Textination Newsline

Zurücksetzen
147 Ergebnisse
Atacama Wüste Foto: Fernando Rodrigues, Unsplash
23.07.2024

Reduktion der Umwelt- und Gesundheitsauswirkungen des weltweiten Handels mit Second-Hand-Kleidung

Der Aufschwung von Fast-Fashion, der durch einen raschen Kollektionswechsel gekennzeichnet ist, hat in den letzten vier Jahrzehnten zu einer Versiebenfachung des weltweiten Handels mit gebrauchter Kleidung geführt. Mehr als 80 % aller gekauften Kleidungsstücke weltweit (62 % in der EU) werden als Hausmüll entsorgt, der verbrannt oder deponiert wird, was eine massive Verschwendung von Ressourcen darstellt und schwerwiegende Auswirkungen auf Umwelt und Gesundheit hat.

Ein kürzlich von der UNECE und der Wirtschaftskommission der Vereinten Nationen für Lateinamerika und die Karibik (ECLAC) veröffentlichter Bericht präsentiert eine eingehende Analyse des Handels mit Altkleidern zwischen Europa und Chile und gibt der Industrie sowie den Export- und Importländern politische Empfehlungen, um die Lage zu verbessern.

Der Aufschwung von Fast-Fashion, der durch einen raschen Kollektionswechsel gekennzeichnet ist, hat in den letzten vier Jahrzehnten zu einer Versiebenfachung des weltweiten Handels mit gebrauchter Kleidung geführt. Mehr als 80 % aller gekauften Kleidungsstücke weltweit (62 % in der EU) werden als Hausmüll entsorgt, der verbrannt oder deponiert wird, was eine massive Verschwendung von Ressourcen darstellt und schwerwiegende Auswirkungen auf Umwelt und Gesundheit hat.

Ein kürzlich von der UNECE und der Wirtschaftskommission der Vereinten Nationen für Lateinamerika und die Karibik (ECLAC) veröffentlichter Bericht präsentiert eine eingehende Analyse des Handels mit Altkleidern zwischen Europa und Chile und gibt der Industrie sowie den Export- und Importländern politische Empfehlungen, um die Lage zu verbessern.

Nach Angaben von UN Comtrade waren im Jahr 2021 die Europäische Union (30 %), China (16 %) und die Vereinigten Staaten (15 %) die führenden Exporteure von Altkleidern, während Asien (28 %, vor allem Pakistan), Afrika (19 %, insbesondere Ghana und Kenia) und Lateinamerika (16 %, vor allem Chile und Guatemala) die führenden Importeure waren.

Erleichtert wurde dies durch das Aufkommen kostengünstiger Kunstfasern und die Liberalisierung des Handels, die die Verlagerung der Produktion in Länder mit niedrigen Löhnen ermöglichte. Ein großer Teil der Kleidung wird aus schwer zu trennenden Mischfasern hergestellt, so dass es vor allem in den Industrieländern kaum Möglichkeiten zur wirtschaftlichen Wiederverwendung und zum Recycling gibt.

„Wann ist es normal geworden, Kleidung wegzuwerfen?“, fragt Lily Cole, Klimaaktivistin und Beraterin der UNECE. „Während die Welt, vor allem der globale Norden, unaufhörlich Mode produziert und konsumiert, sind eine Handvoll Länder, vor allem im globalen Süden, zu Friedhöfen für die ungeliebte Kleidung der Welt geworden. Bei meinem Besuch in der Atacama-Wüste wurde ich auf die Textilberge und die sich verändernden kulturellen, wirtschaftlichen und politischen Landschaften aufmerksam, die sie hervorgebracht haben. Das Bewusstsein der Verbraucher ist sehr hilfreich, doch letztlich brauchen wir politische Maßnahmen, um systemische Trends einzudämmen, weshalb dieser Bericht und seine Empfehlungen so wichtig sind.“

Europa: Sortier- und Recyclingkapazitäten hinken hinterher
In Europa werden nur 15-20 % der entsorgten Textilien gesammelt, in der Regel über Container, Haussammlungen und Spenden. Etwa die Hälfte der gesammelten Textilien wird downgecycelt und z. B. als Isoliermaterial, Füllmaterial und industrielle Einwegtücher verwendet. Nur 1 % wird zu höherwertigen Produkten wie neuer Kleidung recycelt, während der Rest in Entwicklungsländer exportiert wird.
 
Von den 55 Prozent der gesammelten Kleidungsstücke, die wiederverwendbar sind, haben nur 5 Prozent einen Wert auf den Secondhand-Märkten in der EU, während 50 Prozent einen Wert auf den Exportmärkten haben.

So hat die Europäische Union ihre Altkleiderexporte in den letzten zwei Jahrzehnten verdreifacht, von 550.000 auf 1,7 Millionen Tonnen. Auf Europa, einschließlich des Vereinigten Königreichs, entfällt inzwischen mehr als ein Drittel der weltweiten Altkleiderexporte, und dieser Anteil könnte weiter steigen, da die Sammelquoten voraussichtlich steigen werden.  

Ein designorientierter Ansatz der Kreislaufwirtschaft für Kleidung steckt noch in den Kinderschuhen. Der EU-Aktionsplan für die Kreislaufwirtschaft (CEAP) wurde 2020 verabschiedet, die EU-Strategie für nachhaltige und zirkuläre Textilien 2022 und die EU-Ökodesign-Verordnung für nachhaltige Produkte 2023. Diese Maßnahmen müssen jedoch noch Früchte in Form von groß angelegten vorgelagerten Lösungen für die Probleme mit Textilabfällen tragen.

„Der Weltmarkt für Altkleider wächst ständig, und mit ihm auch seine negativen Auswirkungen. Die Textilindustrie trägt eine große Verantwortung für die Einführung nachhaltigerer Praktiken, und Exporteure und Importeure müssen entsprechende politische Entscheidungen treffen, um Rückverfolgbarkeit, Kreislaufwirtschaft und Nachhaltigkeit zu fördern.

Die politischen Empfehlungen und Normen von UN/CEFACT werden diesen Übergang unterstützen. Und natürlich müssen wir alle als Verbraucher eine Rolle spielen, um nachhaltige Entscheidungen zu treffen“, betonte UNECE Executive Secretary Tatiana Molcean.
 
Der Fall Chile: Berge von Altkleidern, die man vom Mond aus erkennen kann  
Die meisten lateinamerikanischen Länder (darunter Argentinien, Brasilien, Kolumbien, Mexiko und Peru) haben Einfuhrverbote für Kleidung erlassen, um ihre nationale Textil- und Modeindustrie zu schützen und die Bedrohung durch Bekleidungsdeponien zu vermeiden.

Im Gegensatz dazu erhebt Chile keine Zölle und wendet keine mengenmäßigen Einfuhrbeschränkungen an, sondern verlangt lediglich, dass die Sendungen desinfiziert werden (durch Begasung). Chile ist damit zu einem der zehn größten Importeure der Welt und zum Spitzenreiter in Lateinamerika aufgestiegen und hat im Jahr 2021 126.000 Tonnen Textilien eingeführt. 40 % davon gelangen über den nördlichen Hafen von Iquique in das Land, wo sie manuell, hauptsächlich von Frauen, sortiert und in erste, zweite und dritte Qualität unterteilt werden.

75 % aller importierten Altkleider wurden als nicht wiederverwendbar eingestuft. 30.000 Tonnen davon bedecken heute 30 Hektar der Atacama-Wüste, verursachen Umweltverschmutzung und gefährden die Gesundheit der dortigen Bevölkerung. Gleichzeitig bietet der Handel mit Altkleidern auch Arbeitsplätze und formelle und informelle Einkommen für die einheimische und die zugewanderte Bevölkerung in den etablierten Geschäften und auf den Freiluftmärkten im ganzen Land, was bei der Neufestlegung der öffentlichen Politik berücksichtigt werden muss.

„Um die ökologischen und sozialen Probleme des Handels mit gebrauchten Textilien anzugehen, müssen die EU und Chile zusammenarbeiten, um solide rechtliche Rahmenbedingungen zu schaffen. Eine Partnerschaft zwischen der Europäischen Union und Chile könnte wegweisend sein für innovative Ansätze zur Regulierung und Verringerung der Auswirkungen des Handels mit gebrauchten Textilien, u. a. durch die Festlegung globaler Standards für den Handel mit gebrauchten Textilien, wobei der Schwerpunkt auf Nachhaltigkeit und sozialer Verantwortung liegt“. betont der Generalsekretär der UNECLAC, José Manuel Salazar-Xirinachs.

Vielfältige Empfehlungen
Der Bericht enthält eine Reihe von Empfehlungen an die Textilindustrie, Exporteure und Importeure.   

An die Ausfuhrländer

  • Die Kreislaufwirtschaft in den Mittelpunkt des Bekleidungsdesigns stellen, mit verbindlichen Vorgaben für die Faserzusammensetzung, die Qualität, Haltbarkeit, Reparierbarkeit und Recyclingfähigkeit verbessern  
  • Einführung eines Systems der erweiterten Herstellerverantwortung (EPR), das die Hersteller für die von ihnen hergestellten Produkte verantwortlich macht  
  • Entwicklung weiterer Sortier- und Recyclinganlagen durch finanzielle Anreize  
  • Entwicklung von EU-Mindestkriterien für die Ausfuhr von Altkleidern durch die Verwendung von digitalen Produktpässen (DPP)  
  • Durchführung von Sensibilisierungskampagnen, um die Verbraucher zu ermutigen, ihre Kleidung bewusster auszuwählen

Für die Einfuhrländer – das Beispiel Chile

  • Verbesserung der Zollverfahren und Verwaltungsmaßnahmen im Hafen von Iquique, um die digitale Rückverfolgbarkeit der Altkleider- und Textilströme auf der Grundlage des UN/CEFACT-Rückverfolgbarkeitsstandards zu gewährleisten   
  • Einführung einer Strategie für die Kreislaufwirtschaft im Textilbereich   
  • Bildung öffentlich-privater Allianzen für Recyclingprojekte durch Steuererweiterungsprogramme und Fonds zur Förderung von Unternehmertum, Innovation und Schaffung von Arbeitsplätzen für benachteiligte Gruppen, insbesondere in der Region Tarapacá  
  • Verbesserung des Rechtsrahmens für die Abfallwirtschaft   
  • Umsetzung eines regionalen Plans zur Kontrolle fester Abfälle, der Inspektionen von Mülldeponien, Clean Points und Deponien vorsieht, um die Durchsetzungskapazität der regionalen Gesundheitsbehörden zu erhöhen  
  • Beschleunigung der Verabschiedung des chilenischen Gesetzentwurfs über die Umweltqualität von Böden.

Der Bericht empfiehlt außerdem, internationale Handelsabkommen wie das Interims-Handelsabkommen zwischen der EU und Chile aus dem Jahr 2023, das ein Kapitel über Handel und nachhaltige Entwicklung enthält, zu ändern, um die bilaterale Zusammenarbeit zu intensivieren, und es als Vorlage für weitere bilaterale Handelsabkommen zwischen der EU und anderen Ländern zu nutzen.   

Zum Download der Executive Summary

Weitere Informationen:
Secondhand Textilabfällen Chile Atacama UN
Quelle:

United Nations Economic Commission for Europe
(Wirtschaftskommission der Vereinten Nationen für Europa)
Übersetzung: Textination

Ki KI generiert, Pixabay
09.07.2024

Wie die Modeindustrie KI einsetzt

Nahezu jede Branche steht mit der Einführung von künstlicher Intelligenz (KI) vor einem beispiellosen Wandel. Vereinfacht ausgedrückt bezieht sich KI auf eine Technologie, oft in Form von Computerprogrammen, die die Fähigkeit des menschlichen Gehirns, Aufgaben auszuführen und sich ständig zu verbessern, nachahmen soll.

Eine generative KI, die von Deep-Learning-Algorithmen angetrieben wird, hat einen erheblichen Einfluss auf Modemarken. Diese fortschrittliche Technologie ist in der Lage, Muster in Daten zu erkennen und völlig neue Beispiele für Texte, Bilder und sogar Videos zu generieren (Bain, 2023).

Aufgrund ihrer Fähigkeit, neue Inhalte zu erstellen, integriert die Modeindustrie ihre Technologie auf die eine oder andere Weise in fast alle ihre Prozesse, von Design und Produktbeschreibungen bis hin zu Produktempfehlungen und 3D-Design (Mcdowell, 2023a).

Tabelle 1 enthält einige Beispiele aus der Praxis, wie KI in der Branche bereits eingesetzt wird.

Nahezu jede Branche steht mit der Einführung von künstlicher Intelligenz (KI) vor einem beispiellosen Wandel. Vereinfacht ausgedrückt bezieht sich KI auf eine Technologie, oft in Form von Computerprogrammen, die die Fähigkeit des menschlichen Gehirns, Aufgaben auszuführen und sich ständig zu verbessern, nachahmen soll.

Eine generative KI, die von Deep-Learning-Algorithmen angetrieben wird, hat einen erheblichen Einfluss auf Modemarken. Diese fortschrittliche Technologie ist in der Lage, Muster in Daten zu erkennen und völlig neue Beispiele für Texte, Bilder und sogar Videos zu generieren (Bain, 2023).

Aufgrund ihrer Fähigkeit, neue Inhalte zu erstellen, integriert die Modeindustrie ihre Technologie auf die eine oder andere Weise in fast alle ihre Prozesse, von Design und Produktbeschreibungen bis hin zu Produktempfehlungen und 3D-Design (Mcdowell, 2023a).

Tabelle 1 enthält einige Beispiele aus der Praxis, wie KI in der Branche bereits eingesetzt wird.

Kategorie Wie es funktioniert Beispiel
Modedesign
  • Umwandlung von Textbeschreibungen oder hochgeladenen Bildern in Illustrationen
  • passt diese Entwürfe vor der Produktion an
  • Cala’s tool mit DALL-E Technology
  • Tommy Hilfigers KI-gestützte Design-Zusammenarbeit mit IBM und dem Fashion Institute of Technology
  • Projekt Muze von Google und Zalando
Visuelle Inhalte und Werbebilder
  • Generierung von Werbe- und Marketinginhalten anhand vorgegebener Parameter oder Eingaben
  • Text, Bilder und Videos sind gängige Outputs
  • KI-Visualisierungen von Stitch Fix
  • Casablancas Spring/Summer 2023 Kampagne
  • Revolves KI-gesteuerte Werbekampagne
Werbetexte
  • erzeugt Texte auf der Grundlage von Schlüsselwörtern und Anweisungen des Benutzers
  • optimiert den Prozess der Erstellung von Produktbeschreibungen, Marketing-E-Mails und anderen schriftlichen Inhalten
  • Adore Me KI Optimierung
  • Produktbeschreibungen zur Suchmaschinenoptimierung (SEO)
Einkaufsassistenten
  • nutzt die Verarbeitung natürlicher Sprache zur Interaktion mit Kunden als Chatbots
  • bietet Produktempfehlungen und Informationen an   
  • die experimentelle KNXT Plattform von Kering
  • Luxus-Personal-Shopper unterstützt durch ChatGPT

 

KI im Design
Generative KI hat das Zeug dazu, das Modedesign zu revolutionieren. Designer können sich KI-Bildgeneratoren wie DALL-E, Midjourney oder Stable Diffusion zunutze machen, um ihre kreativen Visionen zum Leben zu erwecken.

Cala, ein Startup-Unternehmen für die Lieferkette, war die erste Gruppe, die KI für den Designprozess von Modemarken nutzbar machte. Im Januar 2023 stellte es ein Tool vor, mit dem Nutzer ihre Designideen in Textform beschreiben oder Bilder hochladen können, die dann von der KI in Illustrationen oder realistische Bilder umgewandelt werden. Die Nutzer können diese Entwürfe dann fein abstimmen, bevor sie in physische Produkte umgesetzt werden. Dieses Tool stellt eine bahnbrechende Anwendung der DALL-E API in der Modebranche dar und ermöglicht die Erstellung von Kleidung, Accessoires, Schuhen und Lifestyle-Produkten auf der Grundlage von Beschreibungen oder Bildern (OpenAI, 2022).

Auch Bekleidungsmarken machen sich diese Technologie zunutze. Tommy Hilfiger hat mit IBM und dem Fashion Institute of Technology an einem Projekt namens Reimagine Retail zusammengearbeitet. Ziel dieser Initiative war es, Einzelhändlern einen Wettbewerbsvorteil bei der schnellen Vorhersage aufkommender Designtrends zu verschaffen, indem eine Vielzahl von Daten - von Bildern über Stoffe bis hin zu Farben - analysiert wurde (Saunders, 2019).

Die generative KI ermöglicht es Designern, neue Konzepte und Ideen schnell zu entdecken, indem sie verschiedene Designvariationen erzeugt, allerdings stößt die Technologie auch an ihre Grenzen. Da KI nicht alle Konzepte in fertige Produkte verwandeln kann, sind häufig manuelle Bearbeitungen und Anpassungen erforderlich. Bedenken hinsichtlich des geistigen Eigentums können ebenfalls aufkommen, da einige KI-generierte Entwürfe auf urheberrechtlich geschützten Arbeiten beruhen könnten. Rechtliche Fragen in diesem Bereich sind noch in der Entwicklung und veranlassen Marken dazu, ihre Rechtsteams einzubeziehen und Richtlinien aufzustellen (Bain, 2023).

KI in der Werbetextgestaltung: Effizienz und Personalisierung
Generative KI-Tools dienen Marketing-Teams als wertvolle Assistenten, die den Schreibprozess für Produkt¬beschreibungen und Marketing-E-Mails optimieren. Werbetexter geben Schlüsselwörter und Anweisungen ein, und die KI generiert Texte, die nach Bedarf bearbeitet werden können, sodass Marken schriftliche Inhalte effizienter erstellen können.

Die Lingeriemarke Adore Me hat KI-Tools eingesetzt, um Produktbeschreibungen für die Suchmaschinenoptimierung (SEO) zu verbessern, damit sie mit höherer Wahrscheinlichkeit in den Suchmaschinenergebnissen ganz oben erscheinen (Mcdowell, 2023a). Adore Me und andere Marken, die KI auf diese Weise einsetzen, berichten von mehreren Dutzend Stunden Zeitersparnis.

Die Nutzung des KI-Potenzials zur Personalisierung von Inhalten auf einer Eins-zu-eins-Ebene erfordert von Unternehmen strukturierte Erstanbieterdaten und robuste Datenschutzmaßnahmen (Bain, 2023). Im Moment ist noch menschliche Aufsicht erforderlich, und Web-Teams werden wahrscheinlich Anpassungen an etablierten Arbeitsabläufen vornehmen müssen, um KI zu integrieren.

KI-gestützte visuelle Inhalte für das Modemarketing
Generative KI wird auch zur Erstellung visueller Marketinginhalte eingesetzt.
Stitch Fix nutzt KI, um personalisierte Bekleidungsempfehlungen für Kunden zu erstellen, und untersucht, wie es DALL-E 2 nutzen könnte, um Kleidungsstücke zu visualisieren, die auf individuelle Vorlieben für Farbe, Stoff und Stil zugeschnitten sind (Davenport & Mittal, 2022).

Auch das französische Modehaus Casablanca Paris setzt KI ein. Für seine Frühjahr/Sommer-Kampagne 2023 arbeitete es mit dem britischen Fotografen und KI-Künstler Luke Nugent zusammen. Die KI-generierten Bilder kombinierten traumhafte Kulissen mit modernster Technologie.

Modemarken können von kürzeren Produktionszeiten, Kosteneinsparungen und größerer kreativer Freiheit profitieren, wenn sie KI-gesteuerte Innovationen nutzen, um visuelle Assets für Marketing- und Werbekampagnen zu entwickeln. Allerdings kann es schwierig sein, sicherzustellen, dass KI-generierte Bilder die Produkte korrekt wiedergeben, da die Ausgabe von den ursprünglichen Produktfotos abweichen kann (Bain, 2023; Mcdowell, 2023a).

KI Chatbots: Das Einkaufserlebnis verändern
Viele Einzelhändler setzen generative KI auch als Online-Einkaufsassistenten ein, die allgemein als Chatbots bekannt sind. Diese Chatbots nutzen die Verarbeitung natürlicher Sprache, um Kundenfragen zu verstehen und zu beantworten oder sogar personalisierte Produktempfehlungen zu geben (Zeng et al., 2023). Auf der experimentellen KNXT-Plattform von Kering beispielsweise bietet ein von ChatGPT betriebener Personal Shopper für Luxusgüter den Nutzern maßgeschneiderte Empfehlungen und Einblicke auf der Grundlage bestimmter Kontexte (Mcdowell, 2023b).

Trotz dieser Vorteile ist die Chatbot-Technologie noch ausbaufähig. So kann es sein, dass sie aufgrund von Bestandsbeschränkungen nicht die richtigen Produkte vorschlägt oder eher generische Stylingvorschläge macht. Diese Chatbots befinden sich jedoch noch in der Entwicklung, und die Unternehmen sind zuversichtlich, dass sich die Sprachfähigkeiten ihrer KI-Tools weiter verbessern werden, wenn sie mehr Daten und Nutzerfeedback sammeln.

Im Zuge der Entwicklung der Modebranche haben generative KI-gesteuerte Chatbots das Potenzial, die Art und Weise, wie Kunden mit Marken interagieren, zu revolutionieren, indem sie zunehmend personalisierte und effiziente Dienstleistungen anbieten.

Ein neuer Industriestandard
Unternehmen in der Mode-, Textil- und Bekleidungsbranche können nicht länger ambivalent oder willentlich ignorant gegenüber KI sein. Sie müssen recherchieren und nachdenken, um eine klare organisatorische Haltung zu KI zu entwickeln, oder sie riskieren, auf der Strecke zu bleiben.

Organisatorische Strategien für KI müssen über die Betrachtung der zukünftigen Entwicklung von KI hinausgehen. Führungskräfte müssen klare Ziele für die Integration der Technologie in ihre Arbeitsabläufe aufstellen.

Der Kundenstamm jeder Marke wird für eine erfolgreiche KI-Strategie von zentraler Bedeutung sein. Das bedeutet, dass man sowohl ihre Einstellung zu KI als auch ihre Vorlieben und Erwartungen verstehen muss.

Quelle:

Wilson College of Textiles, Yoo-Won Olivia Min und B. Ellie Jin

Der Ekelfaktor verhindert nachhaltige Waschgewohnheiten Foto: Chalmers University of Technology | Mia Halleröd Palmgren
17.06.2024

Der Ekelfaktor verhindert nachhaltige Waschgewohnheiten

Die meisten Menschen neigen heute zu umweltfreundlichen Lebensentscheidungen, aber nicht auf Kosten der Sauberkeit. Wenn es um unsere Waschgewohnheiten geht, überwiegt oft die Angst, als schmutzig wahrgenommen zu werden, gegenüber dem Wunsch, umweltfreundlich zu handeln. Und je mehr wir dazu neigen, uns zu ekeln, desto mehr waschen wir unsere Kleidung. Dies zeigt eine neue Studie der Chalmers University of Technology in Schweden, in der die treibenden Kräfte hinter unserem Waschverhalten untersucht werden und die neue Möglichkeiten aufzeigt, wie die Umweltbelastung durch den Menschen verringert werden kann.

Die meisten Menschen neigen heute zu umweltfreundlichen Lebensentscheidungen, aber nicht auf Kosten der Sauberkeit. Wenn es um unsere Waschgewohnheiten geht, überwiegt oft die Angst, als schmutzig wahrgenommen zu werden, gegenüber dem Wunsch, umweltfreundlich zu handeln. Und je mehr wir dazu neigen, uns zu ekeln, desto mehr waschen wir unsere Kleidung. Dies zeigt eine neue Studie der Chalmers University of Technology in Schweden, in der die treibenden Kräfte hinter unserem Waschverhalten untersucht werden und die neue Möglichkeiten aufzeigt, wie die Umweltbelastung durch den Menschen verringert werden kann.

Wir waschen unsere Kleidung heute häufiger als je zuvor, und die beim Waschen entstehenden Emissionen waren noch nie so hoch. Einige der Gründe dafür sind, dass wir jedes Kleidungsstück weniger oft benutzen, bevor wir es in die Wäschetonne werfen, dass der technische Fortschritt das Waschen einfacher und billiger gemacht hat und der Zugang zu Waschmaschinen verbessert wurde. Von den weltweiten Emissionen von Mikroplastik stammen 16-35 Prozent aus dem Waschen von Kunstfasern. Darüber hinaus tragen Waschmittel zur Nährstoffanreicherung in Ökosystemen bei, und auch der Energie- und Wasserverbrauch beim Waschen wirkt sich auf die Umwelt aus.

„Auch wenn die Maschinen energieeffizienter geworden sind, hat die Häufigkeit des Waschens die größten Auswirkungen auf das Klima - und wir haben noch nie so viel gewaschen wie heute. Gleichzeitig scheinen die meisten von uns kein Interesse daran zu haben, ihr Waschverhalten zu ändern, um die Auswirkungen auf das Klima zu verringern“, sagt Erik Klint, Doktorand in der Abteilung für Umweltsystemanalyse bei Chalmers.

Er hat eine kürzlich veröffentlichte Forschungsstudie geleitet, die einen neuen, unerforschten Ansatz für unsere Waschgewohnheiten wählt: die Untersuchung der zugrundeliegenden Prozesse für übertriebenes Waschen aus einer psychologischen Perspektive. Die Studie konzentriert sich auf zwei treibende Kräfte, die das Waschverhalten beeinflussen: (1) Umweltidentität - wie stark wir uns mit der Gruppe der umweltbewussten Menschen identifizieren, und (2) wie stark wir zu Ekelgefühlen neigen. Zwei eindeutig gegensätzliche Triebkräfte, wie die Studie zeigt.

„Wir Menschen sind ständig mit verschiedenen Zielkonflikten konfrontiert. In diesem Fall gibt es einen Konflikt zwischen dem Wunsch, seine Wäsche zu reduzieren, um die Umwelt zu schonen, und der Angst, als ekliger Mensch mit unreiner Kleidung wahrgenommen zu werden. Ekel ist eine starke psychologische und soziale Triebkraft. Die Studie zeigt, dass wir umso mehr waschen, je höher unser Ekelgefühl ist, unabhängig davon, ob wir unsere Umweltidentität hoch einschätzen. Das Gefühl des Ekels siegt einfach über das Umweltbewusstsein“, sagt er.

Ekel ist eine evolutionär bedingte Emotion
Die Tatsache, dass Ekel unser Verhalten so stark steuert, hat mehrere Gründe. Erik Klint beschreibt Ekel als eine evolutionär bedingte Emotion, die im Wesentlichen als Schutz vor Infektionen oder gefährlichen Substanzen fungiert. Darüber hinaus ist das Ekelgefühl eng mit dem Schamgefühl verwandt und kann daher auch in sozialen Bereichen zum Tragen kommen.

„Wir Menschen wollen nichts tun, was unsere Position in der Gruppe in Frage stellen könnte - zum Beispiel mit einer Person in Verbindung gebracht werden, die sich nicht um ihre Hygiene kümmert“, sagt er.

Das hat Auswirkungen auf unser Waschverhalten.

„Hier wird eine evolutionär verwurzelte Triebkraft einem moralischen Standpunkt gegenübergestellt, und in den meisten Fällen reagiert man wahrscheinlich auf diese evolutionär bedingte Emotion“, so Klint.

„Waschkampagnen setzen an der falschen Stelle an“
Laut Erik Klint macht die Studie deutlich, dass die heutigen Kampagnen und Botschaften, die die Menschen zu umweltfreundlichem Verhalten bewegen sollen, den falschen Ansatzpunkt haben, da sie oft die psychologischen Aspekte hinter dem Verhalten der Menschen nicht berücksichtigen.

„Es spielt keine Rolle, wie vernünftig und forschungsbasiert die Argumente sind, wenn sie den unterschiedlichen Triebkräften der Menschen zuwiderlaufen, wie dem Wunsch, sich einer Gruppe zugehörig zu fühlen, dann werden sie nicht funktionieren“, sagt er.

Die Fragen „Wie bringen wir die Menschen dazu, weniger zu waschen?“ und „Wie können wir dies auf umweltfreundlichere Weise tun?“ sind völlig unangebracht, meint Erik Klint, der darauf hinweist, dass der Schwerpunkt vielmehr auf dem indirekten Verhalten liegen sollte, das zum eigentlichen Waschen führt. Es mag zwar subtil sein, aber er schlägt vor, dass die bessere Frage lautet: „Wie können wir die Menschen dazu bringen, weniger Wäsche zu erzeugen, insbesondere Wäsche, die in einer Waschmaschine gereinigt werden muss?“

„Man wäscht, weil der Wäschekorb voll, der Lieblingspulli schmutzig oder in der Gemeinschaftswäscherei ein Zeitfenster frei ist. Daher muss der Schwerpunkt auf dem liegen, was passiert, bevor wir die Waschmaschine in Gang setzen, d. h. auf den zugrundeliegenden Verhaltensweisen, die einen Waschdrang auslösen. Zum Beispiel, wie viel Wäsche wir erzeugen, wie wir die Wäsche in der Maschine sortieren oder wann wir denken, dass die Waschmaschine voll ist“, sagt er.

Einer der wichtigsten Vorschläge der Studie besteht darin, Menschen zu ermutigen, Kleidung häufiger zu benutzen, bevor sie im Wäschekorb landet.

„Es kann darum gehen, übermäßiges Waschen zu bekämpfen, mit Botschaften wie 'die meisten Leute benutzen ihr T-Shirt mehr als einmal'. Aber auch die Nutzung der Waschmaschine durch andere Maßnahmen zu ersetzen, wie z. B. das Lüften der Kleidungsstücke, das Abbürsten von Schmutz oder das Entfernen einzelner Flecken per Hand. Eine Möglichkeit wäre es, die wirtschaftlichen Argumente hervorzuheben, denn die Kleidung nutzt sich ab, wenn sie durch die Maschine läuft“, sagt er.

In der Absicht, die Umweltauswirkungen des Waschens zu verringern
Gregory Peters, Professor für quantitative Nachhaltigkeitsbewertung an der Chalmers University und Mitverfasser der Studie, betont, dass diese eine einzigartige Kombination aus Verhaltens- und Naturwissenschaften darstellt.

„Diese Studie ist Teil einer umfassenderen Arbeit, die über den üblichen Forschungsrahmen für Ökobilanzen - Lebenszyklusanalysen - hinausgeht und es ermöglicht, ein ganzheitlicheres Verständnis dafür zu entwickeln, wie wir waschen und was unser Waschverhalten bestimmt. Das unmittelbare Ergebnis, das wir uns erhoffen, ist ein Beitrag zur Verringerung der Umweltbelastung durch das Waschen, aber es ist möglich, dass die Forschung auf andere Bereiche verallgemeinert werden kann, in denen Verhalten und Technologie zusammenspielen", sagt er.

Mehr über Waschgewohnheiten und Klimafolgen

  • Die Menge der von europäischen Verbrauchern gewaschenen Wäsche hat erheblich zugenommen. Im Jahr 2015 wusch der Durchschnittseuropäer vier Maschinenladungen pro Woche. Das sind zwar 0,7 Wäscheladungen weniger als im Jahr 2000, aber immer noch ein starker Anstieg, da die Waschkapazität der Maschinen im gleichen Zeitraum stark zugenommen hat. Im Jahr 2015 verfügten 64 Prozent aller Waschmaschinen über ein Fassungsvermögen von mehr als sechs Kilogramm, verglichen mit 2 Prozent im Jahr 2004. Gleichzeitig geben die meisten Verbraucher an, dass sie das Fassungsvermögen der Maschine voll ausnutzen.
  • Im Jahr 2010 hatten schätzungsweise 30 Prozent der Haushalte weltweit Zugang zu einer Waschmaschine. Im Jahr 2024, so eine Studie über die Hälfte der Weltbevölkerung, die in 18 Ländern in verschiedenen Teilen der Welt lebt, haben 80 Prozent der Haushalte Zugang zu einer Waschmaschine. Quellen: Statista (2024), Pakula und Stamminger (2010)
  • 16-35 Prozent der weltweiten Emissionen von Mikroplastik stammen aus dem Waschen von Kunstfasern. Das Waschen synthetischer Produkte führt dazu, dass sich jedes Jahr mehr als eine halbe Million Tonnen Mikroplastik auf dem Meeresboden ansammeln. Eine einzige Wäsche von Polyesterkleidung kann 700.000 Mikroplastikfasern freisetzen, die dann in die Nahrungskette gelangen können.
Quelle:

Chalmers | Mia Halleröd Palmgren

Foto: Damir Omerovic, Unsplash
12.06.2024

Nutzpflanzen zur Verringerung der Umweltbelastung durch Synthetik

Von Risotto bis zu Soßen sind Pilze seit langem ein Grundnahrungsmittel in der Küche. Jetzt zeigen Pilze das Potenzial, mehr als nur Geschmack zu bieten - als nachhaltiges, biegsames Material für die Modeindustrie.

Forscher nutzen die netzartige Struktur des Wurzelsystems des Pilzes - das Myzel - als Alternative zu synthetischen Fasern für Kleidung und andere Produkte wie Autositze.

„Es ist definitiv ein Umdenken im Herstellungsprozess“, sagt Annalisa Moro, EU-Projektleiterin beim italienischen Unternehmen Mogu, das aus dem Myzel Produkte für die Inneneinrichtung herstellt. „Man arbeitet wirklich mit der Natur zusammen, um etwas zu züchten, anstatt es zu erschaffen, und das ist irgendwie futuristisch.“

Mogu, 50 Kilometer nordwestlich von Mailand gelegen, leitet eine Forschungsinitiative zur Entwicklung von Vliesstoffen aus Mycelfasern für die Textilindustrie.

Von Risotto bis zu Soßen sind Pilze seit langem ein Grundnahrungsmittel in der Küche. Jetzt zeigen Pilze das Potenzial, mehr als nur Geschmack zu bieten - als nachhaltiges, biegsames Material für die Modeindustrie.

Forscher nutzen die netzartige Struktur des Wurzelsystems des Pilzes - das Myzel - als Alternative zu synthetischen Fasern für Kleidung und andere Produkte wie Autositze.

„Es ist definitiv ein Umdenken im Herstellungsprozess“, sagt Annalisa Moro, EU-Projektleiterin beim italienischen Unternehmen Mogu, das aus dem Myzel Produkte für die Inneneinrichtung herstellt. „Man arbeitet wirklich mit der Natur zusammen, um etwas zu züchten, anstatt es zu erschaffen, und das ist irgendwie futuristisch.“

Mogu, 50 Kilometer nordwestlich von Mailand gelegen, leitet eine Forschungsinitiative zur Entwicklung von Vliesstoffen aus Mycelfasern für die Textilindustrie.

Das Projekt mit dem Namen MY-FI hat eine Laufzeit von vier Jahren bis Oktober 2024 und bringt Unternehmen, Forschungsinstitute, Industrieorganisationen und akademische Einrichtungen aus ganz Europa zusammen..

MY-FI zeigt, wie die EU auf eine nachhaltigere Produktion und einen nachhaltigeren Verbrauch in der Textil- und Bekleidungsindustrie drängt, die in Europa rund 1,3 Millionen Menschen beschäftigt und einen Jahresumsatz von 167 Milliarden Euro erzielt.

Die EU bezieht den Großteil ihrer Textilien aus dem Ausland, produziert sie aber in Ländern wie Frankreich, Deutschland, Italien und Spanien. Auf Italien entfallen mehr als 40 % der EU-Bekleidungsproduktion.

Filigran und langlebig
Das empfindliche Material wird durch die Zugabe von biobasierten Chemikalien, die die Fasern miteinander verbinden, stärker und haltbarer gemacht.

Seine ökologische Herkunft steht im Gegensatz zu den meisten synthetischen Fasern wie Nylon und Polyester, die aus fossilen Brennstoffen wie Kohle und Öl gewonnen werden.

Das bedeutet, dass die Produktion von Kunstfasern zu den Treibhausgasemissionen beiträgt, die den Klimawandel beschleunigen. Darüber hinaus setzen diese Materialien beim Waschen Mikroplastik frei, das häufig in die Umwelt gelangt und Flüsse, Meere und Ozeane verschmutzt.

Das MY-FI-Myzel benötigt nur sehr wenig Erde, Wasser oder Chemikalien und ist damit sogar umweltfreundlicher als Naturfasern wie Baumwolle.

Kleiderprobe
Für die Modeindustrie sind die weichen, wasserabweisenden Eigenschaften des Myzels ebenso attraktiv wie seine Umweltfreundlichkeit.

Fragen Sie einfach Mariagrazia Sanua, Nachhaltigkeits- und Zertifizierungsmanagerin bei Dyloan Bond Factory, einem italienischen Modedesigner und -hersteller, der zu MY-FI gehört.

Das Unternehmen hat das auf Myzel basierende Material in schwarzer und brauner Farbe und mit gewachstem Finish verwendet, um einen Prototyp eines Kleides, eine Kombination aus Oberteil und Midirock, Taschen und kleine Lederaccessoires herzustellen.

Laserschneiden und Siebdruck wurden eingesetzt, um das Materialverhalten zu bewerten. Die Herausforderung bestand darin, sich auf die Stoffbahnen - Quadrate aus dem Myzelmaterial anstelle von herkömmlichen Textilrollen wie Baumwolle, Leinen und Polyester - sowie auf Eigenschaften wie Zugfestigkeit und Nahtdichtigkeit einzustellen.

„Wir mussten das Paradigma komplett ändern und Prozesse und Kleidungsstücke auf der Grundlage des Materials entwerfen“, so Sanua.

Das Unternehmen hofft, den Verbrauchern mit dem Myzelmaterial eine Reihe von Produkten anbieten zu können, die eine Alternative zu Tierleder darstellen.

Leder-ungebunden
Volkswagen, der zweitgrößte Automobilhersteller der Welt, setzt auf Mycel-Technologien, um seinen ökologischen Fußabdruck zu verkleinern und von Leder für die Innenausstattung von Fahrzeugen wegzukommen.

Die Kunden wünschen sich zunehmend tierfreie Materialien für den Innenraum, von Sitzbezügen und Türverkleidungen bis hin zu Armaturenbrettern und Lenkrädern. Ein nachhaltiger Ersatz für Leder ist daher eine spannende Perspektive, so Dr. Martina Gottschling, Wissenschaftlerin bei Volkswagen Group Innovation.

„Ein schnell wachsendes biologisches Material, das ohne Tierversuche und mit geringem Aufwand hergestellt werden kann und zudem keine erdölbasierten Ressourcen benötigt, ist ein Wendepunkt bei den Innenraummaterialien“, sagte sie.

Das Myzelmaterial ist außerdem leichter als Leder, ein weiterer Pluspunkt für die Reduzierung des CO2-Fußabdrucks von VW.

Die Beteiligung des Unternehmens an MY-FI treibt die Projektforscher an der Universität Utrecht in den Niederlanden und am I-TECH Lyon in Frankreich dazu an, die Haltbarkeit des Myzelgewebes zu verbessern. Um vom Prototyp zur Produktionslinie zu gelangen, muss das Gewebe die von VW festgelegten Qualitätsanforderungen erfüllen, damit das Material ein Fahrzeugleben lang hält.

Gottschling ist überzeugt, dass diese Herausforderung im kommenden Jahrzehnt bewältigt werden kann. „Wir sehen das Material schon jetzt als eines der hochwertigen Materialien für Innenraumanwendungen, die in Zukunft möglich sein werden“, sagte sie.

Wenn das Leben einem Tomaten schenkt
Pilze sind nicht das einzige Lebensmittel, das das Potenzial hat, eine Revolution in Sachen nachhaltiges Garn auszulösen. Laut Dr. Ozgur Atalay und Dr. Alper Gurarslan von der Technischen Universität Istanbul in der Türkei haben auch Tomatenstängel ein verborgenes Talent.

Als sie sahen, dass Tomatenstängel nach der Ernte auf den Feldern verwelkten, begannen Atalay und Gurarslan zu untersuchen, ob sich die Stängel in nachhaltige Fasern verwandeln ließen.

Tests bewiesen, dass sich die landwirtschaftlichen Abfälle tatsächlich in Garn verwandeln lassen. Doch Atalay und Gurarslan waren entschlossen, noch einen Schritt weiter zu gehen. Sie wollten aus Tomatenstängeln eine Garnart für Kleidungsstücke herstellen, die Herzschlag, Atemfrequenz und Gelenkbewegungen überwachen.

Die beiden Forscher leiten ein Projekt zur Herstellung dieser Art von elektrisch leitfähiger Kleidung aus - erstmals - nachhaltigen Materialien.

Das Projekt mit dem Namen SMARTWASTE hat eine Laufzeit von vier Jahren bis Ende 2026 und umfasst auch Hochschul- und Forschungseinrichtungen aus Deutschland, Italien, den Niederlanden und Polen.

„Das Schöne an diesem Projekt ist, dass wir mit Abfällen beginnen“, so Atalay. „Wir nehmen landwirtschaftliche Abfälle und stellen nicht nur normale Textilien her, sondern etwas viel Wertvolleres“.

Kostenvoranschläge werden zwar erst im weiteren Verlauf des Projekts erstellt, wenn die Designpartner an der Entwicklung konkreter Produkte arbeiten, aber er wies darauf hin, dass intelligente Kleidung um einiges teurer sein wird als herkömmliche.

Ein intelligentes Textilhemd könnte laut Atalay bis zu 1.000 € kosten.

Das spezielle Material, die begrenzten Produktionsmengen und die Forschungs- und Entwicklungsarbeiten, die erforderlich sind, um tragbare Technologien zu entwickeln, die haltbar, waschbar und bequem sind, tragen alle zu diesem Preis bei.

Fortschritte in der Technologie sollten letztendlich zu niedrigeren Produktionskosten und Verbraucherpreisen führen.

Die Saat der Erfolgspappel
Die türkische Landschaft war auch die Inspiration für einen zweiten Teil des Projekts. Die in der Türkei reichlich vorhandenen Pappelbäume und insbesondere ihre weißen, flauschigen, baumwollähnlichen Samen veranlassten Gurarslan zu untersuchen, ob sie eine nachhaltige Textilquelle darstellen könnten.

Ihre Fasern wurden zwar als zu kurz für die Herstellung von Garnen abgetan, aber die Samen haben drei besondere Eigenschaften, die für die Textilindustrie interessant sind: eine hohle, röhrenartige Struktur, die Wärme speichern kann, um thermische Eigenschaften zu erzielen, eine antibakterielle Eigenschaft und Wasserbeständigkeit.

Das Netzwerk von SMARTWASTE-Experten hat die Samen mit recyceltem Polyester gemischt, um einen Vliesstoff herzustellen, den das Team zu Textilprodukten mit verbesserten thermischen Eigenschaften verarbeiten will.

Die Forscher hoffen, dass dies erst der Anfang einer weitreichenden Umgestaltung von Textilien ist.

„Unser Ziel ist es, die nächste Generation von Forschern und Innovatoren im Bereich nachhaltiger Textilien auszubilden“, so Atalay.

(c) Saralon
04.06.2024

InkTech: Gedruckte Elektronik verändert den Automobilinnenraum

Die Automobilindustrie ist ein wichtiger Wachstumsmotor für gedruckte Elektronik. Die Einsatzbereiche decken ein breites Spektrum ab, sei es im Antriebssystem (z. B. Batteriemanagement und thermische Schnittstellen) oder im Innenraum (z. B. HMI -Technologien, Innenraumheizungen, Displays, intelligente 3D-Schnittstellen mit integrierten Licht- und Dekorationselementen) und sogar im Außenbereich von Fahrzeugen (z. B. integrierte Antennen, Photovoltaik, Leuchten und Displays).

Experten gehen davon aus, dass sich die Automobilbranche bei der Weiterentwicklung des Innenraumdesigns und der Ausstattungsmerkmale verstärkt um Differenzierung bemüht. Motive wie Kosteneffizienz, Größen- und Gewichtsreduzierung, geringerer Energiebedarf, Designfreiheit und verbesserte Ästhetik fördern den Fortschritt der gedruckten Elektronik.

Die Automobilindustrie ist ein wichtiger Wachstumsmotor für gedruckte Elektronik. Die Einsatzbereiche decken ein breites Spektrum ab, sei es im Antriebssystem (z. B. Batteriemanagement und thermische Schnittstellen) oder im Innenraum (z. B. HMI -Technologien, Innenraumheizungen, Displays, intelligente 3D-Schnittstellen mit integrierten Licht- und Dekorationselementen) und sogar im Außenbereich von Fahrzeugen (z. B. integrierte Antennen, Photovoltaik, Leuchten und Displays).

Experten gehen davon aus, dass sich die Automobilbranche bei der Weiterentwicklung des Innenraumdesigns und der Ausstattungsmerkmale verstärkt um Differenzierung bemüht. Motive wie Kosteneffizienz, Größen- und Gewichtsreduzierung, geringerer Energiebedarf, Designfreiheit und verbesserte Ästhetik fördern den Fortschritt der gedruckten Elektronik.

HMI- und Innenraumsensorik-Lösungen
Ein Hauptmarkt für gedruckte und hybride Elektronik in der Automobilindustrie ist die Entwicklung von Mensch-Maschine-Schnittstellen (HMI) mit nahtlosem Design. Dehnbare Elektronik- und Sensorlösungen werden in Kunststoff-, Textil- oder Lederteile integriert und verwandeln diese in intelligente Oberflächen, die das Nutzererlebnis verbessern. Leichte, flexible und dehnbare HMI-Lösungen mit anpassbaren Formfaktoren ersetzen mechanische Tasten und komplexe Verkabelungssysteme.

Flexible gedruckte Sensoren ermöglichen die Entwicklung von funktionellen HMI-Systemen mit beliebigem Sensor-Layout, die dazu dienen, Bewegungen, Klima, Lautstärke, Beleuchtung und ähnliche Funktionen mit den Fingerspitzen des Benutzers zu steuern und einzustellen. Die Kombination von Funktionalität und Ästhetik wird durch die Integration von berührungsempfindlicher Technologie mit Beleuchtung und anderen dekorativen Elementen erreicht.

Das Portfolio von Saral Inks© für diese Anwendungen reicht von dehnbaren, leitfähigen Tinten über gedruckte Sensortinten bis hin zu leitfähigen Klebstofftinten für die Befestigung von LEDs und SMDs und die Verbindung mehrerer gedruckter Elektronikschichten miteinander; alle sind leicht im Siebdruckverfahren bedruckbar.

Eingebettete Sensorlösungen in Lenkrädern, Sitzen und Sicherheitsgurten sind einige Beispiele für etablierte Verfahren zur Verbesserung der Sicherheit und des Komforts im Fahrzeuginnenraum. Fortschrittliche flexible gedruckte druck- und kapazitivempfindliche Elektronik erleichtert die Erkennung und Klassifizierung von Fahrzeuginsassen.

Heizung und Wärmemanagement
Gedruckte Temperatursensoren und Heizelemente für den Innenraumkomfort, EV-Motorantriebe oder das Wärmemanagement von Batterien sind weitere trendige Anwendungsgebiete der gedruckten Elektronik im Automobilkontext.

Gedruckte Batteriesicherheitssensoren sorgen für eine frühzeitige Erkennung kritischer Situationen in den Batteriepaketen auf unkomplizierte und sehr effiziente Weise. Diese flexible und dünne gedruckte Elektronik auf Polymerfolien mit Heiz- oder Sensorfunktion ermöglicht eine einfache Handhabung und Integration zwischen einzelnen Zellen innerhalb des Batteriemoduls. Sie sorgen für eine gleichmäßige Verteilung der Ladung, verhindern eine Überladung und verbessern die Lebensdauer der Batterie.

Zu den Saral Inks©-Lösungen für ein umfassendes Wärmemanagement gehören funktionale Tinten für gedruckte Sensor- und Heizelemente, die sich für die Batterieüberwachung, Sitz- und Bodenheizung sowie Entfroster-Systeme eignen.

Intelligente Oberflächen mit 3D-Geometrie
Film-Insert-Molding und In-Mold Electronics (IME) gelten als bahnbrechende Technologien für die Integration gedruckter Elektronik in Automobilteile, wobei sich IME als vielversprechende Lösung für die Herstellung intelligenter 3D-Oberflächen erweist, bei denen leitfähige Druckfarben die zentrale Rolle spielen.

Das Herzstück von IME ist das Thermoformverfahren für gedruckte Elektronik, das mit hohem Druck und hohen Temperaturen arbeitet.

Die leitfähige Tinte Saral StretchSilver 800 zeigt eine bemerkenswerte Widerstandsfähigkeit, wenn sie auf Polycarbonat (PC) gedruckt wird und 3D-Tiefziehverfahren durchläuft, ohne dabei an Funktionalität einzubüßen.

Quelle:

Saralon

Auf die Haut gedruckte Sensoren aus „elektronischer Spinnenseide“ (c) Huang Lab, Cambridge
27.05.2024

Auf die Haut gedruckte Sensoren aus „elektronischer Spinnenseide“

Forscher haben eine Methode entwickelt, um anpassungsfähige und umweltfreundliche Sensoren herzustellen, die direkt und unsichtbar auf eine Vielzahl von biologischen Oberflächen gedruckt werden können, sei es ein Finger oder ein Blütenblatt.

Die von Forschern der Universität Cambridge entwickelte Methode ist von der Spinnenseide inspiriert, die sich an eine Reihe von Oberflächen anpassen und an ihnen haften kann. In diese „Spinnenseide“ ist auch Bioelektronik integriert, so dass das „Netz“ mit verschiedenen sensorischen Fähigkeiten ausgestattet werden kann.

Forscher haben eine Methode entwickelt, um anpassungsfähige und umweltfreundliche Sensoren herzustellen, die direkt und unsichtbar auf eine Vielzahl von biologischen Oberflächen gedruckt werden können, sei es ein Finger oder ein Blütenblatt.

Die von Forschern der Universität Cambridge entwickelte Methode ist von der Spinnenseide inspiriert, die sich an eine Reihe von Oberflächen anpassen und an ihnen haften kann. In diese „Spinnenseide“ ist auch Bioelektronik integriert, so dass das „Netz“ mit verschiedenen sensorischen Fähigkeiten ausgestattet werden kann.

Die Fasern, die mindestens 50-mal kleiner als ein menschliches Haar sind, sind so leicht, dass die Forscher sie direkt auf den flauschigen Samenkopf eines Löwenzahns drucken konnten, ohne dass dessen Struktur zusammenfiel. Auf die menschliche Haut gedruckt, passen sich die Fasersensoren der Haut an und legen die Schweißporen frei, so dass der Träger ihre Anwesenheit nicht bemerkt. Tests der auf einen menschlichen Finger gedruckten Fasern legen nahe, dass sie zur kontinuierlichen Überwachung von Körperfunktionen eingesetzt werden könnten.

Diese abfall- und emissionsarme Methode im Bereich Augmented Living könnte in verschiedenen Bereichen eingesetzt werden, von der Gesundheitsfürsorge und der virtuellen Realität bis hin zu elektronischen Textilien und der Umweltüberwachung. Die Ergebnisse werden in der Zeitschrift „Nature Electronics“ veröffentlicht.

Obwohl menschliche Haut außerordentlich sensible ist, könnte ihre Erweiterung durch elektronische Sensoren die Art und Weise, wie wir mit der Welt um uns herum interagieren, grundlegend verändern. Direkt auf die Haut gedruckte Sensoren könnten so zur kontinuierlichen Gesundheitsüberwachung oder zum Verständnis von Hautempfindungen eingesetzt werden oder den Realitätssinn bei Spielen oder Virtual-Reality-Anwendungen verbessern.

Zwar sind tragbare Technologien mit eingebetteten Sensoren, wie z. B. Smartwatches, weit verbreitet, doch können diese Geräte unbequem und lästig sein und die Eigenwahrnehmung der Haut beeinträchtigen.

Im letzten Jahr haben einige derselben Wissenschaftler nachgewiesen, dass die in intelligenten Textilien verwendeten Fasern, wenn sie mit dehnbaren Materialien beschichtet werden, mit herkömmlichen Webverfahren kompatibel sein können. Mit dieser Technik stellten sie ein gewebtes 46-Zoll- Demo-Display her.

„Wenn man etwas auf einer biologischen Oberfläche wie der Haut oder einem Blatt genau erfassen will, ist die Schnittstelle zwischen dem Gerät und der Oberfläche von entscheidender Bedeutung“, sagte Professor Yan Yan Shery Huang vom Cambridge Department of Engineering, die die Forschung leitete. „Wir wollen außerdem eine Bioelektronik, die für den Anwender völlig unauffällig ist, so dass sie in keiner Weise seine Interaktion mit der Welt beeinträchtigt, und wir wollen, dass sie nachhaltig ist und wenig Abfall verursacht.“

Es gibt verschiedene Methoden zur Herstellung von tragbaren Sensoren, die jedoch alle ihre Nachteile haben. Flexible Elektronik wird zum Beispiel normalerweise auf Kunststofffolien gedruckt, die weder Gase noch Feuchtigkeit durchlassen - es wäre also so, als würde man seine Haut in Frischhaltefolie einwickeln. Andere Forscher haben vor kurzem flexible Elektronik entwickelt, die gasdurchlässig ist, wie künstliche Haut, aber diese beeinträchtigt immer noch das normale Empfinden und ist auf energie- und abfallintensive Herstellungsverfahren angewiesen.

Der 3D-Druck ist ein weiterer potenzieller Weg für die Bioelektronik, denn er ist weniger abfallintensiv als andere Produktionsmethoden, führt aber zu massiveren Geräten, die das normale Verhalten beeinträchtigen können. Das Spinnen elektronischer Fasern resultiert in Komponenten, die für den Benutzer nicht wahrnehmbar sind, die gleichzeitig nicht sehr empfindlich oder kompliziert sind oder sich nur schwer auf das betreffende Objekt übertragen lassen.

Nun hat das von Cambridge geführte Team eine neue Methode zur Herstellung von Hochleistungs-Bioelektronik entwickelt, die an eine Vielzahl von biologischen Oberflächen angepasst werden kann, von der Fingerspitze bis zum flauschigen Samenkopf einer Pusteblume, indem sie direkt auf die Oberfläche gedruckt wird. Inspiriert wurde die Technik teilweise von Spinnen, die mit minimalem Materialeinsatz ausgeklügelte und starke, an ihre Umgebung angepasste Netzstrukturen schaffen.

Die Forscher sponnen ihre bioelektronische „Spinnenseide“ aus PEDOT:PSS (einem biokompatiblen leitenden Polymer), Hyaluronsäure und Polyethylenoxid. Die Hochleistungsfasern wurden aus einer wässrigen Lösung bei Raumtemperatur hergestellt, was es den Forschern ermöglichte, die „Spinnbarkeit“ der Fasern zu kontrollieren. Die Forscher entwickelten dann ein Orbitalspinnverfahren, mit dem sich die Fasern an lebende Oberflächen anpassen können, sogar bis hin zu Mikrostrukturen wie Fingerabdrücken. Tests der bioelektronischen Fasern auf Oberflächen wie menschlichen Fingern und Löwenzahnsamen zeigten, dass sie hochwertige Sensorleistungen erbringen und für den Träger nicht wahrnehmbar sind.

„Unser Spinnverfahren ermöglicht es den bioelektronischen Fasern, der Anatomie verschiedener Formen zu folgen, sowohl im Mikro- als auch im Makromaßstab, ohne dass eine Bilderkennung erforderlich ist“, so Andy Wang, der Erstautor der Arbeit. „Das eröffnet einen völlig neuen Blickwinkel auf die Herstellung nachhaltiger Elektronik und Sensoren. Es ist ein deutlich einfacherer Weg, großflächige Sensoren herzustellen.“

Die meisten hochauflösenden Sensoren werden in einem industriellen Reinraum hergestellt und erfordern den Einsatz giftiger Chemikalien in einem mehrstufigen und energieaufwändigen Herstellungsprozess. Die in Cambridge entwickelten Sensoren können überall hergestellt werden und verbrauchen nur einen Bruchteil der Energie, die herkömmliche Sensoren benötigen.

Die reparaturfähigen bioelektronischen Fasern, die reparabel sind, können, wenn sie das Ende ihrer Lebensdauer erreicht haben, einfach abgewaschen werden und erzeugen weniger als ein einziges Milligramm Abfall: zum Vergleich: Bei einer einzigen Ladung Wäsche fallen zwischen 600 und 1500 Milligramm Faserabfälle an.

„Mit unserer einfachen Fertigungstechnik können wir die Sensoren fast überall anbringen und bei Bedarf reparieren, ohne eine große Druckmaschine oder eine zentrale Fertigungsanlage zu benötigen“, so Huang. „Diese Sensoren können auf Abruf hergestellt werden, genau dort, wo sie gebraucht werden, und erzeugen nur minimale Abfälle und Emissionen.“

Die Forschung wurde zum Teil vom Europäischen Forschungsrat, von Wellcome, der Royal Society und dem Biotechnology and Biological Sciences Research Council (BBSRC), einem Teil des UK Research and Innovation (UKRI), unterstützt.

Quelle:

Sarah Collins, University of Cambridge

A Passion for Paisley Foto The Great Tapestry of Scotland
21.05.2024

Edinburgh webt Paisley-Schals 40 Jahre vor Paisley

Eine neue Ausstellung beweist, dass in Edinburgh um 1700 bereits mehr als 40 Jahre früher als in der Stadt Renfrewshire, nach der sie benannt wurden, Paisley-Schals gewebt wurden.

Die Ausstellung, die von der Heriot-Watt University und The Great Tapestry of Scotland in Galashiels veranstaltet wird, belegt, dass die Weber in Edinburgh die ersten in Großbritannien waren, die Repliken der aus Indien mitgebrachten Kaschmirschals herstellten; erste Aufzeichnungen stammen aus dem Jahr 1767.

Erst 1808 begann die Weberei in Paisley mit der Herstellung dieser Schals und gab dem Kleidungsstück später seinen ikonischen Namen.

Die Ausstellung mit dem Titel "A Passion for Paisley" (Eine Leidenschaft für Paisley) zeigt eine Auswahl von mehr als 100 Schals und Schalfragmenten, die Teil der Textilsammlung der Universität sind, die auf dem Scottish Borders Campus in Galashiels untergebracht ist.

Eine neue Ausstellung beweist, dass in Edinburgh um 1700 bereits mehr als 40 Jahre früher als in der Stadt Renfrewshire, nach der sie benannt wurden, Paisley-Schals gewebt wurden.

Die Ausstellung, die von der Heriot-Watt University und The Great Tapestry of Scotland in Galashiels veranstaltet wird, belegt, dass die Weber in Edinburgh die ersten in Großbritannien waren, die Repliken der aus Indien mitgebrachten Kaschmirschals herstellten; erste Aufzeichnungen stammen aus dem Jahr 1767.

Erst 1808 begann die Weberei in Paisley mit der Herstellung dieser Schals und gab dem Kleidungsstück später seinen ikonischen Namen.

Die Ausstellung mit dem Titel "A Passion for Paisley" (Eine Leidenschaft für Paisley) zeigt eine Auswahl von mehr als 100 Schals und Schalfragmenten, die Teil der Textilsammlung der Universität sind, die auf dem Scottish Borders Campus in Galashiels untergebracht ist.

Helen Taylor, Archivarin an der Heriot-Watt University, sagte: „Das Paisley-Muster ist ein sehr ikonisches Motiv geblieben und hat sich auch im Wandel der Modetrends behauptet. Unsere Sammlung in den Borders ist sehr gut und wurde eigentlich für Lehre und Forschung entwickelt. Man kann die Webtechnik nicht mehr reproduzieren, weil es die Webstühle nicht mehr gibt. Aber wenn Sie auf der Suche nach Design-Inspiration sind, sind Paisley-Schals ein großartiges Beispiel für den ost-westlichen Einfluss“.

Paisley-Schals sind reichhaltig gemustert und weisen oft ein charakteristisches Tränenmotiv im persischen Stil auf. Dieses ist vom babylonischen Baum des Lebens inspiriert, einem magischen Baum aus der mesopotamischen Mythologie, der im Zentrum des Paradieses wuchs.

Andere Motive sind Blumen- und Rankenmuster, ein gestreiftes Zebramuster und ein längliches Motiv, das als „Tempeltür“ bekannt ist. Rot war eine wiederkehrende Farbe in Paisley-Schals, neben Blau, Grün, Gelb und anderen Farben, die alle aus natürlichen Pflanzenfarbstoffen hergestellt wurden. Paisley-Schals waren im 18. und 19. Jahrhundert sehr beliebt. Kaiserin Josephine, die erste Frau Napoleons, besaß etwa 400 dieser Wollschals.

„Als das britische Weltreich sich vergrößerte, brachten die Menschen Kaschmirschals als Geschenke mit“, erklärt Frau Taylor. „Sie waren sehr teuer und wurden eigentlich aus Kaschmir gewebt. Weber in Edinburgh begannen mit der Herstellung von Reproduktionen von Schals, und die erste Aufzeichnung, dass ein Kaschmir-Schal gewebt wurde, stammt aus dem Jahr 1767 aus Edinburgh.

Um 1700 gab es in Edinburgh bereits eine Damastindustrie - bei der die Motive in den Stoff eingewebt und nicht aufgedruckt wurden - und diese Webereien begannen mit der Herstellung der Reproduktionen von Kaschmirschals. Doch als sich die Mode weiterentwickelte und die Schals größer wurden, begannen die Edinburgher Weber damit, ihre Produktion nach Paisley auszulagern, wo sich die Webkunst und die Technologie weiterentwickelten und zu den besten der Welt gehörten.

„In Edinburgh war die Schalweberei eher ein Heimgewerbe, bei dem kleine Webstühle in der Altstadt verwendet und die Schals in Abschnitten gewebt und zusammengenäht wurden“, sagte Frau Taylor. „In Paisley begann man, Jacquard-Webstühle zu verwenden, die mit Lochkarten arbeiteten und es ermöglichten, komplexere Muster auf einfachere Weise zu weben.“

Die meisten Paisley-Schals von Heriot-Watt wurden von einer Porzellan- und Keramik-Kuratorin namens Janet Paterson gesammelt, die in den 1940er und 50er Jahren Paisley-Schals sammelte. Die Sammlung wurde der Universität von ihrem Sohn Alan zusammen mit seiner Tartan-Sammlung geschenkt.

Die Ausstellung „A Passion for Paisley” läuft vom 26. März bis zum 12. Juli 2024 in The Great Tapestry of Scotland, 14-20 High St, Galashiels TD1 1SD. Der Eintritt kostet £5.

Die Heriot-Watt School of Textiles and Design geht auf das Jahr 1883 zurück, als Kurse in Weben, Färben und Chemie eingeführt wurden, um Arbeitskräfte für die lokale Textilindustrie auszubilden.
Die Schule ist ein Exzellenzzentrum für Design, zu dessen Ehrenabsolventen die britische Modeikone Dame Vivienne Westwood gehört. Sie hat ihren Sitz auf dem Scottish Borders Campus von Heriot-Watt, der um eine historische Mühle in Galashiels herum gebaut wurde, im Herzen der schottischen Luxus-Textilindustrie.

Das Besucherzentrum The Great Tapestry of Scotland wurde eigens für den „Großen Wandteppich von Schottland“ gebaut, eines der weltweit größten Gemeinschaftskunstprojekte. Der Wandteppich wurde von einem Team von 1.000 Näherinnen aus ganz Schottland handgenäht und zeigt auf 160 Tafeln 420 Millionen Jahre Geschichte, Erbe, Innovationen und Kultur Schottlands.

Quelle:

Heriot-Watt University

Foto: 政徳 吉田, Pixabay
03.05.2024

Fahrzeugunterböden aus Naturfasern und Recycling-Kunststoffen

Gemeinsam mit Industriepartnern haben Forschende des Fraunhofer WKI einen Fahrzeugunterboden aus Naturfasern und recycelten Kunststoffen für den Automobilbau entwickelt. Der Fokus des Fraunhofer Instituts lag auf der Materialentwicklung für den Spritzguss sowie auf der Hydrophobierung von Flachs- und Hanffasern für naturfaserverstärkte Mischfaservliese.

Das Bauteil erfüllt die hohen technischen Anforderungen im Unterbodenbereich und könnte zukünftig herkömmliche Leichtbau-Fahrzeugunterböden ersetzen. Mit dieser Entwicklung wird die Klima- und Umweltbilanz über den gesamten Produktlebenszyklus optimiert.

Gemeinsam mit Industriepartnern haben Forschende des Fraunhofer WKI einen Fahrzeugunterboden aus Naturfasern und recycelten Kunststoffen für den Automobilbau entwickelt. Der Fokus des Fraunhofer Instituts lag auf der Materialentwicklung für den Spritzguss sowie auf der Hydrophobierung von Flachs- und Hanffasern für naturfaserverstärkte Mischfaservliese.

Das Bauteil erfüllt die hohen technischen Anforderungen im Unterbodenbereich und könnte zukünftig herkömmliche Leichtbau-Fahrzeugunterböden ersetzen. Mit dieser Entwicklung wird die Klima- und Umweltbilanz über den gesamten Produktlebenszyklus optimiert.

Den Projektpartnern Fraunhofer WKI, Thüringisches Institut für Textil- und Kunststofftechnik (TITK), Röchling Automotive SE & Co. KG, BBP Kunststoffwerk Marbach Baier GmbH und Audi AG ist es gelungen, ein nachhaltiges Gesamtkonzept für Fahrzeugunterböden zu entwickeln. Damit haben die Forschenden eine anspruchsvolle Bauteilgruppe mit hohem Kunststoffanteil für den Einsatz von Naturmaterialien erschlossen. Bisher wurden naturfaserverstärkte Kunststoffe im Automobil hauptsächlich für Verkleidungsteile ohne nennenswerte mechanische Aufgaben eingesetzt. Strukturelle Bauteile wie Fahrzeugunterböden sind enormen Belastungen ausgesetzt und stellen hohe Anforderungen an das Biege- und Crashverhalten des Materials. In modernen Leichtbau-Fahrzeugkonzepten kommen daher Hochleistungswerkstoffe aus glasfaserverstärkten Kunststoffen zum Einsatz.

Das Projektteam konnte die Glasfasern durch Naturmaterialien wie Flachs-, Hanf- und Cellulosefasern ersetzen und Unterbodenbauteile mit einem Naturfaseranteil von bis zu 45 Prozent realisieren. Im Bereich der Polymere wurde vollständig auf Polypropylen-Neuware verzichtet und ausschließlich Rezyklate eingesetzt. Alle mit dieser Materialumstellung verbundenen Herausforderungen, sowohl die geringeren mechanischen Ausgangseigenschaften der Werkstoffe als auch die zeitlich eingeschränkten Verarbeitungsfenster, konnten durch geschickte Compoundkombinationen gelöst werden.

Am Fraunhofer WKI wurden Materialien für den Spritzguss entwickelt. »Naturfaser-Spritz-guss-Compounds sind bisher vor allem durch Festigkeits- und Steifigkeitssteigerungen gegenüber unverstärkten Polymeren bekannt. Bei der Entwicklung im Fahrzeugunterboden ist es darüber hinaus gelungen, durch eine innovative Kombination von ausgewählten Post-Consumer-Rezyklaten (PCR) als Matrix und Naturfasern unterschiedlicher Reinheitsgrade die hohen Anforderungen an die Kaltschlagzähigkeit zu erfüllen, ohne dabei die geforderte Steifigkeit und Festigkeit einzubüßen«, erklärt Moritz Micke-Camuz, Projektleiter am Fraunhofer WKI.

Im Rahmen der Entwicklung wurden am TITK und bei Röchling erstmals Faserverbundbauteile aus naturfaserverstärktem Mischfaservlies (Lightweight-Reinforced-Thermoplastic, LWRT) realisiert. Das entwickelte Produkt erfüllt nicht nur die mechanischen Anforderungen. Es widersteht auch den Herausforderungen, die durch die feuchte Einsatzumgebung hervorgerufen werden. Zur Hydrophobierung von Flachs- und Hanffasern für LWRT-Bauteile wurde am Fraunhofer WKI ein kontinuierliches Furfurylierungsverfahren entwickelt. Durch die Furfurylierung kann die Feuchtigkeitsaufnahme um bis zu 35 Prozent reduziert werden, ohne die Biegefestigkeit der späteren Bauteile zu beeinträchtigen. Das furfurylierte Fasermaterial lässt sich zudem problemlos auf einer Vliesanlage weiterverarbeiten

Die gefertigten Prototypenbauteile wurden anschließend sowohl auf Komponentenebene als auch im Fahrversuch intensiv getestet. Dazu dienten unter anderem die Fahrzeuge der neuen »Premium Platform Electric« (PPE) des VW-Konzerns. Im Rahmen der Serienerprobung konnten bereits Langzeiterfahrungen gesammelt werden. Das erfreuliche Ergebnis dieser Tests: Die neu entwickelten Bioverbundwerkstoffe erfüllen alle Standardanforderungen an Unterbodenbauteile und erweisen sich als serientauglich. Weder der Einsatz von Naturfasern noch von (Post-Consumer-)Rezyklaten führt zu einer signifikanten Beeinträchtigung der Eigenschaften.

Ein wesentlicher Vorteil der Innovation liegt auch in der deutlich verbesserten CO2-Bilanz: Im Vergleich zur Serie können 10,5 Kilogramm Neuware (PP/Glasfaser) durch 4,2 Kilogramm Naturfasern und 6,3 Kilogramm Post-Consumer-Rezyklat ersetzt werden. Dadurch konnten die CO2-Emissionen während der Produktion, der Nutzung und des Produktlebens um bis zu 40 Prozent reduziert werden.

Im Rahmen des Entwicklungsprojektes wurde ein innovatives, ganzheitliches Gesamtkonzept für Fahrzeugunterböden inklusive Recycling mit kaskadischer Wiederverwendung der Komponenten entwickelt. Aus technischer Sicht können Fahrzeugunterböden zukünftig vollständig aus dem neuen, hochleistungsfähigen Bio-Leichtbau-Material hergestellt werden.

Das Projekt wurde durch das Bundesministerium für Wirtschaft und Klimaschutz (BMWK) über den Projektträger TÜV Rheinland gefördert.

 

Quelle:

Fraunhofer-Institut für Holzforschung, Wilhelm-Klauditz-Institut WKI

Berufsbekleidung: Nordische Zusammenarbeit bei Kreislaufinnovationen Foto: Sven, pixabay
16.04.2024

Berufsbekleidung: Nordische Zusammenarbeit bei Kreislaufwirtschaft

Die University of Borås, die Aalborg University Business School und das Circular Innovation Lab haben jüngst das Projekt „North-South Circular Value Chains Within Textiles“ gestartet - ein Forschungsprojekt mit einem starken Fokus auf Nachhaltigkeit, das darauf abzielt, Textilmarken in den nordischen Ländern mit innovativen Produzenten im Süden zusammenzubringen.
 
Schwerpunktbereiche sind Kreislauf-Wertschöpfungsketten (CVCs), Kreislaufwirtschaft und ressourceneffiziente Textilwirtschaft, Berufsbekleidung und technische Kleidung, Sektoren wie Bau, Energie, Elektronik und IT, Kunststoffe, Textilien, Einzelhandel und Metalle.

Die University of Borås, die Aalborg University Business School und das Circular Innovation Lab haben jüngst das Projekt „North-South Circular Value Chains Within Textiles“ gestartet - ein Forschungsprojekt mit einem starken Fokus auf Nachhaltigkeit, das darauf abzielt, Textilmarken in den nordischen Ländern mit innovativen Produzenten im Süden zusammenzubringen.
 
Schwerpunktbereiche sind Kreislauf-Wertschöpfungsketten (CVCs), Kreislaufwirtschaft und ressourceneffiziente Textilwirtschaft, Berufsbekleidung und technische Kleidung, Sektoren wie Bau, Energie, Elektronik und IT, Kunststoffe, Textilien, Einzelhandel und Metalle.

Ermöglicht durch einen Zuschuss aus dem Interreg-ÖKS-Programm besteht der erste Schritt darin, einen spezifischen wirtschaftlichen, rechtlichen und technologischen Rahmen zu schaffen, der es skandinavischen Berufsbekleidungsunternehmen ermöglicht, eine enge Zusammenarbeit bei Kreislauflösungen in der gesamten textilen Wertschöpfungskette einzugehen und ihre globalen Wertschöpfungsketten auf die bevorstehenden EU-Verordnungen zur Kreislaufwirtschaft vorzubereiten und anzupassen.

Kürzlich trafen sich die Partner des Konsortiums zu einem ersten Treffen an der Swedish School of Textiles, um den Projektrahmen zu erörtern. Dabei handelt es sich um eine Machbarkeitsstudie, die in ein mehrjähriges Projekt münden soll, an dem Berufsbekleidungsunternehmen in der Region Öresund-Kattegat-Skagerrak (ÖKS) einschließlich ihrer Lieferketten in Asien beteiligt sind.
Kim Hjerrild, Leiterin für strategische Partnerschaften bei der dänischen Denkfabrik Circular Innovation Lab in Kopenhagen, erklärte: „Ziel ist es, Berufsbekleidungshersteller in Dänemark, Schweden und Norwegen dabei zu unterstützen, durch kreislauforientierte Produktdesign-, Produktions- und Dienstleistungskonzepte nachhaltiger zu werden. Wir freuen uns, dass die Swedish School of Textiles das Projekt leitet, da sie eine lange Tradition in der Zusammenarbeit mit Textilunternehmen hat.“
 
Komplexe Branche
Die Entscheidung, sich speziell auf Berufsbekleidung zu konzentrieren, rührt daher, dass es sich um einen komplexen Bereich der Textilindustrie handelt, der strenge Normen, Zertifizierungen, Sicherheitsaspekte und spezifische Funktionen je nach Anwendungsbereich erfordert, z. B. in speziellen Hochleistungsumgebungen, im Gesundheitswesen und im Gastgewerbe. „Um ihre Betriebe zukunftssicher zu machen, müssen Unternehmen ressourceneffizienter und zirkulärer werden, indem sie haltbare und langlebige Arbeitskleidung herstellen, die repariert und wiederverwendet werden kann. Außerdem müssen sie ihren CO2-Fußabdruck pro Produkt reduzieren, den Einsatz problematischer Chemikalien minimieren und zunehmend recycelte Materialien verwenden“, erklärt Kim Hjerrild.

Unternehmen mit Hilfsmitteln und Wissen versorgen
Apoorva Arya, Gründerin und CEO von Circular Innovation Lab, führt aus: „Unser erstes und wichtigstes Ziel ist es, skandinavische Berufsbekleidungsunternehmen mit Hilfsmitteln und Wissen auszustatten, damit sie die kommenden EU-Richtlinien und -Politik einhalten können. Dazu gehören Vorschriften über produktspezifische Designanforderungen, Arbeitsbedingungen für Arbeitnehmer und Menschenrechte, von der Produktion bis hin zu Drittlieferanten. Wir stellen sicher, dass diese Unternehmen, insbesondere ihre Zulieferer, zu einer kreislauforientierten Lieferkette übergehen und sich in der gesetzlichen Landschaft zurechtfinden können, während sie gleichzeitig ihre Wettbewerbsfähigkeit auf dem globalen Markt gewährleisten.“

Neue Strukturen im Fokus
Rudrajeet Pal, Professor für Textilmanagement an der Swedish School of Textiles, freut sich, dass die Universität das Projekt koordinieren kann. „Aus der Sicht meiner Forschungsgruppe ist dies unglaublich interessant, da der Schwerpunkt auf der Untersuchung und Entwicklung 'neuer' Lieferketten- und Geschäftsmodellstrukturen liegt, die eine nachhaltige Wertschöpfung in Textilunternehmen, in der Industrie sowie für die Umwelt und die Gesellschaft insgesamt ermöglichen würden. Wir haben bereits mehrere Projekte durchgeführt, bei denen ein solcher globaler Nord-Süd-Fokus der Wertschöpfungskette im Vordergrund stand, und dieses Mal insbesondere die Wertschöpfungskette von Berufsbekleidungsunternehmen zwischen Skandinavien und Asien. Wir freuen uns, unser Fachwissen und unsere Erfahrung in der internationalen Arbeit einbringen zu können."
 
Über das Vorprojekt North-South Circular Value Chains Within Textiles, NSCirTex
Das Projekt zielt darauf ab, den zirkulären Übergang in den nordischen Ländern zu unterstützen, indem ein gemeinsames Governance-Modell eingerichtet wird, das eine vorwettbewerbliche Zusammenarbeit und die Gestaltung zirkulärer Wertschöpfungsketten zwischen skandinavischen Berufsbekleidungsunternehmen in der ÖKS-Region und Produzenten in Indien, Bangladesch, Vietnam und der Türkei ermöglicht.

Der nächste Schritt ist ein mehrjähriges Hauptprojekt, in dem Berufsbekleidungsunternehmen mit ihren Zulieferern in asiatischen Ländern maßgeschneiderte Modelle für eine gemeinsame Unternehmensführung testen können, um praktische zirkuläre Lösungen zu entwickeln, wie z. B. Post-Consumer-Recycling, zirkuläre Materialbeschaffung, Entwicklung sicherer und ressourceneffizienter zirkulärer Produkte, Verbesserung der sozialen Nachhaltigkeit und der Sorgfaltspflicht usw. Das Hauptprojekt wird somit Lösungen zur Verringerung des materiellen Fußabdrucks und der Ressourcennutzung entwickeln und dabei sowohl wirtschaftliche Rentabilität schaffen als auch neue Vorschriften, Berichterstattung und Rechenschaftspflicht vorbereiten.

Partner in dieser Machbarkeitsstudie: Universität Borås, Aalborg University Business School und Circular Innovation Lab. Die Durchführbarkeitsstudie wird von der EU über den Europäischen Fonds für regionale Entwicklung Interreg Öresund-Kattegat-Skagerrak finanziert.

Quelle:

University of Borås, Solveig Klug

Smarte Textilien machen Berührungen spürbar (c) Oliver Dietze
10.04.2024

Virtueller Hautkontakt durch smarte Textilien

Smarte Textilien sollen ermöglichen, auch vom Körpergefühl her in die virtuelle Realität einzutauchen und Berührungen am eigenen Leib zu spüren. Eine hauchdünne Folie, die Berührungsempfindungen übertragen kann, macht dabei Stoffe zur zweiten, virtuellen Haut. Schwer kranken Kindern in Isolierstationen soll sie die Körpernähe ihrer Eltern bei computersimulierten Besuchen spürbar machen. Das Team der Professoren Stefan Seelecke und Paul Motzki stellt die Technologie auf der Hannover Messe vor.

Smarte Textilien sollen ermöglichen, auch vom Körpergefühl her in die virtuelle Realität einzutauchen und Berührungen am eigenen Leib zu spüren. Eine hauchdünne Folie, die Berührungsempfindungen übertragen kann, macht dabei Stoffe zur zweiten, virtuellen Haut. Schwer kranken Kindern in Isolierstationen soll sie die Körpernähe ihrer Eltern bei computersimulierten Besuchen spürbar machen. Das Team der Professoren Stefan Seelecke und Paul Motzki stellt die Technologie auf der Hannover Messe vor.

Die Hand auf der Schulter, ein Streicheln am Arm, eine Umarmung: Solche Berührungen beruhigen, trösten, vermitteln Sicherheit, Geborgenheit und Nähe. Geben die Nervenzellen der Haut solche Reize weiter, werden blitzschnell viele Hirnbereiche aktiv und fachen die körpereigene Biochemie an. Hormone und andere Botenstoffe werden ausgeschüttet, darunter Oxytocin, das Wohlgefühl und Bindung entstehen lässt. Videokonferenzen dagegen lassen uns eher kalt, Geborgenheit und Nähe sind kaum zu spüren – es fehlt das Körperliche. Aber was, wenn Nähe wichtig ist, wenn Kinder schwer krank sind, aber die Eltern nicht zu ihnen können? Wenn Körperkontakt wegen eines geschwächten Immunsystems nicht sein darf?

Damit Kinder in Isolierstationen die Körpernähe ihrer Eltern auch bei virtuellen Besuchen spüren und möglichst realitätsnah in dieses Erlebnis eintauchen können, arbeitet an der Universität des Saarlandes, an der Hochschule für Technik und Wirtschaft des Saarlandes (htw saar), am Zentrum für Mechatronik und Automatisierungstechnik (ZeMA) und am Deutschen Forschungszentrum für Künstliche Intelligenz (DFKI) ein Forschungsteam über die Fachgrenzen hinweg zusammen. An der Schnittstelle von Ingenieurwissenschaft, Neurotechnologie, Medizin und Informatik entwickeln die Forscherinnen und Forscher im Projekt „Multi-Immerse“ eine virtuelle Begegnung, die alle Sinne ansprechen soll. „Immerse“ steht dabei für „Eintauchen“, für eine intensive Sinneswahrnehmung. Die jungen Patientinnen und Patienten sollen über neue Technologien ihre Eltern und Geschwister möglichst realitätsnah sehen, hören, fühlen und trotz der räumlichen Trennung dennoch ihre intensive Nähe spüren.

Für das Fühlen und die taktile Wahrnehmung zuständig ist dabei die Forschungsgruppe der Professoren Stefan Seelecke und Paul Motzki an der Universität des Saarlandes und am Saarbrücker ZeMA: Sie sind Spezialisten darin, Oberflächen mithilfe leichter Silikonfolien neuartige Fähigkeiten zu verleihen. Die Ingenieurinnen und Ingenieure machen die gerade mal 50 Mikrometer dünnen Folien zu einer zweiten Haut: Wie die Haut Schnittstelle des menschlichen Körpers zu seiner realen Außenwelt ist, soll die Folie seine Schnittstelle zur virtuellen Welt werden. Damit soll eine neue Körperwahrnehmung in der fiktiven Realität entstehen.

In einem Textil eingearbeitet, sollen die Folien die Berührungen auf die Haut des Kindes übertragen, die entstehen, wenn Mutter oder Vater andernorts über ein zweites smartes Textil streichen. „Wir nutzen dabei die Folien, sogenannte dielektrische Elastomere, als Sensoren, um die Berührungsbewegungen zu erfassen, und zugleich auch als Aktoren, also Antriebe, um diese Bewegungen weiterzugeben“, erklärt Stefan Seelecke, Professor für intelligente Materialsysteme. Die Folie erkennt als Sensor wie genau Hand und Finger die Folie beim Darüberstreichen eindrücken, eindellen und dehnen. Exakt diese Deformation, die durch die Berührungsbewegungen entsteht, imitiert die Folie in einem zweiten Textil auf der Haut des Kindes, um so etwa auf dem Arm den Eindruck eines Darüberstreichens zu vermitteln.

„Die Ober- und Unterseite der Folie sind mit einer leitfähigen, hochdehnbaren Elektrodenschicht bedruckt. Wenn wir hieran eine elektrische Spannung anlegen, ziehen sich die Elektroden durch die elektrostatische Anziehung an und stauchen die Folie, die zur Seite ausweicht und dabei ihre Fläche vergrößert“, erklärt Professor Paul Motzki die Technologie, der die Brückenprofessur „Smarte Materialsysteme für innovative Produktion“ zwischen Universität des Saarlandes und ZeMA innehat. Bei jeder kleinsten Bewegung ändert sich hierbei die elektrische Kapazität der Folie: eine physikalische Größe, die gemessen werden kann. Streicht also ein Finger über die Folie, verformt er diese und jeder einzelnen Stellung lässt sich ein exakter Messwert der elektrischen Kapazität zuordnen: Eine bestimmte Zahl beschreibt eine ganz bestimmte Stellung der Folie. Eine Abfolge dieser einzelnen Messwerte setzt einen Bewegungsablauf in Gang. Die Folie ist damit ihr eigener dehnbarer Sensor, der selbst erkennt, wie sie verformt wird.

Mit den Messwerten der einzelnen Verformungen können die Forscher etwa Streichelbewegungen durch das smarte Textil auf den Arm des Kindes übertragen. Sie können die Folie auch gezielt ansteuern. Durch intelligente Algorithmen lassen sich in einer Regelungseinheit Bewegungsabläufe vorausberechnen und programmieren. „Wir können die Folie stufenlos Hubbewegungen vollführen lassen, so dass es sich wie ansteigender Druck anfühlt oder auch eine bestimmte Position halten“, erklärt Doktorandin Sipontina Croce, die im Projekt forscht. Aber auch Klopfbewegungen sind möglich. Frequenz und Schwingungen können die Forscherinnen und Forscher beliebig verändern.

Auf der Hannover Messe demonstriert das Team seine Technologie mit einer „Uhr“, auf deren Rückseite eine smarte Folie angebracht ist. „Wir können mehrere solcher smarter Bausteine aneinanderreihen, so dass zum Beispiel eine lange Streichbewegung übertragen werden kann. Hierzu vernetzen wir diese Bausteine, so dass sie wie ein Schwarm untereinander kommunizieren und kooperieren“, erklärt Paul Motzki.

Das Verfahren ist günstig, leicht, geräuschlos und energieeffizient. Die Folientechnologie kann auch bei Computerspielen das Spielerlebnis durch eine realistische Körperwahrnehmung intensiver machen. In anderen Projekten kleiden die Ingenieure mit ihren Folien Arbeitshandschuhe für die Industrie 4.0 aus oder lassen den Eindruck von Knopfkanten entstehen, so dass aus dem Nichts heraus Tasten oder Schieberegler spürbar werden, wodurch sie Bedienoberflächen nutzerfreundlicher machen.

Auf der Hannover Messe zeigen die Saarbrücker Expertinnen und Experten für intelligente Materialsysteme weitere Entwicklungen mit dielektrischen Elastomeren: so zum Beispiel weitere smarte Textilien wie sensorische Shirts oder Schuhsohlen, auch Pumpen und Vakuumpumpen sowie Hochleistungsaktoren.

Quelle:

Universität des Saarlandes

Textilabfall Ki generiertes Bild: Pete Linforth, Pixabay
02.04.2024

Die Zukunft zirkulärer Textilien: „New Cotton“-Projekt abgeschlossen

Als Weltpremiere für die Modeindustrie hatten sich im Oktober 2020 zwölf Pionierunternehmen zusammengefunden, um neue Wege zu beschreiten und ein Kreislaufmodell für die kommerzielle Bekleidungsproduktion zu entwickeln. Mehr als drei Jahre lang wurden Textilabfälle gesammelt und sortiert und mithilfe der Technologie zur Wiederherstellung von Textilfasern der Infinited Fiber Company zu einer neuen, künstlichen Zellulosefaser recycelt, die aussieht und sich anfühlt wie Baumwolle - eine „neue Baumwolle“.

Als Weltpremiere für die Modeindustrie hatten sich im Oktober 2020 zwölf Pionierunternehmen zusammengefunden, um neue Wege zu beschreiten und ein Kreislaufmodell für die kommerzielle Bekleidungsproduktion zu entwickeln. Mehr als drei Jahre lang wurden Textilabfälle gesammelt und sortiert und mithilfe der Technologie zur Wiederherstellung von Textilfasern der Infinited Fiber Company zu einer neuen, künstlichen Zellulosefaser recycelt, die aussieht und sich anfühlt wie Baumwolle - eine „neue Baumwolle“.

Das zukunftsweisende New Cotton Project startete im Oktober 2020 mit dem Ziel, eine zirkuläre Wertschöpfungskette für die kommerzielle Bekleidungsproduktion aufzuzeigen. Während des gesamten Projekts arbeitete das Konsortium daran, Alttextilien zu sammeln und zu sortieren, die mithilfe der innovativen Infinited Fiber-Technologie zu einer neuen zellulosehaltigen Chemiefaser namens Infinna™ recycelt werden konnten, die genauso aussieht und sich anfühlt wie neue Baumwolle. Die Fasern wurden zu Garnen gesponnen und zu verschiedenen Geweben verarbeitet, die von adidas und H&M entworfen, produziert und verkauft wurden. Der adidas by Stella McCartney-Trainingsanzug sowie eine bedruckte Jacke und Jeans von H&M sind damit die ersten Produkte, die von einem kreislauforientierten Konsortium dieser Größenordnung hergestellt wurden und damit einen innovativen und kreislauforientierten Ansatz für die Modeindustrie aufzeigt.
 
Da das Projekt im März 2024 abgeschlossen wurde, stellt das Konsortium acht Schlüsselfaktoren in den Fokus, die es als grundlegend für die erfolgreiche Skalierung des Faser-zu-Faser-Recyclings erachtet.

Die breite Einführung zirkulärer Wertschöpfungsketten ist entscheidend für den Erfolg
Die Kreislaufwirtschaft im Textilbereich erfordert neue Formen der Zusammenarbeit und des offenen Wissensaustauschs zwischen verschiedenen Akteuren in Kreislaufökosystemen. Diese Ökosysteme müssen Akteure einbeziehen, die über die traditionellen Lieferketten hinausgehen und bisher voneinander getrennte Industrien und Sektoren wie die Textil- und Modebranche, die Abfallsammlung und -sortierung und die Recyclingindustrie sowie digitale Technologien, Forschungsorganisationen und politische Entscheidungsträger einbeziehen. Damit das Ökosystem effektiv funktionieren kann, müssen die verschiedenen Akteure an der Abstimmung von Prioritäten, Zielen und Arbeitsmethoden beteiligt sein und die Bedürfnisse, Anforderungen und technisch-wirtschaftlichen Möglichkeiten der anderen kennenlernen. Aus einer breiteren Perspektive betrachtet, ist auch ein grundlegenderer Wandel in den Denkweisen und Geschäftsmodellen im Hinblick auf einen systemischen Übergang zur Kreislaufwirtschaft erforderlich, z. B. die Abkehr von den linearen Geschäftsmodellen der Fast Fashion. Neben dem offenen Wissensaustausch innerhalb solcher Ökosysteme ist es ebenfalls wichtig, gelernte Lektionen und Erkenntnisse öffentlich zu machen, um andere Marktteilnehmer bei der Umstellung auf die Kreislaufwirtschaft zu unterstützen und zu inspirieren.
     
Kreislaufwirtschaft beginnt mit dem Designprozess
Bei der Entwicklung neuer Styles ist es wichtig, von Anfang an ein End-of-Life-Szenario im Auge zu behalten. Denn davon hängt ab, welche Verzierungen, Drucke und Accessoires verwendet werden können. Wenn Designer es dem Recyclingprozess so einfach wie möglich machen, ist die Chance größer, dass die Kleidung tatsächlich wieder als Rohstoff verwendet wird. Darüber hinaus ist es wichtig, Geschäftsmodelle zu entwickeln, die es ermöglichen, Produkte so lange wie möglich zu nutzen, einschließlich Reparatur-, Miet-, Wiederverkaufs- und Sharing-Dienste.

Aufbau und Ausbau von Sortier- und Recyclinginfrastrukturen sind entscheidend
Um die kreislauforientierte Bekleidungsproduktion auszubauen, bedarf es technologischer Innovationen und der Entwicklung von Infrastrukturen für die Sammlung und Sortierung von Alttextilien sowie für die mechanische Vorverarbeitung des Ausgangsmaterials. Derzeit erfolgt ein Großteil der Textilsortierung manuell, und die verfügbaren optischen Sortier- und Identifizierungstechnologien sind nicht in der Lage, Kleidungsschichten und komplexe Fasermischungen zu erkennen oder Abweichungen in der Qualität des Ausgangsmaterials für das Faser-zu-Faser-Recycling festzustellen. Die Vorbehandlung des Ausgangsmaterials ist ein entscheidender Schritt im Textil-zu-Textil-Recycling, der jedoch außerhalb derjenigen, die ihn tatsächlich ausführen, nicht gut verstanden wird. Dies erfordert eine Zusammenarbeit über die gesamte Wertschöpfungskette hinweg, und es bedarf eingehender Kenntnisse und Fähigkeiten, um dies richtig zu tun. Dies ist ein Bereich, der mehr Aufmerksamkeit und stärkere wirtschaftliche Anreize braucht, wenn das Textil-zu-Textil-Recycling ausgebaut wird.

Die Verbesserung von Qualität und Datenlage ist entscheidend
Es besteht immer noch ein erheblicher Mangel an verfügbaren Daten, die den Übergang zu einer Kreislauftextilindustrie unterstützen. Dies bremst die Entwicklung von Systemlösungen und wirtschaftlichen Anreizen für den Textilkreislauf. So werden beispielsweise die Mengen der auf den Markt gebrachten Textilien oft als Ersatz für die Mengen an Post-Consumer-Textilien herangezogen, aber die verfügbaren Daten sind mindestens zwei Jahre alt und oft unvollständig. Auch auf nationaler Ebene kann es unterschiedliche Zahlen zu Textilabfällen geben, die aufgrund unterschiedlicher Methoden oder Datenjahre nicht übereinstimmen. Dies zeigt sich in den Berichten der niederländischen Massenbilanzstudie 2018 und des Überwachungsberichts zur Kreislaufwirtschaftspolitik für Textilien 2020, wo es einen Unterschied von 20 % zwischen den auf den Markt gebrachten Zahlen und den gemessenen Mengen an separat gesammelten und im gemischten Restmüll enthaltenen Post-Consumer-Textilien gibt. Abgesehen von einigen guten Studien wie Sorting for Circularity Europe und der jüngsten Charakterisierungsstudie von ReFashion gibt es auch fast keine zuverlässigen Informationen über die Faserzusammensetzung im Post-Consumer-Textilstrom. Textil-zu-Textil-Recycler würden von einer besseren Verfügbarkeit zuverlässigerer Daten profitieren. Die politische Überwachung von Systemen der erweiterten Herstellerverantwortung sollte sich darauf konzentrieren, die Anforderungen an die Berichterstattung in ganz Europa von der Sammlung von Post-Consumer-Textilien bis zu ihrem endgültigen Endpunkt zu standardisieren und Anreize für die Digitalisierung zu schaffen, damit die Berichterstattung automatisiert werden kann und hochwertige Textildaten nahezu in Echtzeit zur Verfügung stehen.

Die Notwendigkeit einer kontinuierlichen Forschung und Entwicklung über die gesamte Wertschöpfungskette hinweg
Insgesamt deuten die Ergebnisse des New Cotton Project darauf hin, dass Stoffe, die Infinna™-Fasern enthalten, eine nachhaltigere Alternative zu herkömmlichen Baumwoll- und Viskosegeweben darstellen, wobei sie ähnliche Leistungsmerkmale und ästhetische Qualitäten aufweisen. Dies könnte erhebliche Auswirkungen auf die Textilindustrie im Hinblick auf Nachhaltigkeit und umweltfreundlichere Produktionsverfahren haben. Das Projekt hat jedoch auch gezeigt, dass die Skalierung des Faser-zu-Faser-Recyclings weiterhin kontinuierliche Forschung und Entwicklung in der gesamten Wertschöpfungskette erfordert. So ist beispielsweise der Bedarf an Forschung und Entwicklung im Bereich der Sortiersysteme von entscheidender Bedeutung. Im Rahmen des chemischen Recyclings ist es ebenfalls erforderlich, eine hohe Rückgewinnungsrate und den Kreislauf der verwendeten Chemikalien sicherzustellen, um die Umweltauswirkungen des Prozesses zu begrenzen. Bei den Herstellungsprozessen wurde überdies hervorgehoben, dass eine kontinuierliche Innovation bei der Verarbeitungsmethode von Vorteil ist und dass Technologien und Marken eng mit den Herstellern zusammenarbeiten müssen, um die weitere Entwicklung in diesem Bereich zu unterstützen.

Über weniger umweltbelastende Fasern hinaus denken
Die von Dritten geprüfte Ökobilanz der Wertschöpfungskette des New Cotton Project zeigt, dass die Cellulosecarbamatfaser, insbesondere wenn sie mit einer erneuerbaren Stromquelle hergestellt wird, im Vergleich zu herkömmlicher Baumwolle und Viskose potenziell geringere Umweltauswirkungen aufweist. Es ist jedoch zu beachten, dass dieser Vergleich auf der Grundlage von durchschnittlichen globalen Datensätzen von Ecoinvent für Baumwoll- und Viskosefasern durchgeführt wurde und dass die Umweltleistung der auf dem Markt erhältlichen Primärfasern unterschiedlich ist. Die Analyse verdeutlicht jedoch auch, wie wichtig der Rest der Zuliefererkette für die Verringerung der Umweltauswirkungen ist. Die Ergebnisse zeigen, dass selbst bei einer Verringerung der Umweltauswirkungen durch die Verwendung von Recyclingfasern in anderen Phasen des Lebenszyklus noch einiges zu tun ist. So sind zum Beispiel die Qualität der Kleidungsstücke und ihre Nutzung während ihrer gesamten Lebensdauer entscheidend für die Verringerung der Umweltauswirkungen pro Kleidungsstück.
          
Einbeziehung der Verbraucher
Die EU hat die Kultur als eines der Haupthindernisse für die Einführung der Kreislaufwirtschaft in Europa identifiziert. Eine quantitative Verbraucherbefragung von adidas, die während des Projekts in drei wichtigen Märkten durchgeführt wurde, ergab, dass es immer noch Verwirrung über die Kreislaufwirtschaft bei Textilien gibt, was die Bedeutung einer effektiven Kommunikation mit den Verbrauchern und von Aktivitäten zur Einbindung der Öffentlichkeit verdeutlicht hat.
     
Einheitliche Rechtsvorschriften
Die Gesetzgebung ist ein wirksames Instrument, um die Einführung nachhaltigerer und kreislauforientierter Praktiken in der Textilindustrie voranzutreiben. Da allein in der EU mehrere neue Gesetzesvorhaben anstehen, ist ein kohärenter und harmonisierter Ansatz für die erfolgreiche Umsetzung der Politik in der Textilindustrie unerlässlich. Die Betrachtung des Zusammenhangs zwischen unterschiedlichen Rechtsvorschriften wie der erweiterten Herstellerverantwortung und der Verordnung über das Ökodesign für nachhaltige Produkte sowie der entsprechenden Umsetzungsfristen wird den Akteuren in der gesamten Wertschöpfungskette helfen, sich effektiv auf die Annahme dieser neuen Vorschriften vorzubereiten.

Die hohe und ständig wachsende Nachfrage nach recycelten Materialien setzt voraus, dass alle denkbaren End-of-Use-Textilien gesammelt und sortiert werden müssen. Um die Nachfrage zu befriedigen, werden sowohl mechanische als auch chemische Recyclinglösungen benötigt. Außerdem sollten wir beide Wege, den geschlossenen Kreislauf (Faser-zu-Faser) und den offenen Kreislauf (Faser zu anderen Sektoren), effektiv umsetzen. Der Export von minderwertigen wiederverwendbaren Textilien in Länder außerhalb der EU muss dringend überdacht werden. Es wäre vorteilhafter, sie in Europa wiederzuverwenden oder, wenn sie das Ende ihrer Lebensdauer erreicht haben, diese Textilien im europäischen Binnenmarkt zu recyceln, anstatt sie in Länder zu exportieren, in denen die Nachfrage oft nicht gesichert und die Abfallwirtschaft unzureichend ist.

Insgesamt verdeutlichen die Erkenntnisse die Notwendigkeit eines ganzheitlichen Ansatzes und eines grundlegenden Umdenkens in den Arbeitsweisen der Textilindustrie. Eine vertiefte Zusammenarbeit und ein Wissensaustausch sind von zentraler Bedeutung für die Entwicklung effektiver Kreislauf-Wertschöpfungsketten, die dazu beitragen, die Skalierung innovativer Recyclingtechnologien zu unterstützen und die Verfügbarkeit von Recyclingfasern auf dem Markt zu erhöhen. Die Weiterentwicklung und Skalierung des Sammelns und Sortierens sowie die Behebung der erheblichen Lücken bei der Verfügbarkeit von qualitativ hochwertigen Daten über die Textilströme sollten dringend Vorrang haben. Das New-Cotton-Projekt hat auch gezeigt, dass Recycling-Fasern wie Infinna™ eine nachhaltigere Alternative zu einigen anderen traditionellen Fasern darstellen, gleichzeitig aber auch verdeutlicht, wie wichtig es ist, die Wertschöpfungskette als Ganzes zu betrachten, um die Umweltauswirkungen zu verringern. Kontinuierliche Forschung und Entwicklung über die gesamte Wertschöpfungskette hinweg ist ebenfalls von entscheidender Bedeutung, um sicherzustellen, dass wir in Zukunft recycelte Textilien in großem Maßstab anbieten können.

Das New Cotton Project wurde mit Mitteln aus dem Forschungs- und Innovationsprogramm Horizont 2020 der Europäischen Union unter der Finanzhilfevereinbarung Nr. 101000559 gefördert.

Quelle:

Fashion for Good

Smart glove teaches new physical skills Bild: Alex Shipps/MIT CSAIL
18.03.2024

Intelligenter Handschuh trainiert neue körperliche Fähigkeiten

Der anpassungsfähige intelligente Handschuh der Forscher am MIT CSAIL (Computer Science and Artificial Intelligence Laboratory) kann dem Benutzer taktile Rückmeldungen geben, um ihm neue Techniken beizubringen, Roboter mit präziserer Handhabung zu steuern und Chirurgen und Piloten zu schulen.

Wahrscheinlich kennen Sie jemanden, der eher visuell oder auditiv lernt, andere nehmen Wissen über eine andere Art und Weise auf: durch Berührung. Die Fähigkeit, taktile Interaktionen zu verstehen, ist besonders wichtig für Aufgaben wie das Erlernen filigraner Operationen und das Spielen von Musikinstrumenten, aber im Gegensatz zu Video und Audio ist es schwierig, Berührungen aufzuzeichnen und zu übertragen.

Der anpassungsfähige intelligente Handschuh der Forscher am MIT CSAIL (Computer Science and Artificial Intelligence Laboratory) kann dem Benutzer taktile Rückmeldungen geben, um ihm neue Techniken beizubringen, Roboter mit präziserer Handhabung zu steuern und Chirurgen und Piloten zu schulen.

Wahrscheinlich kennen Sie jemanden, der eher visuell oder auditiv lernt, andere nehmen Wissen über eine andere Art und Weise auf: durch Berührung. Die Fähigkeit, taktile Interaktionen zu verstehen, ist besonders wichtig für Aufgaben wie das Erlernen filigraner Operationen und das Spielen von Musikinstrumenten, aber im Gegensatz zu Video und Audio ist es schwierig, Berührungen aufzuzeichnen und zu übertragen.

Um diese Herausforderung zu meistern, haben Forscher des Computer Science and Artificial Intelligence Laboratory (CSAIL) des MIT und anderer Institute einen bestickten intelligenten Handschuh entwickelt, der berührungsbasierte Anweisungen erfassen, reproduzieren und weitergeben kann. Ergänzend entwickelte das Team einen einfachen maschinellen Lernassistenten, der sich daran anpasst, wie verschiedene Benutzer auf taktile Rückmeldungen reagieren, und so ihre Erfahrungen optimiert. Das neue System könnte möglicherweise dazu beitragen, Menschen körperliche Fähigkeiten beizubringen, die Teleoperation von Robotern zu verbessern und das Training in der virtuellen Realität zu unterstützen.

Werde ich Klavier spielen können?
Zur Herstellung ihres intelligenten Handschuhs verwendeten die Forscher eine digitale Stickmaschine, um taktile Sensoren und haptische Aktoren (ein Gerät, das berührungsbasiertes Feedback liefert) nahtlos in Textilien einzubetten. Diese Technologie ist bereits in Smartphones vorhanden, wo haptische Reaktionen durch Antippen des Touchscreens ausgelöst werden. Wenn Sie beispielsweise auf eine iPhone-App tippen, spüren Sie eine leichte Vibration, die von diesem bestimmten Teil des Bildschirms ausgeht. Auf die gleiche Weise sendet das neue adaptive Wearable Feedback an verschiedene Teile Ihrer Hand, um die optimalen Bewegungen für die Ausführung verschiedener Fähigkeiten anzuzeigen.

Mit dem intelligenten Handschuh könnten Nutzer beispielsweise das Klavierspielen erlernen. In einer Demonstration wurde ein Experte damit beauftragt, eine einfache Melodie über eine Reihe von Tasten aufzunehmen und dabei den intelligenten Handschuh zu verwenden, um die Sequenz zu erfassen, mit der er seine Finger auf die Tastatur drückt. Anschließend wandelte ein maschinell lernender Mechanismus diese Sequenz in ein haptisches Feedback um, das dann in die Handschuhe der Studenten eingespeist wurde, damit diese den Anweisungen folgen konnten. Wenn die Hände über demselben Abschnitt schwebten, vibrierten die Aktuatoren an den Fingern entsprechend den darunter liegenden Tasten. Die Software optimiert diese Anweisungen für jeden Benutzer und berücksichtigt dabei die subjektive Ausprägung von Berührungsinteraktionen.

"Menschen führen eine Vielzahl von Aufgaben aus, indem sie ständig mit der Welt um sie herum interagieren", sagt Yiyue Luo MS '20, Hauptautorin der Studie, Doktorandin am MIT Department of Electrical Engineering and Computer Science (EECS) und CSAIL-Mitglied. "Normalerweise teilen wir diese physischen Interaktionen nicht mit anderen. Stattdessen lernen wir oft, indem wir ihre Bewegungen beobachten, wie beim Klavierspielen oder Tanzen.

"Menschen führen eine Vielzahl von Aufgaben aus, indem sie ständig mit der Welt um sie herum interagieren", sagt Yiyue Luo MS '20, Hauptautorin der Studie, Doktorandin am MIT Department of Electrical Engineering and Computer Science (EECS) und CSAIL-Mitglied. "Normalerweise teilen wir diese physischen Interaktionen nicht mit anderen. Stattdessen lernen wir oft, indem wir ihre Bewegungen beobachten, wie beim Klavierspielen oder Tanzen.

"Die größte Herausforderung bei der Vermittlung von taktilen Interaktionen besteht darin, dass jeder Mensch haptisches Feedback anders wahrnimmt", fügt Luo hinzu. "Dieses Hindernis hat uns dazu inspiriert, einen intelligenten Agenten zu entwickeln, der lernt, eine adaptive Haptik für die Handschuhe des Einzelnen zu erzeugen, und ihnen so einen praxisnahen Ansatz zum Erlernen der optimalen Bewegung vermittelt."^

Das tragbare System wird mit Hilfe eines digitalen Herstellungsverfahrens an die Spezifikationen der Hand des Benutzers angepasst. Ein Computer erstellt einen Ausschnitt auf der Grundlage der individuellen Handmaße, dann näht eine Stickmaschine die Sensoren und Haptik ein. Innerhalb von 10 Minuten ist das weiche, stoffbasierte Wearable fertig zum Tragen. Das adaptive maschinelle Lernmodell, das zunächst anhand der haptischen Reaktionen von 12 Benutzern trainiert wurde, benötigt nur 15 Sekunden an neuen Benutzerdaten, um das Feedback zu personalisieren.

In zwei weiteren Experimenten wurden Nutzern, die die Handschuhe trugen, beim Spielen von Laptop-Spielen taktile Anweisungen mit zeitabhängigem Feedback gegeben. In einem Rhythmusspiel mussten die Spieler lernen, einem schmalen, gewundenen Pfad zu folgen, um in einen Zielbereich zu gelangen, und in einem Rennspiel mussten die Fahrer Münzen sammeln und das Gleichgewicht ihres Fahrzeugs auf dem Weg zur Ziellinie halten. Das Team von Luo fand heraus, dass die Teilnehmer mit optimierter Haptik die höchste Punktzahl erreichten, im Gegensatz zu Spielern ohne und mit nicht optimierter Haptik.

"Diese Arbeit ist der erste Schritt zum Aufbau personalisierter KI-Assistenten, die kontinuierlich Daten über den Benutzer und die Umgebung erfassen", sagt der Hauptautor Wojciech Matusik, MIT-Professor für Elektrotechnik und Informatik sowie Leiter der Computational Design and Fabrication Group im CSAIL. "Diese Assistenten unterstützen sie dann bei der Ausführung komplexer Aufgaben, beim Erlernen neuer Fähigkeiten und bei der Förderung verbesserten Nutzerverhaltens."

Lebensechte Erfahrung in elektronischen Umgebungen
Bei der Fernsteuerung von Robotern fanden die Forscher heraus, dass ihre Handschuhe Kraftempfindungen auf Roboterarme übertragen können, was ihnen hilft, feinere Greifaufgaben zu erledigen. "Es ist so, als würde man versuchen, einem Roboter beizubringen, sich wie ein Mensch zu verhalten", sagt Luo. In einem Fall setzte das MIT-Team menschliche Teleoperatoren ein, um einem Roboter beizubringen, wie er verschiedene Brotsorten festhalten kann, ohne sie zu deformieren. Indem sie dem Menschen optimales Greifen beibringen, kann er die Robotersysteme in Umgebungen wie der Fertigung präzise steuern, wo diese Maschinen sicherer und effektiver mit ihren Bedienern zusammenarbeiten können."

"Die Technologie des bestickten intelligenten Handschuhs ist eine wichtige Innovation für Roboter", so Daniela Rus, Andrew (1956) und Erna Viterbi Professor für Elektrotechnik und Informatik am MIT, Direktorin des CSAIL und Autorin der Studie. "Mit seiner Fähigkeit, taktile Interaktionen mit hoher Auflösung zu erfassen, ähnlich wie die menschliche Haut, ermöglicht dieser Sensor Robotern, die Welt durch Berührung wahrzunehmen. Die nahtlose Integration von taktilen Sensoren in Textilien überbrückt die Kluft zwischen physischen Handlungen und digitalem Feedback und bietet ein enormes Potenzial für die reaktionsschnelle Steuerung von Robotern und immersives Virtual-Reality-Training."

Auch in der virtuellen Realität könnte die Schnittstelle für ein intensiveres Erlebnis sorgen. Das Tragen von intelligenten Handschuhen würde digitale Umgebungen in Videospielen mit taktilen Eindrücken versehen, so dass die Spieler ihre Umgebung ertasten könnten, um Hindernissen auszuweichen. Darüber hinaus würde die Schnittstelle in virtuellen Trainingskursen für Chirurgen, Feuerwehrleute und Piloten, bei denen es auf Präzision ankommt, eine persönlichere und berührungsbasierte Erfahrung ermöglichen.

Während diese Wearables den Nutzern eine praktischere Erfahrung bieten könnten, glauben Luo und ihre Gruppe, dass sie ihre Wearable-Technologie über die Finger hinaus erweitern könnten. Mit einer stärkeren haptischen Rückmeldung könnten die Schnittstellen Füße, Hüften und andere Körperteile führen, die weniger empfindlich sind als Hände.

Luo betonte auch, dass die Technologie ihres Teams mit einem komplexeren Agenten mit künstlicher Intelligenz auch bei komplexeren Aufgaben wie der Verarbeitung von Ton oder dem Steuern eines Flugzeugs helfen könnte. Derzeit kann die Schnittstelle nur bei einfachen Bewegungen wie dem Drücken einer Taste oder dem Ergreifen eines Objekts helfen. In Zukunft könnte das MIT-System mehr Nutzerdaten einbeziehen und besser angepasste und eng anliegende Wearables herstellen, um die Auswirkungen der Handbewegungen auf die haptischen Wahrnehmungen noch besser zu berücksichtigen.

Luo, Matusik und Rus erstellten die Studie zusammen mit dem Direktor der EECS Microsystems Technology Laboratories und Professor Tomás Palacios, den CSAIL-Mitgliedern Chao Liu, Young Joong Lee, Joseph DelPreto, Michael Foshey und Professor und Studienleiter Antonio Torralba, Kiu Wu von LightSpeed Studios und Yunzhu Li von der University of Illinois in Urbana-Champaign.

Die Arbeit wurde teilweise durch ein MIT Schwarzman College of Computing Fellowship über Google und ein GIST-MIT Research Collaboration Grant unterstützt, mit zusätzlicher Hilfe von Wistron, Toyota Research Institute und Ericsson.

Quelle:

Alex Shipps, MIT CSAIL

blueberries Foto: guentherlig, Pixabay
01.03.2024

Die geschmackvollste Art einer Beschichtung

Wissenschaftler finden heraus, warum Blaubeeren blau sind

Winzige äußere Strukturen in der Wachsbeschichtung von Heidelbeeren verleihen ihnen ihre blaue Farbe, wie Forscher der Universität Bristol herausgefunden haben. Dies gilt für viele Früchte mit der gleichen Farbe, darun-ter Zwetschgen, Schlehen und Wacholderbeeren.

Wissenschaftler finden heraus, warum Blaubeeren blau sind

Winzige äußere Strukturen in der Wachsbeschichtung von Heidelbeeren verleihen ihnen ihre blaue Farbe, wie Forscher der Universität Bristol herausgefunden haben. Dies gilt für viele Früchte mit der gleichen Farbe, darun-ter Zwetschgen, Schlehen und Wacholderbeeren.

In der Studie, die in Science Advances veröffentlicht wurde, zeigen die Forscher, warum Blaubeeren trotz der dunkelroten Farbe der Pigmente in der Fruchtschale blau sind. Ihre blaue Farbe wird vielmehr von einer Wachsschicht erzeugt, die die Frucht umgibt und aus Miniaturstrukturen besteht, die blaues und UV-Licht streuen. Dadurch wirken Heidelbeeren für den Menschen blau und für Vögel blau-UV. Die chromatische Blau-UV-Reflexion ergibt sich aus der Wechselwirkung der zufällig angeordneten Kristallstrukturen des epikutikularen Wachses mit dem Licht.
 
Rox Middleton, Forschungsstipendiat an der School of Biological Sciences in Bristol, erklärte: „Das Blau der Blaubeeren kann nicht durch Zerdrücken 'extrahiert' werden - denn es befindet sich nicht in dem pigmentierten Saft, der aus der Frucht gepresst werden kann. Deshalb wussten wir, dass etwas an der Farbe besonders sein musste.“

„Also haben wir das Wachs entfernt, auf Karton neu kristallisiert, und so konnten wir eine ganz neue Blaulichtfilter-Beschichtung herstellen.“
 
Der ultradünne Farbstoff ist etwa zwei Mikrometer dick, und obwohl er weniger stark reflektiert, ist er sichtbar blau und wirft UV-Strahlen gut zurück, was möglicherweise den Weg für neue Farbstoffmethoden ebnet.

"Es zeigt, dass die Natur einen wirklich raffinierten Trick entwickelt hat, eine ultradünne Schicht für einen wichtigen Farbstoff zu verwenden", fügte Rox hinzu.

Die meisten Pflanzen sind mit einer dünnen Wachsschicht überzogen, die mehrere Funktionen hat, von denen die Wissenschaftler viele noch nicht verstanden haben. Sie wissen, dass sie als hydrophobe, selbst-reinigende Beschichtung sehr wirksam sein kann.

Bis jetzt wussten die Forscher jedoch nicht, wie wichtig die Struktur für die sichtbare Färbung ist.

Jetzt will das Team nach einfacheren Möglichkeiten suchen, die Beschichtung nachzubilden und aufzutragen. Dies könnte zu einer nachhaltigeren, biokompatibleren und sogar essbaren UV- und blau-reflektierenden Farbe führen.

Außerdem könnten diese Beschichtungen die gleichen vielfältigen Funktionen haben wie die natürlichen biologischen Beschichtungen, die Pflanzen schützen.

Rox fügte hinzu: „Es war wirklich spannend herauszufinden, dass es einen unbekannten Färbemechanismus direkt vor unserer Nase gibt, und zwar bei beliebten Früchten, die wir ständig anbauen und essen.

„Noch spannender war es, diese Farbe zu reproduzieren, indem man das Wachs erntete, um eine neue blaue Beschichtung herzustellen, die noch niemand zuvor gesehen hat.

Die ganze Funktionalität dieses natürlichen Wachses in künstlich hergestellte Materialien einzubauen, ist ein Traum!“

Quelle:

Bristol University

Paper: ‘Self-assembled, Disordered Structural Colour from Fruit Wax Bloom’ by Rox Middleton et al in Science Advances.

Windenergie Foto: Carlos / Saigon - Vietnam, Pixabay
21.02.2024

Composites: Hoffnungsträger Windenergie und Luftfahrt

Composites Germany legt Ergebnisse der 22. Markterhebung vor    

  • Kritische Bewertung der aktuellen Geschäftslage
  • Zukunftserwartungen hellen sich auf
  • Investitionsklima bleibt verhalten
  • Erwartungen an Anwendungsindustrien unterschiedlich
  • Wachstumstreiber mit leichten Verschiebungen
  • Composites-Index zeigt in verschiedene Richtungen

Zum 22. Mal hat Composites Germany aktuelle Kennzahlen zum Markt für faserverstärkte Kunststoffe erhoben. Befragt wurden alle Mitgliedsunternehmen der Trägerverbände von Composites Germany: AVK und Composites United sowie des assoziierten Partners VDMA.

Um die problemlose Vergleichbarkeit der unterschiedlichen Erhebungen zu gewährleisten, wurden auch in diesem Halbjahr keine grundlegenden Änderungen bei der Befragung durchgeführt. Erhoben wurden erneut überwiegend qualitative Daten in Bezug auf die aktuelle und zukünftige Marktentwicklung.

Composites Germany legt Ergebnisse der 22. Markterhebung vor    

  • Kritische Bewertung der aktuellen Geschäftslage
  • Zukunftserwartungen hellen sich auf
  • Investitionsklima bleibt verhalten
  • Erwartungen an Anwendungsindustrien unterschiedlich
  • Wachstumstreiber mit leichten Verschiebungen
  • Composites-Index zeigt in verschiedene Richtungen

Zum 22. Mal hat Composites Germany aktuelle Kennzahlen zum Markt für faserverstärkte Kunststoffe erhoben. Befragt wurden alle Mitgliedsunternehmen der Trägerverbände von Composites Germany: AVK und Composites United sowie des assoziierten Partners VDMA.

Um die problemlose Vergleichbarkeit der unterschiedlichen Erhebungen zu gewährleisten, wurden auch in diesem Halbjahr keine grundlegenden Änderungen bei der Befragung durchgeführt. Erhoben wurden erneut überwiegend qualitative Daten in Bezug auf die aktuelle und zukünftige Marktentwicklung.

Kritische Bewertung der aktuellen Geschäftslage
Nachdem bei der Bewertung der aktuellen Geschäftslage in 2021 durchweg positive Tendenzen zu erkennen waren, rutschte diese seit 2022 ab. Auch in der aktuellen Befragung ist weiterhin keine Trendumkehr festzustellen. Die Gründe für die negative Stimmung sind vielfältig und zeigten sich bereits in der letzten Erhebung.     

Derzeit scheint es der Politik nicht zu gelingen, mit entsprechenden Maßnahmen ein für die Industrie positiveres Umfeld zu schaffen. Insgesamt zeigt vor allem Deutschland, aber auch Europa derzeit ein sehr schwieriges Marktumfeld.

Haupttreiber der derzeitigen, schwierigen Situation dürften aber vor allem die nach wie vor hohen Energie- und Rohstoffpreise sein. Hinzu kommen weiterhin Probleme in einzelnen Bereichen der Logistikketten, beispielsweise auf einzelnen Handels-/Containerruten sowie ein zurückhaltendes Konsumklima. Eine Verlangsamung des Welthandels und Unsicherheiten im politischen Bereich befeuern derzeit die negative Stimmung im Markt. Trotz steigender Zulassungszahlen ist auch die Automobilindustrie als wichtigster Anwendungsbereich für Composites noch nicht auf ihr altes Volumen zurückgekehrt. Die Bauindustrie als zweiter zentraler Anwendungsbereich steckt derzeit in einer Krise. Zwar sind die Auftragsbücher noch gut gefüllt, aber Neuaufträge bleiben vielfach aus. Hohe Zinsen und Materialkosten bei hohen Lebenshaltungskosten belasten vor allem den privaten Bau stark, aber auch der öffentliche Bau kann die selbst gesteckten Ziele momentan nicht erreichen. Laut dem ZDB (Zentralverband Deutsches Baugewerbe) bleiben die Prognosen in diesem wichtigen Bereich düster: „Der Rückgang der Baukonjunktur setzt sich weiter fort. Der Umsatz wird in diesem Jahr real um 5,3 % zurückgehen und im kommenden Jahr gehen wir von weiteren minus 3 % aus. Verantwortlich für das Minus bleibt der Wohnungsbau, der in diesem Jahr real um 11 % einbricht und 2024 mit -13 % seinen Sinkflug fortsetzt.“

Nicht nur die Bewertung der generellen Geschäftslage bleibt pessimistisch. Auch die Situation der eigenen Unternehmen wird weiterhin kritisch bewertet. Vor allem für Deutschland zeigt sich ein negatives Bild. Fast 50 % der Befragten bewerten die aktuelle Geschäftslage in Deutschland kritisch. Etwas positiver fällt die Sichtweise auf das weltweite Geschäft und Europa aus. Hier bewerten „nur“ 40 % bzw. 35 % der Befragten die Situation eher negativ.

Zukunftserwartungen hellen sich auf
Trotz der generell eher verhaltenen Bewertung der Geschäftslage scheinen viele der Befragten, zumindest in Europa, von einer Besserung der Stimmung überzeugt zu sein. Befragt nach ihrer Einschätzung zur zukünftigen generellen Geschäftsentwicklung, zeigen sich die Werte für Europa und auch die Welt optimistischer als bei der letzten Befragung. Für Deutschland erwarten die Teilnehmer der Befragung derzeit keine Verbesserung der Situation.

Auch für das eigene Unternehmen zeigen sich die Befragten hinsichtlich ihrer Zukunftserwartungen für Europa und den Weltmarkt optimistischer:
     
Die Teilnehmenden gehen anscheinend von einer moderaten kurz- bis mittelfristigen Erholung der Weltwirtschaft aus. Die Prognosen sind optimistischer als die Bewertung der aktuellen Situation. Auffällig ist, dass die Sichtweise auf die Region Deutschland im Verhältnis zu Europa und der weltweiten Konjunktur kritischer ist. 28 % der Befragten erwarten eine negative Entwicklung der generellen Marktsituation in Deutschland. Nur 13 % erwarten eine Verbesserung der aktuellen Situation. Für Europa und auch die Welt zeigen sich bessere Kennwerte.
          
Investitionsklima bleibt verhalten
Die aktuell eher zurückhaltende Bewertung der wirtschaftlichen Situation wirkt sich auch weiterhin auf das Investitionsklima aus.

Nachdem in der letzten Befragung noch 22% der Teilnehmenden von einem Anstieg bei der Personalkapazität ausgegangen waren (Befragung 1/2023 = 40 %), liegt dieser Wert aktuell nur noch bei 18 %. Demgegenüber stehen 18 %, die sogar von einem Rückgang im Bereich Personal ausgehen.

Auch der Anteil der Befragten, die Maschineninvestitionen planen, ist rückläufig. Waren bei der letzten Befragung noch 56 % von entsprechenden Investitionen ausgegangen, so sinkt dieser Wert nun auf 46 % ab.


Erwartungen an Anwendungsindustrien unterschiedlich
Der Composites Markt ist durch eine starke Heterogenität sowohl material- aber auch anwendungsseitig gekennzeichnet. In der Befragung werden die Teilnehmenden gebeten, ihre Einschätzung hinsichtlich der Marktentwicklung unterschiedlicher Kernbereiche zu geben.

Die Erwartungen zeigen sich äußerst verschieden. Die beiden wichtigsten Anwendungsbereiche sind der Mobilitäts- und der Bau-/Infrastruktursektor. Beide befinden sich derzeit in starken Umbrüchen bzw. sind von Rückgängen betroffen, was sich auch in der Befragung deutlich zeigt. Wachstum wird vor allem im Bereich Windenergie und Luftfahrt erwartet.

Wachstumstreiber mit leichten Verschiebungen
Bei den Werkstoffen zeigt sich ein Wechsel hinsichtlich der Einschätzungen der Wachstumstreiber. Wurde von den Befragten in den letzten 9 Erhebungen stets GFK als Material genannt, aus dessen Umfeld die wesentlichen Wachstumsimpulse für den Composites-Bereich zu erwarten sind, so werden die wesentlichen Impulse mittlerweile erneut von CFK oder materialübergreifend vermutet.

Regional kommt es zu einer leichten Verschiebung. Deutschland wird weniger stark als Wachstumstreiber gesehen. Demgegenüber werden Europa (ohne Deutschland) und Asien deutlich mehr genannt.

Composites-Index zeigt in verschiedene Richtungen
Die zahlreichen negativen Einflüsse der letzten Zeit zeigen sich weiterhin auch im Gesamt-Composites-Index. Dieser gibt vor allem bei der Betrachtung der momentanen Geschäftslage weiterhin nach. Demgegenüber steht eine leichte Aufhellung hinsichtlich der Erwartungen an die zukünftige Marktentwicklung, welche jedoch auf niedrigem Niveau bleibt.
 
Die gesamte verarbeitende Composites-Menge in Europa in 2022 war bereits rückläufig, auch für 2023 muss weiterer Rückgang erwartet werden. Dieser dürfte erneut bei etwa 5% liegen. Es bleibt abzuwarten, ob es gelingen wird, der negativen Entwicklung gegenzusteuern. Hier wäre ein zielgerichtetes Eingreifen, auch der politischen Entscheidungsträger, wünschenswert. Dies kann aber ohne die Industrie/Wirtschaft nicht gelingen. Nur gemeinsam wird es möglich sein, den Wirtschafts-/Industriestandort Deutschland zu erhalten und erneut zu stärken. Für Composites als Materialgruppe generell zeigen sich, aufgrund des speziellen Eigenschaftsportfolios, nach wie vor sehr gute Chancen zum Ausbau der Marktposition in neuen, aber auch bestehenden Märkten. Die Abhängigkeit von gesamtwirtschaftlichen Entwicklungen aber bleibt bestehen. Es gilt nun über Innovationen neue Marktfelder zu erschließen, Chancen konsequent zu nutzen und gemeinsam daran zu arbeiten, Composites weiter in bestehenden Märkten zu implementieren. Dies kann gemeinsam oftmals besser gelingen als alleine. Composites Germany bietet mit seinem hervorragenden Netzwerk vielfältige Möglichkeiten.

Die nächste Composites-Markterhebung erscheint im Juli 2024.

Quelle:

Composites Germany

  Forschende um Bernd Nowack haben die Freisetzung von Nanopartikeln beim Waschen von Polyestertextilien untersucht. Bild: Empa
14.02.2024

Freisetzung von Oligomeren aus Polyester-Textilien

Wenn Nanoplastik keiner ist ... Textilien aus synthetischen Fasern geben beim Waschen Mikro- und Nanoplastik ab. Empa-Forschende konnten nun zeigen, dass ein Teil des vermeintlichen Nanoplastiks gar nicht aus Plastikpartikeln besteht, sondern aus wasserunlöslichen Oligomeren. Welche Auswirkungen sie auf Mensch und Umwelt haben, ist noch kaum erforscht.

Gebrauchsgegenstände aus Kunststoff und Kleider aus Kunstfasern setzen Mikroplastik frei: Partikel unter fünf Millimeter Größe, die unbemerkt in die Umwelt gelangen können. Ein kleiner Teil dieser Partikel befindet sich sogar im Nanometerbereich. Solcher Nanoplastik ist Gegenstand intensiver Forschung, denn aufgrund ihrer geringen Größe können Nanoplastik-Teilchen in den menschlichen Körper aufgenommen werden – über ihre potenzielle Toxizität ist jedoch noch wenig bekannt.

Wenn Nanoplastik keiner ist ... Textilien aus synthetischen Fasern geben beim Waschen Mikro- und Nanoplastik ab. Empa-Forschende konnten nun zeigen, dass ein Teil des vermeintlichen Nanoplastiks gar nicht aus Plastikpartikeln besteht, sondern aus wasserunlöslichen Oligomeren. Welche Auswirkungen sie auf Mensch und Umwelt haben, ist noch kaum erforscht.

Gebrauchsgegenstände aus Kunststoff und Kleider aus Kunstfasern setzen Mikroplastik frei: Partikel unter fünf Millimeter Größe, die unbemerkt in die Umwelt gelangen können. Ein kleiner Teil dieser Partikel befindet sich sogar im Nanometerbereich. Solcher Nanoplastik ist Gegenstand intensiver Forschung, denn aufgrund ihrer geringen Größe können Nanoplastik-Teilchen in den menschlichen Körper aufgenommen werden – über ihre potenzielle Toxizität ist jedoch noch wenig bekannt.

Empa-Forschende aus der Gruppe von Bernd Nowack aus dem Labor „Technologie und Gesellschaft" haben nun gemeinsam mit Kollegen aus China Nanopartikel aus Textilien unter die Lupe genommen. Tong Yang, Erstautor der Studie, hat die Untersuchungen während seines Doktorats an der Empa durchgeführt. Bereits in früheren Studien konnten die Empa-Forscher zeigen, dass beim Waschen von Polyester Mikro- und Nanoplastik freigesetzt wird. Eine genaue Untersuchung der freigesetzten Nanopartikel hat nun ergeben, dass nicht alles, was auf den ersten Blich nach Nanoplastik aussieht, auch tatsächlich Nanoplastik ist.

Zu einem beträchtlichen Teil handelte es sich tatsächlich nicht um Nanoplastik, sondern um Klumpen von sogenannten Oligomeren, also kleinen bis mittelgroßen Moleküle, die eine Zwischenstufe zwischen den langen verketteten Polymeren und ihren Einzelbausteinen, den Monomeren, darstellen. Diese Moleküle sind noch kleiner als Nanoplastik-Partikel. Auch über ihre Toxizität ist kaum etwas bekannt. Die Ergebnisse veröffentlichten die Forschenden in der Zeitschrift „Nature Water“.

Für die Studie haben die Forschenden zwölf unterschiedliche Polyesterstoffe untersucht, darunter etwa Mikrofaser, Satin und Jersey. Die Stoffproben wurden bis zu vier Mal gewaschen und die dabei freigesetzten Nanopartikel analysiert und charakterisiert. Keine einfache Aufgabe, sagt Bernd Nowack. „Plastik, vor allem Nanoplastik, ist überall, auch an unseren Geräten und Utensilien“, so der Wissenschaftler. „Bei Nanoplastik-Messungen müssen wir dieses 'Hintergrundrauschen' berücksichtigen.“

Großer Anteil löslicher Partikel
Um Nanoplastik von Oligomerklumpen zu unterscheiden, nutzten die Forschenden ein Ethanolbad. Plastikstückchen, egal wie klein, lösen sich darin nicht auf, Ansammlungen von Oligomeren dagegen schon. Der Befund: Rund ein Drittel bis knapp 90 Prozent der beim Waschen freigesetzten Nanopartikel ließen sich in Ethanol auflösen. „Dadurch konnten wir zeigen, dass nicht alles, was im ersten Moment nach Nanoplastik aussieht, auch Nanoplastik ist“, sagt Nowack.

Ob die Freisetzung von „nanopartikulären“ Oligomeren beim Waschen von Textilien negative Auswirkungen auf Mensch und Umwelt hat, ist noch nicht klar. „Bei anderen Kunststoffen haben Studien bereits gezeigt, dass nanopartikuläre Oligomere toxischer sind als Nanoplastik“, sagt Nowack. „Das ist ein Hinweis, dass man das genauer untersuchen sollte.“ Die Forschenden konnten jedoch feststellen, dass die Beschaffenheit des Textils sowie die Schnittmethode – Schere oder Laser – keinen großen Einfluss auf die Menge der freigesetzten Partikel haben.

Auch der Mechanismus der Freisetzung ist noch nicht geklärt – weder für Nanoplastik noch für die Oligomerpartikel. Die erfreuliche Nachricht ist, dass die Menge der freigesetzten Partikel mit wiederholten Waschgängen stark abnimmt. Denkbar wäre, dass die Oligomerpartikel bei der Herstellung des Textils entstehen oder sich durch chemische Prozesse bei der Lagerung von den Fasern abspalten. Auch hierzu sind weitere Studien notwendig.

Nowack und sein Team widmen sich jedoch vorerst wieder größeren Partikeln: In einem nächsten Projekt wollen sie untersuchen, welche Fasern beim Waschen von Textilien aus nachwachsenden Rohstoffen freigesetzt werden und ob diese die Umwelt und die Gesundheit belasten könnten. „Halbsynthetische Textilien wie Viskose oder Lyocell werden als Ersatz für Polyester angepriesen“, sagt Nowack. „Aber wir wissen noch gar nicht, ob sie wirklich besser sind, wenn es um die Freisetzung von Fasern geht.“

 

Quelle:

Empa

Bakterien, die Kunststoff essen und vielseitige Spinnenseide produzieren Foto: Kareni, Pixabay
05.02.2024

Plastikfressende Bakterien, die Spinnenseide produzieren

Wissenschaftler haben zum ersten Mal Bakterien eingesetzt, um Polyethylenabfälle „upzucyceln“: Mach Platz Spider-Man: Wissenschaftler des Rensselaer Polytechnic Institute haben einen Bakterienstamm entwickelt, der Plastikabfälle in biologisch abbaubare Spinnenseide mit vielfältigen Verwendungsmöglichkeiten verwandeln kann.

In ihrer neuen Studie haben Wissenschaftler zum ersten Mal Bakterien eingesetzt, um Polyethylen-Kunststoff - wie er in vielen Einwegartikeln verwendet wird - in ein hochwertiges Proteinprodukt umzuwandeln.

Dieses Produkt, das die Wissenschaftler aufgrund seiner Ähnlichkeit mit der Seide, mit der Spinnen ihre Netze spinnen, als "bio-inspirierte Spinnenseide" bezeichnen, kann in Textilien, Kosmetika und sogar in der Medizin eingesetzt werden.

Wissenschaftler haben zum ersten Mal Bakterien eingesetzt, um Polyethylenabfälle „upzucyceln“: Mach Platz Spider-Man: Wissenschaftler des Rensselaer Polytechnic Institute haben einen Bakterienstamm entwickelt, der Plastikabfälle in biologisch abbaubare Spinnenseide mit vielfältigen Verwendungsmöglichkeiten verwandeln kann.

In ihrer neuen Studie haben Wissenschaftler zum ersten Mal Bakterien eingesetzt, um Polyethylen-Kunststoff - wie er in vielen Einwegartikeln verwendet wird - in ein hochwertiges Proteinprodukt umzuwandeln.

Dieses Produkt, das die Wissenschaftler aufgrund seiner Ähnlichkeit mit der Seide, mit der Spinnen ihre Netze spinnen, als "bio-inspirierte Spinnenseide" bezeichnen, kann in Textilien, Kosmetika und sogar in der Medizin eingesetzt werden.

„Spinnenseide ist das Kevlar der Natur", sagte Helen Zha, Ph.D., Assistenzprofessorin für Chemie- und Bioingenieurwesen und eine der RPI-Forschenden, die das Projekt leiteten. „Sie kann unter Spannung fast so stark sein wie Stahl. Es hat jedoch eine sechsmal geringere Dichte als Stahl und ist daher sehr leicht. Als Biokunststoff ist es dehnbar, zäh, ungiftig und biologisch abbaubar.“

All diese Eigenschaften machen es zu einem großartigen Material für eine Zukunft, in der erneuerbare Ressourcen und die Vermeidung von anhaltender Plastikverschmutzung die Norm sind, so Zha.

Polyethylen-Kunststoffe, die in Produkten wie Plastiktüten, Wasserflaschen und Lebensmittelverpackungen enthalten sind, tragen weltweit am stärksten zur Plastikverschmutzung bei und brauchen bis zu 1.000 Jahre, um sich natürlich abzubauen. Nur ein kleiner Teil des Polyethylen-Kunststoffs wird recycelt, so dass die in der Studie verwendeten Bakterien dazu beitragen könnten, einen Teil des verbleibenden Abfalls „upzucyceln“.

Pseudomonas aeruginosa, das in der Studie verwendete Bakterium, kann auf natürliche Weise Polyethylen als Nahrungsquelle aufnehmen. Das RPI-Team stellte sich der Herausforderung, dieses Bakterium so zu steuern, dass es die Kohlenstoffatome des Polyethylens in ein genetisch kodiertes Seidenprotein umwandelt. Überraschenderweise stellten sie fest, dass ihre neu entwickelten Bakterien das Seidenprotein mit einer Effizienz herstellen konnten, die mit der einiger, üblicherweise in der Bioproduktion verwendeten Bakterienstämmen vergleichbar ist. Der biologische Prozess, der dieser Innovation zugrunde liegt, ist etwas, das die Menschen seit Jahrtausenden nutzen.

„Im Grunde genommen fermentieren die Bakterien den Kunststoff. Die Fermentierung wird zur Herstellung und Konservierung aller Arten von Lebensmitteln wie Käse, Brot und Wein verwendet, und in der biochemischen Industrie wird sie zur Herstellung von Antibiotika, Aminosäuren und organischen Säuren genutzt“, sagte Mattheos Koffas, Ph.D., Dorothy and Fred Chau ʼ71 Career Development Constellation Professor in Biocatalysis and Metabolic Engineering und der andere Wissenschaftler, der das Projekt leitet und zusammen mit Zha Mitglied des Center for Biotechnology and Interdisciplinary Studies in Rensselaer ist.

Damit die Bakterien Polyethylen fermentieren können, muss der Kunststoff zunächst „vorverdaut“ werden, so Zha. Genau wie wir Menschen unsere Nahrung in kleinere Stücke schneiden und kauen müssen, bevor unser Körper sie verwerten kann, haben die Bakterien Schwierigkeiten, die langen Molekülketten oder Polymere zu essen, aus denen Polyethylen besteht.

In der Studie arbeiteten Zha und Koffas mit Wissenschaftlern des Argonne National Laboratory zusammen, die den Kunststoff durch Erhitzen unter Druck depolymerisierten, wodurch eine weiche, wachsartige Substanz entstand. Anschließend trug das Team eine Schicht des aus dem Kunststoff gewonnenen Wachses auf die Böden der Kolben auf, die als Nährstoffquelle für die Bakterienkultur dienten. Dies unterscheidet sich von der üblichen Fermentation, bei der Zucker als Nährstoffquelle dient.

„Es ist, als würden wir die Bakterien nicht mit Kuchen füttern, sondern mit den Kerzen auf dem Kuchen“, so Zha.

Als dann der Inhalt der Kolben auf einer Wärmeplatte sanft umgewälzt wurde, gingen die Bakterien an die Arbeit. Nach 72 Stunden ließen die Wissenschaftler die Bakterien aus der flüssigen Kultur abtropfen, reinigten das Seidenprotein und gefriergetrockneten es. In diesem Stadium könnte das Protein, das zerrissenen Wattebällchen ähnelte, potenziell zu Garn gesponnen oder in andere nützliche Formen weiterverarbeitet werden.

„Das wirklich Spannende an diesem Prozess ist, dass er im Gegensatz zur heutigen Kunststoffproduktion wenig Energie verbraucht und keine giftigen Chemikalien benötigt“, so Zha. „Die besten Chemiker der Welt könnten Polyethylen nicht in Spinnenseide umwandeln, aber diese Bakterien können es. Wir machen uns wirklich zunutze, was die Natur entwickelt hat, um die Herstellung für uns zu übernehmen.“

Bevor jedoch Produkte aus recycelter Spinnenseide zur Realität werden, müssen die Wissenschaftler zunächst Wege finden, um das Seidenprotein effizienter herzustellen.
 
„Diese Studie zeigt, dass wir diese Bakterien verwenden können, um Plastik in Spinnenseide umzuwandeln. In unserer künftigen Arbeit werden wir untersuchen, ob wir die Bakterien oder andere Aspekte des Prozesses optimieren können, um die Produktion zu steigern“, sagte Koffas.

„Die Professoren Zha und Koffas repräsentieren die neue Generation von Chemie- und Bioingenieuren, die biologisches Engineering mit Materialwissenschaften zur Herstellung umweltfreundlicher Produkte verbinden. Ihre Arbeit ist ein neuartiger Ansatz zum Schutz der Umwelt und zur Verringerung unserer Abhängigkeit von nicht erneuerbaren Ressourcen“, sagte Shekhar Garde, Ph.D., Dekan der RPI School of Engineering.

Die Studie, die vom Erstautor Alexander Connor, der 2023 am RPI promoviert, und den Co-Autoren Jessica Lamb und Massimiliano Delferro vom Argonne National Laboratory durchgeführt wurde, wurde in der Zeitschrift „Microbial Cell Factories“ veröffentlicht.

Quelle:

Samantha Murray, Rensselaer

Foto: rottonara, Pixabay
29.01.2024

Naturalistische Seide aus künstlicher Spinndrüse gesponnen

Unter der Leitung von Keiji Numata ist es Wissenschaftlern des RIKEN Center for Sustainable Resource Science in Japan zusammen mit Kollegen des RIKEN Pioneering Research Cluster gelungen, ein Gerät zu entwickeln, das künstliche Spinnenseide spinnt, die der natürlichen Spinnenseide sehr ähnlich ist. Die künstliche Seidendrüse war in der Lage, die komplexe molekulare Struktur der Seide nachzubilden, indem sie die verschiedenen chemischen und physikalischen Veränderungen nachahmte, die in der Seidendrüse einer Spinne natürlich auftreten. Diese umweltfreundliche Innovation ist ein großer Schritt in Richtung Nachhaltigkeit und könnte für verschiedene Branchen relevant sein. Diese Studie wurde am 15. Januar in der Fachzeitschrift Nature Communications veröffentlicht.

Unter der Leitung von Keiji Numata ist es Wissenschaftlern des RIKEN Center for Sustainable Resource Science in Japan zusammen mit Kollegen des RIKEN Pioneering Research Cluster gelungen, ein Gerät zu entwickeln, das künstliche Spinnenseide spinnt, die der natürlichen Spinnenseide sehr ähnlich ist. Die künstliche Seidendrüse war in der Lage, die komplexe molekulare Struktur der Seide nachzubilden, indem sie die verschiedenen chemischen und physikalischen Veränderungen nachahmte, die in der Seidendrüse einer Spinne natürlich auftreten. Diese umweltfreundliche Innovation ist ein großer Schritt in Richtung Nachhaltigkeit und könnte für verschiedene Branchen relevant sein. Diese Studie wurde am 15. Januar in der Fachzeitschrift Nature Communications veröffentlicht.

Spinnenseide ist bekannt für ihre außergewöhnliche Stärke, Flexibilität und Leichtigkeit, vergleichbar mit Stahl desselben Durchmessers, aber mit einem unvergleichlichen Verhältnis von Stärke zu Gewicht. Darüber hinaus ist sie biokompatibel, d. h. sie kann in der Medizin eingesetzt werden, und biologisch abbaubar. Warum wird dann nicht alles aus Spinnenseide hergestellt? Die Gewinnung von Spinnenseide in großem Maßstab hat sich aus verschiedenen Gründen als unpraktisch erwiesen, so dass Wissenschaftler ein Verfahren entwickeln mussten, um sie im Labor herzustellen.

Spinnenseide ist eine Biopolymerfaser, die aus großen Proteinen mit sich stark wiederholenden Sequenzen, den sogenannten Spidroinen, besteht. In den Seidenfasern befinden sich molekulare Unterstrukturen, die so genannten β-Faltblätter, die richtig ausgerichtet sein müssen, damit die Seidenfasern ihre einzigartigen mechanischen Eigenschaften erhalten. Die Wiederherstellung dieser komplexen molekularen Struktur hat die Wissenschaftler jahrelang vor ein Rätsel gestellt. Anstatt zu versuchen, den Prozess von Grund auf neu zu entwickeln, wählten die RIKEN-Wissenschaftler den Ansatz der Biomimikry. Numata erklärt: „In dieser Studie haben wir versucht, die natürliche Spinnenseidenproduktion mit Hilfe der Mikrofluidik zu imitieren, bei der kleine Mengen von Flüssigkeiten durch enge Kanäle fließen und manipuliert werden. Man könnte sogar sagen, dass die Seidendrüse der Spinne als eine Art natürliches mikrofluidisches Gerät funktioniert.“

Das von den Wissenschaftlern entwickelte Gerät sieht aus wie ein kleiner rechteckiger Kasten, in den winzige Kanäle eingearbeitet sind. Die Spidroin-Vorläuferlösung wird an einem Ende platziert und dann mit Hilfe von Unterdruck zum anderen Ende gezogen. Während die Spidroine durch die mikrofluidischen Kanäle fließen, sind sie präzisen Veränderungen der chemischen und physikalischen Umgebung ausgesetzt, die durch das Design des mikrofluidischen Systems ermöglicht werden. Unter den richtigen Bedingungen bauten sich die Proteine selbst zu Seidenfasern mit ihrer charakteristischen komplexen Struktur auf.

Um die richtigen Bedingungen zu finden, experimentierten die Wissenschaftler und konnten schließlich die Wechselwirkungen zwischen den verschiedenen Bereichen des mikrofluidischen Systems optimieren. Unter anderem entdeckten sie, dass es nicht funktionierte, die Proteine mit Kraft durchzudrücken. Nur wenn sie Unterdruck einsetzten, um das Spidroin so zu ziehen, dass es sich auflöst, konnten kontinuierliche Seidenfasern mit der korrekten Ausrichtung der β-Faltblätter entstehen.

„Es war überraschend, wie robust das mikrofluidische System war, sobald die verschiedenen Bedingungen festgelegt und optimiert waren“, sagt der leitende Wissenschaftler Ali Malay, einer der Koautoren der Studie. „Der Aufbau der Fasern erfolgte spontan, extrem schnell und in hohem Maße reproduzierbar. Wichtig ist, dass die Fasern die ausgeprägte hierarchische Struktur aufwiesen, die in natürlichen Seidenfasern zu finden ist.“

Die künstliche Herstellung von Seidenfasern mit dieser Methode könnte zahlreiche Vorteile mit sich bringen. Sie könnte nicht nur dazu beitragen, die negativen Auswirkungen der derzeitigen Textilherstellung auf die Umwelt zu verringern, sondern die biologisch abbaubare und biokompatible Beschaffenheit der Spinnenseide macht sie ideal für biomedizinische Anwendungen wie Nahtmaterial und künstliche Bänder.

„Im Idealfall wollen wir eine Wirkung in der realen Welt erzielen“, sagt Numata. „Um dies zu erreichen, müssen wir unsere Faserproduktionsmethode skalieren und zu einem kontinuierlichen Prozess machen. Außerdem werden wir die Qualität unserer künstlichen Spinnenseide anhand verschiedener Metriken bewerten und auf dieser Grundlage weitere Verbesserungen vornehmen.“

Quelle:

RIKEN Center for Sustainable Resource Science, Japan

Foto: Walmart Inc.
15.01.2024

Was ist eine virtuelle Umkleide? Vorzüge und Pioniere

Eines der Hauptprobleme beim Online-Shopping ist, dass Verbraucher Produkte nicht anfassen, fühlen und erleben kann. Dieses Problem ist bei Modeprodukten noch schwieriger, da die richtige Passform für die Kaufentscheidung auschlaggebend ist. Die virtuelle Umkleide (Virtual Fitting Room, VFR), eine Technologie, die es den Verbrauchern ermöglicht, Größe und Passform zu testen, ohne die Kleidung anprobieren zu müssen, räumt mit dieser Sorge auf.

Was ist eine virtuelle Umkleide (VFR)?
Eine virtuelle Umkleide (VFR) ist eine Funktion, die das Outfit eines Kunden anzeigt und visualisiert, ohne dass er die Artikel physisch anprobieren und anfassen muss. VFR nutzt erweiterte Realität (Augmented Reality, AR) und künstliche Intelligenz (KI). Bei der Verwendung von AR für virtuelle Umkleiden scannt eine Webcam die Körperform der Kunden und erstellt ein 360-Grad-3D-Modell auf der Grundlage ihrer Körperform.

Eines der Hauptprobleme beim Online-Shopping ist, dass Verbraucher Produkte nicht anfassen, fühlen und erleben kann. Dieses Problem ist bei Modeprodukten noch schwieriger, da die richtige Passform für die Kaufentscheidung auschlaggebend ist. Die virtuelle Umkleide (Virtual Fitting Room, VFR), eine Technologie, die es den Verbrauchern ermöglicht, Größe und Passform zu testen, ohne die Kleidung anprobieren zu müssen, räumt mit dieser Sorge auf.

Was ist eine virtuelle Umkleide (VFR)?
Eine virtuelle Umkleide (VFR) ist eine Funktion, die das Outfit eines Kunden anzeigt und visualisiert, ohne dass er die Artikel physisch anprobieren und anfassen muss. VFR nutzt erweiterte Realität (Augmented Reality, AR) und künstliche Intelligenz (KI). Bei der Verwendung von AR für virtuelle Umkleiden scannt eine Webcam die Körperform der Kunden und erstellt ein 360-Grad-3D-Modell auf der Grundlage ihrer Körperform.

KI unterstützt VFR außerdem durch die Verwendung von Algorithmen und maschinellem Lernen, um ein 3D-Ganzkörpermodell eines vor der Kamera stehenden Käufers zu erstellen. Eine Kombination aus AR- und KI-Technologie ermöglicht es, Artikel auf Echtzeitbildern als Live-Video zu platzieren, sodass Kunden die Größe, den Stil und die Passform der Produkte, die sie kaufen möchten, überprüfen können.

Die Kunden können Kleidung und Schuhe zu Hause anprobieren, ohne ein Geschäft zu besuchen. Dazu müssen sie zunächst sicherstellen, dass sich die richtigen Einstellungen auf ihrem Telefon finden. Dann laden sie die mobilen Anwendungen einer Marke mit der Funktion VFR herunter oder besuchen die Websites von Bekleidungsmarken, die diese Funktion unterstützen, und laden dann ein Foto ihrer Körperform hoch. Bei einigen Marken können die Kunden einen Avatar mit ihrer Körperform erstellen, um die Modeartikel virtuell zu testen, anstatt ein Foto von sich selbst hochzuladen.

Welchen Nutzen hat der Einsatz einer virtuellen Umkleide für Modehändler?

  • Bietet ein bequemes Einkaufserlebnis
    Eine Studie der National Retail Federation aus dem Jahr 2020 hat ergeben, dass 97 % der Verbraucher einen Einkauf abgebrochen oder die Suche nach dem gewünschten Artikel unterbrochen haben, weil der Vorgang zu umständlich war.
    Die befragten Käufer gaben nicht nur an, dass das persönliche Einkaufen unbequem ist, sondern dass sie das Online-Shopping als noch unbequemer empfinden.
    Mit der VFR entfallen all diese Vorgänge. Die Kunden können in eine virtuelle Umkleide gehen und schnell sehen, wie die Kleidung aussieht, ohne sich umziehen zu müssen.
     
  • Überwindet die Grenzen des Online-Shoppings
    Im Jahr 2017 bevorzugten 62 % der Kunden den Einkauf in physischen Bekleidungsgeschäften, weil sie dort die Produkte sehen, anfassen, fühlen und erleben konnten. Dies war ein großes Problem, das das Online-Shopping nicht lösen konnte.
    VFR löst dieses Problem effektiv. Laut einem Retail Perceptions Report gaben etwa 40 % der Käufer an, dass sie bereit wären, mehr zu bezahlen, wenn sie das Produkt durch AR-Technologie erleben könnten. Durch die Integration neuer Technologien macht VFR das Einkaufen zum Vergnügen und bietet den Kunden ein personalisiertes Einkaufserlebnis, das mehr Menschen in die Online-Kanäle locken kann.
     
  • Reduziert die Rücksendequote
    Hohe Rücksendequoten bereiten den Modemarken große administrative Probleme. Außerdem drohen sie die Gewinne der Modemarken zu schmälern, wenn sie kostenlose Rücksendungen anbieten. 30 % der Rücksendungen beim Einkauf von Mode im elektronischen Handel sind auf den Kauf von Produkten in zu kleinen Größen zurückzuführen, weitere 22 % auf den Kauf von Produkten in zu großen Größen.
    Mit der VFR wird dieses Problem jedoch verringert. Ob im Geschäft oder online, Menschen können Passform und Größe von Artikeln überprüfen, ohne sie selbst tragen zu müssen.

Welche Marken nutzen bereits die VFR-Technologie?
Gucci

Gucci ist die erste Luxusmarke, die VFR einsetzt. Sie hat sich mit Snapchat zusammengetan, um eine AR-Kampagne zur Schuhanprobe zu starten. Dabei wurde eine virtuelle Linse erstellt, die eine digitale Version des Schuhs auf dem Fuß des Käufers überlagert, wenn dieser mit einer Handykamera fotografiert wird.

Zusammen mit dem "Shop Now"-Button, der die Kunden zum Online-Shop führt, erreichte Gucci 18,9 Millionen Snapchat-Nutzer und meldete einen positiven Return on Ad Spend (ROAS), eine Marketing-Kennzahl, die den Umsatz aller für die Kampagne ausgegebenen Werbegelder misst.

Otero Menswear
Otero Menswear ist eine Marke, die sich auf Bekleidung für Männer unter 1,78 m (5'10") konzentriert. Otero hat seinen Online-Shop um die VFR-Software erweitert, um seinen Kunden perfekt passende Größen anbieten zu können. Zunächst werden den Kunden vier kurze Fragen zu ihrer Größe, Beinlänge, Taillenumfang und ihrem Körpertyp gestellt. Dann wird ein virtueller Avatar angeboten, der den Antworten entspricht. Anhand dieses Avatars können die Kunden dann sehen, wie die Otero-Kleidung in verschiedenen Größen an ihnen aussehen würde.

Walmart
Im Mai 2021 kündigte Walmart die Übernahme von Zeekit, einer Plattform für virtuelle Umkleiden, an, um den Kunden während der Pandemie ein verbessertes und soziales Einkaufserlebnis bieten zu können.

Wenn Kunden Bilder von sich selbst hochladen und ihre Körpermaße eingeben, erstellt Zeekit einen virtuellen Körper, den die Kunden dann entsprechend anziehen können. Kunden stellen einfach ihre Fotos ein oder wählen virtuelle Modelle auf der Plattform aus, die am besten zu ihrer Größe, ihrem Körper und ihrem Hautton passen. Sie können ihre virtuelle Kleidung sogar mit anderen teilen, um verschiedene Meinungen einzuholen. Durch die Übernahme von VFR bietet Walmart seinen Kunden ein umfassendes und soziales Erlebnis beim digitalen Einkaufen.

Laut einer Studie von Valuates Reports wird erwartet, dass der Umsatz des globalen Marktes für virtuelle Umkleiden bis 2025 auf 6,5 Millionen Dollar ansteigen wird. Durch die Einführung der VFR werden die Verbraucher in der Lage sein, die Bequemlichkeit einer modernen Einkaufsumgebung zu erleben. Gleichzeitig können Modehändler ihren Online-Umsatz steigern und die Rücksendequote senken, indem sie ihren Kunden mithilfe der VFR-Technologie ein personalisiertes Online-Einkaufserlebnis bieten.

Quelle:

Heekyeong Jo und B. Ellie Jin
Dieser Artikel wurde ursprünglich von Mitgliedern des Wilson College of Textiles' Fashion Textile and Business Excellence Cooperative veröffentlicht

Chemiker entwickelt Kunststoffalternativen aus Proteinen und Kleiderresten Foto: Challa Kumar, emeritierter Professor für Chemie, in seinem Labor. (zur Verfügung gestelltes Foto)
21.12.2023

Chemiker entwickelt Kunststoffalternativen aus Proteinen und Kleiderresten

Challa Kumar hat Methoden zur Herstellung neuartiger kunststoffähnlicher Materialien aus Proteinen und Textilien entwickelt.

Jedes Jahr fallen weltweit 400 Millionen Tonnen Plastikmüll an. Zwischen 19 und 23 Millionen Tonnen dieses Plastikmülls gelangen in aquatische Ökosysteme, der Rest landet im Boden. Weitere 92 Millionen Tonnen Textilabfälle werden zusätzlich jährlich erzeugt.

Challa Kumar, emeritierter Chemieprofessor, war es leid, dass die Menschen immer mehr Giftmüll in die Umwelt pumpen und fühlte sich gezwungen, etwas zu tun. Für den Chemiker bedeutete dies, sein Fachwissen für die Entwicklung neuer, nachhaltiger Materialien einzusetzen.

Challa Kumar hat Methoden zur Herstellung neuartiger kunststoffähnlicher Materialien aus Proteinen und Textilien entwickelt.

Jedes Jahr fallen weltweit 400 Millionen Tonnen Plastikmüll an. Zwischen 19 und 23 Millionen Tonnen dieses Plastikmülls gelangen in aquatische Ökosysteme, der Rest landet im Boden. Weitere 92 Millionen Tonnen Textilabfälle werden zusätzlich jährlich erzeugt.

Challa Kumar, emeritierter Chemieprofessor, war es leid, dass die Menschen immer mehr Giftmüll in die Umwelt pumpen und fühlte sich gezwungen, etwas zu tun. Für den Chemiker bedeutete dies, sein Fachwissen für die Entwicklung neuer, nachhaltiger Materialien einzusetzen.

„Jeder sollte darüber nachdenken, wo immer er kann, auf fossilen Brennstoffen basierende Materialien durch natürliche zu ersetzen, um unserer Zivilisation zu helfen zu überleben", sagt Kumar. „Das Haus brennt, wir können nicht warten. Wenn das Haus brennt und man beginnt, einen Brunnen zu graben, dann wird das nicht funktionieren. Es ist an der Zeit, das Haus zu löschen.“

Kumar hat zwei Technologien entwickelt, die Proteine bzw. Textilien verwenden, um neue Materialien zu schaffen. Die Technology Commercialization Services (TCS) der UConn haben für beide Technologien vorläufige Patente angemeldet.

Inspiriert von der Fähigkeit der Natur, eine Vielzahl funktioneller Materialien zu konstruieren, entwickelten Kumar und sein Team eine Methode zur Herstellung stufenlos steuerbarer, ungiftiger Materialien.

„Die Chemie ist das Einzige, was uns in die Quere kommt“, so Kumar. „Wenn wir die Proteinchemie verstehen, können wir Proteinmaterialien herstellen, die so stark wie ein Diamant oder so weich wie eine Feder sind.“

Die erste Innovation ist ein Verfahren zur Umwandlung natürlich vorkommender Proteine in kunststoffähnliche Materialien. Kumars Student, Ankarao Kalluri '23 Ph.D., arbeitete an diesem Projekt.

Proteine haben „reaktive Gruppen“ auf ihrer Oberfläche, die mit Substanzen reagieren können, mit denen sie in Berührung kommen. Kumar und sein Team nutzten sein Wissen über die Funktionsweise dieser Gruppen, um Proteinmoleküle durch eine chemische Verbindung miteinander zu verknüpfen.

Bei diesem Prozess entsteht ein sogenannter Dimer - ein Molekül, das aus zwei Proteinen besteht. Anschließend wird das Dimer mit einem anderen Dimer zu einem Tetramer verbunden, und so weiter, bis ein großes 3D-Molekül entsteht. Dieser 3D-Aspekt der Technologie ist einzigartig, da die meisten synthetischen Polymere lineare Ketten aufweisen.

Dank dieser innovativen 3D-Struktur kann sich das neue Polymer wie ein Kunststoff verhalten. Genau wie die Proteine, aus denen es besteht, kann sich das Material dehnen, seine Form verändern und falten. So kann das Material mit Hilfe der Chemie für eine Vielzahl von spezifischen Anwendungen maßgeschneidert werden.

Da Kumars Material aus Proteinen und einer biologisch verbindenden Chemikalie besteht, kann es im Gegensatz zu synthetischen Polymeren biologisch abgebaut werden, so wie es pflanzliche und tierische Proteine natürlich tun.

„Die Natur baut Proteine ab, indem sie die Amidbindungen in ihnen aufspaltet“, sagt Kumar. „Sie verfügt über Enzyme, die diese Art von Chemie beherrschen. Wir haben die gleichen Amidbindungen in unseren Materialien. Die gleichen Enzyme, die in der Biologie arbeiten, sollten also auch bei diesem Material funktionieren und es auf natürliche Weise abbauen.“

Im Labor stellte das Team fest, dass sich das Material innerhalb weniger Tage in saurer Lösung zersetzt. Jetzt untersuchen sie, was passiert, wenn sie dieses Material im Boden vergraben, was das Los vieler Post-Consumer-Kunststoffe ist.

Sie haben gezeigt, dass das Material auf Proteinbasis eine Vielzahl von kunststoffähnlichen Produkten bilden kann, darunter Kaffeetassendeckel und dünne transparente Folien. Es könnte auch zur Herstellung von feuerfesten Dachziegeln oder höherwertigen Materialien wie Autotüren, Raketenspitzen oder Herzklappen verwendet werden.

Die nächsten Schritte für diese Technologie bestehen darin, ihre mechanischen Eigenschaften, wie Festigkeit oder Flexibilität, sowie ihre Toxizität weiter zu testen.

„Ich denke, wir brauchen ein soziales Bewusstsein dafür, dass wir keine toxischen Substanzen in die Umwelt bringen dürfen“, sagt Kumar. „Das geht einfach nicht. Wir müssen damit aufhören. Und wir können auch keine Materialien verwenden, die aus fossilen Brennstoffen stammen.“

Kumars zweite Technologie beruht auf einem ähnlichen Prinzip, verwendet aber nicht nur Proteine, sondern solche, die mit Naturfasern, insbesondere Baumwolle, verstärkt sind.

„Durch die sich schnell verändernde Modeindustrie entsteht jedes Jahr eine Menge Textilabfall“, sagt Kumar. „Warum sollten wir diese Abfälle nicht nutzen, um nützliche Materialien herzustellen - Abfall in Wohlstand umzuwandeln.“

Genau wie die kunststoffähnlichen Proteinmaterialien (Proteios, abgeleitet von den griechischen Originalwörtern) erwartet Kumar, dass die aus Proteinen und Naturfasern hergestellten Verbundmaterialien biologisch abbaubar sind, ohne toxische Abfälle zu produzieren.

Im Labor hat Kumars ehemaliger Student, der Doktorand Adekeye Damilola, viele Objekte aus Protein-Gewebe-Verbundstoffen hergestellt, darunter kleine Schuhe, Tische, Blumen und Stühle. Dieses Material enthält Textilfasern, die als Bindemittel für die Proteine dienen, und nicht die Vernetzungschemikalien, die Kumar für die proteinbasierten Kunststoffe verwendet.

Die Querverbindung verleiht dem neuartigen Material die Festigkeit, die es braucht, um dem Gewicht standzuhalten, das beispielsweise auf einem Stuhl oder Tisch lastet. Die natürliche Affinität zwischen Fasern und Proteinen ist der Grund, warum es so schwierig ist, Lebensmittelflecken aus der Kleidung zu entfernen. Die gleiche Anziehungskraft sorgt für starke Materialien aus Proteinfasern.

Kumars Team hat zwar bisher nur mit Baumwolle gearbeitet, geht aber davon aus, dass sich andere Fasermaterialien wie Hanffasern oder Jute aufgrund ihrer inhärenten, jedoch ähnlichen chemischen Eigenschaften wie Baumwolle auch so verhalten würden.

„Das Protein haftet auf natürliche Weise an der Oberfläche des Materials“, sagt Kumar. „Wir nutzten diese Erkenntnis, um zu sagen: 'Hey, wenn es sich so fest an Baumwolle bindet, warum machen wir dann nicht ein Material daraus? Und es funktioniert, es funktioniert erstaunlich."

Mit der Unterstützung von TCS sucht Professor Kumar derzeit nach Industriepartnern, um diese Technologien auf den Markt zu bringen. Für weitere Informationen wenden Sie sich bitte an Michael Invernale unter michael.invernale@uconn.edu.

Weitere Informationen:
Polymere Kunststoffe Naturfasern Baumwolle
Quelle:

Anna Zarra Aldrich '20 (CLAS), Büro des Vizepräsidenten für Forschung

Konzeptualisierung eines Laufschuhs aus einem Metamaterial. KI-generiert mit DALL-E (Visualisierung: ETH Zürich) Konzeptualisierung eines Laufschuhs aus einem Metamaterial. KI-generiert mit DALL-E (Visualisierung: ETH Zürich)
18.12.2023

KI für sicherere Fahrradhelme und bessere Schuhsohlen

Forschende haben eine künstliche Intelligenz so trainiert, dass sie die Struktur sogenannter Metamaterialien mit den gewünschten mechanischen Eigenschaften für verschiedene Anwendungsfälle entwerfen kann.

Forschende haben eine künstliche Intelligenz so trainiert, dass sie die Struktur sogenannter Metamaterialien mit den gewünschten mechanischen Eigenschaften für verschiedene Anwendungsfälle entwerfen kann.

  • ETH-Forschende haben mit Hilfe von künstlicher Intelligenz Metamaterialien entworfen, die ungewöhnliche oder außerordentliche Reaktionen auf komplexe Belastungen zeigen.
  • Ihr neues KI-Tool entschlüsselt die wesentlichen Merkmale der Mikrostruktur eines Metamaterials und sagt sein Verformungsverhalten präzise voraus.
  • Das Tool findet nicht nur optimale Mikrostrukturen, sondern umgeht auch zeitaufwändige technische Simulationen.

Fahrradhelme, die die Energie eines Aufpralls absorbieren, Laufschuhe, die jedem Schritt einen zusätzlichen Schub geben, oder Implantate, die die Eigenschaften von Knochen imitieren. Metamaterialien machen solche Anwendungen möglich. Ihre innere Struktur ist das Ergebnis eines sorgfältigen Designprozesses, wonach 3D-Drucker die generierten Strukturen mit optimierten Eigenschaften herstellen können. Forschende unter der Leitung von Dennis Kochmann, Professor für Mechanik und Materialforschung am Departement für Maschinenbau und Verfahrungstechnik der ETH Zürich, haben neuartige KI-Tools entwickelt. Diese umgehen den zeitaufwändigen und auf Intuition basierenden Designprozess von Metamaterialien und sagen stattdessen Strukturen mit außergewöhnlichen Eigenschaften schnell und automatisiert vorher. Ein Novum ist, dass diese Tools auch für große (sogenannte nichtlineare) Belastungen anwendbar sind, zum Beispiel wenn ein Helm bei einem Aufprall große Kräfte absorbiert.

Kochmanns Team gehört zu den Pionieren bei der Entwicklung kleiner zellulärer Strukturen (vergleichbar mit dem Gebälk in Fachwerkhäusern), um Metamaterialien mit besonderen Eigenschaften zu erschaffen. «Wir entwerfen zum Beispiel Metamaterialien, die sich wie Flüssigkeiten verhalten: schwer zu komprimieren, aber leicht zu verformen. Oder Metamaterialien, die in alle Richtungen schrumpfen, wenn sie in einer Richtung komprimiert werden», erklärt Kochmann.

Effiziente, optimale Materialgestaltung
Die Gestaltungsmöglichkeiten scheinen endlos. Das volle Potenzial von Metamaterialien hat die Wissenschaft allerdings noch lange nicht ausgeschöpft, da der Designprozess oft auf Erfahrung und Trial- and-Error beruht. Zudem können kleine Anpassungen in der Struktur zu großen Veränderungen der Eigenschaften führen.

In ihrer jüngsten Arbeit erkundeten die ETH-Forschenden mithilfe von KI systematisch die zahlreichen Designs und mechanischen Eigenschaften von zwei Metamaterialarten. Ihre Berechnungstools können auf Knopfdruck optimale Strukturen für gewünschte Verformungen vorhersagen. Hierzu verwendeten die Forschenden große Datensätze des Verformungsverhaltens realer Strukturen. Mit diesen trainierten sie ein KI-Modell, das die Daten nicht nur reproduziert, sondern auch neue Strukturen generieren und optimieren kann. Durch den Einsatz einer Methode, die als «Variational Autoencoder» bekannt ist, lernt die KI die wesentlichen Merkmale einer Struktur aus der großen Menge an Designparametern und wie sie zu bestimmten Eigenschaften führen. Sie nutzt anschließend dieses Wissen, um einen Metamaterial-Entwurf zu erstellen, sobald die Forschenden die gewünschten Eigenschaften und Anforderungen angeben.

Bausteine zusammensetzen
Li Zheng, eine Doktorandin in Kochmanns Gruppe, trainierte ein KI-Modell auf Basis eines Datensatzes von einer Million Strukturen und ihrer simulierten Verformung. «Stellen Sie sich eine riesige Kiste mit Legosteinen vor – man kann sie auf unzählige Arten anordnen und lernt mit der Zeit Designprinzipien. Ähnlich geht unsere KI vor, allerdings wesentlich effizienter. Sie setzt die Bausteine von Metamaterialien zusammen, um ihnen eine bestimmte Weichheit oder Härte zu verleihen», sagt Zheng. Im Gegensatz zu früheren Ansätzen, bei denen Forschende einen Katalog von Bausteinen als Grundlage für das Design verwendeten, können sie mit der neuen KI-Methode Bausteine fast beliebig hinzufügen, entfernen oder verschieben. Zusammen mit Sid Kumar, Assistenzprofessor an der TU Delft und ehemaliges Mitglied von Kochmanns Team, zeigten sie in einer kürzlich veröffentlichten Studie, dass das KI-Modell über das hinausgehen kann, wofür es trainiert wurde, und Strukturen vorhersagen kann, die leistungsfähiger sind als alles bisher Generierte.

Von Videos lernen
Jan-Hendrik Bastek, der ebenfalls Doktorand in Kochmanns Gruppe ist, verfolgte einen anderen Ansatz, um ähnliches zu erreichen. Er verwendete eine Methode, die Videodiffusion heißt und auch bei der KI-basierten Videogenerierung benutzt wird: Tippt man «ein Elefant fliegt über Zürich» ein, generiert die KI ein realistisches Video des Tieres, das über der Fraumünsterkirche kreist. Bastek trainierte sein KI-System mit 50’000 Videosequenzen von sich verformenden 3D-druckbaren Metamaterial-Strukturen. «Ich kann der KI die gewünschte Verformung vorgeben und sie produziert ein Video der optimalen Materialstruktur sowie deren vollständige Verformungsreaktion», erklärt Bastek. Bisherige Ansätze haben sich meist darauf beschränkt, ein einziges Bild der optimalen Struktur vorherzusagen. Durch die Nutzung von Videos des gesamten Verformungsprozesses, erhöht sich die Genauigkeit deutlich in solch komplexen Szenarien.

Große Vorteile für Fahrradhelme und Schuhsohlen
Die ETH-Wissenschaftler:innen haben ihre KI-Tools Forschenden auf dem Gebiet der Metamaterialien frei zur Verfügung gestellt. Somit werden sie hoffentlich zum Entwurf vieler neuer und ungewöhnlicher Materialien führen. Die Tools eröffnen neue Wege für die Entwicklung von Schutzausrüstungen wie Fahrradhelmen und für weitere Anwendungen von Metamaterialien von der Medizintechnik bis hin zu weichen Robotern. Sogar Schuhsohlen können so gestaltet werden, dass sie beim Laufen Stöße besser absorbieren oder beim Auftreten einen Schub nach vorne geben. Wird die KI die manuelle Entwicklung von Materialien vollständig ersetzen? «Nein», lacht Kochmann. «Gut eingesetzt kann KI ein hocheffizienter und fleißiger Helfer sein, aber man muss ihr die richtigen Anweisungen geben und sie richtig trainieren – und das erfordert wissenschaftliche Grundlagen und ingenieurwissenschaftliches Knowhow.»

Quelle:

ETH Zürich