From the Sector

Reset
18 results
DITF: Lignin coating for Geotextiles Photo: DITF
Coating process of a cellulose-based nonwoven with the lignin compound using thermoplastic processing methods on a continuous coating line.
27.10.2023

DITF: Lignin coating for Geotextiles

Textiles are a given in civil engineering: they stabilize water protection dams, prevent runoff containing pollutants from landfills, facilitate the revegetation of slopes at risk of erosion, and even make asphalt layers of roads thinner. Until now, textiles made of highly resistant synthetic fibers have been used for this purpose, which have a very long lifetime. For some applications, however, it would not only be sufficient but even desirable for the auxiliary textile to degrade in the soil when it has done its job. Environmentally friendly natural fibers, on the other hand, often decompose too quickly. The German Institutes of Textile and Fiber Research Denkendorf (DITF) are developing a bio-based protective coating that extends their service life.

Textiles are a given in civil engineering: they stabilize water protection dams, prevent runoff containing pollutants from landfills, facilitate the revegetation of slopes at risk of erosion, and even make asphalt layers of roads thinner. Until now, textiles made of highly resistant synthetic fibers have been used for this purpose, which have a very long lifetime. For some applications, however, it would not only be sufficient but even desirable for the auxiliary textile to degrade in the soil when it has done its job. Environmentally friendly natural fibers, on the other hand, often decompose too quickly. The German Institutes of Textile and Fiber Research Denkendorf (DITF) are developing a bio-based protective coating that extends their service life.

Depending on humidity and temperature, natural fiber materials can degrade in the soil in a matter of months or even a few days. In order to significantly extend the degradation time and make them suitable for geotextiles, the Denkendorf team researches a protective coating. This coating, based on lignin, is itself biodegradable and does not generate microplastics in the soil. Lignin is indeed biodegradable, but this degradation takes a very long time in nature.

Together with cellulose, Lignin forms the building materials for wood and is the "glue" in wood that holds this composite material together. In paper production, usually only the cellulose is used, so lignin is produced in large quantities as a waste material. So-called kraft lignin remains as a fusible material. Textile production can deal well with thermoplastic materials. All in all, this is a good prerequisite for taking a closer look at lignin as a protective coating for geotextiles.

Lignin is brittle by nature. Therefore, it is necessary to blend the kraft lignin with softer biomaterials. These new biopolymer compounds of brittle kraft lignin and softer biopolymers were applied to yarns and textile surfaces in the research project via adapted coating systems. For this purpose, for example, cotton yarns were coated with lignin at different application rates and evaluated. Biodegradation testing was carried out using soil burial tests both in a climatic chamber with temperature and humidity defined precisely according to the standard and outdoors under real environmental conditions. With positive results: the service life of textiles made of natural fibers can be extended by many factors with a lignin coating: The thicker the protective coating, the longer the protection lasts. In the outdoor tests, the lignin coating was still completely intact even after about 160 days of burial.

Textile materials coated with lignin enable sustainable applications. For example, they have an adjustable and sufficiently long service life for certain geotextile applications. In addition, they are still biodegradable and can replace previously used synthetic materials in some applications, such as revegetation of trench and stream banks.

Thus, lignin-coated textiles have the potential to significantly reduce the carbon footprint: They reduce dependence on petroleum-based products and avoid the formation of microplastics in the soil.

Further research is needed to establish lignin, which was previously a waste material, as a new valuable material in industrial manufacturing processes in the textile industry.

The research work was supported by the Baden-Württemberg Ministry of Food, Rural Areas and Consumer Protection as part of the Baden-Württemberg State Strategy for a Sustainable Bioeconomy.

Source:

Deutsche Institute für Textil- und Faserforschung Denkendorf (DITF)

ADVANSA and Asia Pacific Fibers (APF) launch fibre made from recycled ocean-bound plastic bottles (c) ADVANSA
05.07.2023

ADVANSA and Asia Pacific Fibers (APF) launch fibre made from recycled ocean-bound plastic bottles

ADVANSA and Asia Pacific Fibers (APF) join forces to launch REMOTION®, a premium fibre for sports and activewear, made from recycled ocean-bound plastic bottles with full end-to-end traceability from Prevented Ocean Plastic™. REMOTION® offers a solution for textiles that merges ocean protection with built-in biodegradability. The fibres break-down in marine environments to prevent microplastic pollution of the oceans, a problem which can be the consequence of fibre-shedding from apparel laundry waste-water.

Remotion® offers a solution with various sustainable features such as biodegradability and recyclability, with customized performance features such as anti-bacterial properties and moisture management built-in to the fibre. Moreover, the fibre is also offered in customer curated colours that guarantee very good colour fastness. Thus, this “all-in-one” fibre contributes to a sustainable and healthy environment with savings in water, energy, chemicals, and CO2. The fibre is available in a range of filament and staple options with two variants: REMOTION® Blue made from ocean-bound plastic bottles, REMOTION® Green made from domestic recycled plastic bottles.

ADVANSA and Asia Pacific Fibers (APF) join forces to launch REMOTION®, a premium fibre for sports and activewear, made from recycled ocean-bound plastic bottles with full end-to-end traceability from Prevented Ocean Plastic™. REMOTION® offers a solution for textiles that merges ocean protection with built-in biodegradability. The fibres break-down in marine environments to prevent microplastic pollution of the oceans, a problem which can be the consequence of fibre-shedding from apparel laundry waste-water.

Remotion® offers a solution with various sustainable features such as biodegradability and recyclability, with customized performance features such as anti-bacterial properties and moisture management built-in to the fibre. Moreover, the fibre is also offered in customer curated colours that guarantee very good colour fastness. Thus, this “all-in-one” fibre contributes to a sustainable and healthy environment with savings in water, energy, chemicals, and CO2. The fibre is available in a range of filament and staple options with two variants: REMOTION® Blue made from ocean-bound plastic bottles, REMOTION® Green made from domestic recycled plastic bottles.

REMOTION® Blue is a specially engineered polyester fibre made from ocean-bound plastic as a premium raw material with a social aspect. ADVANSA and APF are cooperating with Prevented Ocean Plastic™, a global recycling initiative that helps tens of thousands of people around the world to clean their coastlines, prevent ocean plastic pollution and earn additional income. Discarded plastic bottles are picked up by plastic collectors from coastal areas at risk of ocean plastic pollution and are taken to collection centres. The plastic bottles are then sorted out, cleaned and processed into raw material flakes which are used as a premium ingredient for REMOTION® Blue range of products.

ADVANSA and Asia Pacific Fibers are launching REMOTION® at the Performance Days in Munich from 3-5 October 2023.

Source:

ADVANSA

(c) TNO/Fraunhofer UMSICHT
02.06.2023

Fraunhofer: New guide to the future of plastics

How does a future-proof, circular and sustainable plastics economy look like? The answer is a balance ranging from plastics reduction to a sustainable use of recyclable plastics. After all, the increasing demand for plastics in high-value applications such as food packaging, car parts or synthetic textiles requires a holistic change. With four strategic approaches, researchers from the German institute Fraunhofer UMSICHT and the Dutch institute TNO now provide insights into how this future scenario could look like in their recently published white paper "From #plasticfree to future-proof plastics". Both organizations also start a hands-on platform for plastics in a circular economy: European Circular Plastics Platform – CPP aimed at removing existing barriers and sharing of promising solutions.

How does a future-proof, circular and sustainable plastics economy look like? The answer is a balance ranging from plastics reduction to a sustainable use of recyclable plastics. After all, the increasing demand for plastics in high-value applications such as food packaging, car parts or synthetic textiles requires a holistic change. With four strategic approaches, researchers from the German institute Fraunhofer UMSICHT and the Dutch institute TNO now provide insights into how this future scenario could look like in their recently published white paper "From #plasticfree to future-proof plastics". Both organizations also start a hands-on platform for plastics in a circular economy: European Circular Plastics Platform – CPP aimed at removing existing barriers and sharing of promising solutions.

Versatile and inexpensive materials with low weight and very good barrier properties: That's what plastics are. In addition to their practical benefits, however, the materials are also associated with a significant share of mankind's greenhouse gas emissions. The production and use of plastics cause environmental pollution and microplastics, deplete fossil resources and lead to import dependencies. At the same time, alternatives - such as glass packaging - could cause even more environmental burden or have poorer product properties.

Researchers from TNO and Fraunhofer UMSICHT have elaborated a white paper that provides a basis for the transformation of plastics production and use. They consider the integration of the perspectives of all stakeholders and their values and the potential of current and future technologies. In addition, the functional properties of the target product, the comparison with alternative products without plastics, and their impact in a variety of environmental, social and economic categories over the entire life cycle are crucial. In this way, a systematic assessment and ultimately a systematic decision as to where we can use, reject or replace plastics can be realized.

Strategies for the Circular Economy
As a result, the researchers describe four strategic approaches for transforming today's largely linear plastics economy into a fully circular future: Narrowing the Loop, Operating the Loop, Slowing the Loop, and Closing the Loop. By Narrowing the Loop, the researchers recommend, as a first step, to reduce the amount of materials mobilized in a circular economy. Operating the Loop refers to using renewable energy, minimizing material losses, and sourcing raw materials sustainably. For Slowing the Loop, measures are needed to extend the useful lifetime of materials and products. Finally, for Closing the Loop, plastics must be collected, sorted and recycled to high standards.

Individual strategies fall under each of the four approaches. While the ones under Operating the Loop (O strategies) should be applied in parallel and as completely as possible. According to the researchers, the decision for the strategies in the other fields (R strategies) requires a complex process: “Usually, more than one R-strategy can be considered for a given product or service. These must be carefully compared in terms of their feasibility and impact in the context of the status quo and expected changes”, explains Jürgen Bertling from Fraunhofer UMSICHT. The project partners have therefore developed a guiding principle for prioritization based on the idea of the waste hierarchy.

A holistic change, as we envision it, can only succeed if science, industry, politics and citizens work together across sectors. “This implies several, partly quite drastic changes at 4 levels: legislation and policy, circular chain collaboration, design and development, and education and information. For instance, innovations in design and development include redesign of polymers to more oxygen rich ones based on biomass and CO2 utilisation. Current recycling technologies have to be improved for high quantity and quality recycling,” explains Jan Harm Urbanus from TNO.

Hands-on platform for cross-sector collaboration
“Therefore, in a next step, TNO and Fraunhofer UMSICHT are building a hands-on platform for plastics in a circular economy: European Circular Plastics Platform – CPP," explains Esther van den Beuken, Principal Consultant from TNO. It will give companies, associations and non-governmental organizations the opportunity to work together on existing barriers and promising solutions for a Circular Plastics Economy. The platform will also offer its members regular hands-on workshops on plastics topics, roundtable discussions on current issues, and participation in multi-client studies on pressing technical challenges. Regular meetings will be held in the cross-border region of Germany and the Netherlands as well as online. The goal is to bring change to the public and industry.

Source:

Fraunhofer UMSICHT

15.03.2023

Indorama Ventures and Polymateria sign partnership for biodegradable hygiene products

Indorama Ventures Public Company Limited (IVL) and technology specialist Polymateria Limited have signed an exclusive 10-year partnership to help household brands bring biodegradable nonwoven hygiene products to the market through biotransformation technology.

This collaboration provides a new solution for dealing with essential items like facemasks and wipes once they have been used, ensuring they can return safely to nature without leaving behind any microplastics or toxic residue. It is specifically designed to tackle plastic leaking into the environment as unmanaged waste, meaning it is neither collected for landfill nor recycled. Given that most of the plastic in our oceans originates as unmanaged waste on land, addressing the unmanaged waste challenge is key.

Indorama Ventures Public Company Limited (IVL) and technology specialist Polymateria Limited have signed an exclusive 10-year partnership to help household brands bring biodegradable nonwoven hygiene products to the market through biotransformation technology.

This collaboration provides a new solution for dealing with essential items like facemasks and wipes once they have been used, ensuring they can return safely to nature without leaving behind any microplastics or toxic residue. It is specifically designed to tackle plastic leaking into the environment as unmanaged waste, meaning it is neither collected for landfill nor recycled. Given that most of the plastic in our oceans originates as unmanaged waste on land, addressing the unmanaged waste challenge is key.

IVL’s right to use Polymateria’s unique biotransformation technology for nonwovens supports application in non-virgin resin recycling while providing a solution for ‘fugitive’ used articles, especially those items that end up in the natural environment. This biotransformation process involves the plastic transforming into a bioavailable wax in the open terrestrial environment, whereupon the wax is fully consumed by bacteria, microbes and fungi, leaving just carbon dioxide, water, and biomass. The pulp component is inherently biodegradable under similar conditions.

Nonwovens made by IVL using Polymateria’s technology have been independently tested against, and meet the criteria in, the BSI PAS 9017 standard for the biodegradation of polyolefins in an open-air terrestrial environment published by the British Standards Institution in October 2020. This standard and/or its criteria – the first in the world to ensure plastic can biotransform in the open terrestrial environment without creating any microplastics – is being adopted around the world including in India, Malaysia, the Philippines and Hungary.

Source:

Indorama Ventures Public Company Limited

15.03.2023

GOTS Version 7.0 released

The Global Organic Textile Standard is pleased to announce the release of GOTS Version 7.0, which features an expanded scope of environmental and social criteria while maintaining a standard that is practicable for industrial production and appropriate for a wide range of products. During the regular year-long revision process, international stakeholders with expertise in organic production, textile processing, textile chemistry, human rights and social criteria, as well as representatives from industry, NGOs and civil society organisations, contributed to the new Version 7.0 through multiple consultation rounds. Final decisions were made by the multistakeholder GOTS Standard Revision Committee.

The Global Organic Textile Standard is pleased to announce the release of GOTS Version 7.0, which features an expanded scope of environmental and social criteria while maintaining a standard that is practicable for industrial production and appropriate for a wide range of products. During the regular year-long revision process, international stakeholders with expertise in organic production, textile processing, textile chemistry, human rights and social criteria, as well as representatives from industry, NGOs and civil society organisations, contributed to the new Version 7.0 through multiple consultation rounds. Final decisions were made by the multistakeholder GOTS Standard Revision Committee.

GOTS Version 7.0 provides a comprehensive solution for companies who want to produce organic textiles ensuring compliance with environmental and human rights due diligence along the entire supply chain, from field to finished product. With full traceability from origin to destination, GOTS certification provides an efficient means of verifying genuine sustainability efforts. GOTS 7.0 introduces new requirements to conduct risk-based due diligence of Certified Entities’ own operations and their supply chains based on the UN Guiding Principles for Business and Human Rights and the OECD guidelines. The Social Criteria section was substantially revised to include a broader human rights-focused approach. GOTS 7.0 now allows recycled organic fibres as additional materials. Key requirements, such as certified organic fibre content, a general ban on toxic and harmful chemicals such as PFAS, conventional cotton and virgin polyester restrictions, and social compliance management, are maintained in GOTS Version 7.0.

Some of the changes in Version 7.0 include:

  • GOTS and the Manual for the Implementation of GOTS were restructured, and sections were grouped to reflect the standard’s scope.
  • New due diligence criteria ensures that Certified Entities address their actual and potential negative impacts on human rights and the environment.
  • GOTS Environmental Criteria, Product Stewardship, and Environmental Health and Safety (EHS) requirements will also apply to the subcontractors of chemical formulators.
  • Criteria for the incoming organic material have been made stricter.
  • Quinoline is included among the prohibited substances and some existing restrictions have been made tighter such as of “aniline, free”, residue limit is decreased to 20 mg/kg from 100 mk/kg.
  • GOTS 7.0 reduces the permissible quantity of recycled synthetic (polymer) fibres in its certified products, taking into account the disadvantages associated with recycled synthetics, such as microplastics and poor quality.
  • In the pursuit of circularity, GOTS will allow use of recycled GOTS Goods waste as an additional fibre in its certified products.
  • GOTS Human Rights and Social Criteria will now require Certified Entities to respect internationally recognised human rights protocols, including the International Bill of Human Rights and other international human rights treaties.
  • Criteria concerning Discrimination, Violence and Harassment were revised to make them more comprehensive and include the International Labour Organisation (ILO) Violence and Harassment Convention (C190).
  • Certified Entities are now required to develop a plan to cover the living wage gap.
  • GOTS Occupational Health and Safety criteria were revised to consider best international practices and recommendations from the ILO.

For more information, see the following documents:

Source:

GOTS

(c) Carbios
20.10.2022

Carbios publishes results of consumer research study about plastic circularity

  • Carbios’ biorecycling and biodegradation technologies internationally recognized by consumers as promising answers to their top environmental concerns
  • Carbios’ innovations considered one of the best for solving recycling effectively and achieving a real plastic circularity
  • Consumer research including qualitative and quantitative fields was conducted between March and August 2022. The research institute, Strategic Research, conducted 6000 interviews in Europe and USA

Carbios’ biorecycling and biodegradation technologies acclaimed by consumers
During the first research field study, respondents were exposed to Carbios’ biorecycling process; a new enzyme-based biotechnology that enables biological recycling of all types of PET plastic waste (including bottles, packaging and textiles), and pushes the boundaries of recycling in terms of the number of cycles.

  • Carbios’ biorecycling and biodegradation technologies internationally recognized by consumers as promising answers to their top environmental concerns
  • Carbios’ innovations considered one of the best for solving recycling effectively and achieving a real plastic circularity
  • Consumer research including qualitative and quantitative fields was conducted between March and August 2022. The research institute, Strategic Research, conducted 6000 interviews in Europe and USA

Carbios’ biorecycling and biodegradation technologies acclaimed by consumers
During the first research field study, respondents were exposed to Carbios’ biorecycling process; a new enzyme-based biotechnology that enables biological recycling of all types of PET plastic waste (including bottles, packaging and textiles), and pushes the boundaries of recycling in terms of the number of cycles.

The research results demonstrated that European and US respondents find Carbios’ biorecycling technology more unique and innovative than traditional PET recycling (i.e. thermo-mechanical recycling), as well as more relevant in its ability to address their concerns and challenges regarding recycling.

In the second research study, conducted in the US, respondents were also exposed to Carbios’ biodegradation technology: an innovative enzymatic solution by which an enzyme is incorporated into plastics during the production process of bio-sourced PLA plastics (corn, sugar cane). This approach makes the material made from plants 100% compostable at ambient temperatures and degradable like plants with the built-in enzyme biologically breaking the bioplastic down in less than eight weeks without microplastics or toxic residues; creating a fully organic circularity.

Similarly to Carbios’ biorecycling technology, Carbios’ PLA biodegradation innovation caught US respondents’ attention with 64% overall liking it. Additionally, 93% of the respondents sampled described the concept as innovative, unique, easy to understand (49%), and believable (43%). Up to 82% of the most environmentally engaged respondents declared they would definitely buy more products made with Carbios’ fully circular biodegradable bioplastic.

Consumers: No other choice but to make plastic fully circular
The research says 99% of the respondents consider it important to protect the environment, while plastic pollution is now ranked the third most-concerning environmental issues after climate change and ocean pollution.

This awareness brings most of these consumers to be environmentally active when it comes to purchasing goods and sorting. For the US respondents, eco-friendly packaging comes in the fourth place in terms of purchase drivers for packaged goods and 65% of them declare sorting plastic from general waste on a regular basis, which makes plastic the most sorted type of waste.

Nevertheless, for a vast majority of the respondents across geographies, even if they would like to reduce their plastic consumption most of the time there is no suitable alternative that is as convenient, light, and cost-efficient as plastics. Hence in an ideal world, consumers would like all plastic waste in landfills and oceans to be collected, cleaned, reused and recycled.

More information:
Carbios study circularity plastics
Source:

Carbios

Fashion Revolution
19.08.2022

Results of the FASHION TRANSPARENCY INDEX 2022

The world’s largest fashion brands and retailers must increase transparency to tackle the climate crisis and social inequality, according to the latest Fashion Transparency Index.

The seventh edition of the Fashion Transparency Index ranks 250 of the world’s largest fashion brands and retailers based on their public disclosure of human rights and environmental policies, practices, and impacts, across their operations and supply chains.

  • Brands achieved an average score of just 24%, with nearly a third of brands scoring less than 10%
  • The majority of brands (85%) do not disclose their annual production volumes despite mounting evidence of clothing waste around the world
  • Most major brands and retailers (96%) do not publish the number of workers in their supply chain paid a living wage

The Index reveals insights into the most pressing issues facing the fashion industry, like:

The world’s largest fashion brands and retailers must increase transparency to tackle the climate crisis and social inequality, according to the latest Fashion Transparency Index.

The seventh edition of the Fashion Transparency Index ranks 250 of the world’s largest fashion brands and retailers based on their public disclosure of human rights and environmental policies, practices, and impacts, across their operations and supply chains.

  • Brands achieved an average score of just 24%, with nearly a third of brands scoring less than 10%
  • The majority of brands (85%) do not disclose their annual production volumes despite mounting evidence of clothing waste around the world
  • Most major brands and retailers (96%) do not publish the number of workers in their supply chain paid a living wage

The Index reveals insights into the most pressing issues facing the fashion industry, like:

  • As new and proposed legislation focuses on greenwashing claims, almost half of major brands (45%) publish targets on sustainable materials yet only 37% provide information on what constitutes a sustainable material.
  • Only 24% of major brands disclose how they minimise the impacts of microfibres despite textiles being the largest source of microplastics in the ocean.
  • The vast majority of major brands and retailers (94%) do not disclose the number of workers in their supply chains who are paying recruitment fees. This paints an unclear picture of the risks of forced labour as workers may be getting into crippling debt to accept jobs paying poverty wages.
  • While many brands use their channels to talk about social justice, they need to go beyond lip service. Just 8% of brands publish their actions on racial and ethnic equality in their supply chains.

Despite these results, Fashion Revolution is encouraged by increasing supply chain transparency among many major brands, primarily with first-tier manufacturers where the final stage of production occurs, e.g. cutting, sewing, finishing and packing. Nine brands have disclosed their first-tier manufacturers for the first time this year. It is encouraging to see significant progress across market segments including luxury, sportswear, footwear and accessories and across different geographies.

Fashion Revolution’s co-founder and Global Operations Director Carry Somers says: “In 2016, only 5 out of 40 major brands (12.5%) disclosed their suppliers. Seven years later, 121 out of 250 major brands (48%) disclose their suppliers. This clearly demonstrates how the Index incentivises transparency but it also shows that brands really are listening to the millions of people around the world who keep asking them #WhoMadeMyClothes? Our power is in our persistence.”

More key findings from the Fashion Transparency Index 2022:

Progress on transparency in the global fashion industry is still too slow among 250 of the world’s largest fashion brands and retailers, with brands achieving an overall average score of just 24%, up 1% from last year
For another year, the initiative has seen major brands and retailers publicly disclose the most information about their policies, commitments and processes on human rights and environmental topics and significantly less about the results, outcomes and impacts of their efforts.

Most (85%) major brands still do not disclose their annual production volumes despite mounting evidence of overproduction and clothing waste
Thousands of tonnes of clothing waste are found globally. However, brands have disclosed more information about the circular solutions they are developing (28%) than on the actual volumes of pre- (10%) and post-production waste they produce (8%). Brands have sat by as waste importing countries foot the bill, resulting in serious human rights and environmental implications.

Just 11% of brands publish a responsible purchasing code of conduct indicating that most are still reluctant to disclose how their purchasing practices could be affecting suppliers and workers
Greater transparency on how brands interact with their suppliers ought to be a first step towards eliminating harmful practices and promoting fair purchasing practices. The poor performance on transparency in this vital area is a missed opportunity for brands to demonstrate they are serious about addressing the root causes of harmful working conditions, including the instances where they themselves are the key driver.

Despite the urgency of the climate crisis, less than a third of major brands disclose a decarbonisation target covering their entire supply chain which is verified by the Science-Based Targets Initiative
Many brands and retailers rely heavily on garment producing countries that are vulnerable to the impacts of the climate crisis, yet our research shows that only 29% of major brands and retailers publish a decarbonisation target covering their operations and supply chain which is verified by the Science Based Targets Initiative.

Only 11% of brands publish their supplier wastewater test results, despite the textile industry being a leading contributor to water pollution
The fashion industry is a major contributor to water pollution and one of the most water intensive industries on the planet. Only 11% of major brands publish their wastewater test result, and only 25% of brands disclose the process of conducting water-related risk assessments in their supply chain. Transparency on wastewater test results is key to ensuring that brands are held accountable for their potentially devastating impacts on local biodiversity, garment workers and their communities.

Most major brands and retailers (96%) do not publish the number of workers in their supply chain paid a living wage nor do they disclose if they isolate labour costs
Insufficient progress is being made by most brands towards ensuring that the workers in their supply chain are paid enough to cover their basic needs and put aside some discretionary income. Just 27% of brands disclose their approach to achieving living wages for supply chain workers and 96% do not publish the number of workers in their supply chain paid a living wage. In response, we have joined forces with allies across civil society to launch Good Clothes, Fair Pay. The campaign demands groundbreaking living wage legislation across the garment, textile and footwear sector.

 

Source:

Fashion Revolution

05.07.2022

ROICA™ partners at Première Vision

ROICA™ strengthens its presence in the apparel segment thanks to its established network of partners, who will present their latest innovations at the upcoming Première Vision.

ROICA™ partners are the “artists” and “heartists” of premium stretch in fabrics: because they have at heart all the values for which ROICA™ stands for. These partners presenting at Première Vision are:

ROICA™ strengthens its presence in the apparel segment thanks to its established network of partners, who will present their latest innovations at the upcoming Première Vision.

ROICA™ partners are the “artists” and “heartists” of premium stretch in fabrics: because they have at heart all the values for which ROICA™ stands for. These partners presenting at Première Vision are:

  • Iluna Group, whose journey into the new dimension of responsibility continues with developments in GRS (Global Recycled Standard) certified recycled yarns aimed at unprecedented effects in looks, performance and hands. Brand new for this edition of Première Vision is the inclusion of GOTS-certified organic cotton in GRS-certified galloons and allover lace containing ROICA™ EF, so as to meet market demands for natural comfort in the underwear sphere.
  • Innova Fabrics, which recently enhanced its smart offering by launching the RF (Residual Free) line, with the goal of reducing the impact of microplastics derived from the fashion industry. This is made possible by mixing two responsible ingredients, SENSIL® BioCare by Nilit and ROICA™ V550 by Asahi Kasei, which give birth to both sporty and casual fabrics.
  • Inplet, which enriched its production of smart elastic and rigid knitted fabrics with three new products: a powernet fabric in 77% polyamide RECO and 23% ROICA™ EF with good recovery; a net fabric in 55% polyamide RECO and 45% ROICA™ EF characterized by a soft hand and good elasticity; and a 79% polyamide and 21% ROICA™ V550 good power, good recovery and a soft touch.
  • Penn Textile Solutions/Penn Italia, whose highlights of the new collection are on one side fabrics developed with the use of Neride eco yarns by Nurel with ROICA™ V550, characterized by restraining lace effect, soft touch and breathable, in combination with tulle as a sustainable basic, and on the other side charmeuses with soft hand, raw cut in combination with a band fabric from the dreamshape family with reinforced gripping edge, made again in Neride eco yarns by Nurel with ROICA™ V550
  • Tessitura Colombo Antonio, which in its new A/W 23-24 collection expands its proposal of regenerated lace from the ECO-LACE line: new designs inspired by fashion trends using ROICA™ EF. Also, in its BIODEGRADABLE line it uses ROICA™ V550 for the realization of new designs. The new MICROMODAL line uses ROICA™ V550; the effect of this lace range is softness, elegance and relief effect.
Source:

ROICA™ by Asahi Kasei / C.L.A.S.S.

(c) Billi London
17.06.2022

Billi London: Accelerated degradation in Landfill

Billi London is shaping the future of fashion with eco legwear. Founded by Sophie Billi-Hardwick and Marie Bouhier in November 2020, the pair’s goal was to create durable and comfortable hosiery that was no longer seen as disposable or for single-use.
 
Each piece is made with innovative enhanced degradable yarns Amni Soul Eco® nylon and ROICA ™ V550 elastane. Amni Soul Eco® is degrading in a time of 5 years*, 20x faster than the normal 40–100-year timeframe. The materials break down into biomass and biogas, create renewable energy and do not leave behind microplastics in landfill. The soft yet chic fabrics have revolutionised the legwear industry as well as pioneering a change across the fashion sector which rarely goes beyond just using recyclable materials.

This year, Billi London was selected as one of only five brands to present as an Organic Exhibitor at the Salon International de la Lingerie (SIL) from 18-20 June at Porte de Versailles in Paris.

*In landfill conditions. Reference system: ASTM D5511 - Std test 

Billi London is shaping the future of fashion with eco legwear. Founded by Sophie Billi-Hardwick and Marie Bouhier in November 2020, the pair’s goal was to create durable and comfortable hosiery that was no longer seen as disposable or for single-use.
 
Each piece is made with innovative enhanced degradable yarns Amni Soul Eco® nylon and ROICA ™ V550 elastane. Amni Soul Eco® is degrading in a time of 5 years*, 20x faster than the normal 40–100-year timeframe. The materials break down into biomass and biogas, create renewable energy and do not leave behind microplastics in landfill. The soft yet chic fabrics have revolutionised the legwear industry as well as pioneering a change across the fashion sector which rarely goes beyond just using recyclable materials.

This year, Billi London was selected as one of only five brands to present as an Organic Exhibitor at the Salon International de la Lingerie (SIL) from 18-20 June at Porte de Versailles in Paris.

*In landfill conditions. Reference system: ASTM D5511 - Std test 

Source:

Billi London / C.L.A.S.S.

Photo: Pixabay
30.03.2022

EURATEX comments “Strategy for Sustainable Textile” calling for a realistic implementation

Today, March 30, the European Commission released its long-awaited Strategy for Sustainable Textile, with the ambition to move the sector towards the path of sustainability. EURATEX welcomes the EU ambitions to act on sustainable textiles and investments, in order to change how textiles are made, chosen and recovered, but calls for a smart and realistic implementation. Many European companies have already chosen this path, therefore the strategy should support them in this process, especially considering today’s energy crisis.

The strategy recognises the strategic importance of textiles, which are not only used as apparel or furniture, but applied in cars, medical equipment, agriculture, etc. It acknowledges the European Industry pro-active initiatives to tackle microplastics, to solve challenges of market surveillance and the skills needs. More cooperation is needed for re-use and recycling of textiles and to set up an EU market for secondary raw materials. On this last point, EURATEX ReHubs initiative is developing proposals to size EPR potential, to transform waste into value, and create a new capacity and jobs.

Today, March 30, the European Commission released its long-awaited Strategy for Sustainable Textile, with the ambition to move the sector towards the path of sustainability. EURATEX welcomes the EU ambitions to act on sustainable textiles and investments, in order to change how textiles are made, chosen and recovered, but calls for a smart and realistic implementation. Many European companies have already chosen this path, therefore the strategy should support them in this process, especially considering today’s energy crisis.

The strategy recognises the strategic importance of textiles, which are not only used as apparel or furniture, but applied in cars, medical equipment, agriculture, etc. It acknowledges the European Industry pro-active initiatives to tackle microplastics, to solve challenges of market surveillance and the skills needs. More cooperation is needed for re-use and recycling of textiles and to set up an EU market for secondary raw materials. On this last point, EURATEX ReHubs initiative is developing proposals to size EPR potential, to transform waste into value, and create a new capacity and jobs.

The proposed “transition pathways”, which will translate the strategy into action, will be critical in this respect: how will these sustainability targets be reached, what will the cost for SMEs be, how can companies be supported in that green transition, what about the impact on global competitiveness? These are essential questions to be addressed in the coming months.
The Textile strategy is part of much broader package, including as many as 16 new legislative actions and other policies which will directly impact on textile value chain. In particular the Sustainable Product Initiative Regulation released on March, 30 includes game-changing provisions on Digital Product Passport, Eco-Design, SMEs and Green Public Procurement.  The Regulation has an overwhelming ambition and, to be realistic, it would require a new way of joint working between institutions and business, and which builds on lessons learned on data flow across value chains, interoperability, conformity assessment and effective measures to support SMEs.

If wrongly implemented, such an unprecedented wave may cause a complete collapse of the European textile value chain under the burden of restrictions, requirements, costs and unlevel playing field. On the contrary, the changes ahead can boom the entire textile ecosystem and create a model of successful green and digital transition in manufacturing, which starts in Europe and expands globally.

Already in 2019, EURATEX asked policy makers to work together and remove barriers to circular economy, solve the market surveillance paradox in which laws are made but not checked, and to help create scale economies to make sustainable textiles affordable, hence the norm.

For example, there are 28 billion products circulating per year in EU, which is an impressive task for market surveillance authorities including customs. EURATEX has been stressing non-sufficient market surveillance and it is actively working on solutions for a fair and effective market surveillance of textile products through Reach4Textiles. EURATEX very much welcomes that the European Commission recognizes our work and the need for market surveillance by establishing more harmonised efforts in the EU.

EURATEX also welcomes the establishment of the Digital Product Passport. It has a high potential to improve every step in the textile value chain, from design and manufacturing to recycling and purchasing. At the same time, EURATEX calls the co-legislators to take into account the role of SME’s in this transition and to put forward pragmatic initiatives, supporting SME’s across the EU in a systematic approach.

Alberto Paccanelli, EURATEX President, concludes: EURATEX calls for true cooperation with all policy makers and other stakeholders across the value chains to advise, pressure-test and use this opportunity for a successful transition. Our ambition must be to reconcile sustainability, resilience and competitiveness; we know it can be done”.

Source:

EURATEX

29.03.2022

C.L.A.S.S. SMART VOICES: A Spotlight On Water Saving Solutions

According to the United Nations Conference of Trade and Development, the fashion and textile industry represents one of the major polluters of water in the world, with an estimated 93 billion cubic metres of water used per year.

On the occasion of Water Day, C.L.A.S.S. CEO and Founder Giusy Bettoni talked to Sensil® BioCare, Kornit, Ecoalf and Unesco on how their strategies and processes can preserve our most precious, yet limited resource.

Key Takeaways from the Speakers:
"The ocean is absolutely crucial for the survival of this planet, since it almost covers 71 percent of its surface. Writer Arthur Clarke once said: how inappropriate is to call this planet earth, when it is clearly planet ocean."
- Francesca Santoro, Programme Specialist at IOC UNESCO Regional Bureau for Science and Culture in Europe

According to the United Nations Conference of Trade and Development, the fashion and textile industry represents one of the major polluters of water in the world, with an estimated 93 billion cubic metres of water used per year.

On the occasion of Water Day, C.L.A.S.S. CEO and Founder Giusy Bettoni talked to Sensil® BioCare, Kornit, Ecoalf and Unesco on how their strategies and processes can preserve our most precious, yet limited resource.

Key Takeaways from the Speakers:
"The ocean is absolutely crucial for the survival of this planet, since it almost covers 71 percent of its surface. Writer Arthur Clarke once said: how inappropriate is to call this planet earth, when it is clearly planet ocean."
- Francesca Santoro, Programme Specialist at IOC UNESCO Regional Bureau for Science and Culture in Europe

"Sensil® BioCare is our solution to reduce the persistence of textile waste in the ocean. We embedded technology in it so that if any microfiber is released in the washing, they will break down faster than conventional nylon. Based on an external study, we have seen an almost 60 percent microplastic reduction in two years"
- Michelle Lea, Vice President Global Marketing at Nilit

"When it comes to our printing processes, almost no water is in use and the waste is minimal. We have never seen this before in this industry. Based on LCA tests, when compared to screen printing our "Atlas Max" printer saves up to 93 percent of water, while the "Presto" printer saves up to 95 percent of water".
- Michal Arbel, Sustainability Communication Lead at Kornit Digital

"One of the most important projects of the company is Upcycling the Oceans, with the aim of tackling the marine litter in collaboration with the fishing sector. Last year, we collected 300 tons of litter from the seabed, and we promoted circular economy by transforming the waste in products."
- Irene Diez, Director at Ecoalf Foundation

(c) ZAMG/Niedermoser
Scientists ascending to the research station in the Hohe Tauern National Park
01.02.2022

Plastic snowfall in the Alps - New Empa Study about nanoplastic in the environment

In a new study, Empa researcher Dominik Brunner, together with colleagues from Utrecht University and the Austrian Central Institute for Meteorology and Geophysics, is investigating how much plastic is trickling down on us from the atmosphere. According to the study, some nanoplastics travel over 2000 kilometers through the air. According to the figures from the measurements about 43 trillion miniature plastic particles land in Switzerland every year. Researchers still disagree on the exact number. But according to estimates from the study, it could be as much as 3,000 tonnes of nanoplastics that cover Switzerland every year, from the remote Alps to the urban lowlands. These estimates are very high compared to other studies, and more research is needed to verify these numbers

The study is uncharted scientific territory because the spread of nanoplastics through the air is still largely unexplored.

In a new study, Empa researcher Dominik Brunner, together with colleagues from Utrecht University and the Austrian Central Institute for Meteorology and Geophysics, is investigating how much plastic is trickling down on us from the atmosphere. According to the study, some nanoplastics travel over 2000 kilometers through the air. According to the figures from the measurements about 43 trillion miniature plastic particles land in Switzerland every year. Researchers still disagree on the exact number. But according to estimates from the study, it could be as much as 3,000 tonnes of nanoplastics that cover Switzerland every year, from the remote Alps to the urban lowlands. These estimates are very high compared to other studies, and more research is needed to verify these numbers

The study is uncharted scientific territory because the spread of nanoplastics through the air is still largely unexplored.

The scientists studied a small area at an altitude of 3106 meters at the top of the mountain "Hoher Sonnenblick" in the "Hohe Tauern" National Park in Austria.
Every day, and in all weather conditions, scientists removed a part of the top layer of snow around a marker at 8 AM and carefully stored it. Contamination of the samples by nanoplastics in the air or on the scientists' clothes was a particular challenge. In the laboratory, the researchers sometimes had to remain motionless when a colleague handled an open sample.

The origin of the tiny particles was traced with the help of European wind and weather data. The researchers could show that the greatest emission of nanoplastics into the atmosphere occurs in densely populated, urban areas. About 30% of the nanoplastic particles measured on the mountain top originate from a radius of 200 kilometers, mainly from cities. However, plastics from the world's oceans apparently also get into the air via the spray of the waves. Around 10% of the particles measured in the study were blown onto the mountain by wind and weather over 2000 kilometers – some of them from the Atlantic.

It is estimated that more than 8300 million tonnes of plastic have been produced worldwide to date, about 60% of which is now waste. This waste erodes through weathering effects and mechanical abrasion from macro- to micro- and nanoparticles. But discarded plastic is far from the only source. Everyday use of plastic products such as packaging and clothing releases nanoplastics. Particles in this size range are so light that their movement in the air can best be compared to gases.

Besides plastics, there are all kinds of other tiny particles. From Sahara sand to brake pads, the world is buzzing through the air as abrasion. It is as yet unclear whether this kind of air pollution poses a potential health threat to humans. Nanoparticles, unlike microparticles, do not just end up in the stomach. They are sucked deep into the lungs through respiration, where their size may allow them to cross the cell-blood barrier and enter the human bloodstream. Whether this is harmful or even dangerous, however, remains to be researched.

Source:

Empa, Noé Waldmann

DNFI: Microplastic pollution is a global challenge Photo: pixabay
10.12.2021

DNFI: Microplastic pollution is a global challenge

Microplastic pollution is a global challenge across many industries and sectors – one of critical importance being textiles.

A 2021 study by the California Ocean Science Trust and a group of interdisciplinary scientists acknowledges that microfibres from textiles are among the most common microplastic materials found in the marine environment. Every time synthetic clothes are manufactured, worn, washed, or disposed of, they release microplastics into terrestrial and marine environments, including human food chains. Synthetic fibres represent over two-thirds (69%) of all materials used in textiles, a proportion that is expected to rise to 73% by 2030. The production of synthetic fibres has fuelled a 40-year trend of increased per capita clothing consumption.

Global textile consumption has become:

Microplastic pollution is a global challenge across many industries and sectors – one of critical importance being textiles.

A 2021 study by the California Ocean Science Trust and a group of interdisciplinary scientists acknowledges that microfibres from textiles are among the most common microplastic materials found in the marine environment. Every time synthetic clothes are manufactured, worn, washed, or disposed of, they release microplastics into terrestrial and marine environments, including human food chains. Synthetic fibres represent over two-thirds (69%) of all materials used in textiles, a proportion that is expected to rise to 73% by 2030. The production of synthetic fibres has fuelled a 40-year trend of increased per capita clothing consumption.

Global textile consumption has become:

  • more reliant on non-renewable resources,
  • less biodegradable, and
  • increasingly prone to releasing microplastics.

The increased consumption is also discretionary, driven by consumer desire and remains unchecked. Thus, the long-term trend in the textile industry parallels the intentional addition of microplastics to products such as cosmetics. The contrast is that the European Chemicals Agency (ECHA) has recommended such intentional additions be restricted, whereas the over-consumption of synthetic fibres continues unchecked. One way for the EU to account for and mitigate microplastic pollution is through an EU-backed methodology measuring and reporting microplastic emissions, so that consumers and procurement officers have the information needed to minimise microplastic pollution resulting from their purchasing decisions.

There is a critical opportunity to address microplastic pollution in the fashion textile industry through the EU Product Environmental Footprint (PEF) methodology. To meet the environmental objectives of the Circular Economy Action Plan, the EU is proposing that companies substantiate their products’ environmental credentials using this harmonised methodology. However, microplastic pollution is not accounted for in the PEF methodology. This omission has the effect of assigning a zero score to microplastic pollution and would undermine the efforts of the European Green Deal, which aim “to address the unintentional release of microplastics in the environment.”

The incorporation of microplastic pollution as an indicator would increase the legitimacy of the PEF method as well as better inform consumer purchasing decisions, especially as the European Green Deal seeks to “further develop and harmonise methods for measuring unintentionally released microplastics, especially from tyres and textiles, and delivering harmonised data on microplastics concentrations in seawater.”

Whilst we continue to learn about the damage of microplastics and there is new knowledge emerging on the toxic impacts along the food chain, there is sufficient information on the rate of microplastic leakage into the environment to implement a basic, inventory level indicator in the PEF now. This is consistent with the recommendations of a review of microplastic pollution originating from the life cycle of apparel and home textiles. There are precedents in PEF for basic level (e.g., ‘resource use, fossils’) and largely untested (e.g. land occupation and toxicity indicators) indicators, and therefore an opportunity for the EU to promote research and development in the measurement and modelling of microplastic pollution by including such emissions in the PEF methodology. For such an indicator, the long and complex supply chains of the apparel and footwear industry would be a test case with high-impact and a global reach.

Source:

DNFI / IWTO – 2021

06.09.2021

Textile and apparel industry alliance closer to an international microfibre shedding standard

A sector alliance that was formed to tackle issues relating to microplastics has completed the next phase of its project to develop a harmonised industry standard for the supply chain. The Cross Industry Agreement (CIA) has revealed the results of a fibre fragmentation trial that has been carried out in advance of establishing a CEN Standard (from the European Committee for Standardization). Once confirmed, the standard will also become an ISO standard under the Vienna Agreement, providing apparel manufacturers and policy makers with a vital tool as part of wider work to reduce microfibre shedding into the environment.

A sector alliance that was formed to tackle issues relating to microplastics has completed the next phase of its project to develop a harmonised industry standard for the supply chain. The Cross Industry Agreement (CIA) has revealed the results of a fibre fragmentation trial that has been carried out in advance of establishing a CEN Standard (from the European Committee for Standardization). Once confirmed, the standard will also become an ISO standard under the Vienna Agreement, providing apparel manufacturers and policy makers with a vital tool as part of wider work to reduce microfibre shedding into the environment.

In 2018, five industry organisations agreed to join forces to proactively tackle the issue of microplastics, and signed the Cross Industry Agreement. The initial signatories were European industry associations that represent the European and global value chains of garments and their associated maintenance – the International Association for Soaps, Detergents and Maintenance Products (A.I.S.E.), European Man-Made Fibres Association (CIRFS), European Outdoor Group (EOG), EURATEX the European apparel and textile industry confederation, and the Federation of the European Sporting goods Industry (FESI). Together, the five organisations understood that the very first step to enable global action around the topic, was to agree a harmonised test method which would allow the collection and comparison of globally generated data, to aid the identification of solutions.

The microfibre shedding test method was developed thanks to the joint efforts and cooperation of experts from 28 European, American and Asian organisations; the result was handed over to CEN in 2020. Since then, representatives from the CIA have been working with CEN to fine tune details in order to meet the requirements for a CEN Standard. To verify the reproducibility of the method, the partners have carried out a round robin trial (RRT) to determine if the method could be replicated in different laboratories and produce similar results. 10 organisations participated in the RRT, which was co-ordinated by the CIA, sending fabric samples to all of the laboratories involved and then collecting and analysing the data.

The results from the RRT show statistically significant consistency, both within and between participating laboratories, which demonstrates that the method is both repeatable in the same setting and reproducible in other laboratories.

The CIA has submitted the results of the RRT to CEN, with the intention that the CEN Standard is confirmed in the near future. Once that has happened, it will be promoted throughout the apparel industry and will become a key tool for researchers, businesses and governments as they accelerate efforts to reduce microfibre shedding associated with garment production.

Source:

Euratex

30.08.2021

The Renewable Carbon Initiative RCI is joining forces

  • From fossil to renewable materials: Members advocate policy analysis and focused implementation of the renewable carbon strategy

The members of the Renewable Carbon Initiative (RCI) (www.renewable-carbon-initiative.com), founded in September 2020, have joined forces to shape the transition from the fossil to the renewable age for the chemical and materials industry. This means spreading the concept of renewable carbon and developing new value chains based on renewable carbon as a feedstock.

In the meantime, several activities have started from which future members can benefit as well. First and foremost is the kick-off to comprehensive policy analysis. What influence will forthcoming regulation have on chemicals, plastics, and other materials? When and where should the renewable carbon idea be emphasized and referred to?

The policy analysis will examine pending policies in the European Union – and a later expansion to America and Asia is planned as well.

  • From fossil to renewable materials: Members advocate policy analysis and focused implementation of the renewable carbon strategy

The members of the Renewable Carbon Initiative (RCI) (www.renewable-carbon-initiative.com), founded in September 2020, have joined forces to shape the transition from the fossil to the renewable age for the chemical and materials industry. This means spreading the concept of renewable carbon and developing new value chains based on renewable carbon as a feedstock.

In the meantime, several activities have started from which future members can benefit as well. First and foremost is the kick-off to comprehensive policy analysis. What influence will forthcoming regulation have on chemicals, plastics, and other materials? When and where should the renewable carbon idea be emphasized and referred to?

The policy analysis will examine pending policies in the European Union – and a later expansion to America and Asia is planned as well.

A particular focus will be placed on upcoming policies and regulations and how they impact renewable carbon. The members are currently deciding on where to start specifically, but questions that may be considered are: What does the new climate law and the “Fit for 55-Package” mean for chemicals and materials? What can be expected from REACH and microplastics restrictions? How relevant is the “Sustainable Products Initiative” and the coming restrictions for Green Claims? Circular Economy, Zero Pollution and Sustainable Financing are keywords of the future European landscapes, which might become very concrete for chemistry and materials in the next few years. To what extent the concept of renewable carbon for materials is considered in policy already and how it could be further introduced in future legislation are two of the main questions investigated in the working group “Policy”.

This working group is open to all members of RCI. Policy experts provide the respective analysis as a foundation, organising discussions between members of the policy group and plan meetings with policymakers to introduce the Renewable Carbon concept.

Additional working groups have been created, one with a focus on communication, the other looking at the development of a renewable carbon label. In early September, a renewable carbon community will be launched as a starting point for even more interaction between the members, to discuss strategies, create new value chains and start project consortia.

The Renewable Carbon Initiative (RCI) is a dynamic and ambitious group of interested parties. Membership numbers have now more than doubled since the launch almost a year ago, with RCI now boasting 25 members, 6 partners and over 200 supporters. It welcomes all companies that are on the way to transform their resource base from fossil to renewable.

More information:
Renewable Carbon Initiative
Source:

nova-Institut für politische und ökologische Innovation GmbH für RCI

05.07.2021

Infinited Fiber Company raises EUR 30 million from new Investors

Circular fashion and textile technology group Infinited Fiber Company has secured investments totaling 30 million euros in its latest financing round completed on June 30. The round also brought Infinited Fiber Company new investors, including sportswear company adidas, Invest FWD A/S, which is BESTSELLER’s investment arm for sustainable fashion, and investment company Security Trading Oy. Among the existing investors contributing to this round of financing were fashion retailer H&M Group, who was the lead investor, investment company Nidoco AB, and Sateri, the world’s largest viscose producer and a member of the RGE group of companies.

Circular fashion and textile technology group Infinited Fiber Company has secured investments totaling 30 million euros in its latest financing round completed on June 30. The round also brought Infinited Fiber Company new investors, including sportswear company adidas, Invest FWD A/S, which is BESTSELLER’s investment arm for sustainable fashion, and investment company Security Trading Oy. Among the existing investors contributing to this round of financing were fashion retailer H&M Group, who was the lead investor, investment company Nidoco AB, and Sateri, the world’s largest viscose producer and a member of the RGE group of companies.

This securement of new funding follows Infinited Fiber Company’s April announcement of plans to build a flagship factory in Finland in response to the strong growth in demand from global fashion and textile brands for its regenerated textile fiber Infinna™. The factory, which will use household textile waste as raw material, is expected to be operational in 2024 and to have an annual production capacity of 30,000 metric tons. The new funding enables Infinited Fiber Company to carry out the work needed to prepare for the flagship factory investment and to increase production at its pilot facilities in the years leading to 2024.

“We are really happy to welcome our new investors and grateful for the continued support from our older investors,” said Infinited Fiber Company co-founder and CEO Petri Alava. “These new investments enable us to proceed at full speed with the pre-engineering, environmental permits, and the recruitment of the skilled professionals needed to take our flagship project forward. We can now also boost production at our pilot facilities so that we can better serve our existing customers and grow our customer-base in preparation for both our flagship factory and for the future licensees of our technology.”

H&M Group is one of Infinited Fiber Company’s earliest investors. They first invested in Infinited Fiber Company in 2019.

H&M Group has also signed a multiyear sales deal with Infinited Fiber Company to secure its access to agreed amounts of Infinna from the planned flagship factory.

New investor BESTSELLER has struck a similar sales deal with Infinited Fiber Company.

In addition to strong interest by global fashion leaders, the technology has significant promise for major textile fiber producers. Allen Zhang, President of Sateri, said: “Sateri is excited to continue to invest in and collaborate with Infinited Fiber Company as part of our long-term commitment towards closed-loop, circular and climate-positive cellulosic fibers. This financing round marks a major milestone for our collaboration in scaling up next-generation fiber solutions.”

Infinited Fiber Company’s flagship plant preparations are also proceeding on other fronts. Several Nordic and international investment banks have given Infinited Fiber Company proposals on the financing options for the investment.

Infinited Fiber Company’s technology turns cellulose-based raw materials, like cotton-rich textile waste, into Infinna, a unique, premium-quality regenerated textile fiber with the natural, soft look and feel of cotton. Infinna is biodegradable and contains no microplastics, and at the end of their life, garments made with it can be recycled in the same process together with other textile waste.

Source:

Infinited Fiber Company

Infinited Fiber and Patagonia seal Multiyear Sales Deal (c) Infinited Fiber Company
28.06.2021

Infinited Fiber Company and Patagonia seal Multiyear Sales Deal

Outdoor apparel company Patagonia and circular fashion and textile technology group Infinited Fiber Company have signed a multiyear sales agreement for Infinited Fiber Company’s unique, premium-quality regenerated textile fiber Infinna™, which is created out of textile waste. The move marks a major milestone for both companies towards making textile circularity an everyday reality: The deal guarantees Patagonia access to the limited-supply fiber over the coming years and secures future sales income for Infinited Fiber Company as it ramps up production.

Infinna is a unique, virgin-quality regenerated textile fiber with the soft and natural look and feel of cotton. It is created from cotton-rich textile waste that is broken down at the molecular level and reborn as new fibers. Because it’s made of cellulose – a building block of all plants – Infinna is biodegradable and contains no microplastics to clog our seas. Clothes made with it can be recycled again in the same process together with other textile waste.

Outdoor apparel company Patagonia and circular fashion and textile technology group Infinited Fiber Company have signed a multiyear sales agreement for Infinited Fiber Company’s unique, premium-quality regenerated textile fiber Infinna™, which is created out of textile waste. The move marks a major milestone for both companies towards making textile circularity an everyday reality: The deal guarantees Patagonia access to the limited-supply fiber over the coming years and secures future sales income for Infinited Fiber Company as it ramps up production.

Infinna is a unique, virgin-quality regenerated textile fiber with the soft and natural look and feel of cotton. It is created from cotton-rich textile waste that is broken down at the molecular level and reborn as new fibers. Because it’s made of cellulose – a building block of all plants – Infinna is biodegradable and contains no microplastics to clog our seas. Clothes made with it can be recycled again in the same process together with other textile waste.

In April, Infinited Fiber Company announced plans to build a flagship factory in Finland to meet the growing demand for Infinna from global fashion brands. It is currently supplying customers from its R&D and pilot facilities in Espoo and Valkeakoski, Finland. The planned flagship factory will have an annual production capacity of 30,000 metric tons, which is enough fiber for roughly 100 million T-shirts made with 100% Infinna. Infinited Fiber Company expects to have sold the new factory’s entire output for several years during 2021.

More than 92 million metric tons of textile waste is produced globally every year and most of this ends up in landfills or incinerators. At the same time, textile fiber demand is increasing, with Textile Exchange estimating the global textile fiber market to grow 30% to 146 million metric tons by 2030 from 111 million metric tons in 2019. Infinited Fiber Company’s fiber regeneration technology, which uses cellulose-rich waste streams as its raw material, offers a solution both to stop waste from being wasted and to reduce the burden of the textile industry on the planet’s limited natural resources.

04.06.2021

Ahlstrom-Munksjö’s FluoroFree® and ParaFree® receive compostability certification

Ahlstrom-Munksjö has expanded its portfolio of biodegradable and renewable fiber-based solutions for food packaging papers, receiving compostability certification from the Biodegradable Products Institute®.

Continuing to be at the forefront of sustainable product offerings, Ahlstrom-Munksjö’s FluoroFree® and ParaFree® food packaging papers produced in North America are now BPI® certified, in addition to offering multiple sustainability attributes in a single product.  

These certifications facilitate the possibility for Ahlstrom-Munksjö customers, whether converters or brand owners, to achieve their own sustainability goals. By using a scientific process, BPI officially certifies compostable products that meet ASTM D6400 and ASTM D6868 standards for compostability. BPI Certification proves that a material will compost in a commercial composting facility, leaving behind no toxic residue or microplastics.

Ahlstrom-Munksjö has expanded its portfolio of biodegradable and renewable fiber-based solutions for food packaging papers, receiving compostability certification from the Biodegradable Products Institute®.

Continuing to be at the forefront of sustainable product offerings, Ahlstrom-Munksjö’s FluoroFree® and ParaFree® food packaging papers produced in North America are now BPI® certified, in addition to offering multiple sustainability attributes in a single product.  

These certifications facilitate the possibility for Ahlstrom-Munksjö customers, whether converters or brand owners, to achieve their own sustainability goals. By using a scientific process, BPI officially certifies compostable products that meet ASTM D6400 and ASTM D6868 standards for compostability. BPI Certification proves that a material will compost in a commercial composting facility, leaving behind no toxic residue or microplastics.

In addition, Ahlstrom-Munksjö’s ParaFree® Wax Alternative papers have achieved BPI Certifcation; papers manufactured without the addition of paraffin or other petroleum-based materials. ParaFree® products create a more sustainable alternative to this type of widely used quick service restaurant packaging. These products maintain a high-level of performance and are stronger on a pound-for-pound basis, allowing for improved yield and lower transportation costs and reducing its overall impact.

Source:

Ahlstrom-Munksjö