From the Sector

Reset
81 results
(c) nova-Institut GmbH
24.01.2023

Six nominees for„Cellulose Fibre Innovation of the Year 2023“

For the third time, nova-Institute awards the “Cellulose Fibre Innovation of the Year” award in the frame of the “Cellulose Fibres Conference 2023” (8-9 March 2023). The conference advisory board nominated six remarkable products, including cellulose fibres from textile waste, banana production waste and bacterial pulp, a novel technology for producing lyocell yarns and a hygiene product. The innovations will be put to the vote of the conference audience on the first day of the event, with the awards ceremony taking place in the evening. The innovation award “Cellulose Fibre Innovation of the Year 2023” is sponsored by GIG Karasek (AT).

For the third time, nova-Institute awards the “Cellulose Fibre Innovation of the Year” award in the frame of the “Cellulose Fibres Conference 2023” (8-9 March 2023). The conference advisory board nominated six remarkable products, including cellulose fibres from textile waste, banana production waste and bacterial pulp, a novel technology for producing lyocell yarns and a hygiene product. The innovations will be put to the vote of the conference audience on the first day of the event, with the awards ceremony taking place in the evening. The innovation award “Cellulose Fibre Innovation of the Year 2023” is sponsored by GIG Karasek (AT).

Here are the six nominees
Vybrana – The new generation banana fibre – GenCrest Bioproducts (India)

Vybrana is a Gencrest’s Sustainable Cellulosic Fibre upcycled from agrowaste. Raw fibres are extracted from the Banana Pseudo stem at the end of the plant lifecycle. The biomass waste is then treated by the Gencrest patented Fiberzyme technology. Here, cocktail enzyme formulations remove the high lignin content and other impurities and help fibre fibrillation. The company's proprietary cottonisation process provides fine, spinnable cellulose staple fibres suitable for blending with other staple fibres and can be spun on any conventional spinning systems giving yarns sustainable apparel. Vybrana is produced without the use of heavy chemicals and minimized water consumption and in a waste-free process where balance biomass is converted to bio stimulants Agrosatva and Bio Fertilizers & organic manure.

HeiQ AeoniQ™ – technology for more sustainability of textiles – HeiQ (Austria)
HeiQ AeoniQ™ is the disruptive technology and key initiative from HeiQ with the potential to change the sustainability of textiles. It is the first climate-positive continuous cellulose filament yarn, made in a proprietary manufacturing process and the first to reproduce the properties of polyester and nylon yarns in a cellulosic, biodegradable, and endlessly recyclable fibre.
HeiQ AeoniQ™ can be manufactured from different cellulosic raw materials such as pre- and post-consumer textile waste, biotech cellulose, and non-valorized agricultural waste, such as ground coffee waste or banana peels. It naturally degrades after only 12 weeks in the soil. Each ton of HeiQ AeoniQ™ saves 5 tons of CO2 emissions. The first garments made with this innovative cellulosic filament fiber were commercially launched in January 2023.

TENCEL™ LUXE – lyocell filament yarn – Lenzing (Austria)
TENCEL™ LUXE is LENZING’s new versatile lyocell yarn that offers an urgently needed sustainable filament solution for the textile and fashion industry. A possible botanical alternative for silk, long-staple cotton, and petrol-based synthetic filaments, is derived from wood grown in renewable, sustainably managed forests, and produced in an environmentally sound, closed-loop process that recycles water and reuses more than 99 % of organic solvent. Certified by The Vegan Society, it is suitable for a wide range of applications and fabric developments, from finer high fashion propositions to denim constructions, seamless and activewear innovations, and even agricultural and technical solutions.

Nullarbor™ – Nanollose & Birla Cellulose (Australia/India)
In 2020, Nanollose & Birla Cellulose started a journey to develop and commercialize tree-free lyocell from bacterial cellulose, called Nullarbor™. The name derives from the Latin “nulla arbor” which means “no trees”. Initial lab research at both ends led to a joint patent application with the patent “production of high-tenacity lyocell fibres made from bacterial cellulose”.
Nullarbor is significantly stronger than lyocell made from wood-based pulp; even adding small amounts of bacterial cellulose to wood pulp increases the fibre toughness. In 2022, the first pilot batch of 260kg was produced with 20 % bacterial pulp share. Several high-quality fabrics and garments were produced with this fibre. The collaboration between Nanollose & Birla Cellulose now focuses on increasing the production scale and amount of bacterial pulp in the fibre.

Circulose® – makes fashion circular – Renewcell (Sweden)
Circulose® made by Renewcell is a branded dissolving pulp made from 100 % textile waste, like worn-out clothes and production scraps. It provides a unique material for fashion that is 100 % recycled, recyclable, biodegradable, and of virgin-equivalent quality. It is used by fibre producers to make staple fibre or filaments like viscose, lyocell, modal, acetate or other types of man-made cellulosic fibres. In 2022, Renewcell, opened the world’s first textile-to-textile chemical recycling plant in Sundsvall, Sweden – Renewcell 1. The plant will eventually reach 120,000 tons of annual capacity.

Sparkle sustainable sanitary pads – Sparkle Innovations (United States)
Globally, around 300 billion period products are discarded every year, resulting in millions of tons of non-biodegradable waste. Since most conventional sanitary pads contain up to 90 % plastics, they do not biodegrade for around 600 years. Sparkle has designed sustainable, plastic-free, biodegradable and compostable Sparkle sanitary pads. From product to packaging, they are made up of around 90 % cellulose-based materials with top sheet, absorbent core, release paper, wrapping paper and packaging made of cellulose-based fibres. Whether Sparkle pads end up in a compost pit, are incinerated or end up in a landfill, they are a more sustainable alternative compared to conventional pads that contain large amounts of plastics, complex petro-chemical based ingredients and artificial fragrances. When tested according to ISO 14855-1 by a leading independent lab in Europe, Sparkle pads reached over 90 % absolute biodegradation within 90 days in commercial composting conditions.

Photo HeiQ Materials AGHugo Boss
BOSS x HeiQ AeoniQ™ Polo Shirt
16.01.2023

HUGO BOSS: First Polo Shirt with HeiQ AeoniQ™ fiber

The German premium fashion company HUGO BOSS presents the first product made with HeiQ AeoniQ™ fiber - a seamless high-performance Polo Shirt.

The product is crafted with 87% HeiQ AeoniQ™, a cellulosic yarn created from certified wood pulp, one of the many renewable raw materials it can be made of, featuring the same performance attributes as polyester.
 
This new style is part of the BOSS Green collection line, designed for urban environments with BOSS’ renowned performance-driven qualities and worn by Italian tennis player Matteo Berrettini. 

The German premium fashion company HUGO BOSS presents the first product made with HeiQ AeoniQ™ fiber - a seamless high-performance Polo Shirt.

The product is crafted with 87% HeiQ AeoniQ™, a cellulosic yarn created from certified wood pulp, one of the many renewable raw materials it can be made of, featuring the same performance attributes as polyester.
 
This new style is part of the BOSS Green collection line, designed for urban environments with BOSS’ renowned performance-driven qualities and worn by Italian tennis player Matteo Berrettini. 

More information:
Hugo Boss HeiQ AeoniQ polyester
Source:

HeiQ Materials AG

Photo Pure Denim
03.01.2023

PureDenim & Bemberg ™: “Blue di Cupro” collection at Pitti Uomo

In occasion of the next edition of Pitti Uomo, Bemberg™ by Asahi Kasei – the unique fiber with a circular economy footprint obtained from cotton linters through a closed-loop process ensuring certified sustainability credentials through its transparent and traceable approach- reveals a very special Bemberg™ fabrics smart range dedicated to premium denimwear.

In occasion of the next edition of Pitti Uomo, Bemberg™ by Asahi Kasei – the unique fiber with a circular economy footprint obtained from cotton linters through a closed-loop process ensuring certified sustainability credentials through its transparent and traceable approach- reveals a very special Bemberg™ fabrics smart range dedicated to premium denimwear.

This has been made possible thanks to the partnership with PureDenim, a leading Italian company whose strategy since 10 years is based on an entire re-design of the production system, inspired by circular economy principles that combines technology and innovative materials in order to offer the highest levels of design, innovation and real responsible values derived from an holistic approach to sustainability.
The “Blue di Cupro” collection is made with seven fabrics made with Bemberg™, either 100% Bemberg™ or in blend with cotton, wool, and it applies the most advanced Pure Denim Technologies. The Blue di cupro fabrics made with Bemberg™ will also be dyed with “Smart Indigo” an indigo dye technology internally produced by PureDenim, through a chemical-free production. The only elements involved are: water, indigo pigments, and electricity. In terms of finishing, fabrics’ looks and performances are enhanced by the “Eco Sonic” ultrasounds finishing technology which brings significant reduction of water used, increased aesthetic features and controlled discoloration. And last but not least every yarn used at PureDenim is protected by NaturalReco® a 100% natural product that completely SUBSTITUTE the use of plastic films that are one of the key causes of microplastic emission for denim application.

“Blue” seems to be the new colour of Bemberg™, in fact, the company in early November 2022 announced, at the Blue Friday initiative by UNESCO's Intergovernmental Oceanographic Commission (IOC), the achievement of the OK biodegradable MARINE certification, which guarantees the biodegradability of its products even in the marine environment, as certified by TÜV AUSTRIA, meaning a lot in the context of microplastics in water issue solutions. This Bemberg™ certification’s achievement comes on top of other key ones such as the INNOVHUB report that confirms Bemberg™ biodegradability in soil without releasing hazardous substances, the RCS by Textile Exchange, and the Oeko-Tex Standard 100 and ISO 14001 corporate certifications.

Source:

C.L.A.S.S.

30.12.2022

Trio of textile fairs rescheduled to end of March

In view of the easing of pandemic restriction policies in China, the Spring Editions of Intertextile Shanghai Apparel Fabrics, Yarn Expo and Intertextile Shanghai Home Textiles have been moved to the new timeslot of 28 – 30 March 2023. This will allow both local and international fairgoers more time to prepare for their participation, with a higher industry turnout now expected at the three fairs. The fairs will still be located at the National Exhibition and Convention Center in Shanghai where they were originally due to be held from 8 – 10 March.

Discussing the change of dates, Ms Wilmet Shea, Deputy General Manager of Messe Frankfurt (HK) Ltd explained: “After talking to our stakeholders, we believe adjusting the spring show dates to the end of March is the right move. It provides enough time for exhibitors and visitors from local and abroad to plan for the fairs and capitalise on the ample international business opportunities brought by the reopening of China’s border.”

In view of the easing of pandemic restriction policies in China, the Spring Editions of Intertextile Shanghai Apparel Fabrics, Yarn Expo and Intertextile Shanghai Home Textiles have been moved to the new timeslot of 28 – 30 March 2023. This will allow both local and international fairgoers more time to prepare for their participation, with a higher industry turnout now expected at the three fairs. The fairs will still be located at the National Exhibition and Convention Center in Shanghai where they were originally due to be held from 8 – 10 March.

Discussing the change of dates, Ms Wilmet Shea, Deputy General Manager of Messe Frankfurt (HK) Ltd explained: “After talking to our stakeholders, we believe adjusting the spring show dates to the end of March is the right move. It provides enough time for exhibitors and visitors from local and abroad to plan for the fairs and capitalise on the ample international business opportunities brought by the reopening of China’s border.”

(c) FET
Business Secretary Grant Shapps discusses FET’s wet spinning system with Mark Smith, FET R&D Manager
16.12.2022

FET extrusion system features in UK Business Secretary’s visit

The UK’s new Business Secretary, Grant Shapps has visited the Henry Royce Institute’ hub in Manchester to seal the second phase of R&D investment in the institute of £95 million. Fibre Extrusion Technology Limited (FET) of Leeds, England had previously installed its FET-200LAB wet spinning system at the University of Manchester site and this proved to be a focus for the Business Secretary’s interest, as he discussed the project with FET’s Research and Development Manager, Mark Smith.

This wet spinning technology enables fibres to be derived from sustainable wood pulp to produce high quality apparel and trials are now underway to perfect this process. FET is a world leading supplier of laboratory and pilot melt spinning systems, having successfully processed more than 35 different polymer types in multifilament, monofilament and nonwoven formats.

During his visit, Shapps spoke of the investment programme as a means of reinforcing the UK’s standing as a leader in advanced materials research, development and innovation.

The UK’s new Business Secretary, Grant Shapps has visited the Henry Royce Institute’ hub in Manchester to seal the second phase of R&D investment in the institute of £95 million. Fibre Extrusion Technology Limited (FET) of Leeds, England had previously installed its FET-200LAB wet spinning system at the University of Manchester site and this proved to be a focus for the Business Secretary’s interest, as he discussed the project with FET’s Research and Development Manager, Mark Smith.

This wet spinning technology enables fibres to be derived from sustainable wood pulp to produce high quality apparel and trials are now underway to perfect this process. FET is a world leading supplier of laboratory and pilot melt spinning systems, having successfully processed more than 35 different polymer types in multifilament, monofilament and nonwoven formats.

During his visit, Shapps spoke of the investment programme as a means of reinforcing the UK’s standing as a leader in advanced materials research, development and innovation.

“R&D investment is a critical way to turbocharge Britain’s growth. Growing an economy fit for the future means harnessing the full potential of advanced materials, making science fiction a reality by supporting projects from regenerative medicine to robots developing new recycling capabilities, right across the country. Today’s £95 million investment will do just that, bringing together the brightest minds across our businesses and institutions to help future-proof sectors from healthcare to nuclear energy.”

The Henry Royce Institute was established in 2015 with an initial £235 million government investment through the Engineering and Physical Sciences Research Council and the latest £95 million sum represents the second phase of the investment.

Opportunities being investigated by Royce include lightweight materials and structures, biomaterials and materials designed for reuse, recycling and remanufacture. Advanced materials are critical to the UK future in various industries, such as health, transport, energy, electronics and utilities.

Photo VDMA
12.12.2022

Young Talent Award for AI supported production control of carbon fibres

  • Formula 1 cars will be cheaper in future

Carbon is the stuff Formula 1 cars are made of, at least the bodywork. But until now, carbon has been expensive. It can be produced more cheaply and efficiently if artificial intelligence monitors the production processes. A camera system combined with artificial intelligence automatically detects defects in the production of carbon fibres. This makes expensive manual inspection of the carbon fibres obsolete and the production price of the carbon fibre can be reduced in the long term.

For this idea, the young engineer Deniz Sinan Yesilyurt received the second prize of the "Digitalisation in Mechanical Engineering" Young Talent Award on 6 December.

  • Formula 1 cars will be cheaper in future

Carbon is the stuff Formula 1 cars are made of, at least the bodywork. But until now, carbon has been expensive. It can be produced more cheaply and efficiently if artificial intelligence monitors the production processes. A camera system combined with artificial intelligence automatically detects defects in the production of carbon fibres. This makes expensive manual inspection of the carbon fibres obsolete and the production price of the carbon fibre can be reduced in the long term.

For this idea, the young engineer Deniz Sinan Yesilyurt received the second prize of the "Digitalisation in Mechanical Engineering" Young Talent Award on 6 December.

Carbon fibres are sought after because of their good properties. They are very light - they weigh up to 50 percent less than aluminium. The combination of low weight and good mechanical properties offers many advantages. Especially in times of the energy transition, lightweight materials like carbon are more relevant than ever before. At the same time, carbon fibres are as resistant to external stresses as metals. However, achieving these good properties of carbon fibres is very complex.


Up to 300 individual fibre strands - bundles of individual fibres - have to be monitored simultaneously during production. If carbon fibres tear, it costs time and money to sort out the damaged fibres. This is just one example of various defects that can occur in the fibres during production.


Therefore, Deniz Sinan Yesilyurt attached a camera to the carbon fibre line that takes pictures of various fibre defects during production and collects them in a database. The artificial intelligence in the camera's information technology system evaluates the fibre defects by assigning the images to predefined reference defects. In doing so, it recognises various fibre defects with a classification accuracy of 99 per cent. The process can also be used in other areas that produce chemical fibres.

Deniz Sinan Yesilyurt received the prize from the German Engineering Federation (VDMA) in Frankfurt am Main, Germany. He is a Bachelor's graduate at the Institut für Textiltechnik (ITA) of RWTH Aachen University. The full title of his bachelor's thesis is: "Development of a Kl-supported process monitoring using machine learning to detect fibre damage in the stabilisation process". The VDMA awarded the prize to a total of four theses from different universities. The prize is awarded for outstanding theses and was offered in Germany, Austria and Switzerland.

Source:

ITA – Institut für Textiltechnik of RWTH Aachen Universit

Photo: Alexander Donka
08.12.2022

Lenzing and Renewcell sign large-scale supply agreement

The Lenzing Group, a leading supplier of sustainably produced specialty fibers, and Renewcell, the Swedish textile-to-textile recycling pioneer, have signed a multi-year supply agreement to accelerate the transition of the textile industry from a linear to a circular business model. The agreement contains the sale of 80,000 to 100,000 tonnes of Renewcell’s 100 per cent recycled textile Circulose® dissolving pulp to Lenzing over a five-year period, for use in the production of cellulosic fibers for fashion and other textile applications.

“The textile industry must change. By signing the agreement with Swedish textile-to-textile recycling company Renewcell, Lenzing is able to further integrate recycling and accelerate the transition of the textile industry from linear to circular. As champions of sustainability, we know that moving towards a circular economy is vital to address the enormous textile waste challenges of the industry”, says Christian Skilich, Chief Pulp Officer of the Lenzing Group.

The Lenzing Group, a leading supplier of sustainably produced specialty fibers, and Renewcell, the Swedish textile-to-textile recycling pioneer, have signed a multi-year supply agreement to accelerate the transition of the textile industry from a linear to a circular business model. The agreement contains the sale of 80,000 to 100,000 tonnes of Renewcell’s 100 per cent recycled textile Circulose® dissolving pulp to Lenzing over a five-year period, for use in the production of cellulosic fibers for fashion and other textile applications.

“The textile industry must change. By signing the agreement with Swedish textile-to-textile recycling company Renewcell, Lenzing is able to further integrate recycling and accelerate the transition of the textile industry from linear to circular. As champions of sustainability, we know that moving towards a circular economy is vital to address the enormous textile waste challenges of the industry”, says Christian Skilich, Chief Pulp Officer of the Lenzing Group.

“Lenzing is a major player in our industry, with an inspiring track record of path-breaking technical excellence and sustainability leadership. Our new partnership fits perfectly into Renewcell’s strategy to accelerate the scale-up of circular materials by collaborating with fashion’s most important players. We are more than pleased to join forces with Lenzing with the shared goal of making fashion circular.” said Patrik Lundström, CEO of Renewcell, in a comment on the agreement.

Canopy, a not-for-profit environmental organization dedicated to protecting forests, species, and climate, welcomes the agreement between Lenzing and Renewcell.
“Accelerating the transition to low-impact, circular production is the challenge of the decade for the fashion industry. That is why this partnership between Renewcell and Lenzing is so refreshing – it will bring low-carbon Next Gen solutions to market at scale,” exclaimed Nicole Rycroft, Executive Director of Canopy. “With the climate and biodiversity clocks ticking, the race to circularity is one we need all companies to win.”
 
It is an essential part of Lenzing’s corporate strategy and ambitious sustainability targets to become a true champion of circularity and to offer TENCEL™ and LENZING™ ECOVERO™ branded specialty textile fibers with up to 50 percent post-consumer recycled content on a commercial scale by 2025. To reach this goal Lenzing partners with recycling pioneers like Renewcell.
Circulose® originates 100 per cent from textile waste, like old jeans and production scraps, and turns into dissolving pulp. It transforms textile waste and production scrap into new high-quality textile products.

Source:

Lenzing AG / Renewxell

FET-200LAB wet spinning system Photo: Fibre Extrusion Technology Limited (FET)
21.11.2022

FET wet spinning system selected for major fibre research programme

Fibre Extrusion Technology Limited (FET) of Leeds, England has installed a FET-200LAB wet spinning system at the University of Manchester which will play a major part in advanced materials research to support sustainable growth and development.

This research programme will be conducted by The Henry Royce Institute, which operates as a hub model at The University of Manchester with spokes at other leading research universities in the UK.

The Henry Royce Institute identifies challenges and stimulates innovation in advanced UK materials research, delivering positive economic and societal impact. In particular, this materials research initiative is focused on supporting and promoting all forms of sustainable growth and development.
These challenges range from biomedical devices through to plastics sustainability and energy-efficient devices; hence supporting key national targets such as the UK’s zero-carbon 2050 target.

Fibre Extrusion Technology Limited (FET) of Leeds, England has installed a FET-200LAB wet spinning system at the University of Manchester which will play a major part in advanced materials research to support sustainable growth and development.

This research programme will be conducted by The Henry Royce Institute, which operates as a hub model at The University of Manchester with spokes at other leading research universities in the UK.

The Henry Royce Institute identifies challenges and stimulates innovation in advanced UK materials research, delivering positive economic and societal impact. In particular, this materials research initiative is focused on supporting and promoting all forms of sustainable growth and development.
These challenges range from biomedical devices through to plastics sustainability and energy-efficient devices; hence supporting key national targets such as the UK’s zero-carbon 2050 target.

FET-200 Series wet spinning systems complement FET’s renowned range of melt spinning equipment. The FET-200LAB is a laboratory scale system, which is especially suitable for the early stages of formulation and process development. It is used for processing new functional textile materials in a variety of solvent and polymer combinations.

In particular, the FET-200LAB will be utilised in trials for a family of fibres made from wood pulp, a sustainable resource rather than the usual fossil fuels. Bio-based polymers are produced from biomass feedstocks such as cellulose and are commonly used in the manufacture of high end apparel. The key to cellulose and other materials like lyocell and viscose is that they can be recycled, treated and fed back into the wet spinning system for repeat manufacture.

Established in 1998, FET is a leading supplier of laboratory and pilot melt spinning systems with installations in over 35 countries and has now successfully processed more than 35 different polymer types in multifilament, monofilament and nonwoven formats.

Source:

DAVID STEAD PROJECT MARKETING LTD

(c) POLARYSE
18.11.2022

Grand Largue Composites and Sicomin enable flax-fibre-built Racing Yacht

Fibres, fabrics, epoxy resins and adhesives from Sicomin have been used by Grand Largue Composites (GLC) to construct the first Class40 racing yacht to feature a significant quantity of flax-fibre reinforcements.
The yacht, called Crosscall, won the Class40 World Championships in June 2022 and is a prototype of the new Lift V2 design by Marc Lombard, one of the leading naval architects in this field.

Class40 is one of the most competitive fleets in yacht racing. The hulls of Class40 yachts must be light in weight, strong and stiff, and durable in the most extreme of conditions. Furthermore, to keep costs down, they cannot be reinforced with carbon fibres. The quality and reliability of the resins used for the infusion and lamination of the hulls are therefore of paramount importance.

Fibres, fabrics, epoxy resins and adhesives from Sicomin have been used by Grand Largue Composites (GLC) to construct the first Class40 racing yacht to feature a significant quantity of flax-fibre reinforcements.
The yacht, called Crosscall, won the Class40 World Championships in June 2022 and is a prototype of the new Lift V2 design by Marc Lombard, one of the leading naval architects in this field.

Class40 is one of the most competitive fleets in yacht racing. The hulls of Class40 yachts must be light in weight, strong and stiff, and durable in the most extreme of conditions. Furthermore, to keep costs down, they cannot be reinforced with carbon fibres. The quality and reliability of the resins used for the infusion and lamination of the hulls are therefore of paramount importance.

Crosscall's cockpit was designed to be effectively non-structural, with the mainsheet, which can generate huge shock loads, supported separately. This would allow the cockpit to be made from a hybrid biaxial fabric comprising 50% flax fibres. Other parts of the boat that incorporate flax fibre include the tunnel, the engine cover, the ballast tanks and the cap. The rest of the boat is reinforced with 100% glass-fibre fabrics.

To help it realise this ambitious design, GLC, an infusion specialist, turned to its long-time material supplier, Sicomin. The hull was moulded and infused in one piece and the deck – including the hybrid flax-fibre cockpit – was also infused as a single part. The internal structure was then laminated into the hull by hand before the hull and deck were finally bonded together.

The infusion resin selected was Sicomin’s SR 1710, a high-modulus structural epoxy. Designed specifically for use in infusion and injection processes, it has exceptionally low viscosity and its low-reactivity hardener makes it suitable for the production of large parts. Composites components made from SR 1710 possess high interlaminar shear-strength and the resin retains its mechanical properties in wet environments.

Sicomin’s low-toxicity SR 8200 was used to laminate the internal structures onto the skin of the hull. Ideal for hand laminating, this system includes a choice of hardeners with a wide range of reactivities, which makes it equally suitable for making large or small parts. The hull and deck were joined together with Sicomin’s Isobond SR 7100, which demonstrates high fatigue strength and is very resistant to microcracking.

An epoxy bonding primer – called Undercoat EP 215 HB+ and supplied by Sicomin’s sister company, Map Yachting – was applied to the moulds first to make demoulding easier. It also serves as an undercoat in the polyurethane exterior paint system that is used instead of gelcoat to protect the epoxy hull from UV damage.

Since the launch of Crosscall, GLC has started building a second Lift V2 Class40 and a third one is now planned, both for which Sicomin will supply the materials.

Source:

Sicomin / 100% Marketing

(c) Zünd Systemtechnik AG
25.10.2022

Zünd: Heat Sealing Module – HSM receives composites industry award

At the recent CAMX 2022 Composites and Advanced Materials Expo in Anaheim, California, The Heat Sealing Module – HSM from Zünd was recognized with an Unsurpassed Innovation Award. The HSM significantly facilitates the processing and handling of dry fiber materials with thermoplastic content. This new tool is Zünd’s answer to a demand in the composites industry for wider-spread use and easier processing of these types of materials.

The American Composites Manufacturing Association, ACMA, proclaimed the Heat Sealing Module – HSM the winner of the ACE Award for Unsurpassed Innovation in the “Manufacturing: Equipment and Tooling” category. This award is presented annually to equipment, tooling, a production aid, or software designed to improve manufacturing production, environmental sustainability, or product quality and performance in composites manufacturing.

At the recent CAMX 2022 Composites and Advanced Materials Expo in Anaheim, California, The Heat Sealing Module – HSM from Zünd was recognized with an Unsurpassed Innovation Award. The HSM significantly facilitates the processing and handling of dry fiber materials with thermoplastic content. This new tool is Zünd’s answer to a demand in the composites industry for wider-spread use and easier processing of these types of materials.

The American Composites Manufacturing Association, ACMA, proclaimed the Heat Sealing Module – HSM the winner of the ACE Award for Unsurpassed Innovation in the “Manufacturing: Equipment and Tooling” category. This award is presented annually to equipment, tooling, a production aid, or software designed to improve manufacturing production, environmental sustainability, or product quality and performance in composites manufacturing.

During processing, dry fiber materials are prone to fraying along the edges. Using hot air, the HSM seals the fabric along the cut path in advance of the Zünd Power Rotary Tool – PRT cutting it. Because of this sealing process, the cut can then be performed at full speed, in any direction, and produces both higher-quality parts and greater production efficiencies.

The HSM helps create clean, sealed edges when cutting fiber-reinforced thermoplastic composites. It benefits not only the cutting process itself, but other production processes downstream. Cutting this way leaves behind no loose or uncut fibers and maintains a clean cutting surface and uncontaminated production environment. At the same time, it ensures that cut parts maintain their shape, and this increased stability makes them much easier to handle, especially in fully automated production workflows.

Source:

Zünd Systemtechnik AG

Photo: Unsplash, Sheraz Shaikh
24.10.2022

C.L.A.S.S. presents its new partner Orange Fiber

Founded in Catania, Italy in 2014, Orange Fiber has developed a process to transform what remains from the industrial pressing process of citrus fruits for juice into a unique textile material. The innovative process has been patented in Italy and extended to major citrus juice producing countries around the world.

Recently, Orange Fiber and the Lenzing Group, a leading manufacturer of textile fibers specialties from wood, started a collaboration to produce the first lyocell fiber branded TENCEL™ composed of cellulose from orange and from wood. Produced using the same closed-loop process as the TENCEL™ Lyocell fibers, the TENCEL™ Limited Edition x Orange Fiber contributes to promote sustainability in the textiles. The name of the fiber is LENZING Lyocell LE orange, abbreviated to OF in the yarn and in the fabric composition.

Founded in Catania, Italy in 2014, Orange Fiber has developed a process to transform what remains from the industrial pressing process of citrus fruits for juice into a unique textile material. The innovative process has been patented in Italy and extended to major citrus juice producing countries around the world.

Recently, Orange Fiber and the Lenzing Group, a leading manufacturer of textile fibers specialties from wood, started a collaboration to produce the first lyocell fiber branded TENCEL™ composed of cellulose from orange and from wood. Produced using the same closed-loop process as the TENCEL™ Lyocell fibers, the TENCEL™ Limited Edition x Orange Fiber contributes to promote sustainability in the textiles. The name of the fiber is LENZING Lyocell LE orange, abbreviated to OF in the yarn and in the fabric composition.

Source:

C.L.A.S.S.

Infinited Fiber Company
14.10.2022

Infinited Fiber Company accelerates scaling plans amid turbulence

and textile technology company Infinited Fiber Company’s work to build the world’s first commercial-scale Infinna™ textile fiber factory in Kemi, Finland, has progressed largely according to plan since the announcement of the factory site in June 2022. The company is increasing its focus on scaling Infinna™ production volume further as quickly as possible. This is in response to the continued and growing customer demand for the company’s high-quality regenerated textile fiber Infinna™. The market impacts of the ongoing war in Ukraine – including the increased uncertainty on the global utility, commodity and financial markets – have highlighted the need to proceed rapidly with technology scaling on multiple fronts.
 

and textile technology company Infinited Fiber Company’s work to build the world’s first commercial-scale Infinna™ textile fiber factory in Kemi, Finland, has progressed largely according to plan since the announcement of the factory site in June 2022. The company is increasing its focus on scaling Infinna™ production volume further as quickly as possible. This is in response to the continued and growing customer demand for the company’s high-quality regenerated textile fiber Infinna™. The market impacts of the ongoing war in Ukraine – including the increased uncertainty on the global utility, commodity and financial markets – have highlighted the need to proceed rapidly with technology scaling on multiple fronts.
 
“We are not immune to the global market context in which we operate. The supply chain issues stemming from the Covid-19 pandemic are still wreaking havoc, and the ongoing war in Ukraine has dealt a heavy blow to the global utility, commodity, and financial markets – and to us. We are satisfied with the progress at the site of our planned commercial-scale factory and the opening of the factory remains our key priority. The current, unstable market environment has highlighted the need for us to also accelerate efforts to simultaneously pursue other avenues for scaling production, with the ultimate aim of serving our customers in the best possible way in the long run,” said Infinited Fiber Company CEO and cofounder Petri Alava.
 
Infinited Fiber Company said in June that it planned to build a factory to produce Infinna™, a textile fiber that can be created 100% from cotton-rich textile waste, at the site of a discontinued paper mill in Kemi, Finland. The factory is expected to create around 270 jobs in the area and to have an annual production capacity of 30,000 metric tons, equivalent to the fiber needed for about 100 million T-shirts. The future factory’s customer-base includes several of the world’s leading apparel companies, with most of the future production capacity already sold out for several years.
 
Since June, Infinited Fiber Company has advanced the site-specific basic engineering, recruitment planning, vendor selection, and permit processes according to plan. The limited component availability caused by the continuing impacts of the Covid-19 pandemic and the war in Ukraine have, however, prolonged significantly the delivery times for some of the key equipment and machinery needed for the factory. As a result of these developments, Infinited Fiber Company has re-evaluated its overall factory project timeline. The first commercial fiber deliveries from Kemi are now expected to begin in January 2026. The scope of the project remains unchanged and construction work at the site is expected begin during 2023 as previously communicated.
 
In addition, the European energy crisis sparked by the war in Ukraine has caused the electricity prices in Finland to roughly triple, and the prices of some of the key chemicals needed in the fiber regeneration process have risen by some 200-300% since the start of the war.
 
“We of course don’t have a crystal ball. But according to our advisors and other experts, utility and commodity prices are forecast to normalize before 2026, when we now expect the first commercial fiber deliveries from Kemi to be shipped. In addition to the likely normalization of the market, the extended timeline enables us to undertake the necessary measures to develop the profitability of the future factory. The growing demand for Infinna™, despite the general turbulence, is an encouraging and clear indication of the fashion industry’s commitment to circularity,” said Petri Alava.

Source:

Infinited Fiber Company

04.10.2022

Hexcel HexPly® M9.6 Prepregs receive Bureau Veritas Type Approval

Hexcel Corporation has received Type Approval for its HexPly® M9.6GF prepreg products from Bureau Veritas (BV), a leader in testing, inspection, and certification services.

This certification enables carbon fiber-reinforced epoxy prepregs to be used in the production of parts for all BV-approved marine vessels. It also guarantees the quality, performance and consistency of the prepregs for ship and boat builders.

BV-approved HexPly M9.6GF prepregs can be reinforced with unidirectional, non-crimp and twill-weave fabrics. They are particularly suitable for use in the manufacture of masts and other large structural components for wind-assisted ship propulsion (WASP). To reduce reliance on engines and cut fuel usage, WASP vessels harness the power of ocean winds often using large carbon fiber-reinforced masts flying durable composite solid sails.

Hexcel Corporation has received Type Approval for its HexPly® M9.6GF prepreg products from Bureau Veritas (BV), a leader in testing, inspection, and certification services.

This certification enables carbon fiber-reinforced epoxy prepregs to be used in the production of parts for all BV-approved marine vessels. It also guarantees the quality, performance and consistency of the prepregs for ship and boat builders.

BV-approved HexPly M9.6GF prepregs can be reinforced with unidirectional, non-crimp and twill-weave fabrics. They are particularly suitable for use in the manufacture of masts and other large structural components for wind-assisted ship propulsion (WASP). To reduce reliance on engines and cut fuel usage, WASP vessels harness the power of ocean winds often using large carbon fiber-reinforced masts flying durable composite solid sails.

HexPly M9.6 prepregs were recently used to manufacture the mast for the Chantiers de l’Atlantique Silenseas project. The HexPly M9.6 prepregs satisfied all the requirements of the Silenseas consortium’s mast-section manufacturers for quality, mechanical performance, and processing characteristics, while also proving to be cost effective.

Source:

Hexcel Corporation / 100% Marketing

(c) adidas
23.09.2022

adidas by Stella McCartney: Industry-First, with Viscose Sportswear

The garment is part of the New Cotton Project, an EU Consortium of key players united to demonstrate the potential of circular garment production
adidas by Stella McCartney presented a first of its kind sportswear garment designed to demonstrate the potential of a circular fashion ecosystem. Joining forces with leading names and innovators in the fashion industry to create, test, and innovate, the tracksuit forms the pinnacle expression of the brand’s pilot circularity program, Made to Be Remade. A take-back scheme where consumers can wear it down and then return it by scanning a QR code via the product so it can be remade. Moving adidas closer to its goal to help end plastic waste.

The garment is part of the New Cotton Project, an EU Consortium of key players united to demonstrate the potential of circular garment production
adidas by Stella McCartney presented a first of its kind sportswear garment designed to demonstrate the potential of a circular fashion ecosystem. Joining forces with leading names and innovators in the fashion industry to create, test, and innovate, the tracksuit forms the pinnacle expression of the brand’s pilot circularity program, Made to Be Remade. A take-back scheme where consumers can wear it down and then return it by scanning a QR code via the product so it can be remade. Moving adidas closer to its goal to help end plastic waste.

It’s currently estimated that just under 1% of all textiles worldwide are recycled into new textiles, so it’s vital the textile industry comes together to learn and knowledge-share. Scheduled across a three-year period, the consortium which includes partners such as Frankenhuis have collected and sorted post-consumer end-of-life textiles, which using pioneering Infinited Fiber technology have been regenerated into a new man-made cellulosic fiber called Infinna™ - which looks and feels just like virgin cotton. This is then turned into a yarn blended with organic cotton, for garment production.

Designing the tracksuit, made using viscose (60% viscose, 40% organic cotton) as a consortium member took the process from a linear to a circular model , as the apparel’s function and style were of equal focus to the garment’s end of life existence.

At the end of the project, consortium partner Aalto University, a Finnish multidisciplinary community specialising in science, art, technology , and design, will distribute learnings with the industry and bring this potential circular design solution to the ever-eco-conscious consumer.

Source:

adidas

Photo: C.L.A.S.S.
20.09.2022

Bemberg™ by Asahi Kasei taking part at White Sustainable Milano

  • New fibre with a circular economy footprint obtained from cotton linters through a closed-loop process
  • September 22-25, 2022, WSM-White Sustainable Milano, Visconti pavilion

For the second time in a row Bemberg™ by Asahi Kasei takes part to White Sustainable Milano, the first fashion trade show entirely dedicated to the research and focus on new materials and technologies able to lead to a real ecological transition, developed in collaboration with Giusy Bettoni, CEO and founder C.L.A.S.S., and Marco Poli, Founder of The Style Lift.

After becoming a leader in formalwear lining, in the latest decade this fiber by Asahi Kasei has been able to evolve towards new consumer needs and desires, moving itself towards many different applications such as intimate, fashion, formalwear and activewear. Bemberg™ by Asahi Kasei arrives at WSM with a new step into its journey and evolution in contemporary style with a new Staple-fibre that unlocks creative paths towards mew aesthetics, touch and sustainability.

  • New fibre with a circular economy footprint obtained from cotton linters through a closed-loop process
  • September 22-25, 2022, WSM-White Sustainable Milano, Visconti pavilion

For the second time in a row Bemberg™ by Asahi Kasei takes part to White Sustainable Milano, the first fashion trade show entirely dedicated to the research and focus on new materials and technologies able to lead to a real ecological transition, developed in collaboration with Giusy Bettoni, CEO and founder C.L.A.S.S., and Marco Poli, Founder of The Style Lift.

After becoming a leader in formalwear lining, in the latest decade this fiber by Asahi Kasei has been able to evolve towards new consumer needs and desires, moving itself towards many different applications such as intimate, fashion, formalwear and activewear. Bemberg™ by Asahi Kasei arrives at WSM with a new step into its journey and evolution in contemporary style with a new Staple-fibre that unlocks creative paths towards mew aesthetics, touch and sustainability.

A new yarn range that expands the company’s realm of applications for the fashion and luxury industry, including also knitwear, jersey and casualwear. Indeed, the fibre comes with a circular economy footprint obtained from cotton linters through a closed-loop process. Bemberg™ also ensures certified sustainability credentials through its transparent and traceable approach.

At WSM fair, the company proves it by unveiling a collection of t-shirts developed in collaboration with the MagnoLab smart network of Italian companies. Circular economy and environmental responsibility meet aesthetic research with a collaborative imprint.

The new t-shirt collection created in synergy with MagnoLab, a network of Biella-based companies bringing forward initiative and collabs related to sustainability and circular economy. Staple-fibre is the top ingredient of the collection. The cut t-shirts are presented both in sheer and blends with other certified fibers, including GOTS cottons and RWS wools, capable of enhancing both the hand of the final garment and the performance of the brand-new yarn.

Source:

C.L.A.S.S.

06.09.2022

SGL Carbon increases sales and earnings guidance again for 2022

Due to the continued good business development, especially in the Carbon Fibers Business Unit, SGL Carbon SE is increasing its Group sales and earnings guidance for the current fiscal year and now expects Group sales of approximately €1.2 billion (previously: approximately €1.1 billion). The company expects to achieve adjusted EBITDA (EBITDA pre = earnings before interest, taxes, depreciation and amortization before one-off effects and non-recurring items) of €170 - €190 million (previously: €130 - €150 million) in 2022.

Based on lower prices for acrylonitrile as main raw material of the Business Unit Carbon Fibers as well as higher than expected customer demand for acrylic and carbon fibers combined with consistently good production capacity utilization and capability, the management of SGL Carbon SE assumes an improved earnings development of this Business Unit.

Due to the continued good business development, especially in the Carbon Fibers Business Unit, SGL Carbon SE is increasing its Group sales and earnings guidance for the current fiscal year and now expects Group sales of approximately €1.2 billion (previously: approximately €1.1 billion). The company expects to achieve adjusted EBITDA (EBITDA pre = earnings before interest, taxes, depreciation and amortization before one-off effects and non-recurring items) of €170 - €190 million (previously: €130 - €150 million) in 2022.

Based on lower prices for acrylonitrile as main raw material of the Business Unit Carbon Fibers as well as higher than expected customer demand for acrylic and carbon fibers combined with consistently good production capacity utilization and capability, the management of SGL Carbon SE assumes an improved earnings development of this Business Unit.

SGL Carbon assumes that the factors mentioned will continue at least until the end of the year and that the earnings situation of the Business Unit Carbon Fibers will exceed previous expectations. Combined with the continued good business development of the other three Business Units (Graphite Solutions, Process Technology and Composite Solutions), an improvement in the sales and earnings situation at Group level is expected.

In line with the forecast increase for adjusted EBITDA (EBITDA pre) to between €170 and €190 million (previously: €130 - €150 million), the company is forecasting adjusted EBIT (earnings before interest and taxes and before one-off effects and non-recurring items) of between €110 and €130 million (previously: €70 - €90 million). The forecast for return on capital employed (ROCE) of originally 7% - 9% has been raised to 10% to 12% corresponding to the development of earnings. The expectations for free cash flow (significantly below previous year's level of €111.5 million) remain unaffected by the expected improvement in sales and earnings.

The updated forecast for fiscal 2022 has been prepared on the basis of the currently prevailing market environment and assumes no deterioration in the general conditions, in particular due to the war in Ukraine and its consequences for the global economy.
 
The definition of key figures used in this release is aligned to the Annual Report 2021. There were no changes in the scope of consolidation or accounting methods compared with the previous guidance.

Source:

SGL CARBON SE

(c) AZL. Comparison of battery casing in modular design and “cell-to-pack” design
Comparison of battery casing in modular design and “cell-to-pack” design
02.09.2022

AZL: Plastic-based multi-material solutions for cell-to-pack battery enclosures

The future of e-mobility will be determined in particular by safe battery enclosures. As batteries for electric vehicles become more performant, higher volumetric energy density plays a crucial role. If more energy is to be stored in less installation space, new material and design solutions are required. The development of suitable enclosures made of safe and highly robust lightweight materials is also required. This is a case for the Aachen Centre for Integrative Lightweight Production (AZL). A project on cell-to-pack battery enclosures for battery-electric vehicles, which has been eagerly awaited in the industry, will start in October this year there.

The future of e-mobility will be determined in particular by safe battery enclosures. As batteries for electric vehicles become more performant, higher volumetric energy density plays a crucial role. If more energy is to be stored in less installation space, new material and design solutions are required. The development of suitable enclosures made of safe and highly robust lightweight materials is also required. This is a case for the Aachen Centre for Integrative Lightweight Production (AZL). A project on cell-to-pack battery enclosures for battery-electric vehicles, which has been eagerly awaited in the industry, will start in October this year there.

The design of battery housings is crucial for safety, capacity, performance, and economics. The Cell-to-Pack project, which is starting now, will focus on developing concepts for structural components and for producing them based on a variety of materials and design approaches. The concepts will be compared in terms of performance, weight and production costs, creating new know-how for OEMs, producers and their suppliers throughout the battery vehicle value chain. Companies are now invited to participate in this new cross-industry project to develop battery enclosure concepts for the promising and trend-setting cell-to-pack technology.

The basis for the project is the lightweight engineering expertise of the AZL experts, which they have already demonstrated in previous projects for multi-material solutions for module-based battery housings. Together with 46 industry partners, including Audi, Asahi Kasei, Covestro, DSM, EconCore, Faurecia, Hutchinson, Johns Manville, Magna, Marelli and Teijin, 20 different multi-material concepts were optimized in terms of weight and cost and compared with a reference component made from aluminum. All production steps were modelled in detail to obtain reliable cost estimates for each variant. Result: depending on the concept, 20% weight or 36% cost savings potential could be identified by using multi-material composites compared to the established aluminum reference.

It is expected that the design concept of battery enclosures will develop in the direction of a more efficient layout. In this case, the cells are no longer combined in modules in additional production steps, but are integrated directly into the battery housing. The elimination of battery modules and the improved, weight-saving use of space will allow for higher packing density, reduced overall height and cost saving. In addition, various levels of structural integration of the battery housing into the body structure are expected. These new designs bring specific challenges, including ensuring protection of the battery cells from external damage and fire protection. In addition, different recyclability and repair requirements may significantly impact future designs. How the different material and structural options for future generations of battery enclosures for the cell-to-pack technology might look like and how they compare in terms of cost and environmental impact will be investigated in the new AZL project. In addition to the material and production concepts from the concept study for module-based battery enclosures, results from a currently ongoing benchmarking of different materials for the impact protection plate and a new method for determining mechanical properties during a fire test will also be incorporated.

The project will start on October 27, 2022 with a kick-off meeting of the consortium, interested companies can still apply for participation until then.

02.09.2022

RGE: Closed-loop urban-fit textile-to-textile recycling solutions in Singapore

  • Aims to tackle the immense textile waste generated in urban environments, on the back of import bans of waste materials
  • Addresses the shortcomings of current textile recycling technologies, which are unsuitable for urban settings due to the use of heavy chemicals
  • Technologies developed by the newly-formed RGE-NTU Sustainable Textile Research Centre will be test-bedded in RGE’s pilot urban-fit textile recycling plant, projected for completion as early as 2024

Royal Golden Eagle (“RGE”), a global group of resource-based manufacturing companies, which includes a world-leading viscose fibre producers Sateri and Asia Pacific Rayon (APR), is developing urban-fit, closed-loop textile-to-textile recycling solutions, through the newly-formed RGE-NTU Sustainable Textile Research Centre (RGE-NTU SusTex). This is a five-year research collaboration between RGE and Nanyang Technological University, Singapore (“NTU”), to accelerate innovation in textile recycling that can be deployed in urban settings.

  • Aims to tackle the immense textile waste generated in urban environments, on the back of import bans of waste materials
  • Addresses the shortcomings of current textile recycling technologies, which are unsuitable for urban settings due to the use of heavy chemicals
  • Technologies developed by the newly-formed RGE-NTU Sustainable Textile Research Centre will be test-bedded in RGE’s pilot urban-fit textile recycling plant, projected for completion as early as 2024

Royal Golden Eagle (“RGE”), a global group of resource-based manufacturing companies, which includes a world-leading viscose fibre producers Sateri and Asia Pacific Rayon (APR), is developing urban-fit, closed-loop textile-to-textile recycling solutions, through the newly-formed RGE-NTU Sustainable Textile Research Centre (RGE-NTU SusTex). This is a five-year research collaboration between RGE and Nanyang Technological University, Singapore (“NTU”), to accelerate innovation in textile recycling that can be deployed in urban settings. The research centre will develop new technologies to recycle textile waste into fibre and create new, next-generation eco-friendly and sustainable textiles.

This move comes on the back of the tightening of waste import bans in countries such as China, India and Indonesia, which are among the world’s largest waste processors. The stricter import bans have left cities in need of viable local textile recycling solutions to tackle the immense textile waste generated.

RGE Executive Director, Mr Perry Lim, said, “Current textile recycling technologies, which rely primarily on a bleaching and separation process using heavy chemicals, cannot be implemented due to environmental laws. At the same time, there is an urgent need to keep textiles out of the brimming landfills.” He added, “As the world’s largest viscose producer, we aim to catalyse closed-loop, textile-to-textile recycling by developing optimal urban-fit solutions that can bring the world closer to a circular textile economy.”

Globally, an estimated 90 million tonnes of textile waste is generated and disposed of every year, with less than 1% being upcycled into new clothing or other textile materials. By 2030, the amount of global textile waste, which currently accounts for almost 10% of municipal solid waste, is expected to reach more than 134 million tonnes. The textile industry is also responsible for 10% of global greenhouse gas emissions – more than international flights and maritime shipping combined.

At present, most of the available textile recycling technologies are open-loop, where textile waste is typically downcycled to lower-quality products (insulating materials, cleaning cloths, etc.) or be used in waste-to-heat recycling.

“Closed-loop textile-to-textile recycling processes, particularly chemical recycling, are still under development. Scaling up the technologies to industrial scale remains a challenge. A key bottleneck is that refabricating textile waste into fibre needs purity standards for feedstock. However, most of the clothes that we wear are made of a mixture of different synthetic and natural fibres, which makes separating the complex blends of materials challenging for effective recycling.

“Our aim is to address this industry pain point by developing viable solutions that use less energy, fewer chemicals and produces harmless and less effluents, and then potentially scale up across our global operations,” Mr Lim said.

To tackle the key challenges in closed-loop textile recycling, RGE-NTU SusTex is looking into four key research areas, namely cleaner and more energy efficient methods of recycling into new raw materials, automated sorting of textile waste, eco-friendly dye removal, and development of a new class of sustainable textiles that is durable for wear and, at the same time, lends itself to easier recycling.

Technologies developed by RGE-NTU SusTex will be test bedded at RGE’s pilot urban-fit textile recycling plant in Singapore, which is projected for completion as early as 2024. If successful, RGE has plans to replicate the plant in other urban cities within its footprint.

 

Source:

Royal Golden Eagle

11.08.2022

BB Engineering at the K Show 2022

As a sub-exhibitor of Oerlikon, BB Engineering will present its product range in the fields of extrusion, mixing and filtration as well as PET recycling with the VacuFil and VarioFil R+ systems at the K show 2022.

BB Engineering has been focusing its development work increasingly on recycling technologies for several years. In addition to extruders, filters and mixers that are suitable for both recycling processes and the processing of recyclate, BB Engineering offers a complete PET recycling plant called VacuFil.

As a sub-exhibitor of Oerlikon, BB Engineering will present its product range in the fields of extrusion, mixing and filtration as well as PET recycling with the VacuFil and VarioFil R+ systems at the K show 2022.

BB Engineering has been focusing its development work increasingly on recycling technologies for several years. In addition to extruders, filters and mixers that are suitable for both recycling processes and the processing of recyclate, BB Engineering offers a complete PET recycling plant called VacuFil.

With VacuFil, BB Engineering has developed an innovative PET LSP recycling process. The process combines gentle large-scale filtration and targeted IV regulation for consistently outstanding rPET melt quality. Thus, much more than simple "downcycling" is possible with VacuFil. VacuFil processes a wide range of input materials - post-production and post-consumer. The patented key component Visco+ vacuum filter removes volatile impurities quickly and reliably. VacuFil is a modular system that can be designed for different recycling applications. Simple granulation is possible, but also direct feeding into further processing, e.g. in the synthetic fiber spinning mill. BBE offers VacuFil in combination with its own VarioFil compact spinning plant to produce polyester yarn.

At the K show 2022, visitors can experience the VacuFil Visco+ recycling technology in operation with a connected VarioFil spinning plant and see live how recycling yarn is produced from PET waste.

Source:

BB Engineering GmbH

04.08.2022

SGL Carbon: Positive performance in the first half of 2022

  • Sales increase of 10.7% to €549.8 million in the first half of 2022
  • EBITDApre improves by 22.6%, higher than the increase in sales, to €87.9 million
  • Positive business development, price increases and strict cost management led to forecast increase on June 7, 2022

Despite uncertain general conditions in the first six months 2022, SGL Carbon's business model is proving its resilience. After €270.9 million in Q1 2022, SGL Carbon was able to increase sales to €278.9 million in Q2. Accordingly, sales for the first half of 2022 amount to €549.8 million, which corresponds to a sales plus of €53.1 million or 10.7% compared to the same period of the previous year.

The increase in sales was driven in particular by customers in the semiconductor industry and growth in the industrial applications market segment. Demand from the automotive and chemical industries was also encouraging.

  • Sales increase of 10.7% to €549.8 million in the first half of 2022
  • EBITDApre improves by 22.6%, higher than the increase in sales, to €87.9 million
  • Positive business development, price increases and strict cost management led to forecast increase on June 7, 2022

Despite uncertain general conditions in the first six months 2022, SGL Carbon's business model is proving its resilience. After €270.9 million in Q1 2022, SGL Carbon was able to increase sales to €278.9 million in Q2. Accordingly, sales for the first half of 2022 amount to €549.8 million, which corresponds to a sales plus of €53.1 million or 10.7% compared to the same period of the previous year.

The increase in sales was driven in particular by customers in the semiconductor industry and growth in the industrial applications market segment. Demand from the automotive and chemical industries was also encouraging.

EBITDApre, as one of the Group's key performance indicators, improved by €16.2 million (+22.6%) to €87.9 million (H1 2021: €71.7 million). Consequently, the EBITDApre margin increased from 14.4% to 16.0%. In addition to the higher utilization of production capacities due to higher sales, the improvement in earnings was also driven by the largely successful passing-on of higher raw material and energy costs to customers as well as savings from the transformation program.

EBITDApre does not include positive one-off effects and non-recurring items totaling €10.6 million (H1 2021: minus €5.2 million). As a result, EBIT in H1 2022 increased significantly from €38.3 million to €69.6 million. Taking into account the financial result of minus €16.6 million (H1 2021: minus €14.0 million), consolidated net income for the first six months of the current fiscal year amounted to €48.8 million, compared to €17.9 million in the prior-year period.

Business Units
With an increase in sales of €22.2 million (+10.0%) to €243.4 million, the Graphite Solutions (GS) business unit made a major contribution to SGL Carbon’s sales growth. In particular, continued high demand from customers in the semiconductor sector, which represents approximately one third of the segment's sales, led to the positive business development in GS. As a result of the predominantly high-margin business, EBITDApre at GS improved by 22.7% to €54.0 million.

The Process Technology (PT) business unit benefited from the good order situation in the chemical industry in H1 2022 and consequently increased sales to €49.2 million (H1 2021: € 40.8 million). EBITDApre also improved from €0.1 million in the prior year’s first half to €4.1 million in H1 2022.

The Carbon Fibers (CF) business unit benefited in the 1st half 2022 from final deliveries to a major automotive manufacturer whose contract expired as scheduled on June 30, 2022. Segment sales increased by 5.8% year-on-year to €176.0 million. In contrast, EBITDApre at CF decreased by €4.2 million to €28.2 million despite the good order situation and successful price increases. It should be noted that CF was impacted by a special effect from energy derivatives for price hedging in the amount of €9.2 million in the first quarter of 2022.

With an increase in sales of 15.6% to €69.6 million, the Composite Solutions (CS) business unit continued its upward trend. The specialist for customized component solutions for the automotive industry improved its EBITDApre from €5.7 million in the first half of 2021 to the current €9.7 million, based in particular on price and volume effects.

Balance sheet figures
Working capital rose by 11.7% to €381.1 million as of June 30, 2022. This was mainly due to higher inventories (€ +73.9 million) and an offsetting increase in trade payables (€ +29.0 million). A targeted build-up of inventories in critical raw materials due to disruptions in transport routes and the recent Covid lockdown in Shanghai were some of the reasons for the higher inventory levels.

SGL Carbon's net financial debt slightly increased by €6.6 million to €212.9 million as of June 30, 2022 (Dec. 31, 2021: €206.3 million), which was due to a lower free cash flow of €7.5 million for H1 2022 (H1 2021: €56.6 million).

Guidance increase
On June 7, 2022, SGL Carbon raised its sales and earnings guidance for fiscal year 2022. The company now expects sales of €1.1 billion (previously: around €1.0 billion) and EBITDApre of €130 - 150 million (previously: €110 - 130 million). Based on the pleasing business development, realized price increases, a stringent cost management, and taking into account the currently known risks, SGL’s management expects to achieve the earnings forecast for 2022 at the upper end of the stated range.

Source:

SGL Carbon