From the Sector

Reset
16 results
(c) JEC Group
23.09.2022

JEC Forum DACH 2022 announces program

This year’s JEC forum DACH, taking place from November 29 to 30, 2022, is strategically located in a composites « golden triangle », between Munich, Augsburg and Ingelstadt. This dynamic area, at the heart of the Bavarian region is known to be hosting major companies such as Airbus, Faurecia, Kuka, Siemens, Voith Composites, KraussMaffei Technologies, Cevotec, Munich Composites, or Premium Aerotec, thus promising a two-days opportunity to meet with key decision makers.

The digital platform available to all participants prior to the event enables to schedule one to one business meetings between buyers and suppliers from the whole value chain of composites, as well as informal networking during breaks, lunches and evening event.

In total, 500 attendees, suppliers and buyers, from Germany, Austria and Switzerland, are expected to participate to JEC Forum DACH 2022.

Business meetings event*
DAY 1 – November 29, 2022:

This year’s JEC forum DACH, taking place from November 29 to 30, 2022, is strategically located in a composites « golden triangle », between Munich, Augsburg and Ingelstadt. This dynamic area, at the heart of the Bavarian region is known to be hosting major companies such as Airbus, Faurecia, Kuka, Siemens, Voith Composites, KraussMaffei Technologies, Cevotec, Munich Composites, or Premium Aerotec, thus promising a two-days opportunity to meet with key decision makers.

The digital platform available to all participants prior to the event enables to schedule one to one business meetings between buyers and suppliers from the whole value chain of composites, as well as informal networking during breaks, lunches and evening event.

In total, 500 attendees, suppliers and buyers, from Germany, Austria and Switzerland, are expected to participate to JEC Forum DACH 2022.

Business meetings event*
DAY 1 – November 29, 2022:

  • 10.15 – 11.45 am – “Keynote and Plenary Conference Session : Market Developments
  • Moderator: Dr. Michael Effing, AVK
  • 4.0 – 5.30 pm – “Keynote and Plenary Conference Session: Recycling of Composites

DAY 2 – November 30, 2022:

  • 9.00– 10.30 am – “Keynote and Plenary Conference Session: Sustainability of Composites
  • 3.15 – 4.45 pm – “Keynote and Plenary Conference Session: Innovations: Raw Materials, Processes and Applications

Celebrating composites innovation through awards and startup competition

  • The AVK Innovation Awards: Goal is to promote and give prominence to new products/components and applications made from fiber-reinforced plastics (FRP) and promote new processes and methods for manufacturing FRP products.
  • Startup Booster competition: The contest is open to entrepreneurs, SMEs, startups and academic spinoffs building innovative composite and advanced materials projects that are based in Germany, Austria or Switzerland (the DACH region).

*You can view the full program here.

Source:

JEC Group

(c) Sicomin
22.04.2022

Sicomin: Upcycled Carbon Fibre from Airbus with GreenPoxy to create Surfboards

Sicomin has confirmed that eco-surfboard specialist NOTOX will use GreenPoxy 56 in its latest line of R-CARBON boards. The new NOTOX R-CARBON boards are the first to use 100% upcycled carbon fibre fabrics recovered from a production waste stream at Airbus.

NOTOX, founded in 2006 and based in Basque, France, has partnered with Sicomin to use GreenPoxy bio-resins in several earlier flax, cork, and bamboo reinforced boards. In a quest to now produce the most sustainable carbon fibre reinforced boards possible, NOTOX has signed a formal agreement with Airbus Nantes to purchase defective carbon fabrics that were destined for landfill.

Sicomin has confirmed that eco-surfboard specialist NOTOX will use GreenPoxy 56 in its latest line of R-CARBON boards. The new NOTOX R-CARBON boards are the first to use 100% upcycled carbon fibre fabrics recovered from a production waste stream at Airbus.

NOTOX, founded in 2006 and based in Basque, France, has partnered with Sicomin to use GreenPoxy bio-resins in several earlier flax, cork, and bamboo reinforced boards. In a quest to now produce the most sustainable carbon fibre reinforced boards possible, NOTOX has signed a formal agreement with Airbus Nantes to purchase defective carbon fabrics that were destined for landfill.

The new NOTOX technology gives a second life to Airbus carbon fabrics that are declared unusable for aerospace applications due to short roll lengths, an inability to be pre-formed, or other defects. The upcycled materials are combined with Sicomin GreenPoxy 56 and Surf Clear hardener, producing an extremely clear, high gloss laminate with high mechanical properties. NOTOX use a precisely controlled wet lamination process with vacuum bag consolidation to wet out the upcycled woven carbon fabrics and minimise resin consumption in the manufacturing process.

In addition to selecting a high bio-content resin – GreenPoxy 56 derives 56% of its carbon content from plant sources – NOTOX has also sourced the most sustainable carbon fibre fabrics. Full life cycle analysis by NOTOX has shown that using waste carbon fabrics from Airbus is significantly more energy efficient than using other recycled short fibre carbon, confirming the importance of upcycling this key raw material.

More information:
Sicomin carbon fibers Upcycling NOTOX
Source:

Sicomin / 100% Marketing

Expansion begins at Hexcel Engineered Core Operations Plant in Morocco (c) Hexcel Corporation
15.03.2022

Expansion begins at Hexcel Engineered Core Operations Plant in Morocco

Hexcel Corporation hosted customers and public officials at its manufacturing site in the Midparc Free Trade Zone in Casablanca as the company broke ground on an expansion that will double the size of its existing engineered core manufacturing operation in Morocco to meet increased demand from aerospace customers for lightweight advanced composites.

The expansion, announced in September 2021, is expected to be completed in early 2023. The plant size will double to 24,000 square meters and employment is expected to increase from 120 to 400 people when the expansion is completed.

The Casablanca facility was built as part of Hexcel’s ongoing worldwide investment to create a diversified and robust global supply chain to support aerospace customers’ growing demand for engineered core. At the plant, Hexcel transforms lightweight honeycomb materials into engineered core parts to reinforce structures in the aerospace industry, particularly for aircraft, engine nacelles, and helicopter blades.

Hexcel Corporation hosted customers and public officials at its manufacturing site in the Midparc Free Trade Zone in Casablanca as the company broke ground on an expansion that will double the size of its existing engineered core manufacturing operation in Morocco to meet increased demand from aerospace customers for lightweight advanced composites.

The expansion, announced in September 2021, is expected to be completed in early 2023. The plant size will double to 24,000 square meters and employment is expected to increase from 120 to 400 people when the expansion is completed.

The Casablanca facility was built as part of Hexcel’s ongoing worldwide investment to create a diversified and robust global supply chain to support aerospace customers’ growing demand for engineered core. At the plant, Hexcel transforms lightweight honeycomb materials into engineered core parts to reinforce structures in the aerospace industry, particularly for aircraft, engine nacelles, and helicopter blades.

At the event, Thierry Merlot, Hexcel President – Aerospace for Europe, MEA/AP & Industrial, said, “We are pleased to celebrate this milestone with our customers and with the local community. The increased demand for lightweight, aerodynamic, advanced composites is growing, and our customers including Safran, Airbus, Airbus Atlantic, Boeing and Spirit AeroSystems have shown confidence in our ability to meet that demand. We appreciate the support from them as well as from the Ministry and everyone in the local community who continue providing us with the opportunity to further our investment in Morocco. The very successful establishment of Hexcel, the qualification of the workforce, the support of the state and the proximity of our customers have been real assets to launch this extension of our site in Casablanca.”

Source:

Hexcel Corporation

21.02.2022

JEC COMPOSITES STARTUP BOOSTER 2022

  • A springboard for entrepreneurs in the composites industry

In a few years, JEC Composites Startup Booster has became a reference for entrepreneurship in the composites industry worldwide. Each year before JEC World, among the startups that submitted their application, 20 of them are selected. 20 finalists from all over the world who will join the leading composites trade show to pitch their project on stage before a panel of expert judges.

This competition is a unique opportunity to network and shine a light on what will be the future of the composites industry so save the date: the two pitches sessions will happen on May 3rd, and the winners will be named on May, 4th at 2.45 pm at JEC World 2022 in Paris as well as online on JEC World Connect platform. This year’s competition is sponsored by Airbus & Mercedes-Benz (Main Innovation Partners) as well as Magna Exteriors (Innovation Partner).

  • A springboard for entrepreneurs in the composites industry

In a few years, JEC Composites Startup Booster has became a reference for entrepreneurship in the composites industry worldwide. Each year before JEC World, among the startups that submitted their application, 20 of them are selected. 20 finalists from all over the world who will join the leading composites trade show to pitch their project on stage before a panel of expert judges.

This competition is a unique opportunity to network and shine a light on what will be the future of the composites industry so save the date: the two pitches sessions will happen on May 3rd, and the winners will be named on May, 4th at 2.45 pm at JEC World 2022 in Paris as well as online on JEC World Connect platform. This year’s competition is sponsored by Airbus & Mercedes-Benz (Main Innovation Partners) as well as Magna Exteriors (Innovation Partner).

Launched in 2017, Startup Booster has been organized in three different regions (Europe, USA and Asia) and has already fostered the emergence of 500+ innovative projects from 50+ countries, 80 finalists and 30 winners, including Arevo, Continuous Composites, ComPair, Fortify and Vartega…
This challenge not only represents an opportunity to the winners of the trophy but to all the parts involved: participants, jury, official partners and the worldwide audience of JEC World. It brings the entire composites value chain together, creating future business opportunities.

The 20 finalists are divided into two categories:
• Process, Manufacturing & Equipment
• Materials & Products

The jury includes representatives from major manufacturers and investors:
Jelle BLOEMHOF, Head of Manufacturing Technologies of Composite, Airbus
Karl-Heinz FULLER, Head of Future Outside & Materials Mercedes-Benz AG
Florent ILLAT, Head of Safran Corporate Ventures, Safran
Brian KRULL, Global Director of Innovation, Magna Exteriors
Tim VORAGE, Founder and Manager Growth Garage Accelerator , Mitsubishi Chemicals Advanced Materials

Two pitch sessions of 10 presentations each will be held in the Agora stage (Hall 5), on Tuesday, May 3, from 10am to 11.25am (Category: Products & Materials) and from 4.30pm to 5.55pm (Category: Process, Manufacturing & Equipment). Three winners will be chosen by the jury and one winner for the sustainable aspects of the project. The awards ceremony will be held on Wednesday, May, 4th at 2.45 pm.

Category “Products & Materials”
o Blackleaf (France)
o Dongnam Realize (South Korea)
o FibreCoat (Germany)
o FVMat (Israel)
o Ora Graphene Audio (Canada)
o Pangolin Defense (France)
o Phononic Vibes (Italy)
o Revolve (Germany)
o Smart Resilin (Israel)
o Space Walker (Japan)

Category “Process, Manufacturing & Equipment”
o Antefil Composite Tech (Switzerland)
o ANYBRID (Germany)
o Atomic-6 (USA)
o Carbon-Drive (Germany)
o Continuum (Denmark)
o Fibraworks (Germany)
o Herone (Germany)
o RVmagnetics (Slovakia)
o Touch Sensity (France)
o XARION Laser Acoustics (Austria)

More information:
JEC Group Startup
Source:

JEC Group

03.02.2022

The 2022 JEC Composites Innovation Awards: Official Finalists line up

Première Vision - Each year, since its creation more than 20 years ago, the JEC Composites Innovation Awards celebrate successful projects and cooperation between players of the composite industry.
The competition has especially shined a light on some 203 companies and 499 partners, awarding them for the excellence of their composite innovations.

After pre-selection of the finalists, one winner is selected in each category:

  • Aerospace – Application
  • Aerospace – Process
  • Automotive & road transportation – surface
  • Automotive & road transportation – structural
  • Building & Civil Engineering
  • Design, Furniture & Home
  • Equipment & Machinery
  • Maritime Transportation & Shipbuilding
  • Sports, Leisure & Recreation
  • Renewable Energy

The international jury representing the entire composites value chain includes:

Première Vision - Each year, since its creation more than 20 years ago, the JEC Composites Innovation Awards celebrate successful projects and cooperation between players of the composite industry.
The competition has especially shined a light on some 203 companies and 499 partners, awarding them for the excellence of their composite innovations.

After pre-selection of the finalists, one winner is selected in each category:

  • Aerospace – Application
  • Aerospace – Process
  • Automotive & road transportation – surface
  • Automotive & road transportation – structural
  • Building & Civil Engineering
  • Design, Furniture & Home
  • Equipment & Machinery
  • Maritime Transportation & Shipbuilding
  • Sports, Leisure & Recreation
  • Renewable Energy

The international jury representing the entire composites value chain includes:

  • Michel COGNET, Chairman of the Board, JEC Group
  • Christophe BINETRUY, Professor of Mechanical Engineering, EC Nantes
  • Kiyoshi UZAWA, Professor/Director, Innovative Composite Center, Kanazawa Institute of Technology
  • Jiming Sung HA, Professor, Hanyang University
  • Brian KRULL, Global Director of Innovation, Magna Exteriors Inc
  • Karl-Heinz FULLER, Manager Future Outside Materials, Mercedes Benz AG
  • Deniz KORKMAZ, CTO, Kordsa Teknik Tekstil AS
  • Henry SHIN, Head of Center, K-CARBON
  • Véronique MICHAUD, Associate Professor/ Director, EPFL – Laboratory for Processing of Advanced Composites
  • Alan BANKS, Lightweight Innovations Manager, Ford Motor Company
  • Enzo CRESCENTI, Technical Authority and Composite Expert, Airbus

Discover the finalists in each category here.

Source:

JEC Group

02.06.2021

Teijin: Tenax™ Carbon Fiber Prepreg Adopted for Next-Generation Aircraft Engine Nacelle

Teijin Limited announced today that its Tenax™ carbon fiber prepreg has been adopted for a part of nacelle, or streamlined housing, for next-generation aircraft engine to be used by Airbus. A prototype of the nacelle part, which Nikkiso Co., Ltd. is developing for Airbus’s Propulsion of Tomorrow project, will be delivered to Airbus by the end of 2021.

The Tenax™ prepreg used for the nacelle part was developed especially for aircraft applications using high-performance and rapid-curing epoxy resin. Notably, the Tenax™ prepreg can be molded at a lower temperature and in a shorter time than conventional prepregs for aircraft applications. In addition to general autoclave molding, the Tenax™ prepreg also is suited to press molding for mass production, achieving excellent quality required for aircraft applications. Furthermore, it is compatible with automated fiber placement (AFP) therefore can be combined with automatic laminating technology and short-time molding to maximize production efficiency. The excellent productivity and cost efficiency of the Tenax™ prepreg were key reasons why it was adopted for Nikkiso’s nacelle.

Teijin Limited announced today that its Tenax™ carbon fiber prepreg has been adopted for a part of nacelle, or streamlined housing, for next-generation aircraft engine to be used by Airbus. A prototype of the nacelle part, which Nikkiso Co., Ltd. is developing for Airbus’s Propulsion of Tomorrow project, will be delivered to Airbus by the end of 2021.

The Tenax™ prepreg used for the nacelle part was developed especially for aircraft applications using high-performance and rapid-curing epoxy resin. Notably, the Tenax™ prepreg can be molded at a lower temperature and in a shorter time than conventional prepregs for aircraft applications. In addition to general autoclave molding, the Tenax™ prepreg also is suited to press molding for mass production, achieving excellent quality required for aircraft applications. Furthermore, it is compatible with automated fiber placement (AFP) therefore can be combined with automatic laminating technology and short-time molding to maximize production efficiency. The excellent productivity and cost efficiency of the Tenax™ prepreg were key reasons why it was adopted for Nikkiso’s nacelle.

Teijin is intensively accelerating its development of mid- to downstream applications for aircraft, one of the strategic focuses of its medium-term management plan for 2020-2022. Going forward, Teijin intends to further strengthen its carbon fiber and intermediate material businesses to contribute to increasing global sustainability, aiming to become a company that supports the society of the future.

Source:

Teijin

Pump components made from zirconium oxide ceramic (c) Oerlikon
Pump components made from zirconium oxide ceramic
12.11.2020

Oerlikon: Robust pumps for sophisticated special fibers

At first glance, rowing boats, the Airbus 380, safety equipment and stadium roofing have very little on common. They receive their specific properties as a result of the use of special fibers, among other things: aramid fibers and carbon fibers are processed into special yarns that are frequently deployed as compound materials. These fibers are growing in demand as the world seeks to reduce its reliance on fossil fuels; new solutions are required to reduce weight and replace heavy metallic parts.

Aramid fibers are produced in a highly-chemical process that is extremely aggressive; the acrylic precursor used to manufacture carbon fibers is a different process, but again no less difficult. In these sophisticated processes, the gear metering pumps are not only responsible for the high-precision control of the melt transport; durability, resistance within aggressive environments and cost efficiency also play decisive roles.

At first glance, rowing boats, the Airbus 380, safety equipment and stadium roofing have very little on common. They receive their specific properties as a result of the use of special fibers, among other things: aramid fibers and carbon fibers are processed into special yarns that are frequently deployed as compound materials. These fibers are growing in demand as the world seeks to reduce its reliance on fossil fuels; new solutions are required to reduce weight and replace heavy metallic parts.

Aramid fibers are produced in a highly-chemical process that is extremely aggressive; the acrylic precursor used to manufacture carbon fibers is a different process, but again no less difficult. In these sophisticated processes, the gear metering pumps are not only responsible for the high-precision control of the melt transport; durability, resistance within aggressive environments and cost efficiency also play decisive roles.

Special materials for special tasks
The process, the expected pump lifespan and the maintenance frequency are the decisive factors for choosing the materials from which the pumps and their components are manufactured. For optimum results, Oerlikon Barmag offers solutions that intelligently combine the various materials and the latest technologies. Whether in the case of surfaces with ceramic coatings, gears and shafts featuring DLC coatings, pumps made from cobalt alloys (StelliteTM) or robust and durable Oerlikon Barmag hybrid constructions comprising zirconium oxide ceramic and duplex stainless steel – the high-precision ZP- and GM-series pumps are design-optimized depending on the intended use. Various seal systems and customized drive concepts round off the pump program.

Source:

Oerlikon

Anker Carpet (c) Anker
13.10.2020

Anker, Devan and Shark Solutions develop flame retardant aviation carpet

Anker, Devan and Shark Solutions teamed up to create the world’s first flame retardant aviation carpet using a recycled binder. Inspired by the knowledge and the needs of the aviation market, Anker motivated to achieve this new goal together. The PVB binder reuses laminated glass, from windshields and architectural/building glass, that otherwise would go to landfill.

German carpet manufacturer Anker is the first company to offer flame retardant carpets for aviation that are made with a recycled binder. In the search for a more sustainable binder, Anker discovered the PVB from Shark Solutions, a Danish cleantech company focused on giving a new life to post-consumer PVB. Properties of the aviation carpet with PVB as binder are the same as those of traditional non-sustainable carpets. The market has been looking for this type of solutions for a long time and market introduction has already started. Anker will introduce well known and special developed styles of aviation carpets with PVB and plan to take out traditional non-sustainable aviation carpets stepwise as soon as possible.

Anker, Devan and Shark Solutions teamed up to create the world’s first flame retardant aviation carpet using a recycled binder. Inspired by the knowledge and the needs of the aviation market, Anker motivated to achieve this new goal together. The PVB binder reuses laminated glass, from windshields and architectural/building glass, that otherwise would go to landfill.

German carpet manufacturer Anker is the first company to offer flame retardant carpets for aviation that are made with a recycled binder. In the search for a more sustainable binder, Anker discovered the PVB from Shark Solutions, a Danish cleantech company focused on giving a new life to post-consumer PVB. Properties of the aviation carpet with PVB as binder are the same as those of traditional non-sustainable carpets. The market has been looking for this type of solutions for a long time and market introduction has already started. Anker will introduce well known and special developed styles of aviation carpets with PVB and plan to take out traditional non-sustainable aviation carpets stepwise as soon as possible.

Shark’s PVB reuses laminated glass, from windshields and architectural/building glass, that otherwise would go to landfill. The non-toxic binder (no chlorine or phthalates) is fully recyclable and thus lives up to the future standards of the industry.

Textile innovator Devan Chemicals, known for its tailor-made flame retardant solutions, was called in to develop the flame retardant back coating, which is compliant with the Airbus and Boeing safety standards. “Based on many years of experience and competences in customer related developments, improving recycling rates is getting more and more important”, says Dirk Vanpachtenbeke, R&D manager Flame Retardants at Devan. “We are very proud that, together with Anker and Shark Solutions, we can contribute to this rising demand for products that meet the standards of a circular economy solution.”

In other news, Anker and Devan are already working on a new project, which includes Devan’s antimicrobial/viral-reducing technology. Recently, Devan published test results on the activity of their technology (BI-OME®) against SARS-CoV-2 and other viruses. According to independent testing, BI-OME is proven to achieve 99% and higher virus reduction, including of SARS-COV-2, on samples before washing and retains 98.5% even after 25 wash cycles. This technology has been recognized with the 2020 European Technology Innovation Leadership Award by Frost & Sullivan.

Source:

Devan Chemicals NV / Marketing Solutions NV

12.03.2019

Hexcel and Lavoisier Composites: Alliance to Up-Cycle Composite By-Products from the Aerospace Manufacturing Cycle

Hexcel has joined forces with a Lyon-based startup, LAVOISIER COMPOSITES. This company has developed CARBONIUM®, a new generation of material sourced entirely from carbon composite by-products generated by the French aerospace sector.

Hexcel supplies high-performance composite materials for the latest generation of aircraft such as the Airbus A350 XWB (53% composite structure). This has greatly contributed to the reduction of the aircraft's weight, thereby reducing its fuel consumption and carbon footprint. Composites are a significant first step toward tackling environmental and economic challenges, and eco-sourcing of the industry by-products also plays a key role.

Hexcel has joined forces with a Lyon-based startup, LAVOISIER COMPOSITES. This company has developed CARBONIUM®, a new generation of material sourced entirely from carbon composite by-products generated by the French aerospace sector.

Hexcel supplies high-performance composite materials for the latest generation of aircraft such as the Airbus A350 XWB (53% composite structure). This has greatly contributed to the reduction of the aircraft's weight, thereby reducing its fuel consumption and carbon footprint. Composites are a significant first step toward tackling environmental and economic challenges, and eco-sourcing of the industry by-products also plays a key role.

CARBONIUM®, which was developed with a process based on three patents pending, reduces overall environmental impact by 40-50%, compared to equivalent products derived from virgin materials. Based on the "climate change" factor, the life cycle assessment carried out with Hexcel revealed that the up-cycling of by-products from the aerospace composites industry leads to a reduction in CO2 emissions of 13kg per kg of CARBONIUM® used.
In its first year of operation, LAVOISIER COMPOSITES has already enjoyed commercial success, including the launch of two top-of-the-range watch models by Swiss luxury watchmaker ULYSSE NARDIN using this new material.

From aircraft fuselages to watchmaking, the composites manufacturing cycle presents opportunities for reducing our impact on the environment.

More information:
Hexcel Hexcel, Airbus
Source:

AGENCE APOCOPE

Max Seißler, Advanced Consultant/Project Leader beim Beratungs- und Technologieunternehmen Altran. (c) Airbus
Max Seißler, Advanced Consultant/Project Leader beim Beratungs- und Technologieunternehmen Altran.
14.02.2019

LOPEC 2019: Abheben mit gedruckter Elektronik

Geringes Gewicht, Verzicht auf Kabel und eine hochautomatisierte Fertigung maximal individualisierter Bauteile: Die gedruckte Elektronik bietet der Luftfahrtbranche viele Vorteile. Auf dem LOPEC Kongress 2019 geben Dennis Hahn vom Flugzeugbauer Airbus und Max Seißler vom Beratungs- und Technologieunternehmen Altran einen Überblick über die besonderen Anforderungen an fliegende Bauteile. Gemeinsam arbeiten sie am Standort Hamburg mit gedruckter Elektronik für die Flugzeugkabine. Im Interview erläutern sie die Herausforderungen und Visionen.

F: Seit wann interessiert sich die Luftfahrtbranche für gedruckte Elektronik?

Dennis Hahn: Hochschulforscher haben schon vor 20 Jahren erkannt, dass gedruckte Elektronik für den Flugzeugbau interessant ist und ihre Ergebnisse bei Airbus vorgestellt. Die Materialien entsprachen damals aber noch nicht den extrem hohen Sicherheitsanforderungen der Luftfahrt. Aber seitdem hat sich viel getan. Zusammen mit zwei Fraunhofer-Instituten und Altran haben wir Demonstratoren entwickelt und gemeinsam mit Altran weisen wir gerade nach, dass die gedruckte Elektronik reif ist für Anwendungen in der Luftfahrt.

Geringes Gewicht, Verzicht auf Kabel und eine hochautomatisierte Fertigung maximal individualisierter Bauteile: Die gedruckte Elektronik bietet der Luftfahrtbranche viele Vorteile. Auf dem LOPEC Kongress 2019 geben Dennis Hahn vom Flugzeugbauer Airbus und Max Seißler vom Beratungs- und Technologieunternehmen Altran einen Überblick über die besonderen Anforderungen an fliegende Bauteile. Gemeinsam arbeiten sie am Standort Hamburg mit gedruckter Elektronik für die Flugzeugkabine. Im Interview erläutern sie die Herausforderungen und Visionen.

F: Seit wann interessiert sich die Luftfahrtbranche für gedruckte Elektronik?

Dennis Hahn: Hochschulforscher haben schon vor 20 Jahren erkannt, dass gedruckte Elektronik für den Flugzeugbau interessant ist und ihre Ergebnisse bei Airbus vorgestellt. Die Materialien entsprachen damals aber noch nicht den extrem hohen Sicherheitsanforderungen der Luftfahrt. Aber seitdem hat sich viel getan. Zusammen mit zwei Fraunhofer-Instituten und Altran haben wir Demonstratoren entwickelt und gemeinsam mit Altran weisen wir gerade nach, dass die gedruckte Elektronik reif ist für Anwendungen in der Luftfahrt.

F: Welche konkreten Anforderungen müssen die Materialien erfüllen?

Dennis Hahn: Wir untersuchen zum Beispiel die Entflammbarkeit. Dafür werden die Folien, auf die wir die Elektronik drucken, für 15 Sekunden über eine offene Flamme gehalten, wieder entfernt und müssen sich, wenn sie Feuer gefangen haben, innerhalb von 14 Sekunden selbst löschen – ein harter Test für Kunststoffe. Wie sich eine Kombination aus Folie, Tinte und Coating verhält, können selbst unsere Brandexperten nicht vorhersagen. Deswegen mussten wir zahlreiche Materialien testen.

Max Seißler: Wir haben zwar von Anfang an versucht Risiken zu minimieren und Materialien verwendet, die bereits luftfahrtzertifiziert sind. Aber wenn wir diese Werkstoffe für andere Anwendungen und in neuen Kombinationen einsetzen, kommen Tests hinzu. Und die Entflammbarkeit ist nur ein Thema. Die Bauteile müssen beständig sein gegen Feuchtigkeit und Kondenswasser, gegen aggressive Reinigungsmittel, Insektizide, extreme Temperaturen, Vibrationen und mehr.

More information:
LOPEC
Source:

Messe München

05.02.2019

The 10 Startups shaking the Composites Industry at JEC World 2019

After the success of the two first editions, JEC World organizes the third edition of Startup Booster, the leading startup competition in Composites, where ten startups will present their innovation in front of a jury of experts.

EC Group launched Startup Booster programme in 2017 to get closer to the startup world, to attract the new generation of composites entrepreneurs and put them at the forefront of the industry.

The program gives the floor to 10 startups, each of them having five minutes to present their innovation, on March 12, 2019, from 10.30 AM in Agora Stage (Hall 5) in front of a jury of experts from the composites industry.

These 10 startups will be also showcasing within the Startup Booster Village, during the three days, and will benefit from a dedicated program, including workshops with Startup Booster Main Innovation partners’ Airbus & Daimler, and Innovation partner’s Altair.

After the success of the two first editions, JEC World organizes the third edition of Startup Booster, the leading startup competition in Composites, where ten startups will present their innovation in front of a jury of experts.

EC Group launched Startup Booster programme in 2017 to get closer to the startup world, to attract the new generation of composites entrepreneurs and put them at the forefront of the industry.

The program gives the floor to 10 startups, each of them having five minutes to present their innovation, on March 12, 2019, from 10.30 AM in Agora Stage (Hall 5) in front of a jury of experts from the composites industry.

These 10 startups will be also showcasing within the Startup Booster Village, during the three days, and will benefit from a dedicated program, including workshops with Startup Booster Main Innovation partners’ Airbus & Daimler, and Innovation partner’s Altair.

“Daimler being one of the main Innovation Partner of the Startup Booster, we are looking for innovations, in particular sustainable technologies and processes”, said Dr. Karl-Heinz FUELLER, Responsible for material innovations and BIW concept development, Daimler AG.

“As a main Innovation Partner of the Startup Booster competition we get fantastic direct engagement with the innovators who are defining solutions for the future”, said Jelle BLOEMHOF, Head of Manufacturing Technologies of Composite at Airbus.

More information:
JEC World JEC World 2019
Source:

Agence APOCOPE

20th anniversary of the JEC Innovation Awards (c) GROUPE JEC - Thierry-Alain TRUONG
07.03.2018

20th anniversary of the JEC Innovation Awards

  • JEC Group pays tribute to the winners at JEC World 2018

The 2018 session of JEC World, the reference trade show organized by JEC Group, is in full swing and the focus is on innovation!
The JEC Innovation Awards ceremony, which took place on the Agora stage on Wednesday, March 7 at 5 pm, opened with a presentation by Yves Rossy, aircraft pilot and inventor of the first jet-powered wingpack. Then the jury revealed the names of the composite champions up for a JEC Innovation Award. Eleven winning innovations were chosen, out of the thirty finalists that had been previously selected from more than 100 applications from all over the world.

  • JEC Group pays tribute to the winners at JEC World 2018

The 2018 session of JEC World, the reference trade show organized by JEC Group, is in full swing and the focus is on innovation!
The JEC Innovation Awards ceremony, which took place on the Agora stage on Wednesday, March 7 at 5 pm, opened with a presentation by Yves Rossy, aircraft pilot and inventor of the first jet-powered wingpack. Then the jury revealed the names of the composite champions up for a JEC Innovation Award. Eleven winning innovations were chosen, out of the thirty finalists that had been previously selected from more than 100 applications from all over the world.

“JEC Group supports innovation. In 1998, it created the first award dedicated to composites, as a way to promote and reward the sector’s champions. Thanks to the work of JEC Group’s teams, the program has become an international benchmark. Each year, we receive more than a hundred applications from all over the world. Selection is now based on criteria like the level of involvement of the innovation’s partners in the value chain, the technical nature of the innovation, or its commercial applications,” explains JEC Group President & CEO Frédérique Mutel.
A new feature this year is that the jury revealed the winners during the ceremony, and the public could choose their favorite innovation before, during, and after the ceremony. So there is still time to vote! Votes are opened until Thursday March 8th, 5pm http://innovationawards.jec-world.events
Did you miss the ceremony?

11 AWARD WINNERS:
AEROSPACE APPLICATION

Winner:
AeroComposit, JSC (Russia) and its partner Solvay (United Kingdom)

  • Infusion technology for an aircraft wing

The use of infusion technology to manufacture primary structural components for an aircraft wing. The technology makes it possible to create extra-long, integrated composite structures with complex aerodynamic shapes.

AEROSPACE PROCESS 
2 tied winners!
Winner: Airbus (Germany) and its partners, BMW Group (Germany), Technical University of Munich (TUM) (Germany), Neue Materialien Bayreuth GmbH (Germany), Werkzeugbau Siegfried Hofmann GmbH (Germany), BASF SE (Germany), Foldcore GmbH (Germany), Neenah Filtration (Germany) and SGL Carbon GmbH (Germany)

  • Complex structural applications for MAI sandwich technology

Cost-effective production of a complex 2.5D structure made of thermoplastic composite sandwich, with very short cycle times: under 5 minutes for aerospace materials and 2.5 minutes for automotive materials.

Winner: M. Torres Diseños Industriales SAU (Spain)
Moldless process to manufacture one-piece parts
A new manufacturing process for oversized one-piece reinforced composite structures, without requiring the use of complete molds.

AUTOMOTIVE APPLICATION
Winner: Ford Werke GmbH (Germany) and its partners, Gestamp (United Kingdom), GRM Consulting (United Kingdom) and University of Warwick (United Kingdom)

  • Lightweight composite automotive suspension part

Structural suspension part made of lightweight composite, using a brand-new patented process for prepreg/SMC/steel overmolding that was designed using a new computer-aided engineering (CAE) technology.

AUTOMOTIVE PROCESS
Winner: Audi AG (Germany) and its partners, Voith Composites GmbH & Co. KG (Germany), Dow Automotive (Switzerland), and Zoltek Corp. (United States)

  • Series production of a rear panel module made of carbon composite

For the first time, the potential of carbon fiber reinforced plastics (CFRP) is used to full advantage in series production with a new rear panel module and cost-effective production technologies.

CONSTRUCTION & INFRASTRUCTURE
Winner: Komatsu Seiren Co., Ltd. (Japan) and its partners, Kanazawa Institute of Technology (Japan) and Nagase ChemteX Corporation (Japan)

  • Cabkoma cable made of CFRTP

Komatsu Seiren has developed a cable made of molded carbon fiber reinforced thermoplastic (CFRTP), using a very cost-effective process that consists in polymerizing a thermoplastic epoxy resin in situ.

MARINE
Winner: Uljanik JSC (Croatia)

  • Composite cargo decks for a vehicle carrier

On the SIEM Cicero, a vehicle carrier with a capacity of 7,000 vehicles, glass-fiber reinforced composites are used for a number of the structures for the cargo decks, thereby considerably reducing the ship’s weight, fuel consumption and CO2 emissions.

RAILWAY
Winner: ELG Carbon Fibre Ltd. (United Kingdom) and its partners, Alstom Transport (United Kingdom), Magma Structures (United Kingdom), the University of Birmingham (United Kingdom), and the University of Huddersfield (United Kingdom)

  • A bogie frame made of optimized lightweight carbon fiber

This project has developed the very first carbon-fiber bogie frame that uses a recycled material, making it possible to overcome the obstacles to a commercial adoption of this type of structure.

SPORTS & LEISURE
Winner: BMW Group (Germany) and its partners EDAG Engineering GmbH (Germany), KraussMaffei Technologies GmbH (Germany), Chr. Karl Siebenwurst GmbH & Co. KG (Germany), TUM-LCC (Germany), Automation W + R GmbH (Germany), and FHG-IGCV (Germany)

  • A modular construction system for the rear swing arm suspension of a motorcycle

A modular system to produce a complex-shape swing arm suspension reinforced with carbon fiber. The system can adjust the mechanical properties on a case-by-case basis, for a competitive cost and weight compared to metal solutions.

SMART CITIES
Winner: MC Materiales Compuestos (Argentina) and its partners, Plaquimet (Argentina), Purcom (Brazil), IS Groupe - Composite Integrity (France), and G12 Innovation (Brazil)

  • The Wet Core Pod composite housing module

The Wet Core Pod is a composite housing module with an industrialization potential that can facilitate the most complex, costly and difficult step in a construction project.

SUSTAINABLE DEVELOPMENT
Winner: Cetim-Cermat (France) and its partner, CETIM (France)

  • “3-in-1” line for producing recycled composites

A modular line that uses an innovative thermomechanical process to make large panels from recycled composites or plastics. The panels are then thermoformed into parts.
 

Source:

Dorothée David & Marion RISCH, Agence Apocope

20.02.2018

Hexcel Congratulates Airbus

On Febuary 20, 2018 – Hexcel congratulated Airbus on delivering the first A350-1000 to Qatar Airways earlier today, following successful FAA and EASA Type Certification on November 21.
Hexcel is a major supplier of advanced materials for the A350 XWB program, and composite materials make a significant contribution to the weight savings, performance and fuel efficiency of both aircraft in the family, the A350-900 and the A350-1000. This stretched version of the aircraft is 7 meters longer than the A350-900, carries an additional 40 seats, and offers similar unrivalled comfort and efficiency. Both versions are powered by latest generation Rolls-Royce Trent XWB engines.

Hexcel’s HexPly® M21E/IMA carbon fiber/epoxy prepreg is used to manufacture all composite primary structures of the aircraft, including the fuselage panels, keel beam, wing and empennage. The lower wing cover is the biggest single civil aviation part ever made from carbon fiber and spans 32 meters long.

On Febuary 20, 2018 – Hexcel congratulated Airbus on delivering the first A350-1000 to Qatar Airways earlier today, following successful FAA and EASA Type Certification on November 21.
Hexcel is a major supplier of advanced materials for the A350 XWB program, and composite materials make a significant contribution to the weight savings, performance and fuel efficiency of both aircraft in the family, the A350-900 and the A350-1000. This stretched version of the aircraft is 7 meters longer than the A350-900, carries an additional 40 seats, and offers similar unrivalled comfort and efficiency. Both versions are powered by latest generation Rolls-Royce Trent XWB engines.

Hexcel’s HexPly® M21E/IMA carbon fiber/epoxy prepreg is used to manufacture all composite primary structures of the aircraft, including the fuselage panels, keel beam, wing and empennage. The lower wing cover is the biggest single civil aviation part ever made from carbon fiber and spans 32 meters long.

A further advancement is the introduction of CFRP in other structural components such as the pylon upper spar and door surround. For the first time on an Airbus aircraft, Hexcel’s HexMC® carbon fiber/epoxy molding compound has also been used for the A350-1000 fuselage crutches.

“I send my congratulations to Airbus on delivering the first A350-1000 to Qatar Airways,” said Nick Stanage, Hexcel Chairman, CEO and President. “Hexcel is proud to be a partner-supplier to Airbus and to have Hexcel carbon fiber and composite materials incorporated into so many structural parts in the A350 XWB family.”

More information:
Hexcel’s HexPly® Airbus
Source:

AGENCE APOCOPE, Dorothée DAVID & Marion RISCH

Airbus Helicopters unveils third H160 prototype with striking carbon livery © Hexcel Corporation
14.12.2017

Hexcel Corporation: Airbus Helicopters unveils third H160 prototype

Hexcel Corporation is proud to announce the unveiling of the third H160 prototype from Airbus Helicopters, featuring a striking carbon-inspired livery that represents the composite materials Hexcel supplies for the helicopter.

Hexcel Corporation is proud to announce the unveiling of the third H160 prototype from Airbus Helicopters, featuring a striking carbon-inspired livery that represents the composite materials Hexcel supplies for the helicopter.

This gesture follows Hexcel’s announcement in June that its reinforcements, prepregs, adhesives and honeycomb materials had been selected for the H160’s composite fuselage structures and main rotor blades. The H160 was designed by Airbus Helicopters to create added-value for customers in terms of performance, economic competitiveness, safety and comfort. The use of Hexcel’s composite materials throughout the structure contributes to the lightweight fuel-saving design and performance optimization.
Airbus Helicopters decided to promote the H160 program and its high carbon fiber content in a way that recalls the livery previously used for the A350 XWB. The A350 XWB has a structure that is 53% composites and Hexcel supplies the carbon fiber prepreg for all of the aircraft’s composite primary structures.
The newly unveiled H160 prototype is a fitting tribute to the 40-year partnership between Hexcel and Airbus Helicopters.

Airbus Helicopter Airbus Helicopter
Airbus Helicopter
22.06.2017

Airbus Helicopters selects HEXCEL as supplier of advanced composite materials for the H160 helicopter

The H160 was designed by Airbus Helicopters to create added value for customers in terms of performance, economic competitiveness, safety and comfort. The use of Hexcel’s composite materials throughout the structure (fuselage, tail boom, tail rotor and main rotor blades) contributes to the lightweight fuel-saving design and performance optimization.
“Hexcel’s composite materials have been used in Airbus Helicopters’ programs for many years and we are honored to be continuing our long term relationship, based on innovation and continuous improvement” commented Thierry Merlot, Hexcel President Aerospace EMEA-AP. “We thank Airbus Helicopters for their selection and look forward to our ongoing supply of high performance, weight saving composites materials for this innovative rotorcraft”.
H160 configurations in development include offshore transportation, business and private aviation, emergency medical services, public services, and commercial passenger transport. The helicopter is planned to enter into service in 2019.

The H160 was designed by Airbus Helicopters to create added value for customers in terms of performance, economic competitiveness, safety and comfort. The use of Hexcel’s composite materials throughout the structure (fuselage, tail boom, tail rotor and main rotor blades) contributes to the lightweight fuel-saving design and performance optimization.
“Hexcel’s composite materials have been used in Airbus Helicopters’ programs for many years and we are honored to be continuing our long term relationship, based on innovation and continuous improvement” commented Thierry Merlot, Hexcel President Aerospace EMEA-AP. “We thank Airbus Helicopters for their selection and look forward to our ongoing supply of high performance, weight saving composites materials for this innovative rotorcraft”.
H160 configurations in development include offshore transportation, business and private aviation, emergency medical services, public services, and commercial passenger transport. The helicopter is planned to enter into service in 2019.

More information:
Hexcel, Airbus
Source:

AGENCE APOCOPE

Hexcel AGENCE APOCOPE
Hexcel
09.05.2017

Hexcel at SAMPE CHINA 2017

 SAMPE China 2017 takes place in Beijing on May 10-12, 2017 and Hexcel is exhibiting at the event as a leader in advanced composite technologies. At booth #A60 Hexcel’s displays will demonstrate the wide range of composite materials supplied by Hexcel to customers in China.
Display parts will include the A350 XWB rudder skin and belly fairing panel made by Hexcel customer HMC (Harbin Hafei Airbus Composite Manufacturing Center), a joint venture established by Hafei and Airbus in 2009. Since then Hexcel has been a strategic supplier to HMC of composite materials for packages including the Airbus A320 elevator, HTP spar and rudder, and the A350 XWB belly fairing, rudder, elevator and section 19 maintenance door.

 SAMPE China 2017 takes place in Beijing on May 10-12, 2017 and Hexcel is exhibiting at the event as a leader in advanced composite technologies. At booth #A60 Hexcel’s displays will demonstrate the wide range of composite materials supplied by Hexcel to customers in China.
Display parts will include the A350 XWB rudder skin and belly fairing panel made by Hexcel customer HMC (Harbin Hafei Airbus Composite Manufacturing Center), a joint venture established by Hafei and Airbus in 2009. Since then Hexcel has been a strategic supplier to HMC of composite materials for packages including the Airbus A320 elevator, HTP spar and rudder, and the A350 XWB belly fairing, rudder, elevator and section 19 maintenance door.


Other booth displays include HexTow® carbon fiber, a helicopter canopy made from HexPly® prepreg, and a structural sandwich made from HexWeb® honeycomb and HexPly® prepreg.
Hexcel will also display a section of a composite beam manufactured by hot forming Hexcel’s HexPly® M21 UD carbon fiber prepreg. Other promotions include HexFlow® RTM6-2 resin system a 2-component version of HexFlow® RTM6 for resin transfer molding. A number of OEMs have qualified this infusion system designed for aerospace primary structures, which has a high Tg and provides excellent hot/wet performance from a flexible cure cycle. RTM6-2 also has a long shelf life and has no transportation restrictions.

More information:
Sampe China Hexcel China
Source:

AGENCE APOCOPE