ansicht, dass diese Technologie großes Potenzial hat.
Mikroplastik sind nach der Definition des Umweltprogramms der Vereinten Nationen (UNEP) und der Europäischen Union (EU) in der Regel winzige Kunststoffteile oder -partikel mit einem Durchmesser von weniger als 5 mm. Die neue Technologie kann Mikroplastikfasern mit einer Länge von mehr als 20 μm trennen, was 250-mal kleiner ist als die typische Größe. Im Gegensatz zu bestehenden Filtrationsverfahren ermöglicht das System eine kontinuierliche Wasseraufbereitung und eine einfache Sammlung von Mikroplastikfasern dank seiner akustischen Technik der Manipulation.

Acousweep nutzt schwingende akustische Wellen in einer speziell geformten Kammer, um Mikroplastikfasern physikalisch aufzufangen und effektiv vom Abwasser zu trennen. Der gesamte Prozess beruht auf einer rein physikalischen Sammlung und Trennung. Es werden keine chemischen, lösungsmittelhaltigen oder biologischen Zusatzstoffe benötigt. Das separierte Mikroplastik tropft in einen Sammeltank zur weiteren Behandlung, z. B. zum Recycling.

Das bestehende Aufbereitungssystem im Labormaßstab hat eine Kapazität von ca. 100 Litern Wasser pro Stunde und kann auf industrielle Anlagengrößen hochskaliert werden. Das System kann in einem Container mit einer Verarbeitungskapazität von 5.000 bis zu 10.000 Litern Wasser pro Stunde installiert werden. Es ist leicht transportabel und ermöglicht den Anschluss an bestehende Abwasserauslässe von Kläranlagen.
 
Verfahren zur Abtrennung von Mikroplastikfasern:

  1. An einem Ende der Kammer befindet sich ein Wandler, der eine schwingende Schallwelle mit Ultraschall-Frequenzen erzeugt. Am anderen Ende befindet sich ein Reflektor, von dem die Schallwellen reflektiert werden und stehende Wellen bilden.
  2. Wenn stehende Wellen auf die Teilchen in einer Flüssigkeit einwirken, werden die Teilchen durch akustische Strahlungswirkung festgehalten.
  3. Die stehenden Wellen übertragen dann die eingeschlossenen Partikel auf die Reflektorseite; danach konzentrieren sich die Partikel an der Spitze des Reflektors.
  4. An der Spitze befindet sich ein Nadelventil, das von einem sensorischen System gesteuert wird, das dort die Konzentration der Mikroplastikfasern überwacht. Wenn die Konzentration ausreichend hoch ist, öffnet das Sensorsystem das Nadelventil und lässt die Mikroplastikfasern in einen Auffangbehälter tropfen.
  5. Der Sammelbehälter kann mit einer hohen Temperatur betrieben werden, um das Wasser zu entfernen, so dass die Fasern agglomerieren und eine große Masse bilden, die bei einer anschließenden Aufbereitung leicht behandelt werden kann.

Die grüne Technologie hat in Hongkong gerade einen großen Sprung nach vorn gemacht. Acousweep wird der Bekleidungsindustrie und anderen Branchen helfen, eine äußerst schädliche Form der Verschmutzung zu stoppen. HKRITA hat eine neue Technik zur Beseitigung von Mikroplastik mit Hilfe eines schallwellenbasierten Systems entwickelt, das verhindert, dass es ins Meer gelangt und von Meeresbewohnern aufgenommen wird, die in der Nahrungskette sogar vom Menschen verschluckt werden können. Acousweep hat das Zeug dazu, die Industrie zu revolutionieren.
Professorin Christine Loh, leitende Entwicklungsstrategin am Umwelt-Institut der Universität für Wissenschaft und Technologie in Hongkong

 

Quelle:

The Hong Kong Research Institute of Textiles and Apparel (HKRITA); H & M Foundation

(c) Fraunhofer-Institut für Silicatforschung ISC
02.05.2023

Bioresorbierbare Membran: Fasern als Wirkstoffdepot

Fraunhofer-Forschenden ist es gelungen, aus bioresorbierbarem Kieselgel Renacer® eine elektroversponnene Membran herzustellen, die weder zell- noch gentoxisch ist. Diese Matrix ahmt Faserstrukturen nach, die im Bindegewebe vorkommen. Sie eignet sich daher insbesondere für regenerative Anwendungen, etwa für eine bessere Wundheilung.
 
Die Behandlung großflächiger sowie innerer Wunden ist eine Herausforderung und kann äußerst langwierig sein. Forscherinnen und Forscher des Fraunhofer-Instituts für Silicatforschung ISC und des Fraunhofer-Instituts für Toxikologie und Experimentelle Medizin ITEM haben für diesen Anwendungsbereich eine bioresorbierbare Membran entwickelt, die die Wundheilung unterstützt und sich vollständig im Körper zu einer natürlichen Substanz biologisch abbaut.

Fraunhofer-Forschenden ist es gelungen, aus bioresorbierbarem Kieselgel Renacer® eine elektroversponnene Membran herzustellen, die weder zell- noch gentoxisch ist. Diese Matrix ahmt Faserstrukturen nach, die im Bindegewebe vorkommen. Sie eignet sich daher insbesondere für regenerative Anwendungen, etwa für eine bessere Wundheilung.
 
Die Behandlung großflächiger sowie innerer Wunden ist eine Herausforderung und kann äußerst langwierig sein. Forscherinnen und Forscher des Fraunhofer-Instituts für Silicatforschung ISC und des Fraunhofer-Instituts für Toxikologie und Experimentelle Medizin ITEM haben für diesen Anwendungsbereich eine bioresorbierbare Membran entwickelt, die die Wundheilung unterstützt und sich vollständig im Körper zu einer natürlichen Substanz biologisch abbaut.

Basis für die neuartige Membran ist ein am Fraunhofer ISC entwickeltes Faservlies, das für die Regeneration von chronischen Wunden, wie dem diabetischen Fuß, bereits medizinisch zugelassen ist. Das Material löst sich im Verlauf der Wundheilung nach sechs bis acht Wochen vollständig auf. Den Faserdurchmesser von 50 Mikrometer konnten die Forschenden um mehr als das 50fache verringern, sodass die Fasern nun Durchmesser von weniger als einem Mikrometer aufweisen. Dabei wendete das Team die Methode des Elektrospinnens an. Auf diese Weise konnten die Forschenden ein Kieselgelsol zu einer engmaschigen Kieselgelmembran aus Fasern mit einem Durchmesser von ca. einem Mikrometer verspinnen. Teilweise erzielten sie sogar Durchmesser von lediglich 100 Nanometern. »Diese Fasersysteme ahmen die extrazelluläre Matrix, also Faserstrukturen, die im Bindegewebe vorkommen, im Körper nach und werden von humanen Zellen sehr gut zur Regeneration angenommen. Sie verursachen keine Fremdkörperreaktionen und keine inneren Vernarbungen. Die neuartige Kieselgelmembran setzt nur ein Degradationsprodukt frei, die Monokieselsäure, die im Körper regenerierend wirkt und das Schließen von Wunden fördert«, erläutert Dr. Bastian Christ, Wissenschaftler am Fraunhofer ISC in Würzburg. Mit seinen Kolleginnen und Kollegen kümmerte er sich um die Synthese und die Verarbeitung des Materials.
 
»Während das ursprüngliche Faservlies aus 50 Mikrometer dicken Fasern von außen in eine chronische Wunde eingebracht wird, eignet sich das dünnere Faservlies auch für innere Anwendungen. Füllmaterial, das für Knochendefekte im Kiefer genutzt wird, könnte theoretisch damit abgedeckt werden, um so die Wundheilung zu beschleunigen«, beschreibt Dr. Christina Ziemann, Wissenschaftlerin am Fraunhofer ITEM und für die biologische Evaluierung des Materials zuständig, eine von vielen Einsatzmöglichkeiten. »Prinzipiell lässt sich die Membran im Körper mit bioabbaubaren Klebstoffen verkleben.«

Material ist weder zell- noch gentoxisch
Mittels eines Konfokalmikroskops, eines speziellen Lichtmikroskops, konnte gezeigt werden, dass die engmaschige Membran, die als Demonstrator vorliegt, über eine Barrierefunktion verfügt, die den Durchtritt von Bindegewebszellen über die Dauer von mindestens sieben Tagen verhindert, ohne die Zellen generell vom Wachstum abzuhalten. Darüber hinaus ist die Membran resorbierbar und weist keine Zyto- oder Gentoxizität auf, sie verursacht also weder direkte Schäden am Gewebe noch an der DNA.

Faserdurchmesser und Maschenweite beeinflussen das Verhalten der Zellen
Für die Anwendung als Adhäsionsbarriere, um postoperative Verwachsungen und Narbenbildung zu vermeiden, wurde ein dünner Faserdurchmesser mit dünnen Maschen gewählt, sodass nur Nährstoffe das Faservlies passieren konnten – jedoch keine Bindegewebszellen. Bei einem Faserdurchmesser von einem Mikrometer und entsprechend weiteren Maschen hingegen wachsen die Zellen in das Fasergeflecht ein, vermehren sich dort und wirken regenerierend auf das umliegende Gewebe. »Durch Einstellen der Materialeigenschaften wie Faserdurchmesser und Maschenweite können wir das Verhalten der Zellen wunschgemäß beeinflussen«, sagt Christ. Für das Verspinnen der Fasern werden die erforderlichen Anlagen am Fraunhofer ISC anwendungsgerecht und kundenspezifisch konstruiert. Auch die Form und Größe der Faservliese lassen sich kundenspezifisch anpassen.

Im Gegensatz zur Membran, die direkt nach dem Aufbringen aufgrund ihrer offenmaschigen Natur einen Nährstofftransport, nicht aber einen Zelldurchtritt erlaubt, ermöglichen viele am Markt erhältliche Produkte einen derartigen Stofftransport oft erst nach der Biodegradation, bzw. nach beginnender Degradation. Eine schnelle und effektive Wundheilung ist aber nur möglich, wenn das verwundete Gewebe ausreichend mit Nährstoffen versorgt wird. Gleichzeitig müssen Stoffwechselprodukte abtransportiert werden, was durch die offene Maschenstruktur der Kieselgelmembran gefördert wird.

Membran mit anorganischem Charakter
Ein weiterer Vorteil: Die Renacer®-Membran löst sich vollständig auf und zersetzt sich fast pH-neutral zu untoxischer Monokieselsäure, die einzige wasserlösliche Form von Kieselsäuren. Sie ist nativ im Körper vorhanden und stimuliert nachweislich den Bindegewebsaufbau in der Haut und den Knochenaufbau. Über solche Eigenschaften verfügen bislang erhältliche Produkte nicht. Viele biodegradierbare Materialien lösen sich zu organischen Säuren, wie Milchsäure oder Glykolsäure, auf. Dadurch können lokale Übersäuerungen im Gewebe entstehen und diese dann entzündliche Reaktionen des Immunsystems auslösen. »Unsere Tests haben gezeigt, dass auch das Auflösungsprodukt, die Monokieselsäure, nicht toxisch und komplett zellverträglich ist«, so Ziemann. »Die Membran zersetzt sich zu einem einzigen Molekül – der Monokieselsäure.«

Fasern als Wirkstoffdepot
Darüber hinaus können Wirkstoffe in das Faservlies integriert werden, die mit der Auflösung des Materials freigesetzt werden. »Während der Resorption könnte beispielsweise ein Antibiotikum auf eine Wunde im Körper abgegeben werden, damit sich keine Bakterienherde bilden können«, erläutert Christ. Am Fraunhofer ISC wird im BMBF-geförderten Projekt »GlioGel« geprüft, ob sich die Renacer®-Materialplattform als Wirkstoffdepot zur Behandlung von Hirntumoren eignet.
Quelle: Fraunhofer-Institut für Silicatforschung ISC

Quelle:

Fraunhofer-Institut für Silicatforschung ISC

intelligente Textilien (c) Sanghyo Lee
24.04.2023

Kostengünstigere Verfahren zur Herstellung gewebter Displays und intelligenter Textilien

Forscher haben intelligente Textilien der nächsten Generation entwickelt, die mit LEDs, Sensoren, Energiegewinnung und -speicherung ausgestattet sind. Diese Textilien können kostengünstig in jeder Form und Größe auf herkömmlichen industriellen Webstühlen hergestellt werden, wie sie auch für die Herstellung von Alltagskleidung verwendet werden.
 
Ein internationales Team unter der Leitung der Universität Cambridge hatte in der Vergangenheit bereits gezeigt, dass gewebte Displays in großen Größen produziert werden können, aber diese früheren Beispiele wurden mit speziellen manuellen Laborgeräten hergestellt. Andere intelligente Textilien können in spezialisierten mikroelektronischen Produktionsanlagen hergestellt werden, die jedoch sehr teuer sind und große Mengen an Abfall produzieren.

Forscher haben intelligente Textilien der nächsten Generation entwickelt, die mit LEDs, Sensoren, Energiegewinnung und -speicherung ausgestattet sind. Diese Textilien können kostengünstig in jeder Form und Größe auf herkömmlichen industriellen Webstühlen hergestellt werden, wie sie auch für die Herstellung von Alltagskleidung verwendet werden.
 
Ein internationales Team unter der Leitung der Universität Cambridge hatte in der Vergangenheit bereits gezeigt, dass gewebte Displays in großen Größen produziert werden können, aber diese früheren Beispiele wurden mit speziellen manuellen Laborgeräten hergestellt. Andere intelligente Textilien können in spezialisierten mikroelektronischen Produktionsanlagen hergestellt werden, die jedoch sehr teuer sind und große Mengen an Abfall produzieren.

Das Team fand heraus, wie flexible Displays und intelligente Textilien viel billiger und nachhaltiger hergestellt werden können, indem elektronische, optoelektronische, sensorische und energetische Faserkomponenten auf denselben industriellen Webstühlen gewebt werden, die auch für die Herstellung herkömmlicher Textilien verwendet werden. Die in der Fachzeitschrift Science Advances veröffentlichten Ergebnisse zeigen, wie intelligente Textilien eine Alternative zu größeren elektronischen Bauteilen in Bereichen wie Automobilbau, Elektronik, Mode und Bauwesen sein könnten.

Trotz der jüngsten Fortschritte bei der Entwicklung intelligenter Textilien sind deren Funktionalität, Abmessungen und Form durch die gegenwärtigen Herstellungsverfahren begrenzt.
„Wir könnten diese Textilien in speziellen Mikroelektronik-Anlagen herstellen, aber das erforderte Investitionen in Milliardenhöhe“, so Dr. Sanghyo Lee vom Cambridge Department of Engineering, Erstautor der Studie. „Zudem ist die Herstellung intelligenter Textilien auf diese Weise sehr begrenzt, da alles auf denselben starren Wafern hergestellt werden muss, die auch für die Herstellung integrierter Schaltkreise verwendet werden, so dass die maximale Größe, die wir erreichen können, etwa 30 Zentimeter im Durchmesser beträgt.

„Intelligente Textilien waren bisher auch durch ihre mangelnde Praxistauglichkeit eingeschränkt“, ergänzte Dr. Luigi Occhipinti, ebenfalls vom Fachbereich Ingenieurwissenschaften, der die Forschungsarbeiten mit leitete. „Man denke nur an das Biegen, Dehnen und Falten, dem normale Textilien standhalten müssen, und es war eine Herausforderung, die gleiche Haltbarkeit in intelligente Textilien zu integrieren.“

Letztes Jahr hatten einige derselben Forscher gezeigt, dass die in intelligenten Textilien verwendeten Fasern mit Materialien beschichtet werden können, die Dehnungen standhalten, so dass sie mit herkömmlichen Webverfahren kompatibel sind. Mit dieser Technik stellten sie ein gewebtes 46-Zoll-Demonstrationsdisplay her.

Jetzt haben die Forscher gezeigt, dass intelligente Textilien in automatisierten Prozessen hergestellt werden können, wobei ihrer Größe und Form keine Grenzen gesetzt sind. Mehrere Arten von Faserbauelementen, darunter Energiespeicher, Leuchtdioden und Transistoren, wurden hergestellt, eingekapselt und mit herkömmlichen synthetischen oder natürlichen Fasern gemischt, um durch automatisches Weben intelligente Textilien herzustellen. Die Faserbauteile wurden durch ein automatisiertes Laserschweißverfahren mit elektrisch leitendem Klebstoff miteinander verbunden.
 
Alle Prozesse wurden so optimiert, dass die elektronischen Komponenten möglichst wenig beschädigt wurden, was wiederum die intelligenten Textilien so haltbar machte, dass sie der Dehnung einer industriellen Webmaschine standhalten. Die Verkapselungsmethode wurde unter Berücksichtigung der Funktionalität der Faserkomponenten entwickelt, und die mechanische Kraft und thermische Energie wurden systematisch geprüft, um ein automatisches Weben bzw. eine laserbasierte Verbindung zu erreichen.

Gemeinsam mit Textilherstellern konnte das Forschungsteam Testflächen aus intelligenten Textilien mit einer Größe von etwa 50 x 50 Zentimetern herstellen, die jedoch auf größere Abmessungen skaliert und in großen Mengen produziert werden können.
 
„Diese Unternehmen verfügen über gut etablierte Produktionsanlagen mit Faserextrudern mit hohem Durchsatz und großen Webmaschinen, die automatisch ein Quadratmeter Textil weben können“, so Lee. „Wenn wir also die intelligenten Fasern in den Prozess einbringen, ist das Ergebnis im Grunde ein elektronisches System, das genauso hergestellt wird wie andere Textilien.“
Den Forschern zufolge könnten große, flexible Bildschirme und Monitore auf industriellen Webstühlen und nicht in spezialisierten Elektronikfertigungsanlagen hergestellt werden, was ihre Produktion wesentlich billiger machen würde. Der Prozess muss jedoch noch weiter optimiert werden.

„Die Flexibilität dieser Textilien ist absolut erstaunlich,“ sagt Occhipinti. „Nicht nur in Bezug auf ihre mechanische Flexibilität, sondern auch in Bezug auf die Flexibilität des Ansatzes, nachhaltige und umweltfreundliche Plattformen zur Herstellung von Elektronik einzusetzen, die zur Verringerung der Kohlenstoffemissionen beitragen und echte Anwendungen von intelligenten Textilien in Gebäuden, im Innenraum von Autos und in der Kleidung ermöglichen. Unser Ansatz ist in dieser Hinsicht ziemlich einzigartig.“

Die Forschung wurde teilweise von der Europäischen Union und UK Research and Innovation unterstützt.

Quelle:

University of Cambridge

(c) Fraunhofer WKI
19.04.2023

Nachhaltige Naturfaserbewehrung für Textilbetonbauteile

Textilbetonteile mit einer nachhaltigen Naturfaserbewehrung haben ein ausreichendes Verbund- und Zugtragverhalten für den Einsatz im Bau. Das konnten Forschende des Fraunhofer WKI gemeinsam mit der Hochschule Biberach und dem Industriepartner FABRINO nachweisen. Damit könnten künftig Textilbetonbauteile mit Naturfaserbewehrung herkömmlich bewehrte Betonbauteile ersetzen und die Umweltbilanz im Bauwesen verbessern.

Textilbetonteile mit einer nachhaltigen Naturfaserbewehrung haben ein ausreichendes Verbund- und Zugtragverhalten für den Einsatz im Bau. Das konnten Forschende des Fraunhofer WKI gemeinsam mit der Hochschule Biberach und dem Industriepartner FABRINO nachweisen. Damit könnten künftig Textilbetonbauteile mit Naturfaserbewehrung herkömmlich bewehrte Betonbauteile ersetzen und die Umweltbilanz im Bauwesen verbessern.

Nichtmetallische Bewehrungen von Betonkörpern werden derzeit häufig aus unterschiedlichen, synthetisch erzeugten Fasern hergestellt – zum Beispiel aus Glas- oder Carbonfasern. Eine ökologische Alternative zu den synthetischen Fasern stellen Flachs- oder andere Naturfasern dar. Diese sind vielerorts verfügbar und nachhaltiger, unter anderem aufgrund ihrer nachwachsenden Rohstoffbasis, den Vorteilen im Recycling und dem geringeren Energiebedarf in der Herstellung. Hier setzten die Forschenden des Fraunhofer WKI und der Hochschule Biberach gemeinsam mit einem Industriepartner an. Ihr Ziel war, nachzuweisen, dass sich Bewehrungen aus Textilfasern für den Einsatz im Bau ebenso eignen wie synthetische Fasern.

»Wir haben am Fraunhofer WKI mit einer Webmaschine Drehergewebe aus Flachsfasergarn hergestellt. Um die Nachhaltigkeit zu erhöhen, haben wir eine Behandlung der Flachsgarne zur Verbesserung der Zugfestigkeit, Dauerhaftigkeit und Verbundhaftung erprobt, die im Vergleich zu petrobasierten Behandlungen ökologisch vorteilhafter ist«, erläutert Jana Winkelmann, Projektleiterin am Fraunhofer WKI. Im Beschichtungsverfahren konnte ein gängiges petrobasiertes Epoxidharz erfolgreich durch eine zum Teil biobasierte Tränkung ersetzt werden. Ein großer Anteil (56 Prozent) der molekularen Struktur des verwendeten Epoxidharzes besteht aus Kohlenwasserstoffen pflanzlichen Ursprungs und kann somit die CO2-Bilanz verbessern.

Textile Bewehrungen haben grundsätzlich eine Reihe von Vorteilen. So weisen sie eine deutlich reduzierte Korrodierbarkeit bei gleicher oder höherer Zugfestigkeit als Stahl auf, so dass das notwendige Nennmaß der Betonüberdeckung reduziert werden kann. Dies führt bei gleicher Tragfähigkeit häufig zu geringeren erforderlichen Querschnitten. Bisher wurde das Tragverhalten von textilen Bewehrungen aus Naturfasern in Betonbauteilen allerdings noch nicht systematisch untersucht.

An der Hochschule Biberach testeten die Forschenden das Verbund- und Zugtragverhalten sowie das einachsige Biegetragverhalten von Betonbauteilen mit textiler Bewehrung aus Flachsfasern. Die Wissenschaftlerinnen und Wissenschaftler kamen zu dem Ergebnis, dass sich die naturfaserbasierten Textilbetonbauteile mit einer biobasierten Tränkung grundsätzlich eignen. Die Eignung zeigte sich sowohl durch eine signifikante Erhöhung der Bruchlast im Vergleich zu unbewehrten und unterbewehrten Betonbauteilen als auch durch fein verteilte Rissbilder. Die Kurven der Spannungs¬Dehnungs¬Diagramme konnten in drei für bewehrte Dehnkörper typische Bereiche unterteilt werden (Zustand I – ungerissen, Zustand IIa – Erstrissbildung und Zustand IIb – abgeschlossenes Rissbild). Die Abgrenzung der Bereiche ist mit zunehmendem Bewehrungsgrad deutlicher.

Insgesamt tragen regional oder europaweit verfügbare, nachwachsende Naturfasern und eine zum Teil biobasierte Beschichtung zu einer Verbesserung des CO2-Fußabdrucks der Bauindustrie bei. Damit eröffnet sich für die energie- und rohstoffintensive Bauindustrie eine weitere Möglichkeit, zunehmend strengere Umwelt- und Nachhaltigkeitsanforderungen zu erfüllen. »Textilbetone ermöglichen leichtere und schlankere Konstruktionen und bieten daher architektonische Spielräume. An den zahlreichen Einsatzmöglichkeiten von naturfaserbewehrten Textilbetonen möchten wir gern weiterforschen«, sagt Christina Haxter, Mitarbeiterin am Fraunhofer WKI.

Das Projekt, mit einer Laufzeit vom 9. Dezember 2020 bis zum 31. Dezember 2022, wurde von der Deutschen Bundesstiftung Umwelt DBU gefördert.

Quelle:

Fraunhofer WKI

Ein blau gefärbtes Baumwollgestrick, das zehnmal gewaschen wurde, um getragene Kleidungsstücke zu simulieren, wird enzymatisch zu einem Schlamm aus feinen Fasern und „blauem Glukosesirup“ abgebaut, der durch Filtration getrennt wird - beide separierten Anteile haben einen potenziellen Wiederverwendungswert. Ein blau gefärbtes Baumwollgestrick, das zehnmal gewaschen wurde, um getragene Kleidungsstücke zu simulieren, wird enzymatisch zu einem Schlamm aus feinen Fasern und „blauem Glukosesirup“ abgebaut, der durch Filtration getrennt wird - beide separierten Anteile haben einen potenziellen Wiederverwendungswert. Foto: Sonja Salmon.
11.04.2023

Enzymatische Trennung von Baumwolle und Polyester in Mischgeweben

In einer neuen Studie haben Forscher der North Carolina State University nachgewiesen, dass sie Mischgewebe aus Baumwolle und Polyester mithilfe von Enzymen - natürlichen Werkzeugen zur Beschleunigung chemischer Reaktionen – voneinander trennen können. Die Forschenden hoffen, dass ihre Ergebnisse letztlich zu einer effizienteren Wiederverwertung der Stoffbestandteile und damit zur Verringerung des Textilabfalls führen werden. Sie stellten jedoch auch fest, dass der Prozess mehr Arbeitsschritte erfordert, wenn das Mischgewebe gefärbt oder mit Chemikalien behandelt wurde, die die Knitterfestigkeit erhöhen.

In einer neuen Studie haben Forscher der North Carolina State University nachgewiesen, dass sie Mischgewebe aus Baumwolle und Polyester mithilfe von Enzymen - natürlichen Werkzeugen zur Beschleunigung chemischer Reaktionen – voneinander trennen können. Die Forschenden hoffen, dass ihre Ergebnisse letztlich zu einer effizienteren Wiederverwertung der Stoffbestandteile und damit zur Verringerung des Textilabfalls führen werden. Sie stellten jedoch auch fest, dass der Prozess mehr Arbeitsschritte erfordert, wenn das Mischgewebe gefärbt oder mit Chemikalien behandelt wurde, die die Knitterfestigkeit erhöhen.

„Wir können die gesamte Baumwolle aus einer Baumwoll-Polyester-Mischung herauslösen, was bedeutet, dass wir anschließend sauberes Polyester haben, das recycelt werden kann“, so die korrespondierende Autorin der Studie, Sonja Salmon, außerordentliche Professorin für Textilingenieurwesen, Chemie und Wissenschaft an der NC State. „Auf einer Mülldeponie wird sich das Polyester nicht abbauen, und die Baumwolle kann mehrere Monate oder länger brauchen, um sich zu zersetzen. Mit unserer Methode können wir die Baumwolle in weniger als 48 Stunden vom Polyester trennen.“

Nach Angaben der US-Umweltschutzbehörde werfen Verbraucher jedes Jahr etwa 11 Millionen Tonnen Textilabfälle auf US-Mülldeponien. Die Forscher wollten eine Methode entwickeln, um die Baumwolle vom Polyester zu trennen, so dass die einzelnen Bestandteile recycelt werden können.

In der Studie verwendeten die Forscher einen „Cocktail“ von Enzymen in einer leicht sauren Lösung, um die Zellulose in der Baumwolle zu zersetzen. Zellulose ist das Material, das den Zellwänden der Pflanzen Struktur verleiht. Die Idee ist, die Zellulose so zu zerkleinern, dass sie aus der gemischten Gewebestruktur „herausfällt“ und einige winzige Baumwollfaserfragmente zusammen mit Glukose zurückbleiben. Glukose ist das biologisch abbaubare Nebenprodukt der abgebauten Zellulose. Anschließend wird die Glukose weggewaschen und die Baumwollfaserfragmente herausgefiltert, so dass reines Polyester übrig bleibt.
 
Assoc. Professor Sonja Salmon    „Dies ist ein mildes Verfahren - die Behandlung ist leicht sauer, wie bei Essig“, sagte Salmon. „Wir haben es auch bei 50 Grad Celsius laufen lassen, was der Temperatur einer heißen Waschmaschine entspricht. Es ist wirklich vielversprechend, dass wir das Polyester bis zu einem sauberen Niveau trennen können", fügte Salmon hinzu.
"Wir müssen noch einiges tun, um die Eigenschaften des Polyesters zu bestimmen, aber wir glauben, dass sie sehr gut sein werden, weil die Bedingungen so mild sind. Wir fügen lediglich Enzyme hinzu, die das Polyester ignorieren."

Sie verglichen den Abbau von Stoffen aus 100 % Baumwolle mit dem von Baumwoll- und Polyestermischungen und testeten außerdem Stoffe, die mit roten und blauen Reaktivfarbstoffen gefärbt und mit haltbaren Presschemikalien behandelt worden waren. Um die gefärbten Stoffe abzubauen, mussten die Forscher den Zeitaufwand und den Einsatz von Enzymen erhöhen. Bei Stoffen, die mit Chemikalien knitterfrei ausgerüstet wurden, mussten sie vor der Zugabe der Enzyme eine chemische Vorbehandlung durchführen.

„Der gewählte Farbstoff hat einen großen Einfluss auf die potenzielle Schädigung des Gewebes", sagte die Leiterin der Studie, Jeannie Egan, Doktorandin an der NC State. "Außerdem haben wir festgestellt, dass das größte Hindernis bisher die knitterfreie Ausrüstung ist. Die Chemie dahinter blockiert den Zugang des Enzyms zur Zellulose erheblich. Ohne Vorbehandlung erreichten wir einen Abbau von weniger als 10 %, aber nach zwei Enzymdosen konnten wir die Zellulose vollständig abbauen, was ein wirklich beeindruckendes Ergebnis ist.“

Den Forschenden zufolge wäre das Polyester recycelbar, während die Aufschlämmung der Baumwollfragmente als Zusatzstoff für Papier oder als nützliche Ergänzung für Verbundwerkstoffe wertvoll sein könnte. Sie untersuchen ebenfalls, ob eine Verwendung der Glukose für die Herstellung von Biokraftstoffen möglich wäre.

„Die Aufschlämmung besteht aus Baumwollresten, die einem sehr starken enzymatischen Abbau widerstehen“, so Salmon. „Sie kann als Verstärkungsstoff verwendet werden. Was den Glukosesirup betrifft, so arbeiten wir an einem Projekt, um herauszufinden, ob wir ihn in einen anaeroben Fermenter einspeisen können, um Biokraftstoff herzustellen. Wir würden Abfälle in Bioenergie umwandeln, was viel besser wäre, als sie auf eine Mülldeponie zu werfen.“

Die Studie mit dem Titel „Enzymatische Textilfasertrennung für nachhaltige Abfallverarbeitung“ wurde in der Zeitschrift Resources, Environment and Sustainability veröffentlicht. Zu den Koautoren gehören Siyan Wang, Jialong Shen, Oliver Baars und Geoffrey Moxley. Finanziert wurde die Studie von der Environmental Research and Education Foundation, der Kaneka Corporation und dem Department of Textile Engineering, Chemistry and Science an der NC State.

Quelle:

North Carolina State University, Laura Oleniacz

(c) nova-Institut GmbH
14.03.2023

Bakterien statt Bäume, Textil- und Agrarabfälle

Zum dritten Mal verlieh das nova-Institut im Rahmen der „Cellulose Fibres Conference 2023“ in Köln, 8. bis 9. März 2023, den Preis „Cellulose Fibre Innovation of the Year“.  

Die jährlich stattfindende Konferenz ist Treffpunkt der globalen Cellulosefaser-Industrie. 42 Referierende aus zwölf Ländern zeigten das Innovationspotenzial von Cellulosefasern auf und präsentierten die neuesten Markteinblicke und Trends vor mehr als 220 Teilnehmenden aus 30 Ländern.

Führende internationale Expertinnen und Experten stellten neue Technologien für das Recycling Cellulose-reicher Rohstoffe und innovative Praktiken der Kreislaufwirtschaft in den Bereichen Textilien, Verpackung und Hygiene vor, die unter aktiver Publikumsbeteiligung in sieben Podiumsdiskussionen erörtert wurden.    

Zum dritten Mal verlieh das nova-Institut im Rahmen der „Cellulose Fibres Conference 2023“ in Köln, 8. bis 9. März 2023, den Preis „Cellulose Fibre Innovation of the Year“.  

Die jährlich stattfindende Konferenz ist Treffpunkt der globalen Cellulosefaser-Industrie. 42 Referierende aus zwölf Ländern zeigten das Innovationspotenzial von Cellulosefasern auf und präsentierten die neuesten Markteinblicke und Trends vor mehr als 220 Teilnehmenden aus 30 Ländern.

Führende internationale Expertinnen und Experten stellten neue Technologien für das Recycling Cellulose-reicher Rohstoffe und innovative Praktiken der Kreislaufwirtschaft in den Bereichen Textilien, Verpackung und Hygiene vor, die unter aktiver Publikumsbeteiligung in sieben Podiumsdiskussionen erörtert wurden.    

Im Vorfeld der Konferenz hatte der Konferenzbeirat sechs bemerkenswerte Innovationen nominiert. Die Gewinner wurden am ersten Veranstaltungstag in einem Kopf-an-Kopf-Rennen im Rahmen eines Live-Votings durch das Konferenzpublikum gewählt.

Die Zusammenarbeit zwischen Nanollose (AU) und Birla Cellulose (IN) mit baumfreiem Lyocell aus bakterieller Cellulose namens Nullarbor™ wurde die siegreiche Cellulosefaser-Innovation 2023, gefolgt von Renewcell (SE) Cellulosefasern aus 100 % Textilabfällen, und Vybrana – die neue Generation von Bananenfasern von Gencrest Bio Products (IN) belegt den dritten Platz.    

Sieger: Nullarbor™ – Nanollose und Birla Cellulose (AU/IN)
Im Jahr 2020 begannen Nanollose und Birla Cellulose eine Reise zur Entwicklung und Vermarktung von baumfreiem Lyocell aus bakterieller Cellulose, genannt Nullarbor™. Der Name leitet sich vom lateinischen „nulla arbor“ ab, was „keine Bäume“ bedeutet. Erste Laborforschungen auf beiden Seiten führten zu einer gemeinsamen Patentanmeldung „Herstellung von hochfesten Lyocellfasern aus bakterieller Cellulose“.  

Nullarbor ist deutlich fester als Lyocell aus holzbasiertem Zellstoff; selbst die Zugabe geringer Mengen von Bakteriencellulose zu Holz-
zellstoff erhöht die Faserzähigkeit. Im Jahr 2022 wurde die erste Pilotcharge von 260 kg mit einem Anteil von 20 % Bakterienzellstoff hergestellt. Mit dieser Faser wurden mehrere hochwertige Stoffe und Kleidungsstücke hergestellt. Die Zusammenarbeit zwischen Nanollose und Birla Cellulose konzentriert sich nun auf eine Erhöhung der Produktionsmenge und des Anteils an bakterieller Zellulose in der Faser.

Zweiter Platz: Circulose® – Macht Mode rund – Renewcell (SE)
Circulose® von Renewcell ist ein Markenzellstoff, der zu 100 % aus Textilabfällen wie Altkleidern und Produktionsabfällen gewonnen wird. Es handelt sich um ein einzigartiges Material für Mode, das zu 100 % recycelt, wiederverwertbar, biologisch abbaubar und von gleichwertiger Qualität wie Neuware ist. Es wird von Faserherstellern zur Herstellung von Stapelfasern oder Filamenten wie Viskose, Lyocell, Modal, Acetat oder anderen Arten von cellulosischen Chemiefasern verwendet. Im Jahr 2022 eröffnete Renewcell in Sundsvall, Schweden, die weltweit erste Anlage für das chemische Recycling von Textilien zu Textilien – Renewcell 1. Die Anlage wird eine jährliche Kapazität von 120.000 Tonnen erreichen.

Dritter Platz: Vybrana – Die Bananenfaser der neuen Generation – Gencrest Bio Products (IN)
Vybrana ist eine nachhaltige, aus Agrarabfällen gewonnene Cellulosefaser von Gencrest. Die Rohfasern werden aus dem Stamm der Banane am Ende des Lebenszyklus der Pflanze extrahiert. Die Biomasseabfälle werden anschließend mit der von Gencrest Bio Products patentierten Fiberzyme-Technologie behandelt. Mithilfe von Cocktail-Enzymformulierungen werden hierbei der hohe Ligningehalt und andere Verunreinigungen entfernt und die Faserfibrillierung unterstützt. Das firmeneigene Kotonisierung liefert feine, spinnbare Zellulosestapelfasern, die sich zum Mischen mit anderen Stapelfasern eignen und auf allen herkömmlichen Spinnsystemen zu Garnen für nachhaltige Bekleidung versponnen werden können. Vybrana wird ohne den Einsatz schädlicher Chemikalien und mit minimalem Wasserverbrauch in einem abfallfreien Verfahren hergestellt, bei dem die Restbiomasse in die Bio-Stimulanzien Agrosatva und bio-basiertem Dünger sowie organischen Dünger umgewandelt werden.

Die nächste Cellulose Fibres Conference findet am 13. und 14. März 2024 statt.

Quelle:

nova-Institut GmbH / Textination

Foto unsplash
21.02.2023

Konsortium für enzymatisches Textilrecycling gewinnt neue Unterstützer

"Gemeinsame Vision einer echten Kreislaufwirtschaft für die Textilindustrie"

Der US-amerikanische Modekonzern PVH hat sich dem von Carbios, On, Patagonia, PUMA und Salomon gegründeten Faser-zu-Faser-Konsortium angeschlossen. Ziel ist es, die Weiterentwicklung des Biorecyclingverfahrens von Carbios im industriellen Maßstab zu unterstützen und so neue globale Standards für Textilrecyclingtechnologien zu setzen. Zu PVH gehören Marken wie Calvin Klein und Tommy Hilfiger. In der von der PVH Corp. unterzeichneten Vereinbarung verpflichtet sich das Unternehmen, durch seine Mitwirkung im Konsortium den Übergang der Textilindustrie zu einer Kreislaufwirtschaft zu beschleunigen.

"Gemeinsame Vision einer echten Kreislaufwirtschaft für die Textilindustrie"

Der US-amerikanische Modekonzern PVH hat sich dem von Carbios, On, Patagonia, PUMA und Salomon gegründeten Faser-zu-Faser-Konsortium angeschlossen. Ziel ist es, die Weiterentwicklung des Biorecyclingverfahrens von Carbios im industriellen Maßstab zu unterstützen und so neue globale Standards für Textilrecyclingtechnologien zu setzen. Zu PVH gehören Marken wie Calvin Klein und Tommy Hilfiger. In der von der PVH Corp. unterzeichneten Vereinbarung verpflichtet sich das Unternehmen, durch seine Mitwirkung im Konsortium den Übergang der Textilindustrie zu einer Kreislaufwirtschaft zu beschleunigen.

Carbios arbeitet mit On, Patagonia, PUMA, PVH Corp. und Salomon daran, seine biologische Recyclingtechnologie an deren Produkten zu testen und zu verbessern. Ziel ist es, im Sinne der Nachhaltigkeitsverpflichtungen den Nachweis zu erbringen, dass durch dieses Verfahren der Kreislauf von Faser zu Faser im industriellen Maßstab geschlossen wird.

Das auf zwei Jahre ausgelegte Kooperationsprojekt soll nicht nur das biologische Recycling von Polyesterartikeln in industriellem Maßstab ermöglichen, sondern auch gründliche Sortier- und Zerlegetechnologien für komplexe Textilabfälle entwickeln. Die bestehenden Mitglieder stimmten einstimmig für den Beitritt der PVH Corp. zum Konsortium und erklärten, das gemeinsame Ziel sei es, die Entwicklung praktikabler Lösungen zu unterstützen, die den Beitrag der Modeindustrie zum Klimawandel adressieren.
 
Carbios hat eine Technologie entwickelt, bei der hochselektive Enzyme zum Einsatz kommen, die gemischte Ausgangsmaterialien recyceln können und so die aufwändige Sortierung reduzieren, die bei den derzeitigen thermomechanischen Recyclingverfahren erforderlich ist. Bei Textilien aus Mischfasern wirkt das patentierte Enzym ausschließlich auf das darin enthaltene PET-Polyester. Mit diesem innovativen Verfahren wird recyceltes PET (r-PET) erzeugt, das in seiner Qualität dem von neuem PET entspricht und zur Herstellung neuer Textilfasern verwendet werden kann
 
Behandlung von Textilabfällen und Recycling
Weltweit werden derzeit nur 13 % der Textilabfälle recycelt, und zwar hauptsächlich für minderwertige Anwendungen wie Polsterung, Isolierung oder Lumpen. Die restlichen 87 % sind für die Deponierung oder Verbrennung bestimmt. Um an der Verbesserung der Textilrecyclingtechnologien zu arbeiten, werden die Mitglieder des Konsortiums Ausgangsmaterial in Form von Bekleidung, Unterwäsche, Schuhen und Sportbekleidung liefern. 2023 wird in der Demonstrationsanlage von Carbios eine neue Anlage für PET-Textilabfälle in Betrieb genommen, insbesondere im Rahmen des von der Europäischen Union kofinanzierten Projekts "LIFE Cycle of PET".  Dies geschieht im Vorgriff auf künftige Vorschriften, wie die getrennte Sammlung von Textilabfällen, die in Europa ab dem 1. Januar 2025 verbindlich vorgeschrieben ist.

Von Faser zu Faser: Kreislauffähigkeit von Textilien
Zur Herstellung von Fasern und Stoffen ist die Textilindustrie heute weitgehend auf nicht erneuerbare Ressourcen angewiesen, zum Teil greift sie auf recycelte PET-Flaschen für recycelte Polyesterfasern zurück. Diese Ressource wird jedoch knapp werden, da PET-Flaschen ausschließlich für die Herstellung neuer Flaschen in der Lebensmittel- und Getränkeindustrie verwendet werden. In einer Kreislaufwirtschaft werden die zur Herstellung von Textilien verwendeten Materialien aus recycelten oder erneuerbaren Rohstoffen gewonnen, die durch regenerative Verfahren hergestellt werden. Die Mitglieder des Konsortiums liefern nicht nur Rohstoffe für die Demonstrationsanlage, sondern wollen auch neue Produkte aus r-PET-Fasern herstellen, die mit dem Biorecycling-Verfahren des Unternehmens produziert werden.
 
"Die Partnerschaft mit Carbios und seinen Konsortiumsmitgliedern zeigt unser kontinuierliches Engagement für die Aufnahme von mehr Kreislaufmaterialien in unsere Kollektionen", so Esther Verburg, EVP, Sustainable Business and Innovation, Tommy Hilfiger Global und PVH Europe. "Wir freuen uns, die Entwicklung der enzymatischen Recyclingtechnologie von Carbios zu unterstützen und neue Lösungen zu nutzen, die uns dabei helfen können, die Mode nachhaltig voranzutreiben."

Weitere Informationen:
Carbios Textilrecycling Enzyme
Quelle:

Carbios / Textination

Bild: Marcin Szczepanski/Lead Multimedia Storyteller, University of Michigan College of Engineering
15.02.2023

Der neue Schmetterlingseffekt: Wendepunkt für das Recyceln von Kleidung?

Photonische Fasern nach dem Vorbild von Schmetterlingsflügeln ermöglichen unsichtbare, unauslöschliche Sortieretiketten.

Weniger als 15 % der 92 Millionen Tonnen Kleidung und anderer Textilien, die jährlich weggeworfen werden, werden recycelt - zum Teil, weil sie so schwer zu sortieren sind. Eingewebte Etiketten aus preiswerten photonischen Fasern, die von einem Team unter der Leitung der University of Michigan entwickelt wurden, könnten dies ändern.

„Es ist wie ein Strichcode, der direkt in den Stoff eines Kleidungsstücks eingewebt ist“, sagt Max Shtein, Professor an der University of Michigan für Materialwissenschaft und Technik und korrespondierender Autor der Studie in Advanced Materials Technologies. „Wir können die photonischen Eigenschaften der Fasern so anpassen, dass sie für das bloße Auge sichtbar sind, nur unter Nahinfrarotlicht lesbar sind oder eine beliebige Kombination.“

Photonische Fasern nach dem Vorbild von Schmetterlingsflügeln ermöglichen unsichtbare, unauslöschliche Sortieretiketten.

Weniger als 15 % der 92 Millionen Tonnen Kleidung und anderer Textilien, die jährlich weggeworfen werden, werden recycelt - zum Teil, weil sie so schwer zu sortieren sind. Eingewebte Etiketten aus preiswerten photonischen Fasern, die von einem Team unter der Leitung der University of Michigan entwickelt wurden, könnten dies ändern.

„Es ist wie ein Strichcode, der direkt in den Stoff eines Kleidungsstücks eingewebt ist“, sagt Max Shtein, Professor an der University of Michigan für Materialwissenschaft und Technik und korrespondierender Autor der Studie in Advanced Materials Technologies. „Wir können die photonischen Eigenschaften der Fasern so anpassen, dass sie für das bloße Auge sichtbar sind, nur unter Nahinfrarotlicht lesbar sind oder eine beliebige Kombination.“

Herkömmliche Etiketten überleben oft nicht bis zum Ende der Lebensdauer eines Kleidungsstücks - sie können abgeschnitten oder gewaschen werden, bis sie unleserlich sind, und die Informationen ohne Etiketten können sich abnutzen. Das Recycling könnte effektiver sein, wenn ein Etikett in den Stoff eingewebt würde, unsichtbar, bis es gelesen werden muss. Genau das könnte die neue Faser leisten.

Recycler verwenden bereits Nahinfrarot-Sortiersysteme, die verschiedene Materialien anhand ihrer natürlich vorkommenden optischen Signaturen identifizieren - PET-Kunststoff in einer Wasserflasche beispielsweise sieht unter Nahinfrarotlicht anders aus als der HDPE-Kunststoff in einer Milchverpackung. Auch verschiedene Stoffe haben unterschiedliche optische Signaturen, aber Brian Iezzi, Postdoktorand in Shteins Labor und Hauptautor der Studie, erklärt, dass diese Signaturen für Recycler nur von begrenztem Nutzen sind, da Mischgewebe weit verbreitet sind.

„Für ein wirklich kreislauforientiertes Recyclingsystem ist es wichtig, die genaue Zusammensetzung eines Stoffes zu kennen - ein Baumwoll-Recycler möchte nicht für ein Kleidungsstück zahlen, das zu 70 % aus Polyester besteht“, so Iezzi. „Natürliche optische Signaturen können dieses Maß an Präzision nicht bieten, aber unsere photonischen Fasern können es.“

Das Team hat die Technologie entwickelt, indem es das photonische Fachwissen von Iezzi und Shtein, das normalerweise bei Produkten wie Displays, Solarzellen und optischen Filtern zum Einsatz kommt, mit der fortschrittlichen Textilexpertise des Lincoln Labs des MIT kombiniert hat. Das Labor arbeitete daran, die photonischen Eigenschaften in ein Verfahren einzubringen, das mit einer großtechnischen Produktion kompatibel ist.

Sie lösten diese Aufgabe, indem sie mit einer Preform begannen - einem Kunststoffrohstoff, der aus Dutzenden von sich abwechselnden Schichten besteht. In diesem Fall verwendeten sie Acryl und Polycarbonat. Während jede einzelne Schicht durchsichtig ist, wird das Licht durch die Kombination zweier Materialien gebeugt und gebrochen, so dass optische Effekte entstehen, die wie Farben aussehen können. Es ist das gleiche grundlegende Phänomen, das Schmetterlingsflügeln ihren Schimmer verleiht.

Die Preform wird erhitzt und dann mechanisch - ähnlich wie Toffee - zu einem haardünnen Faserstrang gezogen. Das Herstellungsverfahren unterscheidet sich zwar von der Extrusionstechnik, mit der herkömmliche synthetische Fasern wie Polyester hergestellt werden, doch können damit dieselben kilometerlangen Faserstränge produziert werden. Diese Stränge können dann mit denselben Geräten verarbeitet werden, die bereits von Textilherstellern verwendet werden.

Durch Anpassung der Materialmischung und der Geschwindigkeit, mit der die Vorform gezogen wird, haben die Forscher die Faser so eingestellt, dass sie die gewünschten optischen Eigenschaften aufweist und recycelbar ist. Obwohl die photonische Faser teurer ist als herkömmliche Textilien, schätzen die Forscher, dass sie nur zu einem geringen Anstieg der Kosten für die Endprodukte führen wird.

„Die photonischen Fasern müssen nur einen kleinen Prozentsatz ausmachen - gerade einmal 1 % des fertigen Kleidungsstücks“, so Iezzi. „Das könnte die Kosten des Endprodukts um etwa 25 Cent erhöhen - ähnlich wie die Kosten für die uns allen bekannten Pflegeetiketten.“

Shtein ist überzeugt, dass die photonische Kennzeichnung nicht nur das Recycling erleichtern, sondern auch dazu verwendet werden könnte, Verbrauchern mitzuteilen, wo und wie die Waren hergestellt wurden, und sogar die Echtheit von Markenprodukten zu überprüfen. Dies könnte eine Option sein, Kunden einen wichtigen Mehrwert zu bieten.

„Wenn elektronische Geräte wie Mobiltelefone immer ausgereifter werden, könnten sie möglicherweise in der Lage sein, diese Art von photonischer Kennzeichnung zu lesen“, so Shtein. „Ich könnte mir also eine Zukunft vorstellen, in der eingewebte Etiketten sowohl für Verbraucher als auch für Recycler ein nützliches Merkmal sind.“

Das Team hat Patentschutz beantragt und prüft derzeit Möglichkeiten, die Technologie zu vermarkten.

Die Forschung wurde von der National Science Foundation und dem Under Secretary of Defense for Research and Engineering unterstützt.

Quelle:

Gabe Cherry, College of Engineering, University of Michigan / Textination

Foto Freudenberg Performance Materials
10.01.2023

Fraunhofer: Optimierte Produktion von Vliesstoffmasken

Die Produktion von Infektionsschutzkleidung ist material- und energieintensiv. Fraunhofer-Forschende haben nun eine Technologie entwickelt, die bei der Produktion von Vliesstoffen hilft, Material und Energie zu sparen. Auf Basis einer mathematischen Modellierung steuert ein Digitaler Zwilling wesentliche Prozessparameter der Herstellung. Neben der Verbesserung der Maskenherstellung eignet sich die Lösung ProQuIV auch dazu, die Produktionsparameter für andere Anwendungen der vielseitig einsetzbaren technischen Textilien zu optimieren. Die Hersteller können so flexibel auf Kundenwünsche und Marktveränderungen reagieren.

Die Produktion von Infektionsschutzkleidung ist material- und energieintensiv. Fraunhofer-Forschende haben nun eine Technologie entwickelt, die bei der Produktion von Vliesstoffen hilft, Material und Energie zu sparen. Auf Basis einer mathematischen Modellierung steuert ein Digitaler Zwilling wesentliche Prozessparameter der Herstellung. Neben der Verbesserung der Maskenherstellung eignet sich die Lösung ProQuIV auch dazu, die Produktionsparameter für andere Anwendungen der vielseitig einsetzbaren technischen Textilien zu optimieren. Die Hersteller können so flexibel auf Kundenwünsche und Marktveränderungen reagieren.

Infektionsschutzmasken aus Vlies sind nicht erst seit der Corona-Pandemie millionenfach verbreitet und gelten als simpler Massenartikel. Doch ihre Herstellung stellt hohe Anforderungen an Präzision und Zuverlässigkeit des Produktionsprozesses. Der Vliesstoff in der Maske muss bei der FFP-2-Maske nach DIN mindestens 94 Prozent, bei der FFP-3-Variante sogar 99 Prozent der Aerosole herausfiltern. Gleichzeitig muss die Maske ausreichend Luft durchlassen, damit der Mensch noch gut atmen kann. Viele Hersteller suchen nach Wegen, die Herstellung zu optimieren. Außerdem soll die Produktion flexibler werden, so dass Unternehmen in der Lage sind, die vielseitig verwendbaren Vliesstoffe für ganz unterschiedliche Anwendungen und Branchen zu bearbeiten und zu liefern.

Nun hat das Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM in Kaiserslautern mit ProQuIV eine Lösung vorgestellt, die beides leistet. Das Kürzel ProQuIV steht für »Produktions- und Qualitätsoptimierung von Infektionsschutzkleidung aus Vliesstoffen«. Die Grundidee: Prozessparameter der Herstellung werden bezüglich ihrer Auswirkungen auf die Gleichmäßigkeit des Vliesstoffs charakterisiert und diese wiederum mit Eigenschaften des Endprodukts, beispielsweise einer Schutzmaske, in Verbindung gesetzt. Diese Modellkette verknüpft alle relevanten Parameter mit einer Bildanalyse und bildet einen Digitalen Zwilling der Produktion. Mit dessen Hilfe lässt sich die Vliesstoffherstellung in Echtzeit überwachen, automatisch steuern und somit das Optimierungspotenzial nutzen.

Dr. Ralf Kirsch aus der Abteilung Strömungs- und Materialsimulation und Teamleiter Filtration und Separation erklärt: »Mit ProQuIV benötigen die Hersteller insgesamt weniger Material und sparen Energie. Dabei ist die Qualität des Endprodukts jederzeit gewährleistet.«

Vliesherstellung mit Hitze und Luftströmung
Vliesstoffe für Filtrationsanwendungen werden im sogenannten Meltblown-Prozess hergestellt. Dabei werden Kunststoffe wie Polypropylen geschmolzen, durch Düsen getrieben und kommen in Form von Fäden heraus, den sogenannten Filamenten. Diese werden auf zwei Seiten von Luftströmen erfasst, die sie mit annähernder Schallgeschwindigkeit nach vorne treiben und gleichzeitig verwirbeln, bevor sie auf ein Auffangband fallen. So werden die Fäden nochmals dünner. Die Dicke der Filamente liegt im Mikrometer- oder sogar Sub-Mikrometer-Bereich. Durch Abkühlung und Zugabe von Bindestoffen bildet sich der Vliesstoff. Je besser Temperatur, Luft- und Bandgeschwindigkeit aufeinander abgestimmt sind, desto gleichmäßiger sind am Ende die Fasern verteilt und desto homogener erscheint das Material dann bei der Prüfung im Durchlichtmikroskop. Hier lassen sich hellere und dunklere Stellen ausmachen. Fachleute sprechen von Wolkigkeit. Das Fraunhofer-Team hat eine Methode entwickelt, um einen Wolkigkeits-Index anhand von Bilddaten zu messen. Die hellen Stellen besitzen einen niedrigen Faservolumenanteil, sind also nicht so dicht und weisen eine niedrigere Filtrationsrate auf. Dunklere Stellen haben ein höheres Faservolumen und daher eine höhere Filtrationsrate. Andererseits führt der in diesen Bereichen erhöhte Luftwiderstand dazu, dass sie einen geringeren Anteil der Atemluft filtern. Der größere Anteil strömt durch die offeneren Bereiche, die eine geringere Filterwirkung haben.

Produktionsprozess mit Echtzeit-Steuerung
Die Durchlichtaufnahmen aus dem Mikroskop dienen bei ProQuIV für die Kalibrierung der Modelle vor dem Einsatz. Die Expertinnen und Experten analysieren den Ist-Zustand der Textilprobe und ziehen daraus Rückschlüsse, wie die Anlage optimiert werden kann. So könnten sie beispielsweise die Temperatur erhöhen, die Bandgeschwindigkeit senken oder die Stärke der Luftströme anpassen. »Ein wesentliches Ziel unseres Forschungsprojekts war, zentrale Parameter wie Filtrationsrate, Strömungswiderstand und Wolkigkeit eines Materials miteinander zu verknüpfen und darauf basierend eine Methode zu generieren, die alle Variablen im Produktionsprozess mathematisch modelliert«, sagt Kirsch. Der Digitale Zwilling überwacht und steuert die laufende Produktion in Echtzeit. Kleine Abweichungen der Anlage, wie etwa eine zu hohe Temperatur, werden in Sekunden automatisch korrigiert.

Schnelle und effiziente Herstellung
»Es ist dann nicht notwendig, die Produktion zu unterbrechen, Materialproben zu nehmen und die Maschinen neu einzustellen. Wenn die Modelle kalibriert sind, kann sich der Hersteller darauf verlassen, dass der Vliesstoff, der vom Band läuft, die Spezifikationen und Qualitätsnormen einhält«, erklärt Kirsch. Mit ProQuIV wird die Produktion deutlich effizienter. Es gibt weniger Ausschuss beim Material, und der Energieverbrauch sinkt ebenfalls. Ein weiterer Vorteil besteht darin, dass Hersteller schnell neue Produkte auf Vliesbasis entwickeln können. Dazu müssen lediglich die Zielvorgaben in der Modellierung geändert und die Parameter angepasst werden. So können produzierende Unternehmen flexibel auf Kundenwünsche oder Markttrends reagieren.

Was logisch klingt, ist in der Entwicklung komplex. Die Werte für Filtrationsleistung und Strömungswiderstand steigen nämlich keineswegs linear an und verhalten sich auch nicht proportional zum Faservolumenanteil. Eine doppelt so hohe Filament-Dichte bedeutet also nicht, dass auch Filtrationsleistung und Strömungswiderstand doppelt so hoch sind. Das Verhältnis zwischen den Parametern ist wesentlich komplexer. »Genau deshalb ist die mathematische Modellierung so wichtig. Sie hilft uns, das komplexe Verhältnis zwischen den einzelnen Prozessparametern zu verstehen«, sagt Fraunhofer-ITWM-Forscher Kirsch. Dabei kommt den Forschenden ihre langjährige Expertise bei Simulation und Modellierung zugute.

Weitere Anwendungen sind möglich
Der nächste Schritt besteht für das Fraunhofer-Team darin, den Atemwiderstand der Vliesstoffe für den Menschen bei gleicher Schutzwirkung zu reduzieren. Möglich wird dies durch die elektrische Aufladung der Fasern. Das Prinzip erinnert an die Arbeitsweise eines Staubwedels. Durch die elektrische Ladung zieht das Textilgewebe winzigste Partikel an, die andernfalls durch die Poren schlüpfen könnten. Die Stärke der elektrostatischen Ladung wird hierfür als Parameter in die Modellierung integriert.

Die Fraunhofer-Forschenden beschränken sich bei der Anwendung der Methode keineswegs nur auf Masken und Luftfilter. Ihre Technologie lässt sich ganz allgemein in der Produktion von Vliesstoffen einsetzen, beispielsweise auch bei Stoffen für die Filtration von Flüssigkeiten. Auch die Herstellung von schalldämmenden Vliesstoffen lässt sich mit ProQuIV-Methoden optimieren.

Quelle:

Fraunhofer-Institut für Techno- und Wirtschaftsmathematik ITWM

04.01.2023

Kreislaufwirtschaft: Es könnte alles so einfach sein... oder auch nicht

Interview mit Henning Wehland & Robert Kapferer, Circularity Germany

Ich bin von Natur aus ein sehr neugieriger Typ. Deshalb hatte ich mich in diesem Jahr bei einer bekannten Münsteraner Hotdog-Station als Aushilfe angeboten, um auf die Personalnot in der Gastronomie aufmerksam zu machen. Darüber schrieb ich einen Artikel auf LinkedIn, auf den wiederum Ines Chucholowius reagierte.
Aus ihrem Profil konnte ich entnehmen, dass sie als Unternehmensberaterin im Bereich der Textilindustrie tätig ist. Nicht ganz ernst gemeint, bot sie mir eine Stelle in ihrem Büro an. Auf Knopfdruck sprang mein Kopfkino an: Textilindustrie, spannend! Merchandising, Kontakte in die Industrie, Kooperationen und ich ließ mich auf einen kurzen Chat ein, an dessen Ende wir telefonierten und uns auf ein Gespräch verabredeten.

Interview mit Henning Wehland & Robert Kapferer, Circularity Germany

Ich bin von Natur aus ein sehr neugieriger Typ. Deshalb hatte ich mich in diesem Jahr bei einer bekannten Münsteraner Hotdog-Station als Aushilfe angeboten, um auf die Personalnot in der Gastronomie aufmerksam zu machen. Darüber schrieb ich einen Artikel auf LinkedIn, auf den wiederum Ines Chucholowius reagierte.
Aus ihrem Profil konnte ich entnehmen, dass sie als Unternehmensberaterin im Bereich der Textilindustrie tätig ist. Nicht ganz ernst gemeint, bot sie mir eine Stelle in ihrem Büro an. Auf Knopfdruck sprang mein Kopfkino an: Textilindustrie, spannend! Merchandising, Kontakte in die Industrie, Kooperationen und ich ließ mich auf einen kurzen Chat ein, an dessen Ende wir telefonierten und uns auf ein Gespräch verabredeten.

Sie erzählte mir von ihrer Internetseite TEXTINATION.de. Und schon waren wir drin in einem spannenden, hitzigen Austausch über Wahrnehmung und Wahrheit der Textilbranche. Ohne Weiteres zu verabreden, ließen wir es dabei und ich ging mit einem Batzen neuer Informationen über einen spannenden Bereich nach Hause. Unser Dialog über Social Media ging weiter und schließlich bot Ines mir an, mit Unterstützung von TEXTINATION.de meine „Die-Sendung-mit-der-Maus-Neugierde“ zu stillen. Ich könne einen Blog auf der Seite schreiben, über Menschen, Produkte, Dienstleister, Produzenten, Startups oder Trends, die mich interessieren, um so mein Halbwissen über die Textilindustrie zu ergänzen. Das erste Ergebnis dieser Zusammenarbeit liegt hier vor.

Vorne textiler Abfall rein … hinten neues T-Shirt raus
Während unseres Austauschs und einem langen Brainstorming kitzelten immer wieder bestimmte Begriffe meine Aufmerksamkeit:
Kreislaufwirtschaft, Circular Economy, Recycling, Wertstoffkreisläufe. Auch wenn es viele verschiedene Definitionen gibt und einige sogar zwischen Kreislaufwirtschaft und Circular Economy unterscheiden: ersteres von der Abfallseite gedacht, Abfall, der als Sekundärrohstoff wieder in die Produktion einfließt, Circular Economy, die die Abfälle bereits in der Produktion vermeidet, besteht allgemeiner Konsens eigentlich nur darüber, dass es sich bei der Kreislaufwirtschaft um einen Kreislauf handelt, in dem Abfälle als Quelle für etwas Neues verwendet werden.

Klingt für mich beides nach sinnvollen Ergänzungen für alle Bereiche der produzierenden Güterwirtschaft. Ines stellte mir Robert Kapferer vor: Er betreibt ein Startup namens Circularity Germany in Hamburg. Seine 2021 gegründete Firma, die aus Robert und einem weiteren Partner besteht, ist ein Ableger der in Holland ansässigen Firma Circularity B.V. Deren Gründer Han Hamers, studierter Kinderpsychologe, aus der Textilfärbeindustrie kommend, hatte vor fünf Jahren die Idee für eine Produktionsstätte, die ausnahmslos aus textilen Produktionsabfällen und Alttextilien neues Garn spinnt und es zu T-, Polo- und Sweatshirts verarbeitet.

Ob das funktioniert und wenn ja, wie, das wollte ich herausfinden, und Ines und ich haben uns mit Robert zu einem 90-minütigen Onlinegespräch getroffen.

Robert, von Haus aus Wirtschaftsingenieur, kommt aus dem wenig nachhaltigen Handel mit Arbeitskleidung. Er hat 11 Jahre als Geschäftsführer für die AVECO Material und Service GmbH gearbeitet, wo er für die Arbeitskleidung von mehr als 50.000 Mitarbeitern zuständig war.
Eingangs unseres Gesprächs betont er, dass ein Moment im Januar 2021 sein Leben verändert habe und er sich von da an mit Haut und Haaren dem Thema Kreislaufwirtschaft widmen wollte. Damals lernte er Han Hamers kennen, der ihn dazu inspirierte, Circularity Germany zu gründen. Seine Begeisterung und Leidenschaft für das Thema klingen glaubwürdig, und er beginnt, die Unterschiede zwischen chemischer und mechanischer Recyclingmethode zu beschreiben. Zusammengefasst werden beim mechanischen Verfahren des Schredderns und des anschließenden Spinnens die Fasern verkürzt und insbesondere im Wiederholungsfall deren Eigenschaften für die Weiterverarbeitung eingeschränkt. Der Vorteil liegt vor allem in dem vergleichsweise unkomplizierten, schnellen und kostengünstigeren Verfahren. Bei der chemischen Variante bleibt zwar chemischer Abfall zurück, aber die verarbeiteten Materialien werden wieder so in ihre Grundbausteine zerlegt, dass sie fast alle Eigenschaften wie ein sogenannter jungfräulicher (virgin) Rohstoff haben. Circularity steht für das mechanische Verfahren.

Und dann fällt der Satz, der unsere ganze Aufmerksamkeit bekommt: „Wir haben eine Spinntechnologie so stark weiterentwickelt, dass sie ausschließlich auf abfallbasierten Rohstoffen aufsetzt.“
Dieser Satz fällt fast nicht auf, weil Robert noch – durchaus spannend – darüber berichtet, dass sie eine Produktions- und Fertigungsstätte aufbauen, wo vom Strickgarn bis zum relativ feinen Faden alles gesponnen werden kann, um diesen dann zu Stoff weiterzuverarbeiten. Und hier fragen Ines und ich intensiv nach: Wesentliche Voraussetzungen, die eine industrielle Fertigung benötig, scheinen noch ungelöst, notwendige Prozesse noch in der Planung zu sein. Beispielweise die Frage, ob mit Pre- oder Post-Consumer-Abfällen gearbeitet wird. Pre-Consumer-Abfälle sind Schnittabfälle aus der Produktion von Kleidungsstücken, das entspricht etwa 10% des insgesamt verarbeiteten Materials. Post-Consumer-Abfälle kennen wir als Altkleider.

Solange noch in Indien produziert wird, nutzt Circularity hauptsächlich Pre-Consumer Abfälle. Diese kommen ausschließlich aus den umliegenden Nähfabriken aus der Region Tirupur im Süden von Indien. Beim Einsatz von Alttextilien, die es in Deutschland in großen Mengen gibt (laut einer Studie werden 28-40% aller hergestellten Kleidungsstücke ungetragen weggeworfen), produziert Circularity Mischgarne aus Baumwolle und Polyester. Reine Baumwollgarne bietet das Unternehmen nicht an.

Textilien werden in unterschiedlichem Ausmaß mit Chemikalien behandelt – insbesondere Arbeitsbekleidung kommt ohne sie nicht aus. Die Tatsache, dass auch Han Hamers gerade die textilen Altbestände der niederländischen Armee auffängt, um sie renewed wieder in den Konsumkreislauf einzubringen, beruhigt deshalb nicht. Denn Militärbekleidung muss mit allerlei Zusätzen ausgerüstet werden.

Deshalb frage ich nun nach, wie er bei einem Konsumenten wie mir, mit gesundem Halbwissen über Maskendeals und Greenwashing, die Zweifel ausräumen kann, dass einer gut gemeinten Vision ein dunkles Erwachen folgt. Diese Sorge kann nach dem Gespräch noch nicht ausgeräumt werden.

Wir beschränken uns auf das, was geplant ist: Robert hat den Traum, den globalisierten Prozess der Textilherstellung umzukehren. Er will die Entkopplung von Baumwollanbau und weit entfernter Produktion wie z.B. in Asien mit anschließender Verschiffung fertig konfektionierter Ware nach Europa. Vorhandene Altkleider und/oder Schnittabfälle sollen künftig vor Ort gesammelt, recycelt und lokal zu neuen Textilien verarbeitet werden.

Ich nehme ihm diesen Traum ab. Allerdings bleiben einige meiner Fragen zur Nachhaltigkeit offen – deshalb habe ich meine Zweifel, ob die Idee aktuell leistungs- und konkurrenzfähig ist.
Woran liegt das? Zum einen ist es meiner Meinung nach immer schwierig, notwendige Pionierarbeit zu leisten. Vor allem, wenn mir am Stammtisch die schlauen Kommentare um die Ohren fliegen, dass große Firmen ja schon intensiv an dem Prinzip Kreislaufwirtschaft arbeiten. Doch manchmal bleibt außer dem Begriff Kreislaufwirtschaft und einem unbestimmten Commitment dazu nicht viel übrig.

Circularity schreibt sich auf die Fahne, eine Technologie zu entwickeln, die ausschließlich auf Abfällen aufbaut. Das Gespräch macht deutlich, dass darin auch enthalten ist, dass die Produktion umweltverträglicher ist und Transportwege wegfallen, was die Umwelt weiter entlastet. Wenn alle Vorrausetzungen für die Umsetzung dieses Traums geschaffen sind und ein qualitativ, wie preislich konkurrenzfähiges Produkt auf den Markt gebracht werden kann, dann muss der Konsument entscheiden. Hier hätte man dann das glaubwürdige Argument der Nachhaltigkeit und eines sozial-, wie umwelttechnisch fairen Verfahrens. Um die PR müsste Circularity sich dann keine Sorgen machen.

Man muss der Sache Zeit und vor allem Aufmerksamkeit geben. Aber vielleicht sollte die Industrie sich genau hier und jetzt engagieren und in solche Startups investieren und dafür sorgen, dass Probleme aus dem Weg geräumt werden, denn eines ist uns in diesem Gespräch klargeworden:
Es könnte alles so einfach sein. Kreislaufwirtschaft ist machbar, aber der Weg dorthin noch kostspielig und steinig. Deshalb wünschen wir Robert und seinem Team viel Erfolg und vor allem Durchhaltevermögen. Danke für das Gespräch.

Kurz und knapp: das Profil des Unternehmens im beigefügten Factsheet zum Download.