From the Sector

Reset
17 results
Photo: pixabay
21.06.2023

Bangladesh to stage climate event for fashion and textiles

Bangladesh will stage the world’s first climate conference for the fashion industry this autumn, on 12 October. The Bangladesh Climate Action Forum will convene policy makers, garment manufacturers, fashion retailers and other industry stakeholders to look at solutions for decarbonising global textile supply chains.

The event will focus on technological and financial challenges around reducing emissions. Most of the world’s leading fashion brands have now set ambitious targets for reducing supply chain emissions. These targets relate to 2030 by which time many brands aim to reduce emissions by 50 per cent, and 2050 where most fashion brands aim to be carbon neutral.

The Bangladesh Climate Forum Action will examine causes of climate crisis, its urgency, impacts we have already seen, and what we can expect under both businesses as usual and rapid decarbonisation scenarios.

Bangladesh will stage the world’s first climate conference for the fashion industry this autumn, on 12 October. The Bangladesh Climate Action Forum will convene policy makers, garment manufacturers, fashion retailers and other industry stakeholders to look at solutions for decarbonising global textile supply chains.

The event will focus on technological and financial challenges around reducing emissions. Most of the world’s leading fashion brands have now set ambitious targets for reducing supply chain emissions. These targets relate to 2030 by which time many brands aim to reduce emissions by 50 per cent, and 2050 where most fashion brands aim to be carbon neutral.

The Bangladesh Climate Forum Action will examine causes of climate crisis, its urgency, impacts we have already seen, and what we can expect under both businesses as usual and rapid decarbonisation scenarios.

Also presenting at the event will be the Government of Bangladesh, which will address Bangladesh’s actions to mitigate the impacts of the climate crisis. Bangladesh is particularly vulnerable to climate change and is ranked the seventh extreme disaster risk-prone country in the world according to a report from the Global Climate Risk Index 2021. Tropical cyclones, tornadoes, floods, coastal and riverbank erosion, droughts and landslides are the major climate-induced hazards in Bangladesh.

The Bangladesh Climate Forum Action will also look at approaches towards decarbonization, including NetZero goals and timelines. Speakers will discuss globally recognised pathways for electricity/transportation/industry decarbonisation.

Renewable energy will also be under discussion. If fashion brands are to hit climate targets, it is imperative that supply chains switch to renewable energy and away from gas and fossil fuels. The event will look at challenges around the de-carbonisation of the electricity grid in Bangladesh, as well as the rate of transition toward renewable resources by garment factories, including solar power.

A key element of the event will be evaluation of practical solutions for Bangladesh’s RMG industry. It will profile specific solutions such as energy efficiency, machine upgrades, the electrification of thermal loads, direct power purchase agreements and biomass fed thermal systems. It will also discuss the challenges faced in the industry including business climate (and cycles), pricing, financing challenges, target setting and execution, policy opportunities, knowledge gaps and availability/scaling of solutions.

Financial challenges around decarbonisation of supply chains are significant, and it is far from clear who will pay for the technological upgrades required. While some investment support systems exist – such as lower interest financing – these are not always available, accessible or affordable for the majority of the RMG companies.

The event will explore financial options, changes to business/pricing models, opportunities for de-risking/underwriting investments, direct investment and other tools that need to emerge to address financial challenges and plug the funding gap. The event will also explore opportunities to decouple climate action from business cycles so that the 2030 targets can be met.

Source:

Bangladesh Apparel Exchange

(c) TNO/Fraunhofer UMSICHT
02.06.2023

Fraunhofer: New guide to the future of plastics

How does a future-proof, circular and sustainable plastics economy look like? The answer is a balance ranging from plastics reduction to a sustainable use of recyclable plastics. After all, the increasing demand for plastics in high-value applications such as food packaging, car parts or synthetic textiles requires a holistic change. With four strategic approaches, researchers from the German institute Fraunhofer UMSICHT and the Dutch institute TNO now provide insights into how this future scenario could look like in their recently published white paper "From #plasticfree to future-proof plastics". Both organizations also start a hands-on platform for plastics in a circular economy: European Circular Plastics Platform – CPP aimed at removing existing barriers and sharing of promising solutions.

How does a future-proof, circular and sustainable plastics economy look like? The answer is a balance ranging from plastics reduction to a sustainable use of recyclable plastics. After all, the increasing demand for plastics in high-value applications such as food packaging, car parts or synthetic textiles requires a holistic change. With four strategic approaches, researchers from the German institute Fraunhofer UMSICHT and the Dutch institute TNO now provide insights into how this future scenario could look like in their recently published white paper "From #plasticfree to future-proof plastics". Both organizations also start a hands-on platform for plastics in a circular economy: European Circular Plastics Platform – CPP aimed at removing existing barriers and sharing of promising solutions.

Versatile and inexpensive materials with low weight and very good barrier properties: That's what plastics are. In addition to their practical benefits, however, the materials are also associated with a significant share of mankind's greenhouse gas emissions. The production and use of plastics cause environmental pollution and microplastics, deplete fossil resources and lead to import dependencies. At the same time, alternatives - such as glass packaging - could cause even more environmental burden or have poorer product properties.

Researchers from TNO and Fraunhofer UMSICHT have elaborated a white paper that provides a basis for the transformation of plastics production and use. They consider the integration of the perspectives of all stakeholders and their values and the potential of current and future technologies. In addition, the functional properties of the target product, the comparison with alternative products without plastics, and their impact in a variety of environmental, social and economic categories over the entire life cycle are crucial. In this way, a systematic assessment and ultimately a systematic decision as to where we can use, reject or replace plastics can be realized.

Strategies for the Circular Economy
As a result, the researchers describe four strategic approaches for transforming today's largely linear plastics economy into a fully circular future: Narrowing the Loop, Operating the Loop, Slowing the Loop, and Closing the Loop. By Narrowing the Loop, the researchers recommend, as a first step, to reduce the amount of materials mobilized in a circular economy. Operating the Loop refers to using renewable energy, minimizing material losses, and sourcing raw materials sustainably. For Slowing the Loop, measures are needed to extend the useful lifetime of materials and products. Finally, for Closing the Loop, plastics must be collected, sorted and recycled to high standards.

Individual strategies fall under each of the four approaches. While the ones under Operating the Loop (O strategies) should be applied in parallel and as completely as possible. According to the researchers, the decision for the strategies in the other fields (R strategies) requires a complex process: “Usually, more than one R-strategy can be considered for a given product or service. These must be carefully compared in terms of their feasibility and impact in the context of the status quo and expected changes”, explains Jürgen Bertling from Fraunhofer UMSICHT. The project partners have therefore developed a guiding principle for prioritization based on the idea of the waste hierarchy.

A holistic change, as we envision it, can only succeed if science, industry, politics and citizens work together across sectors. “This implies several, partly quite drastic changes at 4 levels: legislation and policy, circular chain collaboration, design and development, and education and information. For instance, innovations in design and development include redesign of polymers to more oxygen rich ones based on biomass and CO2 utilisation. Current recycling technologies have to be improved for high quantity and quality recycling,” explains Jan Harm Urbanus from TNO.

Hands-on platform for cross-sector collaboration
“Therefore, in a next step, TNO and Fraunhofer UMSICHT are building a hands-on platform for plastics in a circular economy: European Circular Plastics Platform – CPP," explains Esther van den Beuken, Principal Consultant from TNO. It will give companies, associations and non-governmental organizations the opportunity to work together on existing barriers and promising solutions for a Circular Plastics Economy. The platform will also offer its members regular hands-on workshops on plastics topics, roundtable discussions on current issues, and participation in multi-client studies on pressing technical challenges. Regular meetings will be held in the cross-border region of Germany and the Netherlands as well as online. The goal is to bring change to the public and industry.

Source:

Fraunhofer UMSICHT

(c) Lenzing AG
01.06.2023

Lenzing celebrates 40th anniversary of LENZING™ Acetic Acid Biobased

Lenzing Group, a global producer of wood-based specialty fibers, is celebrating the 40th anniversary of its biorefinery and co-product brand LENZING™ Acetic Acid Biobased. The brand was first introduced on May 4, 1983, and has since become one of the leading and most trusted biobased acetic acid providers.

Over the past 40 years, LENZING™ Acetic Acid Biobased, which has a reduced carbon footprint that is 85% lower than that of fossil-based acetic acid, has continued to gain trust and support from customers. Specialty chemical company Evonik, and food production company Speyer & Grund Group, have been incorporating LENZING™ Acetic Acid Biobased in the production of their products since 1983. LENZING™ Acetic Acid Biobased has also been in high demand from the hygiene industry during the COVID-19 pandemic as an all-purpose cleaning agent in conventional and green products.

Lenzing Group, a global producer of wood-based specialty fibers, is celebrating the 40th anniversary of its biorefinery and co-product brand LENZING™ Acetic Acid Biobased. The brand was first introduced on May 4, 1983, and has since become one of the leading and most trusted biobased acetic acid providers.

Over the past 40 years, LENZING™ Acetic Acid Biobased, which has a reduced carbon footprint that is 85% lower than that of fossil-based acetic acid, has continued to gain trust and support from customers. Specialty chemical company Evonik, and food production company Speyer & Grund Group, have been incorporating LENZING™ Acetic Acid Biobased in the production of their products since 1983. LENZING™ Acetic Acid Biobased has also been in high demand from the hygiene industry during the COVID-19 pandemic as an all-purpose cleaning agent in conventional and green products.

Pioneering a carbon neutral future in the biorefinery segment with a new offering
To mark the important occasion, Lenzing will introduce its first carbon neutral LENZING™ Acetic Acid Biobased to meet the growing sustainability needs of industries which predominately rely on fossil-based materials. Similar to the standard LENZING™ Acetic Acid Biobased, the carbon neutral LENZING™ Acetic Acid Biobased is produced using sustainably sourced beech wood as a universal replacement for non-renewable raw materials such as crude oil. By calculating, reducing and offsetting emissions during production processes, this expansion will create a more sustainable supply chain with highly functional products across various industries. From now on, Lenzing customers across the food, pharmaceutical, cosmetics, chemical and textile industries will be able to choose between carbon neutral and reduced carbon footprint acetic acid products.

Advancing circularity and carbon neutrality through efficient use of valuable resources
Lenzing’s biorefinery concept ensures that 100% of wood components are used to produce pulp for Lenzing’s botanic fibers, biorefinery products, as well as bioenergy, which is used to power Lenzing’s facilities. This makes Lenzing’s biorefinery sites almost fully energy self-sufficient to remain as carbon neutral as possible. To ensure a low carbon footprint, rail transportation is the preferred means for transporting LENZING™ biorefinery products, with trucks being leveraged in regions where rail transportation is not available.

Together with ClimatePartner, a recognized global leader in the design, development, and delivery of corporate climate action programs, Lenzing strives to reduce carbon emissions to net-zero through a mix of higher production efficiencies, use of renewable energy sources, low-carbon materials, and the dedicated support of an external nature-based carbon removal project. For instance, to offset remaining carbon emissions that cannot be reduced, Lenzing works with ClimatePartner to support and finance the switch to biomass as an energy source at a ceramic factory in Kitambar in northeastern Brazil. Using natural waste materials, like coconut shells, as renewable biomass for its energy production, the factory is able to produce roof tiles in a more climate-friendly way while saving on carbon emissions. Besides contributing to the fuel switch, the project also helps to reduce the deforestation rate in Brazil and avoid methane emissions that could result from the uncontrolled rotting of biomass.

More information:
Lenzing biobased acetic acid
Source:

Lenzing Group

15.03.2023

Indorama Ventures and Polymateria sign partnership for biodegradable hygiene products

Indorama Ventures Public Company Limited (IVL) and technology specialist Polymateria Limited have signed an exclusive 10-year partnership to help household brands bring biodegradable nonwoven hygiene products to the market through biotransformation technology.

This collaboration provides a new solution for dealing with essential items like facemasks and wipes once they have been used, ensuring they can return safely to nature without leaving behind any microplastics or toxic residue. It is specifically designed to tackle plastic leaking into the environment as unmanaged waste, meaning it is neither collected for landfill nor recycled. Given that most of the plastic in our oceans originates as unmanaged waste on land, addressing the unmanaged waste challenge is key.

Indorama Ventures Public Company Limited (IVL) and technology specialist Polymateria Limited have signed an exclusive 10-year partnership to help household brands bring biodegradable nonwoven hygiene products to the market through biotransformation technology.

This collaboration provides a new solution for dealing with essential items like facemasks and wipes once they have been used, ensuring they can return safely to nature without leaving behind any microplastics or toxic residue. It is specifically designed to tackle plastic leaking into the environment as unmanaged waste, meaning it is neither collected for landfill nor recycled. Given that most of the plastic in our oceans originates as unmanaged waste on land, addressing the unmanaged waste challenge is key.

IVL’s right to use Polymateria’s unique biotransformation technology for nonwovens supports application in non-virgin resin recycling while providing a solution for ‘fugitive’ used articles, especially those items that end up in the natural environment. This biotransformation process involves the plastic transforming into a bioavailable wax in the open terrestrial environment, whereupon the wax is fully consumed by bacteria, microbes and fungi, leaving just carbon dioxide, water, and biomass. The pulp component is inherently biodegradable under similar conditions.

Nonwovens made by IVL using Polymateria’s technology have been independently tested against, and meet the criteria in, the BSI PAS 9017 standard for the biodegradation of polyolefins in an open-air terrestrial environment published by the British Standards Institution in October 2020. This standard and/or its criteria – the first in the world to ensure plastic can biotransform in the open terrestrial environment without creating any microplastics – is being adopted around the world including in India, Malaysia, the Philippines and Hungary.

Source:

Indorama Ventures Public Company Limited

10.03.2023

Indorama Ventures: FY22 financial performance

Indorama Ventures Public Company Limited (IVL) reported a record FY22 financial performance from the company’s global manufacturing footprint serving end-consumers’ resilient need for daily necessities. The unusually high level of customer destocking that weighed on the fourth quarter result is expected to have leveled out and business should return to normal operating conditions, with China’s reopening to further spur demand.

Indorama Ventures Public Company Limited (IVL) reported a record FY22 financial performance from the company’s global manufacturing footprint serving end-consumers’ resilient need for daily necessities. The unusually high level of customer destocking that weighed on the fourth quarter result is expected to have leveled out and business should return to normal operating conditions, with China’s reopening to further spur demand.

Full-year Core EBITDA climbed 31% YoY to $2.3 billion as revenue rose 28% to a record $18.8 billion. The company recorded strong cash flows of $2.2 billion, up 111% YoY. Indorama Ventures’ geographically diversified, integrated platform, backed by management’s agility, withstood unprecedented global events to generate earnings through the business cycle. During the year, the company continued to focus on its growth plan, successfully integrating its strategic surfactants business in Latin America and Vietnamese packaging acquisition. A dedicated senior team is working tirelessly and is committed to the company’s ‘Vision 2030’ sustainability goals including recycling technologies and introducing biomass feedstock to the company’s product portfolio. The ongoing ‘Project Olympus’ cost transformation program delivered an annual run rate of $449 million in efficiencies.

The annual result was impacted by an unusually challenging final quarter as fears of a recession and reduced transit times led to widespread destocking by customers. 4Q22 Core EBITDA declined 43% YoY to $264 million on a 1% drop in revenue to $3.9 billion. The pandemic lockdown in China also continued into the final quarter, reducing factory demand across Indorama Ventures’ portfolio and resulting in narrower margins from lower prices and higher costs. Higher energy and utility costs impacted European operations as the war in Ukraine continued into the winter.

To improve competitiveness and build resilience, Indorama Ventures rationalized underperforming assets in the Fibers business in Europe and a PTA site in Asia, resulting in a $7 million cash impairment in 4Q22 and a $253 million non-cash impact. As a result, the company looks forward to a $38 million uplift in EBITDA in 2023, reaching up to $65 million by 2025.

Source:

Indorama Ventures Public Company Limited

(c) nova-Institut GmbH
24.01.2023

Six nominees for„Cellulose Fibre Innovation of the Year 2023“

For the third time, nova-Institute awards the “Cellulose Fibre Innovation of the Year” award in the frame of the “Cellulose Fibres Conference 2023” (8-9 March 2023). The conference advisory board nominated six remarkable products, including cellulose fibres from textile waste, banana production waste and bacterial pulp, a novel technology for producing lyocell yarns and a hygiene product. The innovations will be put to the vote of the conference audience on the first day of the event, with the awards ceremony taking place in the evening. The innovation award “Cellulose Fibre Innovation of the Year 2023” is sponsored by GIG Karasek (AT).

For the third time, nova-Institute awards the “Cellulose Fibre Innovation of the Year” award in the frame of the “Cellulose Fibres Conference 2023” (8-9 March 2023). The conference advisory board nominated six remarkable products, including cellulose fibres from textile waste, banana production waste and bacterial pulp, a novel technology for producing lyocell yarns and a hygiene product. The innovations will be put to the vote of the conference audience on the first day of the event, with the awards ceremony taking place in the evening. The innovation award “Cellulose Fibre Innovation of the Year 2023” is sponsored by GIG Karasek (AT).

Here are the six nominees
Vybrana – The new generation banana fibre – GenCrest Bioproducts (India)

Vybrana is a Gencrest’s Sustainable Cellulosic Fibre upcycled from agrowaste. Raw fibres are extracted from the Banana Pseudo stem at the end of the plant lifecycle. The biomass waste is then treated by the Gencrest patented Fiberzyme technology. Here, cocktail enzyme formulations remove the high lignin content and other impurities and help fibre fibrillation. The company's proprietary cottonisation process provides fine, spinnable cellulose staple fibres suitable for blending with other staple fibres and can be spun on any conventional spinning systems giving yarns sustainable apparel. Vybrana is produced without the use of heavy chemicals and minimized water consumption and in a waste-free process where balance biomass is converted to bio stimulants Agrosatva and Bio Fertilizers & organic manure.

HeiQ AeoniQ™ – technology for more sustainability of textiles – HeiQ (Austria)
HeiQ AeoniQ™ is the disruptive technology and key initiative from HeiQ with the potential to change the sustainability of textiles. It is the first climate-positive continuous cellulose filament yarn, made in a proprietary manufacturing process and the first to reproduce the properties of polyester and nylon yarns in a cellulosic, biodegradable, and endlessly recyclable fibre.
HeiQ AeoniQ™ can be manufactured from different cellulosic raw materials such as pre- and post-consumer textile waste, biotech cellulose, and non-valorized agricultural waste, such as ground coffee waste or banana peels. It naturally degrades after only 12 weeks in the soil. Each ton of HeiQ AeoniQ™ saves 5 tons of CO2 emissions. The first garments made with this innovative cellulosic filament fiber were commercially launched in January 2023.

TENCEL™ LUXE – lyocell filament yarn – Lenzing (Austria)
TENCEL™ LUXE is LENZING’s new versatile lyocell yarn that offers an urgently needed sustainable filament solution for the textile and fashion industry. A possible botanical alternative for silk, long-staple cotton, and petrol-based synthetic filaments, is derived from wood grown in renewable, sustainably managed forests, and produced in an environmentally sound, closed-loop process that recycles water and reuses more than 99 % of organic solvent. Certified by The Vegan Society, it is suitable for a wide range of applications and fabric developments, from finer high fashion propositions to denim constructions, seamless and activewear innovations, and even agricultural and technical solutions.

Nullarbor™ – Nanollose & Birla Cellulose (Australia/India)
In 2020, Nanollose & Birla Cellulose started a journey to develop and commercialize tree-free lyocell from bacterial cellulose, called Nullarbor™. The name derives from the Latin “nulla arbor” which means “no trees”. Initial lab research at both ends led to a joint patent application with the patent “production of high-tenacity lyocell fibres made from bacterial cellulose”.
Nullarbor is significantly stronger than lyocell made from wood-based pulp; even adding small amounts of bacterial cellulose to wood pulp increases the fibre toughness. In 2022, the first pilot batch of 260kg was produced with 20 % bacterial pulp share. Several high-quality fabrics and garments were produced with this fibre. The collaboration between Nanollose & Birla Cellulose now focuses on increasing the production scale and amount of bacterial pulp in the fibre.

Circulose® – makes fashion circular – Renewcell (Sweden)
Circulose® made by Renewcell is a branded dissolving pulp made from 100 % textile waste, like worn-out clothes and production scraps. It provides a unique material for fashion that is 100 % recycled, recyclable, biodegradable, and of virgin-equivalent quality. It is used by fibre producers to make staple fibre or filaments like viscose, lyocell, modal, acetate or other types of man-made cellulosic fibres. In 2022, Renewcell, opened the world’s first textile-to-textile chemical recycling plant in Sundsvall, Sweden – Renewcell 1. The plant will eventually reach 120,000 tons of annual capacity.

Sparkle sustainable sanitary pads – Sparkle Innovations (United States)
Globally, around 300 billion period products are discarded every year, resulting in millions of tons of non-biodegradable waste. Since most conventional sanitary pads contain up to 90 % plastics, they do not biodegrade for around 600 years. Sparkle has designed sustainable, plastic-free, biodegradable and compostable Sparkle sanitary pads. From product to packaging, they are made up of around 90 % cellulose-based materials with top sheet, absorbent core, release paper, wrapping paper and packaging made of cellulose-based fibres. Whether Sparkle pads end up in a compost pit, are incinerated or end up in a landfill, they are a more sustainable alternative compared to conventional pads that contain large amounts of plastics, complex petro-chemical based ingredients and artificial fragrances. When tested according to ISO 14855-1 by a leading independent lab in Europe, Sparkle pads reached over 90 % absolute biodegradation within 90 days in commercial composting conditions.

(c) Borealis
28.06.2022

Borealis introduces portfolio of circular base chemicals

  • The Borvida™ portfolio introduces sustainable base chemicals to Borealis’ range of product offering
  • The range will initially be based on non-food waste biomass, and chemically-recycled waste; in the future it will also draw from atmospheric carbon capture
  • The traceability of the content will be based on Mass Balance, which is ISCC PLUS certified
  • This is the next step in an ambitious sustainability journey, which will see Borealis move away from traditional fossil-based feed

Borealis is strengthening its EverMinds™ circular product offering with Borvida™, a range of sustainable base chemicals.

The Borvida portfolio will offer base chemicals or cracker products (such as ethylene, propylene, butene and phenol) with ISCC Plus-certified sustainable content from Borealis sites in Finland, Sweden and Belgium. The move is part of Borealis’ broader commitment to a Future-Positive Revolution, in which the unrivalled benefits of base chemicals and polymers can be enjoyed at minimal impact to the planet.   

  • The Borvida™ portfolio introduces sustainable base chemicals to Borealis’ range of product offering
  • The range will initially be based on non-food waste biomass, and chemically-recycled waste; in the future it will also draw from atmospheric carbon capture
  • The traceability of the content will be based on Mass Balance, which is ISCC PLUS certified
  • This is the next step in an ambitious sustainability journey, which will see Borealis move away from traditional fossil-based feed

Borealis is strengthening its EverMinds™ circular product offering with Borvida™, a range of sustainable base chemicals.

The Borvida portfolio will offer base chemicals or cracker products (such as ethylene, propylene, butene and phenol) with ISCC Plus-certified sustainable content from Borealis sites in Finland, Sweden and Belgium. The move is part of Borealis’ broader commitment to a Future-Positive Revolution, in which the unrivalled benefits of base chemicals and polymers can be enjoyed at minimal impact to the planet.   

The portfolio will initially comprise Borvida B, from non-food waste biomass, and Borvida C, from chemically-recycled waste. In the future, the range will evolve to include Borvida A, sourced from atmospheric carbon capture. Borvida is complementary and is the building block to Bornewables™, a portfolio of polyolefins based on renewably-sourced second generation feedstocks, and Borcycle™, which offers circular polyolefins produced from mechanically- and chemically-recycled plastic waste.

Borealis produces a wide range of base chemicals for use in numerous industries based on various feedstock, such as naphtha, butane, propane and ethane. Through its olefin units (steam cracker and propane dehydrogenation), it converts these into the building blocks of the chemical industry: ethylene, propylene and C4 hydrocarbons (butylenes, ethyl tertiary-butyl ether (ETBE) and butadiene), and C5-6 hydrocarbons (pygas, phenol) among others.

The basis of the Borvida portfolio is Mass Balance, a Chain of Custody model that enables sustainable content to be tracked, traced, and verified through the entire value chain, offering sustainability-assured products from feedstock to end product. Using this model, circular alternatives can be offered in a cost-effective and environmentally-conscious way, which can be scaled up quickly without compromising on quality or efficiency.

Borvida can be used for a wide range of different polymer and chemical applications, also beyond polyolefins (PO). Non-PO polymers, such as polycarbonates, acrylonitrile butadiene styrene (ABS), super absorbant polymer (SAP) and other chemicals, are utilised for various end applications including coatings, plasticizers, adhesives, automotive, electronics, lubricants, detergents, appliances and sports equipment.

Together with key strategic partners, including Neste and Covestro, Borealis strives to provide a long-term solution in order to allow value-chain partners to meet their sustainability goals. Borvida will enable our customers to increase the sustainability of their products, keeping them ahead of forthcoming legislative changes, and meeting their customers’ demands for climate-conscious products.

Introduced on a smaller scale in early 2020, early renewable base chemicals customers include Covestro. “The use of alternative sustainable raw materials is one important pillar of our strategic ambition to become fully circular”, comments Frank Dörner, Managing Director Covestro Procurement Services GmbH & Co. KG. “The new product line is a good example for joint solutions, another strategic pillar, in order to establish new and reliable supply chains creating benefits for our customers.”

Source:

Borealis

(c) Billi London
17.06.2022

Billi London: Accelerated degradation in Landfill

Billi London is shaping the future of fashion with eco legwear. Founded by Sophie Billi-Hardwick and Marie Bouhier in November 2020, the pair’s goal was to create durable and comfortable hosiery that was no longer seen as disposable or for single-use.
 
Each piece is made with innovative enhanced degradable yarns Amni Soul Eco® nylon and ROICA ™ V550 elastane. Amni Soul Eco® is degrading in a time of 5 years*, 20x faster than the normal 40–100-year timeframe. The materials break down into biomass and biogas, create renewable energy and do not leave behind microplastics in landfill. The soft yet chic fabrics have revolutionised the legwear industry as well as pioneering a change across the fashion sector which rarely goes beyond just using recyclable materials.

This year, Billi London was selected as one of only five brands to present as an Organic Exhibitor at the Salon International de la Lingerie (SIL) from 18-20 June at Porte de Versailles in Paris.

*In landfill conditions. Reference system: ASTM D5511 - Std test 

Billi London is shaping the future of fashion with eco legwear. Founded by Sophie Billi-Hardwick and Marie Bouhier in November 2020, the pair’s goal was to create durable and comfortable hosiery that was no longer seen as disposable or for single-use.
 
Each piece is made with innovative enhanced degradable yarns Amni Soul Eco® nylon and ROICA ™ V550 elastane. Amni Soul Eco® is degrading in a time of 5 years*, 20x faster than the normal 40–100-year timeframe. The materials break down into biomass and biogas, create renewable energy and do not leave behind microplastics in landfill. The soft yet chic fabrics have revolutionised the legwear industry as well as pioneering a change across the fashion sector which rarely goes beyond just using recyclable materials.

This year, Billi London was selected as one of only five brands to present as an Organic Exhibitor at the Salon International de la Lingerie (SIL) from 18-20 June at Porte de Versailles in Paris.

*In landfill conditions. Reference system: ASTM D5511 - Std test 

Source:

Billi London / C.L.A.S.S.

Photo: Archroma
09.06.2022

Archroma at Techtextil 2022 with latest innovations and system solutions

Archroma will be at Techtextil 2022 in Frankfurt am Main, Germany, from 21 to 24 June 2022, to launch its latest innovations and system solutions aimed to help textile manufacturers with optimized sustainability, productivity and value creation in their markets.

Archroma will present 9 new solution systems and 3 innovations, and will hold 2 booth events.

3 innovation highlights

  • PFC-free* Smartrepel® Hydro SR, a new solution developed for the repellence of water-based soil;
  • Biocide-free OX20, a new odor-neutralizing technology newly launched by our partner SANITIZED AG;
  • Perapret® AIR, a new mineral finishing technology for air purification is activated by natural and artificial light sources and can be applied on all fabrics

9 new solution systems
Archroma introduced its first ever solution systems at the Techtextil 2019 edition, and since then has developed more than 30 systems for technical textile and nonwoven applications.

Archroma will be at Techtextil 2022 in Frankfurt am Main, Germany, from 21 to 24 June 2022, to launch its latest innovations and system solutions aimed to help textile manufacturers with optimized sustainability, productivity and value creation in their markets.

Archroma will present 9 new solution systems and 3 innovations, and will hold 2 booth events.

3 innovation highlights

  • PFC-free* Smartrepel® Hydro SR, a new solution developed for the repellence of water-based soil;
  • Biocide-free OX20, a new odor-neutralizing technology newly launched by our partner SANITIZED AG;
  • Perapret® AIR, a new mineral finishing technology for air purification is activated by natural and artificial light sources and can be applied on all fabrics

9 new solution systems
Archroma introduced its first ever solution systems at the Techtextil 2019 edition, and since then has developed more than 30 systems for technical textile and nonwoven applications.

  • CLEAN AIR, a mineral air purification system that stays put on all kinds of fabrics and is activated by artificial and natural light, for as long as there is light; ➔ based on the new Perapret® AIR;
  • CONSCIOUSLY DEEP, a metal-free one-step scouring and dyeing system for medium to very dark colored nylons that stay deep and bright day after day, and are good for you and the planet;
  • EARTH SOFT, a biomass-based and vegan softening system that is suitable for all kind of fibers and makes you comfortable in your own skin;
  • NATURE BOUND, a compostable binder system for food filtration materials that protect you and the planet;
  • ODOR CONTROL 2.0, a system for odor-free sportswear where permastink cannot build up on your favorite clothes, that’s applicable on polyester, cotton and nylon; ➔ based on the new OX20;
  • RAG N’ROLL, a compostable binder system for nonwoven cleaning rags, that protect you and the planet;
  • SAFE SEATS NextGen, a PFC-free* and halogen-free* modular surface treatment system for safer and cleaner seating materials, ➔ based on the new Smartrepel® Hydro SR;
  • SWEET DREAMS, a metal and particle free* system that redefines protection for mattress ticking fabrics, with long-lasting hygiene and outstanding softness, that protects you and the environment;
  • TAKE A BREATH, an enhanced filtration system that keeps your air clean and fresh for longer putting health first and your competition behind;

2 booth events
A WORLD WITHOUT ODORS, FIGHT OR FLIGHT?
Innovation highlight: Biocide-free OX20 odor management solution by SANITIZED AG

Speakers:

  • Nuria Estape, Panel Moderator, Head of Marketing & Promotion, Brand & Performance Textile Specialties, Archroma
  • Georg Lang, Head of CC Finishing, Archroma
  • Stefan Müller, Head of BU Textiles Additives Sanitized
  • Yann Ribourdouille , Global registration expert Product Stewardship, Archroma

A WORLD WITHOUT PFC, DREAM OR REALITY?
Innovation highlight: PFC-free* Smartrepel® Hydro SR

Speakers

  • Nuria Estape, Panel Moderator, Head of Marketing & Promotion, Brand & Performance Textile Specialties, Archroma
  • Roland Borufka, Head of Competence Center Repellents, Archroma
  • Wolfgang Knaup, Head of R&D repellents, Archroma
  • Yann Ribourdouille, Global registration expert Product Stewardship, Archroma
Source:

Archroma / EMG

(c) Stony Creek Colors
22.04.2022

Archroma and Stony Creek Colors produce plant-based pre-reduced indigo

Archroma and Stony Creek Colors (“Stony Creek”), a manufacturer of traceable natural indigo dyes, announced that they have entered a strategic partnership to produce and bring to the market Stony Creek’s IndiGold™ high-performance plant-based pre-reduced indigo at scale.

Stony Creek extracts its dye from proprietary Indigofera plant varieties grown in partnership with family farms as a regenerative rotational crop.

Stony Creek Colors developed the new IndiGold™ concept as on of the world’s first pre-reduced natural indigo dyes, which was then developed with Archroma to offer a plant-based alternative to synthetic pre-reduced indigo. The dyestuff will be sold as a 20% concentration in a soluble liquid form that displays similar performance to comparable synthetic indigo products available on the market.

Stony Creek Colors evolved into an innovative leader in plant-based indigo due to its complete development of an improved agricultural value chain, from seed breeding and production to biomass harvest and extraction. The company has been selling its US grown indigo to denim mills since 2015.

Archroma and Stony Creek Colors (“Stony Creek”), a manufacturer of traceable natural indigo dyes, announced that they have entered a strategic partnership to produce and bring to the market Stony Creek’s IndiGold™ high-performance plant-based pre-reduced indigo at scale.

Stony Creek extracts its dye from proprietary Indigofera plant varieties grown in partnership with family farms as a regenerative rotational crop.

Stony Creek Colors developed the new IndiGold™ concept as on of the world’s first pre-reduced natural indigo dyes, which was then developed with Archroma to offer a plant-based alternative to synthetic pre-reduced indigo. The dyestuff will be sold as a 20% concentration in a soluble liquid form that displays similar performance to comparable synthetic indigo products available on the market.

Stony Creek Colors evolved into an innovative leader in plant-based indigo due to its complete development of an improved agricultural value chain, from seed breeding and production to biomass harvest and extraction. The company has been selling its US grown indigo to denim mills since 2015.

The pre-reduced plant-based indigo partnership took root in 2020 when Stony Creek was looking to work with like-minded partners to produce the new dyestuff at scale. Archroma emerged as the ideal partner as the company is well known for its expertise in indigo manufacturing and application, as well as for its commitment to transform the denim industry towards creating better blue jeans.

Archroma immediately offered to support the idea of Stony Creek Colors with extensive pilot scale manufacturing trials and engaged with its network of denim machinery manufacturers to test the first samples in industrial conditions. The trials showed excellent coloration and the typical indigo wash down, as with synthetic indigo. Archroma will produce the first batches of IndiGold™ in Salvatierra, Mexico, and has other locations where the product could be made. The company will support Stony Creek Colors through its manufacturing and logistics capabilities, and its expertise in denim dyeing with customers using pre-reduced indigo.

While this development was underway, the global innovation platform Fashion for Good selected Stony Creek Colors as an innovator in its global Innovation Program. The program connects brands with innovators to work together to test, validate and ultimately scale disruptive innovations in the fashion industry to drive positive impact. Through the program, Fashion for Good facilitated a collaboration between brand partner Levi Strauss & Co. and Stony Creek Colors which was announced in December 2021. The partners will pilot the use of IndiGold™ in denim mills at scale, with the goal of unlocking key learnings around shade application and other efficiencies of this new dyestuff.

Source:

Archroma / EMG

24.02.2022

Renewable Carbon as a Guiding Principle for Sustainable Carbon Cycles

  • Renewable Carbon Initiative (RCI) published a strategy paper on the defossilisation of the chemical and material industry with eleven policy recommendations

The Renewable Carbon Initiative, an interest group of more than 30 companies from the wide field of the chemical and material value chains, was founded in 2020 to collaboratively enable the chemical and material industries to tackle the challenges in meeting the climate goals set by the European Union and the sustainability expectations held by societies around the globe.

RCI addresses the core of the climate problem: 72% of anthropogenic climate change is caused directly by extracted fossil carbon from the ground. In order to rapidly mitigate climate change and achieve our global ambition for greenhouse gas emission reductions, the inflow of further fossil carbon from the ground into our system must be reduced as quickly as possible and in large scale.

  • Renewable Carbon Initiative (RCI) published a strategy paper on the defossilisation of the chemical and material industry with eleven policy recommendations

The Renewable Carbon Initiative, an interest group of more than 30 companies from the wide field of the chemical and material value chains, was founded in 2020 to collaboratively enable the chemical and material industries to tackle the challenges in meeting the climate goals set by the European Union and the sustainability expectations held by societies around the globe.

RCI addresses the core of the climate problem: 72% of anthropogenic climate change is caused directly by extracted fossil carbon from the ground. In order to rapidly mitigate climate change and achieve our global ambition for greenhouse gas emission reductions, the inflow of further fossil carbon from the ground into our system must be reduced as quickly as possible and in large scale.

In the energy and transport sector, this means a vigorous and fast expansion of renewable energies, hydrogen and electromobility, the so-called decarbonisation of these sectors. The EU has already started pushing an ambitious agenda in this space and will continue to do so, for instance with the recently released ‘Fit for 55’ package.

However, these policies have so far largely ignored other industries that extract and use fossil carbon. The chemical and material industries have a high demand for carbon and are essentially only possible with carbon-based feedstocks, as most of their products cannot do without carbon. Unlike energy, these sectors cannot be “decarbonised”, as molecules will always need carbon. The equivalent to decarbonisation via renewable energy in the energy sector is the transition to renewable carbon in the chemical and derived materials industries. Both strategies avoid bringing additional fossil carbon from the ground into the cycle and can be summarised under the term “defossilisation”.

To decouple chemistry from fossil carbon, the key question is which non-fossil carbon sources can be used in the future. Rapid developments in biosciences and chemistry have unlocked novel, renewable and increasingly affordable sources of carbon, which provide us with alternative solutions for a more sustainable chemicals and materials sector. These alternative sources are: biomass, utilisation of CO2 and recycling. They are combined under the term “renewable carbon”. When used as a guiding principle, renewable carbon provides a clear goal to work towards with sufficient room to manoeuvre for the whole sector. It enables the industry to think out of the box of established boundaries and stop the influx of additional fossil carbon from the ground.

The systematic change to renewable carbon will not only require significant efforts from industry, but must be supported by policy measures, technology developments and major investments. In order to implement a rapid and high-volume transition away from fossil carbon, and to demonstrate its impact, a supportive policy framework is essential. The emphasis should be put on sourcing carbon responsibly and in a manner that does not adversely impact the wider planetary boundaries nor undermines societal foundations. An overarching carbon management strategy is required that also takes specific regional and application-related features into account, to identify the most sustainable carbon source from the renewable carbon family. This will allow for a proper organisation of the complex transition from today’s fossil carbon from the ground to renewable energy and to renewable carbon across all industrial sectors.

RCI has developed eleven concrete policy recommendations on renewable carbon, carbon management, support for the transformation of the existing chemical infrastructure and the transformation of biofuel plants into chemical suppliers. The policy paper “Renewable Carbon as a Guiding Principle for Sustainable Carbon Cycles” is freely available for download in both a short version and a long version.


Link for Download: https://renewable-carbon-initiative.com/media/library/

Source:

Renewable Carbon Initiative (RCI)

Political Tailwind for Alternative Carbon Sources (c) Renewable Carbon Initiative
European Policy under the new green deal
22.12.2021

Political Tailwind for Alternative Carbon Sources

  • More than 30 leading pioneers of the chemical and material sector welcome the latest political papers from Brussels, Berlin and Düsseldorf

The political situation for renewable carbon from biomass, CO2 and recycling for the defossilisation of the chemical and materials industry has begun to shift fundamentally in Europe. For the first time, important policy papers from Brussels and Germany take into consideration that the term decarbonisation alone is not sufficient, and that there are important industrial sectors with a permanent and even growing carbon demand. Finally, the need for a sustainable coverage of this carbon demand and the realisation of sustainable carbon cycles have been identified on the political stage. They are elemental to the realisation of a sustainable chemical and derived materials industry.

  • More than 30 leading pioneers of the chemical and material sector welcome the latest political papers from Brussels, Berlin and Düsseldorf

The political situation for renewable carbon from biomass, CO2 and recycling for the defossilisation of the chemical and materials industry has begun to shift fundamentally in Europe. For the first time, important policy papers from Brussels and Germany take into consideration that the term decarbonisation alone is not sufficient, and that there are important industrial sectors with a permanent and even growing carbon demand. Finally, the need for a sustainable coverage of this carbon demand and the realisation of sustainable carbon cycles have been identified on the political stage. They are elemental to the realisation of a sustainable chemical and derived materials industry.

The goal is to create sustainable carbon cycles. This requires comprehensive carbon management of renewable sources, which includes carbon from biomass, carbon from Carbon Capture and Utilisation (CCU) – the industrial use of CO2 as an integral part – as well as mechanical and chemical recycling. And only the use of all alternative carbon streams enables a true decoupling of the chemical and materials sector from additional fossil carbon from the ground. Only in this way can the chemical industry stay the backbone of modern society and transform into a sustainable sector that enables the achievement of global climate goals. The Renewable Carbon Initiative’s (RCI) major aim is to support the smart transition from fossil to renewable carbon: utilising carbon from biomass, CO2 and recycling instead of additional fossil carbon from the ground. This is crucial because 72% of the human-made greenhouse gas emissions are directly linked to additional fossil carbon. The RCI supports all renewable carbon sources available, but the political support is fragmented and differs between carbon from biomass, recycling or carbon capture and utilisation (CCU). Especially CCU has so far not been a strategic objective in the Green Deal and Fit-for-55.

This will change fundamentally with the European Commission's communication paper on “Sustainable Carbon Cycles” published on 15 December. The position in the paper represents an essential step forward that shows embedded carbon has reached the political mainstream – supported by recent opinions from members of the European parliament and also, apparently, by the upcoming IPCC assessment report 6. Now, CCU becomes a recognised and credible solution for sustainable carbon cycles and a potentially sustainable option for the chemical and  material industries. Also, in the political discussions in Brussels, the term “defossilation” is appearing more and more often, complementing or replacing the term decarbonisation in those areas where carbon is indispensable. MEP Maria da Graça Carvahlo is among a number of politicians in Brussels who perceive CCU as an important future industry, putting it on the political map and creating momentum for CCU. This includes the integration of CCU into the new Carbon Removal Regime and the Emission Trading System (ETS).

As the new policy documents are fully in line with the strategy of the RCI, the more than 30 member companies of the initiative are highly supportive of this new development and are ready to support policy-maker with data and detailed suggestions for active support and the realisation of sustainable carbon cycles and a sound carbon management. The recent political papers of relevance are highlighted in the following.

Brussels: Communication paper on “Sustainable Carbon Cycles”
On 15 December, the European Commission has published the communication paper “Sustainable Carbon Cycles” . For the first time, the importance of carbon in different industrial sectors is clearly stated. One of the key statements in the paper is the full recognition of CCU for the first time as a solution for the circular economy, which includes CCU-based fuels as well. The communication paper distinguishes between bio-based CO2, fossil CO2 and CO2 from direct air capture when addressing carbon removal and it also announces detailed monitoring of the different CO2 streams. Not only CCU, but also carbon from the bioeconomy is registered as an important pillar for the future. Here, the term carbon farming has been newly introduced, which refers to improved land management practices that result in an increase of carbon sequestration in living biomass, dead organic matter or soils by enhancing carbon capture or reducing the release of carbon. Even though the list of nature-based carbon storage technologies is non-exhaustive in our view, we strongly support the paper’s idea to deem sustainable land and forest management as a basis for the bioeconomy more important than solely considering land use as a carbon sink. Surprisingly, chemical recycling, which is also an alternative carbon source that substitutes additional fossil carbon from the ground (i.e. carbon from crude oil, natural gas or from coal), is completely absent from the communication paper.

Berlin: Coalition paper of the new German Government: “Dare more progress – alliance for freedom, justice and sustainability”
The whole of Europe is waiting to see how the new German government of Social Democrats, Greens and Liberals will shape the German climate policy. The new reform agenda focuses in particular on solar and wind energy as well as especially hydrogen. Solar energy is to be expanded to 200 GW by 2030 and two percent of the country's land is to be designated for onshore wind energy. A hydrogen grid infrastructure is to be created for green hydrogen, which will form the backbone of the energy system of the future – and is also needed for e-fuels and sustainable chemical industry, a clear commitment to CCU. There is a further focus on the topic of circular economy and recycling. A higher recycling quota and a product-specific minimum quota for the use of recyclates and secondary raw materials should be established at European level. In the coalition paper, there is also a clear commitment to chemical recycling to be found. A significant change for the industry is planned to occur in regards to the so-called “plastic tax” of 80 cents per kilogram of non-recycled plastic packaging. This tax has been implemented by the EU, but most countries are not passing on this tax to the manufacturers and distributors, or only to a limited extent. The new German government now plans to fully transfer this tax over to the industry.

Düsseldorf: Carbon can protect the climate – Carbon Management Strategy North Rhine-Westphalia (NRW)
Lastly, the RCI highly welcomes North Rhine-Westphalia (NRW, Germany) as the first region worldwide to adopt a comprehensive carbon management strategy, a foundation for the transformation from using additional fossil carbon from the ground to the utilisation of renewable carbon from biomass, CO2 and recycling. For all three alternative carbon streams, separate detailed strategies are being developed to achieve the defossilisation of the industry. This is all the more remarkable as North Rhine-Westphalia is the federal state with the strongest industry in Germany, in particular the chemical industry. And it is here, of all places, that a first master plan for the conversion of industry from fossil carbon to biomass, CO2 and recycling is implemented. If successful, NRW could become a global leader in sustainable carbon
management and the region could become a blueprint for many industrial regions.

22.11.2021

Sappi invests in Kirkniemi Mill on decarbonisation journey

Sappi has approved an investment in Kirkniemi Mill in Lohja, Finland which enables a switch in its energy sourcing to renewable bioenergy. With this investment the mill’s direct fossil greenhouse gas emissions will reduce by ca. 90 percent, which is equivalent to 230 000 tons of carbon dioxide annually.

The project, set for completion in early 2023, will contribute significantly to Sappi Europe’s decarbonisation roadmap by exiting coal at one of its last facilities partially using this fuel type. Biomass will then be used in Kirkniemi’s multi-fuel boiler, built in 2015. The move advances Sappi towards its 2025 targets which include reducing specific greenhouse gas emissions (scope 1 and 2) by 25 percent and increasing renewable energy share to 50 percent in Europe compared to 2019.

The investment will establish the equipment needed to receive, store and handle woody biomass like the bark, sawdust and wood chips used for biofuel production. Such biomass types are by-products from the forest-based industry and utilising them for energy production derives further value from the forest resource.

Sappi has approved an investment in Kirkniemi Mill in Lohja, Finland which enables a switch in its energy sourcing to renewable bioenergy. With this investment the mill’s direct fossil greenhouse gas emissions will reduce by ca. 90 percent, which is equivalent to 230 000 tons of carbon dioxide annually.

The project, set for completion in early 2023, will contribute significantly to Sappi Europe’s decarbonisation roadmap by exiting coal at one of its last facilities partially using this fuel type. Biomass will then be used in Kirkniemi’s multi-fuel boiler, built in 2015. The move advances Sappi towards its 2025 targets which include reducing specific greenhouse gas emissions (scope 1 and 2) by 25 percent and increasing renewable energy share to 50 percent in Europe compared to 2019.

The investment will establish the equipment needed to receive, store and handle woody biomass like the bark, sawdust and wood chips used for biofuel production. Such biomass types are by-products from the forest-based industry and utilising them for energy production derives further value from the forest resource.

In addition to increasing share of renewable energy, Sappi’s mills are also focused on reducing energy consumption. Sappi Kirkniemi Mill is party to Finland’s National Energy Efficiency Agreement and consistently reaches their energy saving targets. Kirkniemi’s ISO 50001 certification provides further evidence of the mill’s systematic improvement in energy efficiency.

Source:

Sappi Europe

28.10.2021

The Renewable Carbon Initiative (RCI) celebrates its first anniversary

After its launch on 20 September 2020, the RCI is proud to celebrate its first anniversary this fall. The balance sheet of the first year is impressive: starting from 11 founding members, that number increased to 30 member companies within 12 months. Numerous webinars, press releases, background information, a glossary and a comic allowed to convey the “Renewable Carbon” concept to the public. The RCI is actively working on labelling and policy analysis, and more activities will follow in the next year.

After its launch on 20 September 2020, the RCI is proud to celebrate its first anniversary this fall. The balance sheet of the first year is impressive: starting from 11 founding members, that number increased to 30 member companies within 12 months. Numerous webinars, press releases, background information, a glossary and a comic allowed to convey the “Renewable Carbon” concept to the public. The RCI is actively working on labelling and policy analysis, and more activities will follow in the next year.

Key for this success: the topic of renewable carbon in chemicals and materials is increasingly becoming a focus of politics and industry. Larger companies will have to report their GHG emissions and also the footprint of their products as part of legislative changes surrounding the European Green Deal. In this context, indirect emissions and the carbon sources of materials will play a much more crucial role. The RCI is actively working on solutions for companies to shift from fossil to renewable carbon, which consists of the use of bio-based feedstock, CO2-based resources and recycling. In the future, reporting on GHG emissions will also include Scope 3 emissions, which are all indirect emissions that occur along the company’s value and supply chain and where the used raw materials account for a large proportion of the footprint. Here is where the carbon source of chemicals and plastics comes into play as an important contributor to the carbon footprint. Without a shift from fossil to renewable carbon feedstocks (combining bio-based, CO2-based and recycled), a sustainable future and the Paris climate targets will be almost impossible to master.

To discuss, promote and realise the shift, 30 innovative companies have already joined forces to support the transition to renewable carbon, considering both technological and economical approaches – and helping to shape the political framework accordingly.

For the second year, RCI plans to focus on a comprehensive understanding of the expected political framework conditions in Europe and across the globe, since they will determine the future of chemistry and materials more than ever. Building on this knowledge, the topic of renewable carbon could then to be systematically integrated into new political directives, which has so far not been effectively managed.

In reality, the political focus lies on the strategy of decarbonising the energy sector, a very central and Herculean task. However, it cannot be applied to the chemical and material world because carbon is usually the central building block that cannot be dispensed with. On the contrary, the demand for carbon in the chemical and materials sectors is expected to more than double by 2050. In order to meet this demand in a sustainable manner, we must move towards quitting fossil carbon. For the first time in industrial history, it is possible to decouple chemistry and materials from petrochemicals and completely cover the demand through the utilisation of biomass, CO2 and recycling.

Source:

Renewable Carbon Initiative (RCI)

26.08.2021

Conference on CO2-based Fuels and Chemicals 2022

  • Call for Papers and Posters

More than 200 leading international experts in Carbon Capture and Carbon Utilisation (Power-to-X) together with 20 exhibitors are expected to attend the hybrid event on 23–24 March 2022, in Cologne, Germany

Main topics of the conference are strategy & policy in CCU, renewable energy and green hydrogen production, carbon capture technologies, CO2-based fuels for transport and aviation, CO2-based building blocks, bulk and fine chemicals as well as advanced CCU technologies.

Carbon Capture and Utilisation (CCU) is one essential pillar for the supply of renewable carbon besides biomass utilisation and recycling. The transition to the direct use of CO2 as one alternative carbon source is needed as a key element to substitute fossil sources, to fight climate change and to shift towards sustainable and climate-friendly production and consumption. For providing the full benefits of CCU technologies the use of renewable energy is indispensable.

  • Call for Papers and Posters

More than 200 leading international experts in Carbon Capture and Carbon Utilisation (Power-to-X) together with 20 exhibitors are expected to attend the hybrid event on 23–24 March 2022, in Cologne, Germany

Main topics of the conference are strategy & policy in CCU, renewable energy and green hydrogen production, carbon capture technologies, CO2-based fuels for transport and aviation, CO2-based building blocks, bulk and fine chemicals as well as advanced CCU technologies.

Carbon Capture and Utilisation (CCU) is one essential pillar for the supply of renewable carbon besides biomass utilisation and recycling. The transition to the direct use of CO2 as one alternative carbon source is needed as a key element to substitute fossil sources, to fight climate change and to shift towards sustainable and climate-friendly production and consumption. For providing the full benefits of CCU technologies the use of renewable energy is indispensable.

Especially the supply of green hydrogen is crucial for the production of CO2-based fuels for transportation and aviation as well as for bulk and fine chemicals.

The “Conference on CO2-based Fuels and Chemicals 2022”, 23–24 March 2022, Cologne, Germany. As a hybrid conference it combines a “live” in-person event with a “virtual” online component, www.co2-chemistry.eu.

More information:
CO2
Source:

nova-Institut GmbH

Borealis: Innovative Recycling Solutions with Renasci N.V. (c) Renasci
01.07.2021

Borealis: Innovative Recycling Solutions with Renasci N.V.

  • Borealis deepens partnership with innovative recycling solutions provider Renasci N.V., acquiring a 10% minority stake in the Belgium-based creator of the Smart Chain Processing (SCP) concept
  • Deal supports Borealis integrated approach to achieve a true circular economy of plastics in the most eco-efficient way, as defined by its circular cascade model
  • EverMinds™ in action: Game-changing collaboration to accelerate plastics circularity

Borealis announces that it has entered into a multi-dimensional partnership with Renasci N.V., a provider of innovative recycling solutions and creator of the novel Smart Chain Processing (SCP) concept. The partnership is another key enabler for Borealis to realise its ambitions to bring circular base chemicals and polyolefins to market, and to deliver on its promise to bring 350 kilotons of recycled polyolefins into circulation by 2025.

  • Borealis deepens partnership with innovative recycling solutions provider Renasci N.V., acquiring a 10% minority stake in the Belgium-based creator of the Smart Chain Processing (SCP) concept
  • Deal supports Borealis integrated approach to achieve a true circular economy of plastics in the most eco-efficient way, as defined by its circular cascade model
  • EverMinds™ in action: Game-changing collaboration to accelerate plastics circularity

Borealis announces that it has entered into a multi-dimensional partnership with Renasci N.V., a provider of innovative recycling solutions and creator of the novel Smart Chain Processing (SCP) concept. The partnership is another key enabler for Borealis to realise its ambitions to bring circular base chemicals and polyolefins to market, and to deliver on its promise to bring 350 kilotons of recycled polyolefins into circulation by 2025.

SCP concept leaves no waste behind
The SCP concept developed by Renasci is a proprietary method of maximising material recovery in order to achieve zero waste. It is unique because it enables the processing of multiple waste streams using different recycling technologies – all under one roof. At the newly-built Renasci SCP facility in Oostende, Belgium, mixed waste – plastics, metals, and biomass – is automatically selected and sorted multiple times.

After sorting, plastic waste is first mechanically recycled, and then in a second step any remaining material is chemically recycled into circular pyrolysis oil and lighter product fractions, which are used to fuel the process.

Other types of sorted waste such as metals and organic refuse are further processed using other technologies. In the end, only 5% of the original waste remains, and even this residual material is not landfilled, but used as filler in construction materials. Because of this extremely efficient way of processing, the overall CO2 footprint of these waste streams is greatly reduced – yet another advantage of the circular SCP concept.

The cascade model is Borealis’ integrated circular approach
Borealis circular cascade model sits at the heart of its ambition to achieve a truly circular economy, by combining carefully chosen technologies in a complementary and cascading way to achieve full circularity. In this way, Borealis aims to give plastic products multiple lifetimes in the most sustainable way possible. Starting with optimising product design, first for eco-efficiency, then for re-use and finally for recycling. Once a product has reached its end of life, we must close the plastics loop: first with mechanical recycling to make products with the highest possible value, quality and lowest carbon footprint; then utilising chemical recycling, as a complement to mechanical recycling, to further valorise residual streams which would otherwise go to incineration, or even worse to landfills. The valorised material from mechanical and chemical recycling is then processed with Borealis Borcycle™ recycling technology consisting of Borcycle M for mechanical recycling and Borcycle C for chemical recycling, providing high quality solutions for more sophisticated applications, such as food packaging and healthcare.

The SCP concept is aligned to Borealis’ ambition to close the loop on plastic waste as encapsulated in its circular cascade model.

Source:

Borealis

Spinnova and KT Trading create new circular textile made from leather waste (c) Spinnova
20.05.2021

Spinnova and KT Trading create new circular textile made from leather waste

The textile industry is constantly searching for new, sustainable, and circular materials. Following thorough research and testing, Spinnova and KT Trading have developed a natural leather fabric made from leather waste without harmful chemicals.

"Leather is an amazing high-quality material with unique properties. With this new textile, we have taken yet another step towards completing the circular economy for leather," says Kristian Geert Jensen, CEO of KT Trading, who now has a joint venture with Spinnova.

Spinnova CEO: Sustainable innovation
Together with KT Trading, ECCO’s key leather provider, Spinnova has established the Respin company - a new joint venture. The partners are already constructing a leather fibre production pilot plant in Finland.

ECCO’s Applied Research division and Spinnova have been in a R&D collaboration since 2018 and have made successful trials with spinning the protein biomass into fibre. Processing leather raw material does not require further technology development from Spinnova. The company already has proof of concept from using the method on wood-based raw material.

The textile industry is constantly searching for new, sustainable, and circular materials. Following thorough research and testing, Spinnova and KT Trading have developed a natural leather fabric made from leather waste without harmful chemicals.

"Leather is an amazing high-quality material with unique properties. With this new textile, we have taken yet another step towards completing the circular economy for leather," says Kristian Geert Jensen, CEO of KT Trading, who now has a joint venture with Spinnova.

Spinnova CEO: Sustainable innovation
Together with KT Trading, ECCO’s key leather provider, Spinnova has established the Respin company - a new joint venture. The partners are already constructing a leather fibre production pilot plant in Finland.

ECCO’s Applied Research division and Spinnova have been in a R&D collaboration since 2018 and have made successful trials with spinning the protein biomass into fibre. Processing leather raw material does not require further technology development from Spinnova. The company already has proof of concept from using the method on wood-based raw material.

More information:
Spinnova Leather textile waste fibres
Source:

Spinnova / Cision