From the Sector

Reset
40 results
(c) INDA
23.09.2021

Hygienix™ 2021: Live, in-person conference Nov 2021

  • Post-Pandemic Market Opportunities, New Technologies and Sustainability Highlight Conference This Fall in Arizona

 
The global absorbent hygiene and personal care markets are enthusiastically anticipating the return of Hygienix™ 2021 as a live, in-person conference Nov. 15-18, in Scottsdale, Arizona, focusing on post-pandemic opportunities, sustainability, new technologies and award-winning products.

The event will offer exciting opportunities for Hygienix participants to engage with new and existing customers in a face-to-face setting, and discover the latest innovations over four days at the Westin Kierland Resort. Highlights include two nonwovens workshops, a welcome reception, opportunities for 60 tabletop displays with receptions, eight intriguing panel discussions and presentations for the Hygienix Innovation Award™ and the INDA Lifetime Service Award.

  • Post-Pandemic Market Opportunities, New Technologies and Sustainability Highlight Conference This Fall in Arizona

 
The global absorbent hygiene and personal care markets are enthusiastically anticipating the return of Hygienix™ 2021 as a live, in-person conference Nov. 15-18, in Scottsdale, Arizona, focusing on post-pandemic opportunities, sustainability, new technologies and award-winning products.

The event will offer exciting opportunities for Hygienix participants to engage with new and existing customers in a face-to-face setting, and discover the latest innovations over four days at the Westin Kierland Resort. Highlights include two nonwovens workshops, a welcome reception, opportunities for 60 tabletop displays with receptions, eight intriguing panel discussions and presentations for the Hygienix Innovation Award™ and the INDA Lifetime Service Award.

As the market emerges from the pandemic, trends in sustainability such as replacing plastic with natural fibers, recycling and composting will present new opportunities that will be addressed by 30 presenters from industry companies. Conference participants also will discover how new technologies such as smart sensors and haptics — the use of technology that stimulates the senses of touch and motion — are helping to change the consumer experience.

Hygienix sessions featuring moderated discussions with industry-leading experts and Q&A opportunities are focused on the following themes:

  • New Options for Responsible End-of-Life
  • Haptics: Four Approaches to Assessing Feel
  • Products and Process Innovations in Global Absorbent Hygiene Products (AHPS)
  • Absorbent Hygiene Products Market Stats, Trends and Policy Insights
  • E-Hygiene Advancements
  • Feminine Care: Challenges to the Status Quo (presented in two parts)
  • New Approaches and Unmet Needs in Baby and Incontinence AHPS

Hygienix will address the latest research and statistics including:

  • Understanding the State of the Nonwovens Absorbent Hygiene Market, COVID-19 Impact and Baby Boom or Bust
  • Direct-to-Consumer Winners, Losers & Insights
  • Evolution of Sustainable Hygiene: Opportunity, Challenge, and Future Growth
  • Single-Use Plastics Policy Developments in North America
  • Understanding Consumer Needs and Desires When Considering Incontinence Products
More information:
Hygienix nonwovens INDA
Source:

INDA

16th World Pultrusion Conference - CALL FOR PAPERS
WPC2022
22.09.2021

16th World Pultrusion Conference - CALL FOR PAPERS

The EPTA – European Pultrusion Technology Association organizes in cooperation with the ACMA – American Composites Manufacturers Association - the 16th World Pultrusion Conference on 03 – 04 March 2022 in Paris, France (as a “hybrid event”, this conference will also have the option of online access). The conference is one of the leading pultrusion events in the world. The event takes place just before the JEC World 2022 in Paris (08 – 10 March 2022).

The presentations are to document innovations in the following subject areas of pultruded reinforced plastics:

● Market development in Europe, USA, Asia
● Innovative applications
● New Markets: Ideas for potential new applications with pultruded shapes or systems
● Sustainability: Technical possibilities, recycling, etc.
● Raw materials
   ○ Development of fibres
   ○ Development of resins
● Construction / Testing / Calculation
● Processes

The EPTA – European Pultrusion Technology Association organizes in cooperation with the ACMA – American Composites Manufacturers Association - the 16th World Pultrusion Conference on 03 – 04 March 2022 in Paris, France (as a “hybrid event”, this conference will also have the option of online access). The conference is one of the leading pultrusion events in the world. The event takes place just before the JEC World 2022 in Paris (08 – 10 March 2022).

The presentations are to document innovations in the following subject areas of pultruded reinforced plastics:

● Market development in Europe, USA, Asia
● Innovative applications
● New Markets: Ideas for potential new applications with pultruded shapes or systems
● Sustainability: Technical possibilities, recycling, etc.
● Raw materials
   ○ Development of fibres
   ○ Development of resins
● Construction / Testing / Calculation
● Processes

The presentation language will be English. Deadline for paper submission (title, short abstract, speaker name and address) until 15th October 2021 to info@pultruders.com.
 
The European Pultrusion Technology Association was created in 1989 by a group of leading European pultruders with the mission of supporting the growth of the pultrusion industry by maximising external communication efforts and encouraging knowledge sharing between members. Since 2006, the association has existed under the umbrella of the AVK – Federation of Reinforced Plastics in Frankfurt, Germany. Membership of EPTA is open to all companies and individuals worldwide wishing to further the application of pultruded profiles. For further information visit http://www.pultruders.com.

Bemberg™ by Asahi Kasei at Filo to unveil its smart DNA story that meet contemporary consumer needs (c) Bemberg™
Waxewul proposal using Bemberg™.
15.09.2021

Bemberg™ by Asahi Kasei at Filo to unveil its smart DNA story that meet contemporary consumer needs

  • FILO, 29th-30th September 2021, booth C5

Bemberg™ by Asahi Kasei has been invited to showcase at Filo fair, the international exhibition of orthogonal weaving yarns for clothing and furnishings, circular knitwear and technical textiles, in a new special area, a dedicated open space reserved to sustainable fibers that will allow visitors to discover all their production cycle and performances, in full relax and transparency.

Bemberg™, an exceptional fiber made from the smart-tech transformation of cotton linters pre-consumer materials and converted through a traceable and transparent closed loop process, will brings to Filo its history, experience, know-how and market partnerships to prove its versatility and design-driven look and touch Last but not least we are talking about a true circular economy-oriented ingredient, with certified sustainable performance: Bemberg™ is biodegradable and compostable material as verified by the INNOVHUB 3rd party test and it has GRS (Global Reycled Standard) certification from Textile Exchange proving recycling authenticity.

  • FILO, 29th-30th September 2021, booth C5

Bemberg™ by Asahi Kasei has been invited to showcase at Filo fair, the international exhibition of orthogonal weaving yarns for clothing and furnishings, circular knitwear and technical textiles, in a new special area, a dedicated open space reserved to sustainable fibers that will allow visitors to discover all their production cycle and performances, in full relax and transparency.

Bemberg™, an exceptional fiber made from the smart-tech transformation of cotton linters pre-consumer materials and converted through a traceable and transparent closed loop process, will brings to Filo its history, experience, know-how and market partnerships to prove its versatility and design-driven look and touch Last but not least we are talking about a true circular economy-oriented ingredient, with certified sustainable performance: Bemberg™ is biodegradable and compostable material as verified by the INNOVHUB 3rd party test and it has GRS (Global Reycled Standard) certification from Textile Exchange proving recycling authenticity.

Bemberg™ application history starts with high-quality suit lining, but today we can find it in many other applications such as fashion couture, outerwear, innerwear, bedding, and sportswear where its amazing unique touch and quality is offering a distinctive performance.

And to prove all of this, Bemberg™ will be at Filo showing some selected fabric innovation, and three responsible-driven designers representing different and complementary part of contemporary consumer wardrobe: ZEROBARRACENTO, Maurizio Miri and WAXEWUL - who have all chosen Bemberg™ fiber to create special collections. Three different ways to see and represent how sustainability and style – even if completely different ones – together can be highly successful, performing and interesting to the new consumer.

ZEROBARRACENTO, a gender-neutral emerging outerwear brand focusing on zero-waste product development, selects Bemberg™ for two fundamental reasons: firstly, from a stylistic point of view for its extreme versatility: in the various collections we have adopted it to create Kimonos, padded jackets, wrap dresses as well as for the interiors of our garments, which are intended to be soft embraces for total physical and mental comfort. The second but no less important reason is that this fibre has circular values in line with their zero-waste commitment.

The concept of the brand "Maurizio Miri" has a strong personality and a clear intent: to create a product that stimulates the wearer towards beauty. A garment should not simply be worn, but it has also to create a perfect symbiosis with the person wearing it and generate an exchange of positive energies. The purpose is to make the individual feel in perfect harmony with their own image. With this aim in mind, the designer selects extremely precious Bemberg™ linings for their sophisticated tailor jackets. 

Finally, WAXEWUL, a brand of sartorial clothing and artisan accessories with an urban-afro soul that has environmental and social sustainability as its basic ethics. WAXEWUL will bring to Filo its brand-new product, the J_Hood Bag: a doubleface jacket with a comfortably removable hood that can be transformed into a finely hidden doubleface bag. An exclusive, innovative and sustainable garment with minimal impact on the environment made of BemBAZIN™ - a new generation of bazin created, patented and produced by Brunello which is composed by the high-tech and responsible fibers of Bemberg™ - on one side and of wax on the other, traceable and certified, guaranteeing a reduction in waste (two jackets in one) and a long-life cycle.

(c) Autoneum
14.07.2021

Autoneum: Carpets even more eco-friendly

Autoneum carpet systems already meet high standards of sustainable mobility due to their high content of recycled fibers. Thanks to an alternative backcoating (ABC) process, Autoneum carpets are now becoming even more environmentally friendly: By replacing the latex commonly used in standard backcoatings with thermoplastic material, the recyclability of carpets at the end of product life is further  improved. In addition, the innovative manufacturing process greatly reduces water and energy consumption and thus CO2 emissions in production.

Autoneum carpet systems already meet high standards of sustainable mobility due to their high content of recycled fibers. Thanks to an alternative backcoating (ABC) process, Autoneum carpets are now becoming even more environmentally friendly: By replacing the latex commonly used in standard backcoatings with thermoplastic material, the recyclability of carpets at the end of product life is further  improved. In addition, the innovative manufacturing process greatly reduces water and energy consumption and thus CO2 emissions in production.

Lightweight, textile-based carpet technologies such as Di-Light or Relive-1 significantly improve the environmental performance of carpets. For example, Di-Light-based carpets consist of up to 97% recycled PET; aside from that, they are around 20% lighter than conventional needlepunch carpets, thus contributing to lower fuel consumption and CO2 emissions from vehicles. In addition, Autoneum needlepunch carpets are now even more sustainable thanks to the innovative ABC process, which uses a thermoplastic adhesive instead of latex in the backcoating: Unlike latex, thermoplastic adhesives can be heated and melted down together with the carpet components made of pure PET at the end of the product life cycle, which facilitates recycling considerably. Furthermore, since the fibers of the thermoplastic mono-material are easier to open, carpet cut-outs can be reclaimed more easily, thereby reducing the consumption of natural resources as well as waste volumes and thus CO2 emissions. The environmental  performance of Autoneum’s needlepunch carpets, which already contain a high proportion of recycled PET, is thus further improved.

Moreover, backcoatings without latex improve the sustainability of carpets not only thanks to better recyclability at the end of the product life cycle. Since the application of the thermoplastic adhesive using the innovative ABC process consumes significantly less energy than the production of latexbased backcoatings and does not require any water at all, the environmental impact can already be minimized in the manufacturing process. Additionally, thermoplastic adhesives developed in-house by Autoneum will open up new possibilities in the future for adapting backcoatings to the individual needs of vehicle manufacturers in terms of their acoustic performance, stiffness and abrasion resistance.

Models from various customers in Europe and North America are already equipped with latex-free needlepunch carpets from Autoneum. In the near future, backcoatings with thermoplastic adhesives will also be used for Autoneum’s tufted carpets. Production of the new, even more sustainable generation of tufted carpets is scheduled to start in early 2022.

16.06.2021

Closed-loop recycling pilot project for single-use facemasks

  • Fraunhofer, SABIC, and Procter & Gamble join forces
  • The Fraunhofer Cluster of Excellence Circular Plastics Economy CCPE and its Institute for Environmental, Safety and Energy Technology UMSICHT have developed an advanced recycling process for used plastics.
  • The pilot project with SABIC and Procter & Gamble serves to demonstrate the feasibility of closed-loop recycling for single-use facemasks.

Due to COVID-19, use of billions of disposable facemasks is raising environmental concerns especially when they are thoughtlessly discarded in public spaces, including - parks, open-air venues and beaches. Apart from the challenge of dealing with such huge volumes of essential personal healthcare items in a sustainable way, simply throwing the used masks away for disposal on landfill sites or in incineration plants represents a loss of valuable feedstock for new material.

  • Fraunhofer, SABIC, and Procter & Gamble join forces
  • The Fraunhofer Cluster of Excellence Circular Plastics Economy CCPE and its Institute for Environmental, Safety and Energy Technology UMSICHT have developed an advanced recycling process for used plastics.
  • The pilot project with SABIC and Procter & Gamble serves to demonstrate the feasibility of closed-loop recycling for single-use facemasks.

Due to COVID-19, use of billions of disposable facemasks is raising environmental concerns especially when they are thoughtlessly discarded in public spaces, including - parks, open-air venues and beaches. Apart from the challenge of dealing with such huge volumes of essential personal healthcare items in a sustainable way, simply throwing the used masks away for disposal on landfill sites or in incineration plants represents a loss of valuable feedstock for new material.

“Recognizing the challenge, we set out to explore how used facemasks could potentially be returned into the value chain of new facemask production”, says Dr. Peter Dziezok, Director R&D Open Innovation at P&G. “But creating a true circular solution from both a sustainable and an economically feasible perspective takes partners. Therefore, we teamed up with Fraunhofer CCPE and Fraunhofer UMSICHT’s expert scientists and SABIC’s Technology & Innovation specialists to investigate potential solutions.”

As part of the pilot, P&G collected used facemasks worn by employees or given to visitors at its manufacturing and research sites in Germany. Although those masks are always disposed of responsibly, there was no ideal route in place to recycle them efficiently. To help demonstrate a potential step change in this scenario, special collection bins were set up, and the collected used masks were sent to Fraunhofer for further processing in a dedicated research pyrolysis plant.

“A single-use medical product such as a face mask has high hygiene requirements, both in terms of disposal and production. Mechanical recycling, would have not done the job”, explains Dr. Alexander Hofmann, Head of Department Recycling Management at Fraunhofer UMSICHT. “In our solution, therefore, the masks were first automatically shredded and then thermochemically converted to pyrolysis oil. Pyrolysis breaks the plastic down into molecular fragments under pressure and heat, which will also destroy any residual pollutants or pathogens, such as the Coronavirus. In this way it is possible to produce feedstock for new plastics in virgin quality that can also meet the requirements for medical products”, adds Hofmann, who is also Head of Research Department “Advanced Recycling” at Fraunhofer CCPE.

The pyrolysis oil was then sent to SABIC to be used as feedstock for the production of new PP resin. The resins were produced using the widely recognized principle of mass balance to combine the alternative feedstock with fossil-based feedstock in the production process. Mass balance is considered a crucial bridge between today’s large scale linear economy and the more sustainable circular economy of the future, which today is operated on a smaller scale but is expected to grow quickly.

“The high-quality circular PP polymer obtained in this pilot clearly demonstrates that closed-loop recycling is achievable through active collaboration of players from across the value chain”, emphasizes Mark Vester, Global Circular Economy Leader at SABIC. “The circular material is part of our TRUCIRCLE™ portfolio, aimed at preventing valuable used plastic from becoming waste and at mitigating the depletion of fossil resources.”

Finally, to close the loop, the PP polymer was supplied to P&G, where it was processed into non-woven fibers material. “This pilot project has helped us to assess if the close loop approach could work for hygienic and medical grade plastics”, says Hansjörg Reick, P&G Senior Director Open Innovation. “Of course, further work is needed but the results so far have been very encouraging.”

The entire closed loop pilot project from facemask collection to production was developed and implemented within seven months. The transferability of advanced recycling to other feedstocks and chemical products is being further researched at Fraunhofer CCPE.

Source:

Fraunhofer

BB Engineering: Visco+ innovative vacuum filter for IV setting (c) BB Engineering
Graphical animation of Visco+
28.04.2021

BB Engineering: Visco+ innovative vacuum filter for IV setting

Under vacuum, the new BB Engineering large-area filter produces a homogeneous, pure melt with a targeted IV setting for instance, for returning polyester production waste to the melt flow, but also for achieving a homogeneous viscosity in the case of virgin material.

BB Engineering has expanded its melt filter portfolio to include a patented large-area vacuum filter designed especially for processing polyester waste. The so-called Visco+ filter is already known as the key component of the BB Engineering VacuFil recycling system. Now, it is also available as a separate and easily-integratable upgrade component for existing systems. Within this context, the uses of the Visco+ are by no means limited to just decontamination. Here, the Visco+ offers the following solutions:

Under vacuum, the new BB Engineering large-area filter produces a homogeneous, pure melt with a targeted IV setting for instance, for returning polyester production waste to the melt flow, but also for achieving a homogeneous viscosity in the case of virgin material.

BB Engineering has expanded its melt filter portfolio to include a patented large-area vacuum filter designed especially for processing polyester waste. The so-called Visco+ filter is already known as the key component of the BB Engineering VacuFil recycling system. Now, it is also available as a separate and easily-integratable upgrade component for existing systems. Within this context, the uses of the Visco+ are by no means limited to just decontamination. Here, the Visco+ offers the following solutions:

  • IV homogenization: if an existing production system is struggling with IV fluctuations, the Visco+ is able to actively intervene and balance out any irregularities;
  • IV increase: if the final viscosity is insufficient when processing recycled materials, the Visco+ can increase the IV without the negative impact of long residence times.

In this way, the Visco+ enables fast and flexibly-controllable viscosity build-up and reliable viscosity monitoring of the polyester melt using a to-date unique, patented process. Depending on the intended end use, the melt can be ad-justed to the further processing procedure in a targeted manner. The requi-site melt properties above all the intrinsic viscosity, but also the purity and homogeneity are achieved in a reliable and reproducible manner and can also be adjusted during ongoing operation.

As a melt filter, the Visco+ operates like a liquid-state polycondensation unit. A maintenance-intensive reactor or a deposit-prone stirring unit are not required. Moisture is removed from the PET in the filter, which – in conjunction with an adjustable residence time – results in the desired IV increase in the vacuum. This enables a controlled IV build-up of up to 30%. The intrinsic vis-cosity is the central quality figure in PET recycling and rPET processing. It determines the melt performance in the downstream production process and the properties of the end products. The intrinsic viscosity is continually moni-tored by means of an integrated viscosity measurement unit and reliably adjusted in the event of deviations (caused by disparate input qualities, for ex-ample). At the same time, the filter provides an enormous material surface compared to the volume and continuously renews this. To this end, contamination can be removed particularly effectively from the starting material by means of automatically-regulated high-performance vacuum (1-30 mbar).

The Visco+ is particularly suitable for recycling PET waste that is to be reused for high-end products.

Source:

BB Engineering

23.04.2021

Oerlikon: Creating a new growth platform

Oerlikon signs agreement to acquire INglass, a global leader in high precision polymer flow control equipment, to accelerate expansion strategy in polymer processing market

  • INglass and its HRSflow Division is a market leader spezialized in hot runner sytems
  • Technology is highly complementary to Oerlikon’s existing capabilities in polymer flow control and will expand Oerlikon’s market access
  • Acquisition accelerates Oerlikon’s strategy in diversifying its manmade fibers business to expand into the high-growth polymer processing solution market
  • Oerlikon renames ‘Manmade Fibers’ Division to ‘Polymer Processing Solutions’
  • Acquisition is expected to be completed in the second quarter of 2021

Oerlikon, a leading provider of surface engineering, polymer processing and additive manufacturing, announced today that it has signed an agreement to acquire Italy-headquartered INglass S.p.A. and its innovative hot runner systems technology operating under its market-leading HRSflow business.

Oerlikon signs agreement to acquire INglass, a global leader in high precision polymer flow control equipment, to accelerate expansion strategy in polymer processing market

  • INglass and its HRSflow Division is a market leader spezialized in hot runner sytems
  • Technology is highly complementary to Oerlikon’s existing capabilities in polymer flow control and will expand Oerlikon’s market access
  • Acquisition accelerates Oerlikon’s strategy in diversifying its manmade fibers business to expand into the high-growth polymer processing solution market
  • Oerlikon renames ‘Manmade Fibers’ Division to ‘Polymer Processing Solutions’
  • Acquisition is expected to be completed in the second quarter of 2021

Oerlikon, a leading provider of surface engineering, polymer processing and additive manufacturing, announced today that it has signed an agreement to acquire Italy-headquartered INglass S.p.A. and its innovative hot runner systems technology operating under its market-leading HRSflow business.

The strategic acquisition is a significant step in expanding Oerlikon’s current manmade fibers business into the larger polymer processing market. The acquisition accelerates and enhances existing organic initiatives to diversify and strengthen the company’s core high-precision polymer flow control capabilities, products and services. The completion of the transaction is subject to customary regulatory approvals and is expected by the second quarter of 2021.

To reflect Oerlikon’s expansion into a larger high-growth market, the Manmade Fibers Division will be renamed as Polymer Processing Solutions Division. This division will have two business units: Flow Control Solutions and Manmade Fibers Solutions. The busines unit Flow Control Solutions will combine the expertise of Oerlikon Barmag’s existing gear metering pumps business line and INglass’ HRSflow operations. The business unit Manmade Fibers Solutions will continue to focus on growing the existing chemical fiber machinery and plant engineering business, offering plant solutions for the production of polyester, polypropylene and polyamide.

“Our new Polymer Processing Solutions Division and the acquisition of INglass S.p.A. and its HRSflow business are critical components of Oerlikon Group’s growth strategy. We are accelerating our efforts to drive sustainable organic and inorganic growth in all of our businesses. The acquisition enables new synergy opportunities between both Oerlikon divisions in specific end markets such as automotive. With INglass and its HRSflow operations, we acquire leading suppliers in their markets with proven success of their technologies and services,” said Dr. Roland Fischer, CEO Oerlikon Group.

“We firmly believe that within the Oerlikon Group we can further exploit the potential of our hot runner systems technology and, when combined with the capabilities of Oerlikon Barmag gear metering pumps and their melt distribution engineering competence, will position our business as one of the leading precision flow control specialists for multiple applications in a global growth market”, said Antonio Bortuzzo, CEO of INglass S.p.A.

New business unit offers great growth potential

The Oerlikon Barmag competence brand already offers high precision flow control related components, including a large selection of gear metering pumps for textile and non-textile markets. These highly efficient pumps are used in silicone casting, dynamic mixing and oil spraying for the chemical, paint, polymer processing and automotive industries. This double-digit million CHF business, which has grown in recent years, will be merged with INglass’ HRSflow hot runner technologies under the new business unit Flow Control Solutions. HRSflow’s excellent market access to many OEMs in and outside the automotive industry brings significant growth opportunities.

INglass is a leader in automotive and expanding in other sectors

INglass S.p.A. is an internationally operating successful company established in 1987. Its product portfolio includes hot runners as well as engineering and consultancy services for the advanced development of polymer processing products. INglass’ HRSflow hot runner systems are applied in multiple industries from automotive, consumer goods and household appliances to packaging, waste management, construction and transportation.

INglass is headquartered in San Polo di Piave, Italy, near Venice. 2020 revenues of INglass were approximately CHF 135 million and the acquisition is expected to be immediately accretive to Oerlikon’s margins and cash flows. INglass has more than 1 000 employees and 55 sites worldwide, including production plants in Italy, China and the US. Among these sites are INglass’ newly renovated headquarters and production at its primary location in San Polo di Piave near Venice, Italy. The investment modernized the facilities with automated production, underlining the company’s commitment to sustainability and the environment. The other two modern production sites are in Zhejiang (Hangzhou Province) in China and Michigan (Grand Rapids) in the USA.

Following the integration with Oerlikon Barmag’s gear metering pumps business of about 200 employees in Remscheid, Germany, the new Flow Control Solutions business unit will have round about 1 200 employees.

"We see great potential for growth in our new Flow Control Solutions business unit,” said Georg Stausberg, Polymer Processing Solutions Division CEO and Member of the Executive Committee of the Oerlikon Group. “The businesses form the two core growth pillars and benefit from each other in global market development, in modern and digitized production, and in customer services. We also see potential synergies in R&D by combining existing know-how in the field of polymer processing. New technological solutions between hot runner systems and gear metering pumps are conceivable. We also anticipate collaborating more closely with the Oerlikon Surface Solutions Division, particularly in future mobility applications and functional polymer component solutions for the automotive industry. All in all, we will offer our customers innovative and attractive solutions in the field of polymer processing and high precision flow control components.”

Next steps for further diversification of the division product portfolio are already ongoing

Combining the divisions plant engineering and process know how with expertise on high precision flow control components technologies has a significant impact on product quality in nearly all applications, which opens up a platform for further organic and inorganic growth. "We are closely observing the megatrends in the markets and developing new business models to match. In the area of sustainability, covering topics such as circular economy, the recycling of materials using mechanical and chemical recycling solutions, as well as the handling of new, more environmentally friendly and biodegradable materials, we are on the verge of a breakthrough. We are ready to actively participate in these growth areas,” added Georg Stausberg.

“In realigning the Polymer Processing Solutions Division, Oerlikon will continue to apply our successful recipe of a lean organizational structure to efficiently manage the business. This means clear processes, short decision-making paths and competent teams in a diverse and multicultural organization in which everyone can contribute innovatively to create customer value,” said Georg Stausberg.

Uncoated, ultra-bright virgin fibre liner with exceptional feel and colour reproduction (c) Sappi
Fusion Nature Blog
20.04.2021

Uncoated, ultra-bright virgin fibre liner with exceptional feel and colour reproduction

Sappi is expanding its product range for corrugated board applications with Fusion Nature Plus.

With Fusion Nature Plus, Sappi is launching an uncoated, fully bleached and completely recyclable virgin fibre liner. The company provides a unique variety of packaging and speciality papers. The specialist in paper-based solutions also offers a wide range of products in relation to labels. Fusion Nature Plus offers excellent printing results in flexographic, digital and offset printing processes.

  • Ultra-bright, uncoated virgin fibre paper with excellent printing results
  • Ideal for attractive corrugated board as well as premium shopping bags
  • Can be used as topliner, liner or fluting
  • Available in grammages of 80 to 130 g/m²

The virgin fibre liner is based on the concept of the successful Fusion Topliner. In contrast to the double-coated Fusion Topliner, Fusion Nature Plus has a natural, uncoated surface with a more tactile feel, in response to the growing market appetite for this type of product. The liner is also provided in very low grammages.

Sappi is expanding its product range for corrugated board applications with Fusion Nature Plus.

With Fusion Nature Plus, Sappi is launching an uncoated, fully bleached and completely recyclable virgin fibre liner. The company provides a unique variety of packaging and speciality papers. The specialist in paper-based solutions also offers a wide range of products in relation to labels. Fusion Nature Plus offers excellent printing results in flexographic, digital and offset printing processes.

  • Ultra-bright, uncoated virgin fibre paper with excellent printing results
  • Ideal for attractive corrugated board as well as premium shopping bags
  • Can be used as topliner, liner or fluting
  • Available in grammages of 80 to 130 g/m²

The virgin fibre liner is based on the concept of the successful Fusion Topliner. In contrast to the double-coated Fusion Topliner, Fusion Nature Plus has a natural, uncoated surface with a more tactile feel, in response to the growing market appetite for this type of product. The liner is also provided in very low grammages.

Fusion Nature Plus enhances brand appearance

Brand owners, corrugated board processors, manufacturers of display cartons and folding cartons as well as designers all benefit from the versatility of the new Fusion Nature Plus. In contrast to conventional uncoated liner papers, the material offers high brightness, brilliant colour reproduction and consistently high quality. These features make the product the perfect choice for corrugated board or solid board packaging, where a very bright appearance is needed for topliners, inner liners and corrugating applications. Whether used as an inlay in cosmetics or confectionery packaging, or as a liner in shipping packaging to ensure an exceptional unboxing experience, Fusion Nature Plus is called upon wherever an enhanced appearance is desired.

Another area of application is paper carrier bags, where uncoated paper qualities are often preferred.

Fusion Nature Plus is ideally suited to a range of printing processes: the product achieves outstanding results in flexographic and offset printing. The pre-treated surface and high brightness offer clear advantages with regard to primer requirements and print behaviour, especially for inkjet-based digital printing. Bernd Gelder, Head of Sales Containerboard at Sappi Europe: ‘With its exceptional print quality and impressive colour reproduction, Fusion Nature Plus particularly appeals to packaging customers who value a natural look and feel in paper. The response from the market, in which packaging based on corrugated board still needs to take on a bigger role, is enormous, of course, with the result that we have succeeded in completing a number of interesting end applications and customer projects with Fusion Nature Plus shortly after market launch.’

Virgin fibre vital for recycling

In continuous recycling use, fiber that has already been recycled is subject to a progressive weakening of quality, resulting in a weakness in the products that incorporate them, but also, crucially, over time they will ultimately degrade to a point where they become unrecoverable. As a result, a certain amount of virgin fibre needs to be introduced into the cycle on a regular basis. Without continuous virgin fibre contribution to the pulp cycle, recycled producers will in the end run out of raw material. The premium virgin fibre liner Fusion Nature Plus from Sappi plays an important role here in maintaining the quality of the recycling substrate.

Thanks to the central location of Sappi’s production site in Ehingen, Fusion Nature Plus can be supplied quickly throughout Europe. The shorter transportation distances reduce transport related fossil emissions and protect the environment. The shorter production cycles in turn ensure high availability and rapid supply.

Fusion Nature Plus is currently available in six grammages from 80 to 130 g/m² in both sheet and roll form. Sappi can also provide Fusion Nature Plus with FSC or PEFC certificates on request.

ANDRITZ receives order for a needlepunch line from Pureko (c) ANDRITZ
SFD (self-feeding device) system on a pre-needleloom to feed a wide range of fiber batts
15.03.2021

ANDRITZ receives order for a needlepunch line from Pureko

International technology Group ANDRITZ has received an order from Pureko Sp. z o.o. to supply a needlepunch line for their plant in Myszków, Poland. The line will process recycling fibers from garment waste for the production of technical felts dedicated to furniture and geotextile applications. The final products will have fabric weights ranging from 300 to 500 gsm, and the production capacity will be up to 750 kg/h. Installation and start-up are scheduled for the third quarter of 2021.

The ANDRITZ scope of supply includes a complete neXline needlepunch eXcelle line – from web forming to needling – as well as engineering and ANDRITZ’s recently launched scanning gauge.

This is the second ANDRITZ line to be supplied to Pureko, thus demonstrating the strong partnership between both companies. Three years ago, Pureko invested in a new, modern plant supplied by ANDRITZ Asselin-Thibeau to produce fluffy nonwovens used in the furniture, textile, and clothing industries. The new line will enable Pureko to continue its ongoing growth.

International technology Group ANDRITZ has received an order from Pureko Sp. z o.o. to supply a needlepunch line for their plant in Myszków, Poland. The line will process recycling fibers from garment waste for the production of technical felts dedicated to furniture and geotextile applications. The final products will have fabric weights ranging from 300 to 500 gsm, and the production capacity will be up to 750 kg/h. Installation and start-up are scheduled for the third quarter of 2021.

The ANDRITZ scope of supply includes a complete neXline needlepunch eXcelle line – from web forming to needling – as well as engineering and ANDRITZ’s recently launched scanning gauge.

This is the second ANDRITZ line to be supplied to Pureko, thus demonstrating the strong partnership between both companies. Three years ago, Pureko invested in a new, modern plant supplied by ANDRITZ Asselin-Thibeau to produce fluffy nonwovens used in the furniture, textile, and clothing industries. The new line will enable Pureko to continue its ongoing growth.

Founded in 2009, Pureko is one of the most important producers of nonwovens in Poland. The company’s nonwoven products are mainly used for wadding; they are free of chemicals, do not involve any health hazards, and are hypoallergenic. Pureko’s products carry top certificates such as INTERTEK, FIRA, OEKO-TEX, and the National Institute of Hygiene.

Huesker: Geogitter aus PET-Recycling-Garn (c) Huesker Gruppe
01.03.2021

Huesker: Geogitter aus PET-Recycling-Garn

  • 100 % Recyclinggarn in Originalfaserqualität
  • Ressourcen- und CO2-Einsparungen
  • Wirtschaftlich und nachhaltig

Das langjährig bewährte Geogitter Fortrac T ist ab sofort auch in der ecoLine verfügbar. Der HUESKER Gruppe ist es gelungen, das Geogitter für die Bewehrung von Erdkonstruktionen aus 100 Prozent recycelten PET-Garnen herzustellen. Zuvor hatte das Unternehmen bereits erfolgreich einen weiteren Produktklassiker, die Asphaltbewehrung HaTelit C eco, ebenfalls aus PET-Recycling-Garnen, in der ecoLine eingeführt.

„Unsere Geogitter der ecoLine erfüllen dieselben hohen Qualitätsstandards wie das Ursprungsprodukt aus Originalfasern. Fortrac T eco wird aus hochmodulen Polyestergarnen hergestellt und hält Zugkräften bis 1.600 kN/m stand“, erklärt Sven Schröer, Geschäftsführer für die weltweiten Vertriebs- und Anwendungstechnikaktivitäten der HUESKER Gruppe im Bereich Geokunststoffe.

  • 100 % Recyclinggarn in Originalfaserqualität
  • Ressourcen- und CO2-Einsparungen
  • Wirtschaftlich und nachhaltig

Das langjährig bewährte Geogitter Fortrac T ist ab sofort auch in der ecoLine verfügbar. Der HUESKER Gruppe ist es gelungen, das Geogitter für die Bewehrung von Erdkonstruktionen aus 100 Prozent recycelten PET-Garnen herzustellen. Zuvor hatte das Unternehmen bereits erfolgreich einen weiteren Produktklassiker, die Asphaltbewehrung HaTelit C eco, ebenfalls aus PET-Recycling-Garnen, in der ecoLine eingeführt.

„Unsere Geogitter der ecoLine erfüllen dieselben hohen Qualitätsstandards wie das Ursprungsprodukt aus Originalfasern. Fortrac T eco wird aus hochmodulen Polyestergarnen hergestellt und hält Zugkräften bis 1.600 kN/m stand“, erklärt Sven Schröer, Geschäftsführer für die weltweiten Vertriebs- und Anwendungstechnikaktivitäten der HUESKER Gruppe im Bereich Geokunststoffe.

Source:

HUESKER Synthetic GmbH

09.02.2021

Sicomin: Collaboration with GREENBOATS® for natural fibre composite

Sicomin announces its latest collaboration with GREENBOATS® as they deliver the first ever natural fibre composite (NFC) nacelle for an offshore wind turbine.  

With more than 2.5 million tons of composite materials in use in the wind industry globally, and the first generation of wind turbines now approaching end of life, there is still a lack of well-established recycling options. GREENBOATS’ mission is to demonstrate how large-scale NFC structures in wind energy can lower energy consumption in manufacturing and significantly improve the sustainability of the composite materials used in the turbine.

In 2020, GREENBOATS was commissioned by a leading wind energy technology developer to design and manufacture a sustainable NFC nacelle. The resulting 7.3m long structure has a surface area of approximately 100m2 and was engineered by GREENBOATS to satisfy all DNV-GL load cases required for an offshore turbine nacelle, including 200km/h max wind loads and 2KN loads on the guard rails.

Sicomin announces its latest collaboration with GREENBOATS® as they deliver the first ever natural fibre composite (NFC) nacelle for an offshore wind turbine.  

With more than 2.5 million tons of composite materials in use in the wind industry globally, and the first generation of wind turbines now approaching end of life, there is still a lack of well-established recycling options. GREENBOATS’ mission is to demonstrate how large-scale NFC structures in wind energy can lower energy consumption in manufacturing and significantly improve the sustainability of the composite materials used in the turbine.

In 2020, GREENBOATS was commissioned by a leading wind energy technology developer to design and manufacture a sustainable NFC nacelle. The resulting 7.3m long structure has a surface area of approximately 100m2 and was engineered by GREENBOATS to satisfy all DNV-GL load cases required for an offshore turbine nacelle, including 200km/h max wind loads and 2KN loads on the guard rails.

Sicomin’s market leading GreenPoxy® range met these challenging engineering requirements, with the company’s recently expanded manufacturing capability also matching the potential supply volumes required by wind turbine manufacturers.  

Sicomin’s DNV-GL type approved bio-based epoxy was used to infuse BComp flax fibre reinforcements and balsa cores, with Sicomins’ intumescent weatherproof gelcoat applied on the outer surface. Cured panels were cut to shape, formed over a male plug and bonded together, before flax reinforcement plies, hand laminated with GreenPoxy resins and vacuum bagged, were added along all the panel joints lines.  Finally, Sicomin’s highly UV resistant clear coating products were used to protect and enhance the finish of the flax fibre feature stripe details.

Source:

100% Marketing

07.01.2021

DSM/Clariter: Chemischen Recyclinglösung für Dyneema®-basierte Endprodukte

Royal DSM, ein globales wissenschaftlich fundiertes Unternehmen für Ernährung, Gesundheit und nachhaltiges Leben, und Clariter, ein internationales Clean-Tech-Unternehmen, geben heute ihre strategische Partnerschaft bekannt. Gemeinsam wollen sie eine chemische Recyclinglösung der nächsten Generation für Produkte auf Basis von Dyneema® von DSM entwickeln, einer ultrahohen Molekülmasse (Ultra-High-Molecular-Weight Polyethylene, UHMWPE). Als erster Schritt dieser Partnerschaft wurde eine Reihe von Musterprodukten - darunter Seile, Netze und ballistische Materialien, die mit Dyneema® hergestellt wurden - in der Clariter-Pilotanlage in Polen erfolgreich umgewandelt. Dies demonstriert das Recycling-Potenzial von Dyneema® und unterstreicht das aktive Engagement von DSM Protective Materials zur Gestaltung einer nachhaltigeren Welt.

Royal DSM, ein globales wissenschaftlich fundiertes Unternehmen für Ernährung, Gesundheit und nachhaltiges Leben, und Clariter, ein internationales Clean-Tech-Unternehmen, geben heute ihre strategische Partnerschaft bekannt. Gemeinsam wollen sie eine chemische Recyclinglösung der nächsten Generation für Produkte auf Basis von Dyneema® von DSM entwickeln, einer ultrahohen Molekülmasse (Ultra-High-Molecular-Weight Polyethylene, UHMWPE). Als erster Schritt dieser Partnerschaft wurde eine Reihe von Musterprodukten - darunter Seile, Netze und ballistische Materialien, die mit Dyneema® hergestellt wurden - in der Clariter-Pilotanlage in Polen erfolgreich umgewandelt. Dies demonstriert das Recycling-Potenzial von Dyneema® und unterstreicht das aktive Engagement von DSM Protective Materials zur Gestaltung einer nachhaltigeren Welt.

Im Einklang mit seinen ehrgeizigen Nachhaltigkeitszielen und nach der erfolgreichen Einführung von biobasiertem Dyneema® (Massenausgleich) arbeitet DSM Protective Materials aktiv an Wiederverwendungs- und Recyclinglösungen für Dyneema®-basierte Produkte am Ende ihrer Lebensdauer. Um technische Recyclinglösungen voranzutreiben, sind DSM Protective Materials und Clariter eine Partnerschaft eingegangen. Gemeinsam soll die Machbarkeit der Verwendung von Dyneema® als Ausgangsmaterial im chemischen Recyclingprozess von Clariter getestet werden. Mit Dyneema® hergestellte Musterprodukte wurden in der Pilotanlage von Clariter in Polen unter Probe gestellt. Die positiven Ergebnisse bestätigen die technische Realisierbarkeit der Umwandlung von Dyneema®-basierten Endprodukten in hochwertige Produktfamilien in Industriequalität: Öle, Wachse und Lösungsmittel durch Clariters patentierten dreistufigen chemischen Recycling-Prozess. Diese können als Inhaltsstoffe zur Herstellung neuer End- und Verbraucherprodukte weiterverwendet werden.

In Zukunft werden DSM Protective Materials und Clariter diese Initiative weiter vorantreiben, um eine nachhaltigere Welt zu gestalten. Aufbauend auf dem Erfolg des Versuchs im Labormassstab hat Clariter für 2021 Versuche im kommerziellen Massstab in seiner Anlage in Südafrika geplant. Dies mit dem Ziel, aus Dyneema® gewonnenes Rohmaterial in den europäischen Grossanlagen zu verwenden, die in den kommenden Jahren gebaut werden sollen. Darüber hinaus wird DSM weiterhin aktiv die Möglichkeiten zur Reduzierung der Umweltauswirkungen von Dyneema® über alle Produktlebensphasen hinweg untersuchen.

Source:

EMG Marcom

04.12.2020

ANDRITZ to acquire Laroche

International technology Group ANDRITZ has signed an agreement with Laroche, based in Cours, France, to acquire LM Industries comprising Laroche SA and Miltec SA, France. ANDRITZ will take over all Laroche entities and their business worldwide. Closing of the transaction, which is subject to approval by the ANDRITZ Supervisory Board, is expected at the beginning of 2021.

International technology Group ANDRITZ has signed an agreement with Laroche, based in Cours, France, to acquire LM Industries comprising Laroche SA and Miltec SA, France. ANDRITZ will take over all Laroche entities and their business worldwide. Closing of the transaction, which is subject to approval by the ANDRITZ Supervisory Board, is expected at the beginning of 2021.

Laroche is a leading supplier of fiber processing technologies such as opening, blending and dosing, airlay web forming, textile waste recycling and decortication of bast fibers. The product portfolio further complements the ANDRITZ Nonwoven product range. ANDRITZ is now able to offer the complete supply and value chain, from the raw material, to opening and blending, web forming, bonding, finishing, drying, and converting. Laroche’s high-performance technologies for opening and blending enhance the ANDRITZ scope of supply for spunlace, needlepunch and wetlaid production lines. Moreover, both companies have agreed to further strengthen the development of their existing technologies for high-speed and high-capacity applications and also to continue pursuing the development of textile recycling processes in order to stay ahead of the changes the industry is facing.

Laroche SA has been developing fiber processing technologies for more than 100 years. With integrated manufacturing, the company supplies lines for a wide range of industries/products: spinning, bedding and furniture, automotive, acoustic and thermal insulation, geotextiles, filtration, wipes, and many more.

Robert Laroche, President of Laroche: “This acquisition is the logical conclusion in view of the successful long-term relationship between ANDRITZ and Laroche. We have been working in close cooperation for more than ten years and are very much looking forward to becoming a member of the ANDRITZ family.”

Andreas Lukas, Senior Vice President and Division Manager, ANDRITZ Nonwoven: “By adding Laroche’s state-of-the-art products and expertise to our existing capabilities, ANDRITZ Nonwoven will further strengthen its market and technology position.”

Source:

ANDRITZ AG

Flax for Composites: Woven tapes made of natural fibres by vombaur (c) Elke Wetzig, Wikimedia
Lightweight, firm, sustainable: Flax tape by vombaur
02.12.2020

Flax for Composites: Woven tapes made of natural fibres by vombaur

Flax has accompanied people for thousands of years, in linen fabrics, in ropes, as insulation material. And until the present day. With woven tapes made of flax, vombaur makes the functional and ecological advantages of natural fibres available for lightweight design.

Lightweight and firm
Flax fibres are particularly rigid and tear-proof. Textiles made of the natural material therefore give natural fibre reinforced plastic (NFP) special stability. Additionally, flax has a low density. The components thus combine high rigidity and strength with low weight. Another functional plus: natural fibre reinforced plastics are less prone to splintering than glass fibre reinforced plastics.

Sustainable material
The cultivation of flax binds CO2 and the production of NFP generates 33 percent lower CO2 emissions than conventional fibre reinforced plastics. The energy consumption is 40 percent lower. This reduces production costs and improves the material's CO2 footprint. Punch-packing arguments for natural fibre tapes – like flax tape by vombaur – in lightweight design applications.

Flax has accompanied people for thousands of years, in linen fabrics, in ropes, as insulation material. And until the present day. With woven tapes made of flax, vombaur makes the functional and ecological advantages of natural fibres available for lightweight design.

Lightweight and firm
Flax fibres are particularly rigid and tear-proof. Textiles made of the natural material therefore give natural fibre reinforced plastic (NFP) special stability. Additionally, flax has a low density. The components thus combine high rigidity and strength with low weight. Another functional plus: natural fibre reinforced plastics are less prone to splintering than glass fibre reinforced plastics.

Sustainable material
The cultivation of flax binds CO2 and the production of NFP generates 33 percent lower CO2 emissions than conventional fibre reinforced plastics. The energy consumption is 40 percent lower. This reduces production costs and improves the material's CO2 footprint. Punch-packing arguments for natural fibre tapes – like flax tape by vombaur – in lightweight design applications.

Circular Economy
Circular Economy – this also works in lightweight design. The number of recycling cycles without loss of quality is higher for natural fibre reinforced plastics than for glass or carbon fibre reinforced plastics: the thermoplastic matrix of the composite can be melted and recycled after a product life cycle. The natural fibres can "live on" in other products – injection moulded products for example.

Versatile applications
"Composites from our flax tapes are used to reinforce high-tech skis as well as for extruding state-of-the-art window sections – the applications are countless," explains Tomislav Josipovic, Sales Manager with vombaur. "As a development partner, we support applications for the automotive, wind energy, construction, sports and many other industries with our composite textiles."

More information:
vombaur Naturfasern Composites
Source:

stotz-design.com

(c) BB Engineering GmbH
26.11.2020

BBE's VacuFil recycling line for PET

Polyester and its applications are omnipresent in our everyday lives. Whether as beverage bottles, film packaging, high-tech sports shirts or safety belts, polyester excels with its excellent mechanical properties and inexpensive production. However, the constantly rising demand requires responsible handling of global resources. For this reason, it is not only ‘virgin polyester’ generated from crude oil that is exclusively the raw material for manufacturing, so too is polyester recycled from post-production and post-consumer waste. Processing production waste also helps cut raw material, disposal and transport costs, hence increasing efficiency.

Polyester and its applications are omnipresent in our everyday lives. Whether as beverage bottles, film packaging, high-tech sports shirts or safety belts, polyester excels with its excellent mechanical properties and inexpensive production. However, the constantly rising demand requires responsible handling of global resources. For this reason, it is not only ‘virgin polyester’ generated from crude oil that is exclusively the raw material for manufacturing, so too is polyester recycled from post-production and post-consumer waste. Processing production waste also helps cut raw material, disposal and transport costs, hence increasing efficiency.

BB Engineering has developed an innovative solution for the recycling of post-production polyester fibre waste, called VacuFil. Decades of experience in the areas of extrusion, filtration and spinning systems have been bundled into a new, innovative core component – the vacuum filter. It unites gentle large-scale filtration and controlled intrinsic-viscosity build-up for consistently outstanding melt quality. The attached vacuum swiftly and reliably removes volatile contamination and ensures a controlled IV-increase. Comprising an inline viscosity measuring unit connected with the vacuum unit the IV can be controlled continuously and reliably. Hence, producers are able to generate that specific kind of recycled polyester they need for their application.

Source:

BB Engineering GmbH

Anlagentechnik zum Carbonfaser-Recycling im Zentrum für Textilen Leichtbau am STFI, Foto: Dirk Hanus.
28.10.2020

Innovationen beim Recycling von Carbonfasern

  • Kohlenstoff mit mehreren Leben

Geht es um die Zukunft der motorisierten Mobilität, reden alle vom Antrieb: Wie viel E-Auto, wie viel Verbrenner verträgt die Umwelt und braucht der Mensch? Zugleich stellen neue Antriebe erhöhte Anforderungen nicht nur an den Motor, sondern auch an dessen Gehäuse und die Karosse: Für solch anspruchsvolle Anwendungen kommen häufig Carbonfasern zum Einsatz. Wie der Antrieb der Zukunft, sollten auch die Werkstoffe am Fahrzeug umweltfreundlich sein. Deshalb ist Recycling von Carbonfasern gefragt. Lösungen dafür haben Institute der Zuse-Gemeinschaft entwickelt.

  • Kohlenstoff mit mehreren Leben

Geht es um die Zukunft der motorisierten Mobilität, reden alle vom Antrieb: Wie viel E-Auto, wie viel Verbrenner verträgt die Umwelt und braucht der Mensch? Zugleich stellen neue Antriebe erhöhte Anforderungen nicht nur an den Motor, sondern auch an dessen Gehäuse und die Karosse: Für solch anspruchsvolle Anwendungen kommen häufig Carbonfasern zum Einsatz. Wie der Antrieb der Zukunft, sollten auch die Werkstoffe am Fahrzeug umweltfreundlich sein. Deshalb ist Recycling von Carbonfasern gefragt. Lösungen dafür haben Institute der Zuse-Gemeinschaft entwickelt.

Carbonfasern, auch als Kohlenstofffasern oder verkürzt als Kohlefasern bekannt, bestehen fast vollständig aus reinem Kohlenstoff. Sehr energieaufwändig wird er bei 1.300 Grad Celsius aus dem Kunststoff Polyacrylnitril gewonnen. Die Vorteile der Carbonfasern: Sie haben kaum Eigengewicht, sind enorm bruchfest und stabil. Solche Eigenschaften benötigt man z.B. am Batteriekasten von E-Mobilen oder in Strukturbauteilen der Karosserie. So arbeitet das Sächsische Textilforschungsinstitut e.V. (STFI) aktuell gemeinsam mit Industriepartnern daran, statisch-mechanische Stärken der Carbonfasern mit Eigenschaften zur Schwingungsdämpfung zu verknüpfen, um die Gehäuse von E-Motoren im Auto zu verbessern. Angedacht ist in dem vom Bundeswirtschaftsministerium geförderten Projekt die Entwicklung sogenannter Hybridvliesstoffe, die neben der Carbonfaser als Verstärkung weitere Faserstoffe enthalten. „Wir wollen, die Vorteile unterschiedlicher Faserstoffe verbinden und so ein optimal auf die Anforderungen abgestimmtes Produkt entwickeln“, erläutert Marcel Hofmann, STFI-Abteilungsleiter Textiler Leichtbau.

Damit würden die Chemnitzer Forschenden bisherige Vliesstoff-Lösungen ergänzen. Sie blicken auf eine 15-jährige Geschichte in der Arbeit mit recycelten Carbonfasern zurück. Der globale Jahresbedarf der hochwertigen Fasern hat sich im vergangenen Jahrzehnt fast vervierfacht, laut Angaben der Industrievereinigung AVK auf zuletzt rd. 142.000 t. „Die steigende Nachfrage hat das Recycling immer stärker in den Fokus gerückt“, betont Hofmann. Carbonfaserabfälle sind ihm zufolge für etwa ein Zehntel bis ein Fünftel des Preises von Primärfasern erhältlich, müssen aber noch aufbereitet werden. Dreh- und Angelpunkt für den Forschungserfolg der recycelten Fasern sind konkurrenzfähige Anwendungen. Die hat das STFI nicht nur am Auto, sondern auch im Sport-Freizeitsektor sowie in der Medizintechnik gefunden, so in Komponenten für Computertomographen. "Während Metalle oder Glasfasern als potenzielle Konkurrenzprodukte Schatten werfen, stört Carbon die Bilddarstellung nicht und kann seine Vorteile voll ausspielen“, erläutert Hofmann.

Papier-Knowhow nutzen
Können recycelte Carbonfasern nochmals den Produktkreislauf durchlaufen, verbessert das ihre CO2-Bilanz deutlich. Zugleich gilt: Je kürzer die Carbonfasern, desto unattraktiver sind sie für die weitere Verwertung. Vor diesem Hintergrund entwickelten das Forschungsinstitut Cetex und die Papiertechnische Stiftung (PTS), beide Mitglieder der Zuse-Gemeinschaft, im Rahmen eines Forschungsvorhabens ein neues Verfahren, das bislang wenig geeignet erscheinende Recycling-Carbonfasern ein zweites Produktleben gibt. „Während klassische Textilverfahren die ohnehin sehr spröden Recycling-Carbonfasern in Faserlängen von mind. 80 mm trocken verarbeiten, beschäftigten wir uns mit einem Verfahren aus der Papierindustrie, welches die Materialien nass verarbeitet. Am Ende des Prozesses erhielten wir, stark vereinfacht gesprochen, eine flächige Matte aus recycelten Carbonfasern und Kunststofffasern“, erläutert Cetex-Projektingenieur Johannes Tietze das Verfahren, mit dem auch 40 mm kurze Carbonfasern zu attraktiven Zwischenprodukten recycelt werden können. Das danach in einem Heißpressprozess entstandene Erzeugnis dient als Grundmaterial für hochbelastbare Strukturbauteile. Zusätzlich wurden die mechanischen Eigenschaften der Halbzeuge durch die Kombination mit endlosfaserverstärkten Tapes verbessert. Das Recyclingprodukt soll, so die Erwartung der Forschenden, glasfaserverstärkten Kunststoffen, Konkurrenz machen, z.B. bei Anwendungen im Schienen- und Fahrzeugbau. Die Ergebnisse fließen nun in weiterführende Forschung und Entwicklung im Kooperationsnetzwerk Ressourcetex ein, einem geförderten Verbund von 18 Partnern aus Industrie und Wissenschaft.

Erfolgreiche Umsetzung in der Autoindustrie
Industriereife Lösungen für die Verwertung von Carbonfaser-Produktionsabfällen werden im Thüringischen Institut für Textil- und Kunststoff-Forschung Rudolstadt (TITK) entwickelt. Mehrere dieser Entwicklungen wurden mit Partnern beim Unternehmen SGL Composites in Wackersdorf industriell umgesetzt. Die Aufbereitung der so genannten trockenen Abfälle, hauptsächlich aus Verschnittresten, erfolgt nach einem eigenen Verfahren. „Dabei führen wir die geöffneten Fasern verschiedenen Prozessen zur Vliesherstellung zu“, sagt die zuständige Abteilungsleiterin im TITK, Dr. Renate Lützkendorf. Neben den Entwicklungen für den Einsatz z.B. im BMW i3 in Dach oder Hintersitzschale wurden im TITK spezielle Vliesstoffe und Verfahren für die Herstellung von Sheet Molding Compounds (SMC) etabliert, das sind duroplastische Werkstoffe, die aus Reaktionsharzen und Verstärkungsfasern bestehen und zum Pressen von Faser-Kunststoff-Verbunden verwendet werden. Eingang fand dies z.B. in einem Bauteil für die C-Säule des 7er BMW. „In seinen Projekten setzt das TITK vor allem auf die Entwicklung leistungsfähigerer Prozesse und kombinierter Verfahren, um den Carbonfaser-Recyclingmaterialien auch von den Kosten her bessere Chancen in Leichtbauanwendungen einzuräumen“, betont Lützkendorf. So liege der Fokus gegenwärtig auf dem Einsatz von CF-Recyclingfasern in thermoplastischen Prozessen zur Platten- und Profilextrusion. „Ziel ist es, die Kombination von Kurz- und Endlosfaserverstärkung in einem einzigen, leistungsfähigen Prozess-Schritt zu realisieren.“

Source:

Deutsche Industrieforschungsgemeinschaft Konrad Zuse e.V.

Oerlikon (c) Oerlikon
f.l.t.r Jochen Adler, Ralf Morgenroth, Markus Reichwein, Matthias Schmitz
15.10.2020

Oerlikon Experts share their know-how online

In order to ensure the transfer of know-how and technology in times of the pandemic, the Manmade Fibers segment of the Swiss Oerlikon Group will start its new webinar series in November. Four interesting technology lectures are planned until the end of 2020 which will be held in English. Current trends in the production of manmade fibers as well as Oerlikons technology solutions will be presented and discussed with the participants. A continuation of the webinar series is already planned for 2021.

In order to ensure the transfer of know-how and technology in times of the pandemic, the Manmade Fibers segment of the Swiss Oerlikon Group will start its new webinar series in November. Four interesting technology lectures are planned until the end of 2020 which will be held in English. Current trends in the production of manmade fibers as well as Oerlikons technology solutions will be presented and discussed with the participants. A continuation of the webinar series is already planned for 2021.

  • Factory know-how from a single source – A boost for your efficiency
    4. November 2020: 11:00-11:45h CET
    Speaker: Jochen Adler, Oerlikon Manmade Fibers CTO*
     
  • VarioFil – Your compact spinning solution
    11. November 2020: 11:00-11:45h CET
    Speaker: Ralf Morgenroth, Head of Engineering Textile Machinery BB Engineering (BBE)*
     
  • Green Technologies – Join us on the road to a sustainable fiber industry
    2. December 2020: 11:00-11:45h CET
    Speaker: Markus Reichwein, Head of Product Management Oerlikon Manmade Fibers*
     
  • VacuFil – Your future upcycling plant, from waste to value
    9. December 2020: 11:00-11:45h CET
    Speaker: Matthias Schmitz, Head of Engineering Recycling Technology, BB Engineering (BBE)*

 

*Please read the attached document for more information

Source:

Oerlikon Textile GmbH & Co. KG

Anker Carpet (c) Anker
13.10.2020

Anker, Devan and Shark Solutions develop flame retardant aviation carpet

Anker, Devan and Shark Solutions teamed up to create the world’s first flame retardant aviation carpet using a recycled binder. Inspired by the knowledge and the needs of the aviation market, Anker motivated to achieve this new goal together. The PVB binder reuses laminated glass, from windshields and architectural/building glass, that otherwise would go to landfill.

German carpet manufacturer Anker is the first company to offer flame retardant carpets for aviation that are made with a recycled binder. In the search for a more sustainable binder, Anker discovered the PVB from Shark Solutions, a Danish cleantech company focused on giving a new life to post-consumer PVB. Properties of the aviation carpet with PVB as binder are the same as those of traditional non-sustainable carpets. The market has been looking for this type of solutions for a long time and market introduction has already started. Anker will introduce well known and special developed styles of aviation carpets with PVB and plan to take out traditional non-sustainable aviation carpets stepwise as soon as possible.

Anker, Devan and Shark Solutions teamed up to create the world’s first flame retardant aviation carpet using a recycled binder. Inspired by the knowledge and the needs of the aviation market, Anker motivated to achieve this new goal together. The PVB binder reuses laminated glass, from windshields and architectural/building glass, that otherwise would go to landfill.

German carpet manufacturer Anker is the first company to offer flame retardant carpets for aviation that are made with a recycled binder. In the search for a more sustainable binder, Anker discovered the PVB from Shark Solutions, a Danish cleantech company focused on giving a new life to post-consumer PVB. Properties of the aviation carpet with PVB as binder are the same as those of traditional non-sustainable carpets. The market has been looking for this type of solutions for a long time and market introduction has already started. Anker will introduce well known and special developed styles of aviation carpets with PVB and plan to take out traditional non-sustainable aviation carpets stepwise as soon as possible.

Shark’s PVB reuses laminated glass, from windshields and architectural/building glass, that otherwise would go to landfill. The non-toxic binder (no chlorine or phthalates) is fully recyclable and thus lives up to the future standards of the industry.

Textile innovator Devan Chemicals, known for its tailor-made flame retardant solutions, was called in to develop the flame retardant back coating, which is compliant with the Airbus and Boeing safety standards. “Based on many years of experience and competences in customer related developments, improving recycling rates is getting more and more important”, says Dirk Vanpachtenbeke, R&D manager Flame Retardants at Devan. “We are very proud that, together with Anker and Shark Solutions, we can contribute to this rising demand for products that meet the standards of a circular economy solution.”

In other news, Anker and Devan are already working on a new project, which includes Devan’s antimicrobial/viral-reducing technology. Recently, Devan published test results on the activity of their technology (BI-OME®) against SARS-CoV-2 and other viruses. According to independent testing, BI-OME is proven to achieve 99% and higher virus reduction, including of SARS-COV-2, on samples before washing and retains 98.5% even after 25 wash cycles. This technology has been recognized with the 2020 European Technology Innovation Leadership Award by Frost & Sullivan.

Source:

Devan Chemicals NV / Marketing Solutions NV

VacuFil (c) Oerlikon
24.09.2020

Recycling becomes a focus

Mountains of waste, plastic-infested oceans, negative CO2 footprints – the need for more sustainable ways of living has never been more urgent. Consequently, it is logical that recycling solutions are becoming increasingly important within the textile industry. This was also tapped into at the first virtual Global Fiber Congress in Dornbirn with a session that focused specifically on the topic. In front of around 400 participants, Markus Reichwein, Head of Product Management at Oerlikon Barmag, also spoke about solutions currently on the market.

As one of only manufactureres, the Oerlikon Group’s Manmade Fibers segment offers the entire mechanical recycling chain –from preparing the recycled materials, producing the melt all the way through to the textured package. Here, the company utilizes the VacuFil solution supplied by its subsidiary Barmag Brückner Engineering (BBE) –which, in addition to mastering bottle-to-bottle and bottle-to-textile processes, is also able to process textile waste into chips. This permits the running of textile production operations very much in line with the zero-waste philosophy.

Mountains of waste, plastic-infested oceans, negative CO2 footprints – the need for more sustainable ways of living has never been more urgent. Consequently, it is logical that recycling solutions are becoming increasingly important within the textile industry. This was also tapped into at the first virtual Global Fiber Congress in Dornbirn with a session that focused specifically on the topic. In front of around 400 participants, Markus Reichwein, Head of Product Management at Oerlikon Barmag, also spoke about solutions currently on the market.

As one of only manufactureres, the Oerlikon Group’s Manmade Fibers segment offers the entire mechanical recycling chain –from preparing the recycled materials, producing the melt all the way through to the textured package. Here, the company utilizes the VacuFil solution supplied by its subsidiary Barmag Brückner Engineering (BBE) –which, in addition to mastering bottle-to-bottle and bottle-to-textile processes, is also able to process textile waste into chips. This permits the running of textile production operations very much in line with the zero-waste philosophy.

VacuFil ensures a stable process in the case of recycled quality yarns
The reliable removal of contaminants is vital for a stable and efficient spinning process and outstanding yarn quality. At the same time, stable operating conditions with minimal fluctuations are essential. The greatest challenge here is the differing qualities of the bottle flakes fed into the system, as the extrusion process is barely able to balance these fluctuations. Here, the VacuFil concept counters with blending silos, which reduce the differences in the viscosity of the polymers considerably and guarantee high yarn and fabric quality.

The VacuFil concept is installed upstream to an Oerlikon Barmag POY system, which transforms the recycled melt into filament yarn of the accustomed high quality. As texturing solutions, Oerlikon Barmag offers its state-of-the-art automatic eAFK-series systems, including the latest generation of the eAFK Evo, which was unveiled at the ITMA Barcelona last year. Yarn manufacturers wishing to continue texturing manually can use the eFK series.

With the VarioFil R+, producers of smaller batches now also have a compact system with an integrated recycled materials preparation unit at their disposal. The system offers a special extrusion system for bottle flake materials, the very latest metering and mixing technology for spin-dying and expanded 2-stage melt filtration. The four spinning positions are each equipped with an Oerlikon Barmag 10-end WINGS POY winder.

While mechanical recycling has already been extensively developed, chemical recycling for mixed fabrics is still presenting the textile industry with huge challenges. The Oerlikon Group’s Manmade Fibers segment is currently working on solutions and concepts for transforming these fabrics into new textiles.

 

More information:
Oerlikon Sustainability Yarns
Source:

Oerlikon

The Nordic countries’ first industrial end-of-life textile refinement plant will open in Paimio in 2021. (c)Paimion
Rester Paimio end-of-life textile refinement
18.08.2020

The Nordic countries’ first industrial end-of-life textile refinement plant will open in Paimio in 2021.

Rester Oy, which is developing the plant in Paimio, recycles companies' end-of-life textiles, and Lounais-Suomen Jätehuolto Oy (LSJH), which will hire a production area at the same facility, processes households' end-of-life textiles. The plant will process 12,000 tonnes of end-of-life textiles every year, which represents about 10% of Finland’s textile waste.

The textile industry’s end-of-life textile problem is intolerable. Natural resources are increasingly used to manufacture products, but these materials are lost at the end of their life cycle. About 100 million kilograms of textile waste are generated annually in Finland alone. Reusing this material could reduce the textile industry’s carbon footprint and significantly reduce the use of natural resources.

Rester Oy, which is developing the plant in Paimio, recycles companies' end-of-life textiles, and Lounais-Suomen Jätehuolto Oy (LSJH), which will hire a production area at the same facility, processes households' end-of-life textiles. The plant will process 12,000 tonnes of end-of-life textiles every year, which represents about 10% of Finland’s textile waste.

The textile industry’s end-of-life textile problem is intolerable. Natural resources are increasingly used to manufacture products, but these materials are lost at the end of their life cycle. About 100 million kilograms of textile waste are generated annually in Finland alone. Reusing this material could reduce the textile industry’s carbon footprint and significantly reduce the use of natural resources.

Rester Oy and LSJH will drive the textile sector towards a circular economy and begin processing textile waste as an industrial raw material. The Nordic countries’ first industrial end-of-textile refinement plant will open in Paimio in 2021. The 3,000-square-metre plant is being developed by Rester Oy, which recycles companies' end-of-life textiles and industrial waste materials. LSJH, which processes households’ end-of-life textiles on its production line, will hire part of the plant.

Outi Luukko, Rester Oy’s board chair, says, “The processing plant will begin a new era of textile circular economy in Finland. As industry pioneers, we are launching a system change in Scandinavia. The transition of the textile industry from a linear model to a circular economy is essential, as virgin materials cannot sustain the current structure of the textile industry. And why should it, when there is so much recyclable material available?”

From the perspective of Rester Oy’s main owner, work clothing supplier Touchpoint, the circular economy plant not only represents resource efficiency, but is also necessary from the perspective of the entire life cycle of a responsible work clothing collection.

Luukko adds, “Finding a local solution to a global problem is a huge leap in the right direction and raises Finland's profile as a pioneer of circular economy."

The future plant will be able to process 12,000 tonnes of end-of-life textiles annually, which represents about 10% of Finland’s textile waste. Both production lines produce recycled fibre, which can be used for various industrial applications, including yarn and fabric, insulating materials for construction and shipping industries, acoustic panels, composites, non-woven and filter materials, and other technical textiles, such as geo-textiles.

LSJH is piloting a full-scale refinement plant

LSJH has launched a pilot production line for processing households' end-of-life textiles. Unfortunately, consumers' end-of-life textiles are heterogeneous, making them a challenging raw material for further processing. Before processing, the textiles are sorted by material into various fibre classes using optical identification technology developed by LSJH and its partners. This ensures the quality of the raw material and the resulting fibre products.

Jukka Heikkilä, managing director for Lounais-Suomen Jätehuolto, explains: “On the basis of the experiences gathered from the pilot project, Lounais-Suomen Jätehuolto is preparing a full-scale refinement plant in the Turku region. As soon as 2023, the plant will process Finnish households' end-of-life textiles. The project involves all waste treatment plants owned by Finnish municipalities.”

Paimio has ambitious goals for circular economy companies

Rester’s initiative aims to create a circular economy cluster in Paimio that combines the processing and reuse of end-of-life textile fibres. Paimion Kehitys Oy, which is owned by the City of Paimio and the local association of enterprises, supports the development of circular economy companies in Paimio.

Mika Ingi, managing director for Paimion Kehitys Oy, says, “We want to step out of our traditional municipal role and create significant added value for everyone taking part. That is why we are involved in the development of a new modern service model based on ecosystem thinking. We are piloting the textile cluster, followed in the coming years by clusters focusing on plastic, construction, and energy. The aim of our service is to support and help develop new profitable business by bringing circular economy companies and their potential customers to innovate together."

The foundation stone of the processing plant was laid today (18 August 2020). The processing plant will begin operations in February 2021.